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ABSTRACT

Integrating Large Language Models into vision-language frameworks has led to
the rise of powerful Large Vision-Language Models (LVLMs). However, this in-
tegration introduces two critical robustness challenges: language bias and lan-
guage sensitivity. To address these issues, we propose a Unified Multi-round
Counterfactual Inference (UMCI) framework, which generalizes and extends
prior methods like Counterfactual VQA and Visual Contrastive Decoding. UMCI
performs multiple rounds of counterfactual inference using both textual and vi-
sual perturbations to mitigate bias and enhance consistency. This process reveals
a novel test-time scaling law: increasing the number of counterfactual rounds con-
sistently improves robustness. We also notice that non-robust samples are not
fixed across different LVLMs. To disentangle the effects of the proposed inference
algorithm from the confounding effect introduced by the base models, we intro-
duce the dynamic Bias and Sensitivity Benchmark (BS Benchmark) as an adaptive
evaluation tool specifically designed to probe robustness issues tailored to each
LVLM. Our experiments demonstrate that UMCI significantly improves robust-
ness on BS Benchmark while enhancing or at least maintaining the performance
on standard benchmarks such as MMBench-CN/EN, MME, MMStar, CCBench,
and ViLP. Extensive experimental results indicate that UMCI is scalable, general-
izable, and offers a promising path toward robust multimodal reasoning.

1 INTRODUCTION

The recent advance in Large Language Models (Brown et al., 2020; Achiam et al., 2023; Touvron
et al., 2023; Bai et al., 2023a; Liu et al., 2024a) (LLMs) has not only revolutionized the field of natu-
ral language processing but also catalyzed significant progress in multi-modal research, particularly
in the vision-language domain (Yin et al., 2024; Zhang et al., 2024). To better utilize the knowledge
of LLMs, the prevalent training framework for Large Vision-Language Model (LVLM) integrates a
visual encoder with a pretrained LLM and jointly fine-tunes the combined architecture, resulting in
powerful and versatility LVLMs such as InstructBLIP (Dai et al., 2023), LLaVA series (Liu et al.,
2023; 2024b) and Qwen-VL series (Bai et al., 2023b; Wang et al., 2024).

However, these LVLMs continue to suffer from robustness issues in two key aspects. First, the
above-mentioned LLM-based vision-language framework inevitably inherits certain drawbacks of
LLMs, such as sensitivity to language prompts (Arora et al., 2023; Jiang et al., 2023; Wightman
et al., 2023). Conventional VQA models lack the large-scale pretraining of LLMs and thus can
only understand very limited textual information, failing to capture subtle prompt variations and
thereby side-stepping this issue. As illustrated in Figure 1(a), simply requesting a LVLM to check
image details without altering the question results in different outputs for the same input image.
This language sensitivity undermines the consistency of LVLMs, reducing their reliability from the
user’s perspective. Second, vision-language models are also known to be susceptible to language
bias. For example, conventional Visual Question Answering (VQA) models often rely heavily on
language priors to answer questions, disregarding visual input (Niu et al., 2021; Wen et al., 2021).
As shown in Figure 1(b), this problem also persists in LVLMs and can sometimes lead to generating
non-existent contents, known as object hallucination (Li et al., 2024; Leng et al., 2024).

Recently, a growing number of research has focused on mitigating object hallucination in
LVLMs (Zhou et al., 2024; Li et al., 2024). Among these efforts, Visual Contrastive Decoding

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Dataset: MMBench_DEV_EN_V11
Model: Qwen2-VL-7B

Question: How many dogs are there? 
A: 1 ; B: 3 ; C: 0 ; D: 2.
<Prompt_0> (Original Prompt) 
Please select the correct answer from 
the options above.
Ground Truth: A 
Prediction: A

Dataset: MMBench_DEV_EN_V11
Model: Qwen2-VL-7B

Question: How many dogs are there? 
A: 1 ; B: 3 ; C: 0 ; D: 2.
<Prompt_1> (Chinese Prompt) 从上
述所有选项中直接回答正确选项对应
的字母。
Ground Truth: A 
Prediction: A

Dataset: MMBench_DEV_EN_V11
Model: Qwen2-VL-7B

Question: How many dogs are there? A: 1 ; B: 3 ; C: 0 ; 
D: 2.
<Prompt_2> (Detail-oriented Prompt) Think about the 
question based on details in the given image. Please 
select the correct answer from the options above.
Ground Truth: A 
Prediction: D

(a) Language sensitivity examples in BS Benchmark

Dataset: ViLP (Vision Language Prior)
Model: Qwen2-VL-7B

Question: A ladder is used to reach high 
places. Which tool in the picture allows 
someone to stand higher?
<Prompt> (Prompt) Please try to answer 
the question with short words or phrases if 
possible.
Ground Truth: cushion

Prediction:   ladder
<O

riginal Im
age>

Prediction:   ladder
<C

ounterfactual Im
age1>

Prediction:   ladder
< C

ounterfactual Im
age2>

(b) Language bias examples in BS Benchmark

The Proportion of Biased and Sensitive Samples for  Qwen2-VL-7B

(c) The overall proportion of different types of non-robust samples in 6 LVLM datasets

The Proportion of Biased and Sensitive Samples for  LLaVA-NeXT-8B

Biased 
examples: 

10.62% 

Sensitive examples: 4.25% 
Overlapped examples: 1.61% 

Biased examples: 
16.26% 

Sensitive 
examples: 

11.98% 

Overlapped 
examples: 3.56% 

Qwen2-VL-7B

Number of Counterfactual Rounds

LLaVA-NeXT-8B

Number of Counterfactual Rounds

(d) Scaling up the counterfactual rounds for 
the proposed UMCI framework

7.34%Cross-Model overlapped non-robust samples

Figure 1: (a) and (b) are real BS Benchmark examples suffering from language sensitivity and bias
issues; (c) shows the overall proportion of different types of non-robust samples across all 6 datasets
under two commonly used LVLMs; (d) demonstrates a novel test-time scaling law of robustness
regarding the increased counterfactual rounds in the proposed UMCI.

(VCD) (Leng et al., 2024) and its variants (Woo et al., 2024; Suo et al., 2025) have emerged as some
of the most effective and widely adopted solutions. These methods typically perform a standard
inference to obtain baseline logits and then estimate potential biases via a secondary inference with
perturbed inputs. The final unbiased prediction is derived by weighted subtraction of the two logits.
However, the object hallucination is merely a continuation of the language bias observed in conven-
tional VLMs (Niu et al., 2021; Tang et al., 2020), and it ignores the issue of language sensitivity that
is newly introduced by LVLMs.

In this work, we first analyze the underlying principles of VCD, particularly the role of the trade-off
parameter α, which is absent in the original Contrastive Decoding (CD) (Li et al., 2023). Through
an in-depth mathematical analysis, we demonstrate that VCD is theoretically aligned with some
debiasing algorithms used in previous vision-language tasks, such as TDE (Tang et al., 2020) and
TIE (Niu et al., 2021). Specifically, VCD leverages TIE logits to reweight the original logits, where
1/α acts as the temperature parameter for logit scaling. Building on this insight, we propose a
more comprehensive inference framework, termed Unified Multi-round Counterfactual Inference
(UMCI), which unifies both Textual Counterfactual (TC) and Visual Counterfactual (VC) compo-
nents. The final prediction is then derived from aggregating and comparing all multi-round counter-
factual logits. This approach generalizes VCD and enables the simultaneous mitigation of both bias
and sensitivity issues. We further examine three configurations: UMCI3, UMCI5, and UMCI7, with
different numbers of input variations to investigate the effect of increasing counterfactual inference
rounds. We argue that our approach establishes a novel test-time scaling law, distinct from prior
methods that increase intermediate token lengths within a single inference. Instead, robustness is
enhanced by performing multiple rounds of counterfactual inference.

We also introduce a new evaluation benchmark, termed Bias and Sensitivity Benchmark (BS Bench-
mark), to adaptively assess the robustness improvements of individual models. The key motivation
behind BS Benchmark is that those non-robust data samples are not fixed. As shown in Figure 1(c),
among all 24.68% hard samples for one LVLM(LLaVA-NeXT), there are only 7.34% shared with
another LVLM(Qwen2-VL). This suggests that an LVLM may perform perfectly well on a fixed ro-
bustness dataset for previous models, yet still be vulnerable to other new samples. To enable a more
precise analysis of algorithmic contributions, it is essential to disentangle the robustness gains from
the confounding effect of base model performance. To this end, this benchmark is constructed by
adaptively extracting non-robust subsets from existing LVLM datasets, based on the performance
of a given LVLM. These model-specific subsets prevent newly introduced LVLMs from covering
robustness issues by overfitting to existing datasets. Notably, the BS Benchmark is easily scalable
and can be seamlessly applied to widely used real datasets such as MMBench, MME, etc., introduc-
ing more diverse and nature question types than previous datasets (Li et al., 2024). Furthermore, as
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illustrated in Figure 1(c), the additional statistical information itself from BS Benchmark facilitates
a more comprehensive diagnosis of the inherent vulnerabilities of each LVLM.

The main contributions of this paper are threefold: 1) We propose UMCI, a unified counterfactual
inference framework that simultaneously mitigates language bias and enforces language consistency.
2) We introduce the BS Benchmark, a model-specific and dynamic benchmark designed to better
assess the robustness of LVLMs under samples from real downstream tasks. 3) We demonstrate
that UMCI consistently improves performance on both the BS Benchmark and standard datasets,
exhibiting strong generalizability. Furthermore, we uncover a novel test-time scaling law that links
the number of counterfactual inference rounds to robustness gains.

2 RELATED WORK

Large vision-language models. LVLMs integrate two of the most significant breakthroughs in
recent years: the versatile image encoder CLIP (Radford et al., 2021) and LLMs for general-purpose
question answering (Radford et al., 2019; Touvron et al., 2023). The typical inference pipeline
of a LVLM proceeds as follows: the input image is first encoded by CLIP or its more advanced
successors (Zhai et al., 2023) to extract patch-level visual features; an adapter then maps these
features to the token embedding space of the LLM (Liu et al., 2023; Bai et al., 2023b); finally, the
visual and textual token embeddings are jointly fed into the LLM to generate the response. LVLMs
have shown broad applicability in vision-language tasks such as image captioning (Xu et al., 2015;
Yang et al., 2019) and Visual Question Answering (VQA) (Antol et al., 2015).

Language bias and sensitivity in vision-language models. Language bias has been a longstanding
challenge for visual-language models. Previously, it was widely studied as the language prior in
tasks like VQANiu et al. (2021); Goyal et al. (2017). In today’s LVLMs, it commonly manifests
as object hallucination. Recent works have sought to mitigate it through targeted retraining and
contrastive decoding strategiesGunjal et al. (2024); Leng et al. (2024); Jiang et al. (2025), which are
parallel to earlier techniques such as rebalanced training and counterfactual inference (Chen et al.,
2020; Niu et al., 2021). Meanwhile, sensitivity to language prompts has received considerably less
attention in VL research. Early VQA systems side-stepping this issue by using a small language
encoder. The emergence of LLMs has brought it to the forefront. Existing mitigation strategies can
be broadly categorized into three groups: 1) prompt ensembling (Pitis et al., 2023); 2) RL-based
prompt optimization (Kwon et al., 2024); 3) Chain-of-thought verification (Wang et al., 2022).

Test-time scaling laws. Scaling laws have always been central to understanding LLM behavior,
particularly the positive correlation between the scale of model/dataset/compute and the perfor-
mance (Kaplan et al., 2020; Hoffmann et al., 2022). Recently, the attention has shifted toward
test-time scaling, where increasing inference-time compute is also critical (Snell et al., 2025), such
as adding demonstrations or decoding steps. In this work, we extend the notion of test-time scaling
to the robustness: rather than increasing intermediate token length in a single inference, our method
improves LVLM robustness by aggregating logits across more counterfactual inference rounds.

3 METHODOLOGY

3.1 PRELIMINARIES

Counterfactual VQA: the use of counterfactual inference to mitigate language bias in vision-
language tasks dates back to Unbiased SGG (Tang et al., 2020) and CF-VQA (Niu et al., 2021).
These works were the first to introduce the concepts of Total Direct Effect (TDE) and Total Indirect
Effect (TIE) from the field of causality to achieve unbiased estimations via logit subtraction.

Since an LVLM can be regarded as a general VQA model, we take CF-VQA as an example. The
TIE-based counterfactual logits can be formulated as:

TIE = Z(q, v, k)− Z(q, v∗, k∗), (1)

where Z(·) denotes the model producing answer logits, q denotes the question feature, v is the visual
feature, k is the multi-modal fusion feature, v∗ and k∗ are counterfactual dummy features agnostic
to the inputs. In conventional VQA, which is formulated as a closed-set classification task, the
unbiased answer is obtained by returning the candidate answer with the highest TIE logits.
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Visual Contrastive Decoding (VCD): building upon the idea of Contrastive Decoding (CD) (Li
et al., 2023), VCD extends CD to mitigate object hallucination during LVLM inference, which can
be formulated as follows:

p(y|v, v∗, q) = softmax((1 + α) logit(y|v, q)− α logit(y|v∗, q)), (2)

where y denotes the generated discrete token, α is a trade-off hyperparameter, q and v represent the
input textual and visual tokens, respectively, and v∗ corresponds to visual tokens obtained from a
noisy image. The previously generated tokens are considered part of q for simplicity. The final VCD
answer is therefore iteratively sampled from p(y|v, v∗, q).

3.2 UNIFIED MULTI-ROUND COUNTERFACTUAL INFERENCE

In this paper, we observe that VCD essentially reweights the original logits using TIE logits from CF-
VQA. Building on this insight, we propose a Unified Multi-round Counterfactual Inference (UMCI)
framework, which enhances model robustness through systematic logit-level reasoning over textual
and visual counterfactual samples. The proposed UMCI framework not only unifies the formulations
of VCD and CF-VQA, but also provides a principled solution to both language bias and sensitivity.

We begin by revisiting VCD through the lens of CF-VQA. Specifically, we treat object hallucination
in LVLMs as the consequence of iterative biased token generation and frame the decoding process
as a sequence of biased classifications. This perspective highlights that LVLMs are fundamentally
no different from conventional VQA models. At each generation step, the bias can be mitigated
through reasoning over counterfactual logits. Based on this observation, we transform the probabil-
ity expression in equation 2 into a logit-based formulation Zvcd(v, v

∗, q) as follows:

Zvcd(v, v
∗, q) = (1 + α)Z(v, q)− αZ(v∗, q), (3)

where Z(·) denotes the LVLM that takes both textual tokens q and visual tokens (either v from real
images or v∗ from dummy ones) as input and output the logits for the next token. Since there are no
explicit multi-modal fusion features in the LVLM inputs, we removes k or k∗ in original TIE.

To better understand the relationship between VCD and TIE, we transform the above VCD logits
into the exp(·) domain. By explicitly expanding the softmax function exp(xi)/(

∑
j exp(xj)) and

omitting the normalization term, we approximate the probability using p(y) ∝ exp(·). With this
simplification, the VCD probability p(y|v, v∗, q) in equation 2 can be rewritten as:

p(y|v, v∗, q) = softmax(Zvcd(v, v
∗, q))

∝ exp(Z(v, q) + α (Z(v, q)− Z(v∗, q)))

= exp(Z(v, q)) · exp(α (Z(v, q)− Z(v∗, q)))

= exp(Z(v, q)) · exp(TIE/τ). (4)

The above formulation bridges VCD and CF-VQA, showing that VCD essentially performs
weighted token generation upon the original output token probability p(y|v, q) ∝ exp(Z(v, q)),
where TIE logits exp(TIE/τ) serves as a vocabulary-wise reweighting term, thus forcing the model
to rely on visual difference. This formulation also clarifies the role of α in VCD. Neither vanilla
CD nor TIE itself requires this additional parameter, because the logit difference itself captures the
useful effect of real v over dummy v∗. Yet, as a reweighting term, it requires a temperature scaling
factor to adjust the trade-off strength, so we further denote τ = 1/α.

To establish a more general robust inference framework, it is also necessary to address the over-
looked language sensitivity issue as well. Therefore, we propose UMCI framework to incorporates
both a Visual Counterfactual (VC) component, which enhances visual cues similar to TIE, and a
Textual Counterfactual (TC) component, which ensures prompt-consistent logits, as follows:

pUMCI(y|v, q) ∝ exp(TC/τ1) · exp(VC/τ2), (5)

TCk = maxi(Zk(v
0, qi)), i = 0, 1, 2, ..., N (6)

VC = Z(v0, q0)− E[Z(vj , q0)], j = 1, 2, ...,M (7)

where v = {vj}Mj=0 and q = {qi}Ni=0 denote overall inputs; M and N are the number of visual
and textual counterfactual variations, respectively; v0 and q0 stand for original visual and textual
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tokens; {vj , j ̸= 0} and {qi, i ̸= 0} represent counterfactual visual tokens generated from content-
removed images and counterfactual textual tokens from semantically equivalent but lexically dif-
ferent prompts, respectively. The detailed implementation of these counterfactual samples will be
explained in Experiments and Appendix D. The operator maxi(Zk(·)) computes the element-wise
maximum over N + 1 samples on the k−th dimension of the logits for better consistency. VC
enhances the original TIE by incorporating multiple counterfactual visual inputs to obtain a more
stable estimation. τ1 and τ2 are temperature scaling factor for TC and VC logits, respectively. Fol-
lowing VCD, we also adopt Adaptive Plausibility Constraints as a post process before sampling
from pUMCI(y), details will be given in Appendix C.

The overall UMCI framework provides a generalized solution for robust LVLM inference. In this
unified framework, prior works such as VCD and CF-VQA can be viewed as special cases. For
VCD, there are no counterfactual prompt variations (N = 0) and only one counterfactual image
(M = 1). For CF-VQA, the entire TC component is set to a constant and M = 1. As demonstrated
in our experiments, increasing the number of counterfactual inference rounds, i.e. using larger M
and N , leads to more robust final outputs, revealing an emergent test-time scaling law for robustness
in LVLMs. We also believe that there remains a large opportunity to improve the effectiveness by
developing more advanced TC and VC algorithms in future work.

3.3 BIAS AND SENSITIVITY BENCHMARK

Subset Size B Subset S Subset BS Subset Overlap

LLaVA-NeXT (MCQ) 1810 1005 2476 339
LLaVA-NeXT (Others) 345 582 794 133
LLaVA-NeXT (Overall) 2155 1587 3270 472

Qwen2-VL (MCQ) 1080 252 1243 89
Qwen2-VL (Others) 327 311 513 125
Qwen2-VL (Overall) 1407 563 1756 214

Table 1: The size of each subset in constructed
BS Benchmark. The overall number of samples
across all 6 datasets is 13251, with MCQ and Oth-
ers categories being 10632 and 2619, respectively.

Collecting and constructing datasets tailored to
specific robust issues is often cumbersome and
costly. What’s worse, once such datasets are
publicly released, they may be inadvertently in-
tegrated into the web-crawled training corpus
of subsequent LVLMs. To better evaluate lan-
guage bias and sensitivity in real downstream
tasks, we introduce the Bias and Sensitivity
Benchmark (BS Benchmark), guided by two
main motivations: 1) the evaluation benchmark
should be model-specific and dynamic. Since
different LVLMs may exhibit varying levels of
robustness and their vulnerable samples are not
the same, it is important to disentangle the con-
founding effect of the base model performance
from the improvements brought by different inference strategies, so we can better understand the
contribution of the inference algorithm itself; 2) existing LVLM bias evaluation datasets typically
focus on a single question type and adopt formats that differ significantly from real-world LVLM
tasks, e.g. exist-or-not questions (Yifan et al., 2023). Therefore, it is necessary to develop methods
that can automatically adapt to diverse question types and task formats.

Following the above two guiding principles, the proposed benchmark enables the transformation
of any popular or newly released LVLM dataset regardless of its question formats into a robustness
evaluation benchmark. Specifically, it will adaptively generate model-specific bias subset, sensitivity
subset and their union BS Subset for any given LVLM dataset through a two-step process. First, we
will evaluate the dataset using the given model. Then, we will adopt the following criteria for
filtering the Bias Subset (BS) and the Sensitivity Subset (SS):

BS = {(agt, v0, q0) | ∀j ̸= 0, argmax
a

p(a|v0, q0) = argmax
a

p(a|vj , q0) ̸= agt}, (8)

SS = {(agt, v0, q0) | ∀i ̸= 0, argmax
a

p(a|v0, q0) ̸= argmax
a

p(a|v0, qi)}, (9)

where a and agt denote the predicted answer and the ground-truth answer, respectively, and
argmaxa p(a|·) means the predicted answer is obtained via greedy decoding. The generation of
counterfactual inputs vj and qi follows the same procedure as in UMCI. In this paper, we fix
M = N = 2 for all our subsets construction. In essence, for BS (equation 8), we select sam-
ples that yield the same incorrect predictions under both the original and dummy visual inputs,
indicating a reliance on spurious language priors; for SS (equation 9), we identify samples whose
predictions change in response to subtle, non-causal prompt variations. The final BS Subset is de-
fined as the union of the above two subsets, enabling the investigation of both bias and sensitivity
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issues. We further split all samples into two groups based on their question types: MCQ for the
dominant Multiple-Choice Question type and Others for Yes/No or general open-ended QA types.

In summary, the proposed BS Benchmark offers three key advantages. First, robustness is a model-
specific problem, samples that are biased or sensitive for one model may not be vulnerable for
another, more evidence will be provided in Table 3. An adaptive and model-specific robustness
benchmark can thus prevent newly developed LVLMs from being exposed to publicly released fixed
datasets and misleading the evaluation of their real underline robustness. Second, as shown in Fig-
ure 1(c), different models exhibit varying levels of robustness, the size of each subset provides valu-
able insight into different models. For example, Table 1 indicates that: 1) Qwen2-VL is generally
more robust than LLaVA-Next; 2) Qwen2-VL is more vulnerable to bias than to sensitivity; and 3)
LLaVA-NeXT exhibits more sensitivity issues compared to Qwen2-VL. Third, BS Benchmark en-
ables the evaluation of robustness in various real-world tasks, rather than predefined questions such
as a simple exist-or-not (Yes/No) assessment commonly used in previous work (Yifan et al., 2023).
It also allows for the effortless conversion of any real-world LVLM dataset into the BS Benchmark
format, eliminating the need for labor-intensive sample collection and manual annotation.

4 EXPERIMENTS

4.1 BENCHMARK SETTINGS

In our experiments, we construct BS Benchmark using 6 widely adopted LVLM benchmarks:
MME (Fu et al., 2023), MMStar (Chen et al., 2024), CCBench (Liu et al., 2024c), ViLP (Luo et al.,
2024), MMBench-DEV-EN-V11 and MMBench-DEV-CN-V11 (Liu et al., 2024c). We begin by
randomly splitting the datasets into 20% validation and 80% test sets, resulting in 3315 and 13251
samples, respectively. Detailed subset statistics are provided in Table 1. Note that the size of BS
Benchmark increases with larger number of M and N . For consistency and convenience, we fix
M = N = 2 for all subsets constructions throughout our experiments. As we mentioned, to en-
able a more fine-grained analysis, we separately report performance for Multiple-Choice Question
(MCQ) and Others (Open-ended QA for ViLP or Yes/No for MME) categories, in addition to the
overall results. We use top-1 accuracy as the evaluation metric for all experiments. For the MME
dataset, which adopts a different scoring metric, we convert its results to accuracy, so they can be
integrated with samples from other datasets to get the final results.

4.2 IMPLEMENTATION DETAILS

Environments and Model Zoo. All experiments were conducted using VLMEvalKit (Duan
et al., 2024) on a single NVIDIA A800 GPU (80GB) with environment: Pytorch=2.6, Transform-
ers=4.49, and Flash Attention=2.7 (Dao, 2023). We used Hugging Face versions of Qwen2-VL-7B-
Instruct (Wang et al., 2024) and Llama3-LLaVa-NeXT-8B-hf (Liu et al., 2024b) as our base models.
Following their default configurations, the experiments were conducted using bfloat16 precision and
top-k sampling decoding for Qwen2-VL, while LLaVa-NeXT used float16 and greedy decoding.

Algorithm details. We evaluated 4 inference strategies: TIE, VCD, M3ID, and the proposed UMCI.
We adapted Total Indirect Effect (TIE) from CF-VQA (Niu et al., 2021) to LVLMs by removing the
multi-modal features k and k∗ in Eq. equation 1. For fair comparison, we also incorporated the
Adaptive Plausibility Constraints used in VCD and M3ID into TIE. VCD (Leng et al., 2024) and
M3ID (Favero et al., 2024) share the same mathematical formulation as Eq. equation 4, except that
the hyperparameter τ in M3ID varies depending on the position of the predicted token. For the
proposed UMCI, we added subscripts such as UMCI3, UMCI5, and UMCI7 to indicate the number
of inference rounds. For example, UMCI5 means that the total number of counterfactual visual and
textual variations, together with the original inputs is 5, i.e., M +N +1 = 5 In our experiments, we
set M = N = 1, M = N = 2, and M = N = 3 for UMCI3, UMCI5, and UMCI7, respectively.

Counterfactual sample construction. We constructed up to 3 visual counterfactual variations and
3 prompt variations: 1) VC-Color0(C0) renders the input image into black; 2) VC-Noise500(N500)
and 3) VC-Noise400 apply the diffusion noise function from VCD, using noise steps of 500 and
400, respectively; 3) TC-V1 adds an additional system prompt instructing the model to focus on
image details; 4) TC-V2 further modifies the system prompt’s language from English to Chinese or
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Method
B Subset S Subset BS Subset

MCQ Others Overall MCQ Others Overall MCQ Others Overall

LLaVA-NeXT 0.0 0.0 0.0 39.2 37.63 38.63 15.91 27.58 18.75
LLaVA-NeXT-TIE 12.98 23.48 14.66 39.00 57.56 45.81 21.89 44.21 27.31
LLaVA-NeXT-VCD 12.65 25.51 14.71 40.50 56.53 46.38 22.54 44.58 27.89
LLaVA-NeXT-M3ID 16.91 25.22 18.24 39.90 56.36 45.94 24.15 44.33 29.05
LLaVA-NeXT-UMCI3 (ours) 21.22 35.36 23.48 39.60 60.31 47.20 27.14 50.13 32.72
LLaVA-NeXT-UMCI5 (ours) 23.81 37.97 26.08 40.60 60.65 47.95 28.80 51.01 34.19
LLaVA-NeXT-UMCI7 (ours) 24.86 38.26 27.01 40.10 60.65 47.64 29.68 51.26 34.92

Qwen2-VL 5.37 8.56 6.11 38.10 34.41 36.06 10.78 23.59 14.52
Qwen2-VL-TIE 16.20 16.82 16.35 45.63 36.66 40.67 20.27 27.29 22.32
Qwen2-VL-VCD 15.74 21.71 17.13 46.83 40.84 43.52 20.11 30.41 23.12
Qwen2-VL-M3ID 19.81 21.71 20.26 47.22 41.16 43.87 23.65 30.6 25.68
Qwen2-VL-UMCI3 (ours) 21.67 26.30 22.74 44.05 42.44 43.16 24.54 32.75 26.94
Qwen2-VL-UMCI5 (ours) 24.91 25.69 25.09 47.22 42.44 44.58 28.00 33.14 29.50
Qwen2-VL-UMCI7 (ours) 27.04 29.66 27.65 47.22 45.98 46.54 29.61 36.84 31.72

Table 2: Experiments on B(ias) Subset, S(ensitivity) Subset, and BS Subset. Bold texts indicate the
best result of each column and underline texts indicate the second best result.

vice versa; 5) TC-V3 that injects identity information by prompting the model to respond as a clever
student. More detailed prompts will be given in the Appendix D.

Construction Model Methods MCQ Others Overall

LLaVA-NeXT

LLaVA-NeXT-Original 15.91 27.58 18.75
LLaVA-NeXT-UMCI5 28.80 51.01 34.19
Qwen2-VL-Original 59.29 63.48 60.31
Qwen2-VL-UMCI5 61.15 67.88 62.78

Qwen2-VL

Qwen2-VL-Original 10.78 23.59 14.52
Qwen2-VL-UMCI5 28.00 33.14 29.50
LLaVA-NeXT-Original 30.25 39.18 32.86
LLaVA-NeXT-UMCI5 34.59 41.33 36.56

Table 3: Ablation on cross-model BS Subset evaluation.

Hyperparameter settings. Based on
the validation results, we set τ1 to
1.5, 2, and 2.5 for UMCI3, UMCI5,
and UMCI7, respectively. Since
the TC component involves element-
wise maximum over logits, its mag-
nitude increases with the number of
variations N . Therefore, the tem-
perature scaling factor τ1 should be
increased accordingly to maintain a
similar distribution of TC logits. The
τ2 is fixed at 0.2, because the aver-
aging operation in the VC logits sta-
bilizes the distribution and mitigates
the need for the scaling change. For the Adaptive Plausibility Constraint (Leng et al., 2024) used in
our experiments, the threshold parameter is set to 0.3 unless otherwise specified. More details about
the constraint and hyperparameter ablation will be introduced in the Appendix E.

4.3 EXPERIMENTAL RESULTS

Experiments on the proposed BS Benchmark. As shown in Table 2, we adopted two state-of-
the-art LVLMs for our experiments: LLaVA-NeXT-8B and Qwen2-VL-7B. We compared the base
model performances and three other algorithms: TIE, VCD, and M3ID that utilized counterfactual
inference. The proposed methods, UMCI3, UMCI5, and UMCI7, consistently demonstrated supe-
rior performance across the B(ias), S(ensitivity), and combined BS Subsets. We further reported
MCQ and Others results based on question types and saw that the improvements brought by UMCI
were consistent across both categories. Table 2 also reveals that the proposed BS Benchmark can
successfully disentangle the base model performance and focus on investigating the effectiveness of
inference algorithms, as Qwen2-VL outperforms LLaVA-NeXT by 10.19% on the original datasets
in Table 4, while their base and final overall performances on the BS Benchmark are very close.

Experiments on real-world LVLM datasets. We further evaluated the proposed UMCI on 6 pop-
ular LVLM datasets to verify its performance under real-world data distributions, in addition to the
proposed subsets alone. Taking UMCI5 as an example in Table 4, it consistently outperformed the
baseline models in all question types and almost all datasets. Meanwhile, TIE, VCD and M3ID
decrease the performance on Others question type. Note that although the improvements appear

7
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Method Single Dataset Gathered by Question Type
MMB-C MMB-E MME CCB MMS ViLP MCQ Others Overall

LLaVA-NeXT 78.0 79.72 79.57 47.0 44.75 51.53 70.12 71.86 70.46
LLaVA-NeXT-TIE 78.28 80.28 77.30 45.65 46.00 53.19 70.36 70.68 70.42
LLaVA-NeXT-VCD 78.38 80.28 78.09 46.63 45.00 54.31 70.44 71.55 70.66
LLaVA-NeXT-M3ID 78.31 80.18 78.62 45.89 45.92 54.03 70.36 71.86 70.66
LLaVA-NeXT-UMCI5 (ours) 78.21 80.08 80.15 46.20 45.75 53.06 70.32 72.70 70.79

Qwen2-VL 85.26 86.36 87.89 73.22 59.50 56.53 80.91 79.27 80.58
Qwen2-VL-TIE 86.00 86.59 86.52 73.84 59.00 57.08 81.30 78.43 80.73
Qwen2-VL-VCD 86.05 86.56 86.41 73.77 60.08 57.92 81.42 78.58 80.86
Qwen2-VL-M3ID 85.69 86.46 86.10 73.96 59.75 57.78 81.25 78.31 80.67
Qwen2-VL-UMCI5 (ours) 85.97 86.67 87.36 73.59 59.92 58.06 81.39 79.31 80.98

Table 4: Experiments on MMB(ench-Dev)-C/E(N-V11), MME, CCB(ench), MMS(tar), and ViLP
indicate that UMCI has more consistent improvement than TDE/VCD/M3ID on those real-world
LVLM benchmarks (using 80% test splits). Blue texts indicate an improvement over the baseline.

relatively marginal, since vulnerable samples comprise only a portion of the datasets. These re-
sults confirm that the gains observed on BS Benchmark are not due to overfitting to specific data
distributions, but rather reflect a general improvement in robustness.

Base VC-C VC-N TC-V1 TC-V2 MCQ Others Overall

✓ 10.78 23.59 14.52
✓ 8.77 18.52 11.62

✓ 10.62 25.15 14.86
✓ 10.38 24.37 14.46

✓ 12.07 23.00 15.26
✓ ✓ 21.72 29.43 23.97
✓ ✓ 10.54 23.39 14.29
✓ ✓ ✓ 24.54 32.75 26.94
✓ ✓ ✓ 26.67 30.97 27.93
✓ ✓ ✓ 27.37 31.13 28.46
✓ ✓ ✓ 11.58 23.21 14.98
✓ ✓ ✓ ✓ 26.07 32.55 27.96
✓ ✓ ✓ ✓ 26.71 33.33 28.64
✓ ✓ ✓ ✓ ✓ 28.00 33.14 29.50

Table 5: Ablation experiments for different counterfactual
logits combinations using Qwen2-VL on BS Subset.

Ablation study on test-time scaling
with increasing inference rounds.
To better understand the effect of
each component in UMCI frame-
work, we conducted an ablation study
on UMCI5. As shown in Table 5,
we first evaluated the performance
of the base inputs and four individ-
ual counterfactual inputs on the BS
Subset. We then incrementally in-
creased the number of counterfactual
rounds to form progressively more
complete versions of UMCI to reach
UMCI5. Note that experiments on
VC component and TC component
alone are also included. Together
with the comprehensive results of
UMCI3, UMCI5, and UMCI7 in Fig-
ure 2, the overall findings highlight
the significance of test-time scaling:
robustness of models can be improved with more incorporated counterfactual rounds.

Ablation study on cross-model BS Benchmark evaluation. The ablation study in Table 3 provides
additional insights: 1) non-robust samples vary significantly across different LVLMs. For instance,
the BS Subset constructed by LLaVA-NeXT yields only 18.75% accuracy on its own model, while
Qwen2-VL achieves 60.31% accuracy on the same subset, and vice versa. This demonstrates that
even if an LVLM performs perfectly well on a fixed robustness benchmark, it may still fail on
new vulnerable samples. These findings highlight the necessity of adopting a model-specific BS
Benchmark; 2) The performance gains achieved through UMCI in one model are transferable to BS
benchmarks constructed by other models, thereby validating the generalization ability of UMCI.

4.4 DISCUSSIONS

We also provide some interesting discussions to shed lights on the proposed UMCI framework and
BS Benchmark.

Q1: Why did the base models perform so poorly (e.g., LLaVA-NeXT even got 0.0 on the Bias
Subset) on the Bias, Sensitivity, and BS Subsets? A1: The proposed BS Benchmark are intention-
ally designed to probe samples particularly vulnerable to robust issues, i.e. they are hard examples

8
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Qwen2-VL-7B-UMCI Number of Counterfactual Rounds Qwen2-VL-7B-UMCI Number of Counterfactual Rounds Qwen2-VL-7B-UMCI Number of Counterfactual Rounds

LLaVA-NeXT-8B-UMCI Number of Counterfactual Rounds LLaVA-NeXT-8B-UMCI Number of Counterfactual Rounds LLaVA-NeXT-8B-UMCI Number of Counterfactual Rounds

Figure 2: Investigating the test-time scaling law of robustness with respect to the number of inference
rounds on B/S/BS subsets across different question types and LVLMs.

for LVLMs. That’s why the model performances on these subsets are sometimes even lower than
random guessing, e.g., MCQs have a 25% chance accuracy for random guess. In fact, as defined
in equation 8, the Bias Subset specifically collects samples for which the base model consistently
produces incorrect predictions, so its accuracy is theoretically expected to be 0.0. The reason why
Qwen2-VL does not yield exactly 0.0 is due to its use of top-k sampling for decoding by default,
which introduces randomness into its outputs. In contrast, LLaVA-NeXT uses greedy decoding,
producing deterministic predictions, which explains its consistent 0.0 accuracy on the Bias Subset.

Q2: What’s the computational overhead of UMCI and are there potential solutions for accel-
eration? A2: The test-time scaling law entails a trade-off between inference time and performance,
which means that the proposed UMCI will inevitably take more time. The most intuitive accelera-
tion method for UMCI is batch inference. Based on our experiments, the computational overhead of
UMCI3, UMCI5, and UMCI7 using batch inference is approximately 1.29×, 1.81×, and 2.48× that
of the base model, respectively, which is much faster than the vanilla version, which costs 2.96×,
5.01×, and 6.68×, respectively. We also believe that KV Cache sharing for the visual and textual
tokens that remain unchanged is a potential acceleration technique for UMCI.

Q3: Why is UMCI different from previous test-time scaling laws, and could it open up a new
paradigm? A3: Most of the existing test-time scaling studies (Snell et al., 2025) focus on increasing
the length of intermediate thinking tokens, which remains limited to the prompt or language level.
However, the prompt-level improvement only reveals whether the answer is correct or wrong. It
provides no insight into whether, for instance, the input image increases the logit magnitude for
a specific token such as ”cushion”. By introducing UMCI, we go beyond discrete token outputs
and analyze the underlying continuous logit distributions through comparison and aggregation of
counterfactual logits. This approach provides significantly richer information than simply using
final predicted tokens. Therefore, we believe that UMCI opens up a promising new direction for
test-time scaling laws, which utilizes richer output information.

5 CONCLUSION

This paper introduces the Multi-round Counterfactual Inference (UMCI), a generalized framework
for robust inference in LVLMs that simultaneously addresses language bias and sensitivity issues
through comprehensive logit-level counterfactual reasoning. Together with the proposed Bias and
Sensitivity Benchmark, we provide both a methodology advancement and an adaptive evaluation for
enhancing LVLM robustness on real-world datasets. Extensive experiments further demonstrate a
scalable path towards better test-time robustness: by simply increasing the number of counterfactual
rounds during inference and integrating more advanced logit-level reasoning algorithms. We hope
that UMCI and BS Benchmark will serve as foundational paradigms and diagnostic standards to
guide future research toward reliable LVLMs.
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REPRODUCIBILITY STATEMENT

To promote reproducibility, all code, data, and evaluation scripts of this paper will be publicly re-
leased upon publication. The original 6 datasets, the VLMEvalKit codebase, and the LVLM check-
points used in this paper are sourced from publicly available repositories on GitHub or Hugging
Face. We also provide detailed information on the hardware, software, and their respective versions
in the Implementation Details section of the main paper. All hyperparameters are included in the
main paper or appendix. We believe that the open-source spirit is a driving force for progress in
the AI field, and, as such, we are committed to ensuring that our work can be easily reproduced by
future researchers.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
nick, and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international
conference on computer vision, pp. 2425–2433, 2015.

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel J Orr, Neel Guha, Kush Bhatia, Ines Chami,
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A APPENDIX

The following appendix contains supplementary details and experimental results excluded from the
main paper due to space constraints. The overall appendix includes: B) The Use of Large Lan-
guage Models (as requested by the ICLR 2026 conference author guide); C) adaptive plausibility
constraint; D) generation of counterfactual inputs; E) additional experimental results and analyses.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this research, we have utilized Large Language Models (LLMs) solely for the purpose of text re-
finement and editing. The LLM was only used to improve overall readability. It did NOT contribute
to the idea creation, code writing, generation of initial drafts, or figure creation.

We affirm that all research ideas, experimental design, and data analysis were developed by the
human authors. We take full responsibility for all aspects of the manuscript and ensure that NO
content generated by the LLM constitutes plagiarism or scientific misconduct.

C ADAPTIVE PLAUSIBILITY CONSTRAINT

As mentioned in the main paper, we adopt adaptive plausibility constraint from VCD (Leng et al.,
2024) and M3ID (Favero et al., 2024) as a post-processing step before sampling output tokens. This
constraint masks tokens with low logit values under the original input, ensuring that low-confidence
tokens are not sampled as final outputs. Specifically, the constraint can be formulated as:

Zvcd(v, v
∗, q)k = −∞, (10)

s.t. Z(v, q)k < max
k

(Z(v, q)) + log(β), (11)

where k is the token index for logits; the logit with value −∞ ensures that pvcd(y|v, v∗, q)k = 0 for
the masked tokens; β is the threshold; maxk(Z(v, q)) is the largest logit value for original inputs.

The rationale behind the Adaptive Plausibility Constraint is that, although the output distribution un-
der the original input may be biased, it can still serve as a valid filter to identify plausible candidate
tokens. Only tokens with logits greater than maxk(Z(v, q)) + log(β) are allowed to receive VCD
logits and participate in final sampling. In contrast, low-confidence candidates with insufficient log-
its are directly masked out. As shown in Table 6, removing the adaptive plausibility constraint leads
to a performance drop for UMCI5 on the B/S/BS subsets, and results in an even greater performance
degradation on the original datasets as we expected.
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Methods Constraint Original B Subset S Subset BS Subset
Qwen2-VL NA 81.12 6.10 37.59 15.46
Qwen2-VL-UMCI5 ✗ 68.93 26.16 34.04 27.63
Qwen2-VL-UMCI5 ✓ 81.03 29.65 40.43 32.55

Table 6: Ablation study for the adaptive plausibility constraint. To evaluate the effect of adaptive
plausibility constraint, we conducted experiments on validation sets of original 6 datasets together
with B(ias)/S(ensitive)/BS Subsets.

Method Qwen2-VL Qwen2-VL-UMCI3 Qwen2-VL-UMCI5 Qwen2-VL-UMCI7

Inference Time (w/o batch inference) 540.47ms 1599.65ms 2707.16ms 3611.18ms
Inference Time (w/ batch inference) 540.47ms 697.24ms 978.14ms 1342.86ms

Table 7: We report the average inference time per sample on the MMStar dataset using one A800
GPU to illustrate the computational overhead introduced by UMCI. Note that the baseline speed w/o
batch inference sequentially conduct each counterfactual inference round, while w/ batch inference,
all counterfactual inference rounds are conducted in one batch. Therefore, the later is significantly
faster than the baseline speed.

For the proposed Unified Multi-round Counterfactual Inference (UMCI) framework, we slightly
change the constraint as follows:

pUMCI(y|v, q) = 0, (12)
s.t. TCk/τ1 < max

k
(TC/τ1) + log(β), (13)

where the key difference is that we use Textual Counterfactual (TC) logits, scaled by a temperature
factor, to replace the original logits as the masking criterion, as we believe TC provides more con-
sistent predictions. The final output tokens are then sampled from the unmasked candidates with
non-zero probabilities.

In our experiments, the default threshold β is set to 0.3 following the previous paper (Favero et al.,
2024) for all BS Benchmark experiments. We consider β as a trade-off parameter between relying on
de-biased logits and original logits. When β approaches 1.0, the final output token closely resembles
that produced by the original inputs. In contrast, when β approaches 0.0, the constraint becomes
negligible, and the output behaves as if no filtering is applied. For experiments on original LVLM
datasets, we increase β by 0.5 to 0.8, as these datasets exhibit less bias and the outputs are generally
closer to those produced by the original inputs.

D GENERATION OF COUNTERFACTUAL INPUTS

In this section, we provide further details on the generation of counterfactual inputs. For the Visual
Counterfactual input VC-Color0, we directly set the RGB values of all pixels in the input image to
(0, 0, 0), resulting in a completely black image. For VC-Noise400 and VC-Noise500, we follow
the method used in VCD (Leng et al., 2024), where Gaussian noise is added to simulate the for-
ward diffusion process (Ho et al., 2020) at 400 and 500 time steps, respectively. The mathematical
formulation of this forward process is as follows:

vt =
√
ᾱt · v0 +

√
1− ᾱt · ϵ, (14)

where vt is the final noise image at at step t; v0 is original image; ϵ ∼ N (0, 1) is random Gaussian
noise; ᾱt is cumulative product. The detailed implementation is available in the official GitHub
repository of VCD.

For Textual Counterfactual input TC-V1, TC-V2, and TC-V3, as we can see from Figure 3, Fig-
ure 4, and Figure 5, each variations provide a semantically equivalent but lexically different prompts.
Without change the meaning of instruction, TC-V1 adds an additional system prompt instructing the
model to focus on image details, TC-V2 further modifies the system prompt’s language from English
to Chinese or vice versa, TC-V3 injects identity information by prompting the model to respond as
a clever student.
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Methods Hyperparameters MCQ Others Overall
Qwen2-VL - 11.97 22.38 15.46
Qwen2-VL-UMCI5 τ1 = 2.0 τ2 = 0.2 33.45 30.77 32.55
Qwen2-VL-UMCI5 τ1 = 2.0 τ2 = 2.0 22.89 27.97 24.59
Qwen2-VL-UMCI5 τ1 = 2.0 τ2 = 1.0 26.06 29.37 27.17
Qwen2-VL-UMCI5 τ1 = 2.0 τ2 = 0.5 32.39 30.77 31.85
Qwen2-VL-UMCI5 τ1 = 20 τ2 = 0.2 3.87 18.88 8.89
Qwen2-VL-UMCI5 τ1 = 10 τ2 = 0.2 23.59 23.77 23.65
Qwen2-VL-UMCI5 τ1 = 1.0 τ2 = 0.2 28.17 26.57 27.63
Qwen2-VL-UMCI5 τ1 = 0.2 τ2 = 0.2 11.97 20.97 14.99

Table 8: Ablation study for temperature scaling hyperparameters τ1 and τ2 of UMCI. Experiments
are conducted under validation set of BS Subset.

E ADDITIONAL EXPERIMENTS

This section will discuss some additional experiments, including ablation studies on hyperparame-
ters, analysis of inference time for UMCI, and other supplementary results.

Ablation study for hyperparameters. As shown in Table 8, we select the temperature scaling hy-
perparameters for the TC and VC logits based on validation performance on the BS Subset. For fair
comparison, the hyperparameters were select on UMCI5 under base model Qwen2-VL and directly
apply to LLaVA-NeXT. The temperature scaling τ2 for VC is fixed as 0.2 across UMCI3, UMCI5,
and UMCI7, because the logits distribution of VC would not change with the number of visual
counterfactual inputs. As to the temperature scaling τ1 for TC, since the calculation of TC involves
maximum cross all outputs using different textual counterfactual inputs, the logits distribution of TC
would change with number of textual counterfactual variations. Therefore, we decide to intuitively
add 0.5 to τ1 to prevent the distribution change when there is one more textual variation added to
UMCI.

Inference time and discussion about acceleration techniques. As shown in Table 7, we first eval-
uate the computational overhead of the vanilla implementation (sequential counterfactual inference)
of UMCI by measuring the average inference time per sample on the validation set of MMStar
(Qwen2-VL BS Subset) using a single A800 GPU with Flash Attention 2.7. Specifically, we com-
pare the original inference with UMCI3, UMCI5, and UMCI7. Since the vanilla implementation se-
quentially executes each counterfactual inference with different input variations, the computational
overhead scales approximately linearly, resulting in 2.96×, 5.01×, and 6.68× the base model’s
inference time, respectively. We then apply a straightforward acceleration technique, called batch-
ing inference to improve the efficiency. Since each counterfactual input variations together with the
original input can be executed in the forward pass independently, we can put them into one batch and
conduct batch parallel acceleration. The efficiency improvement after applying batch inference is
significant, the computational overhead of UMCI3, UMCI5, and UMCI7 become 1.29×, 1.81×, and
2.48×, respectively. In future work, we believe that we can use KV cache sharing to further accel-
erate the UMCI. Since each counterfactual input modifies only either the textual or visual modality,
we can exploit shared components to reduce redundant calculations. For example, when the visual
input is fixed and only textual prompts vary, we can prefill the visual tokens once and reuse the KV
cache across all textual variations. While this approach requires additional engineering effort and
potentially model fine-tuning, it offers significant theoretical efficiency gains.

The complete experiments on Bias/Sensitive/BS Subsets. Due to space constraints, the original
paper only presented partial results for the Bias/Sensitive/BS Subsets experiments. The complete
results are provided in Table 9. Experiments on all counterfactual inference settings with variant in-
puts are also included. Although LLaVA-NeXT shows 0.0 accuracy on the Bias Subset, as discussed
in the main paper, variants such as LLaVA-NeXT-VCF-Color0, LLaVA-NeXT-VCF-Noise400, and
LLaVA-NeXT-VCF-Noise500 may still achieve non-zero performance. This is because the Bias
Subset is constructed from the combination of LLaVA-NeXT-VCF-Color0 and LLaVA-NeXT-VCF-
Noise500 under our proposed setting. An incorrect prediction from one variant may coincidentally
be correct in another (yet, it’s still a blind guess), allowing for occasional non-zero accuracies in
these counterfactual settings.
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Method
Bias Subset Sensitivity Subset BS Subset

MCQ Others Overall MCQ Others Overall MCQ Others Overall

LLaVA-NeXT 0.0 0.0 0.0 39.2 37.63 38.63 15.91 27.58 18.75
LLaVA-NeXT-TCF-V1 3.20 6.38 3.71 36.62 26.80 33.02 14.86 19.65 16.02
LLaVA-NeXT-TCF-V2 5.80 8.70 6.26 24.08 33.51 27.54 9.77 24.56 13.36
LLaVA-NeXT-TCF-V3 3.09 3.19 3.11 38.61 34.54 37.11 15.99 25.31 18.26
LLaVA-NeXT-VCF-Color0 4.59 4.06 4.50 27.26 23.54 25.90 13.85 18.01 14.86
LLaVA-NeXT-VCF-Noise400 6.63 3.19 6.08 27.96 23.71 26.40 14.98 17.51 15.60
LLaVA-NeXT-VCF-Noise500 6.30 3.48 5.85 27.16 23.02 25.65 14.54 17.63 15.29
LLaVA-NeXT-TIE 12.98 23.48 14.66 39.00 57.56 45.81 21.89 44.21 27.31
LLaVA-NeXT-VCD 12.65 25.51 14.71 40.50 56.53 46.38 22.54 44.58 27.89
LLaVA-NeXT-M3ID 16.91 25.22 18.24 39.90 56.36 45.94 24.15 44.33 29.05
LLaVA-NeXT-UMCI3 (ours) 21.22 35.36 23.48 39.60 60.31 47.20 27.14 50.13 32.72
LLaVA-NeXT-UMCI5 (ours) 23.81 37.97 26.08 40.60 60.65 47.95 28.80 51.01 34.19
LLaVA-NeXT-UMCI7 (ours) 24.86 38.26 27.01 40.10 60.65 47.64 29.68 51.26 34.92

Qwen2-VL 5.37 8.56 6.11 38.10 34.41 36.06 10.78 23.59 14.52
Qwen2-VL-TCF-V1 6.11 11.31 7.32 36.51 36.01 36.23 10.38 24.37 14.46
Qwen2-VL-TCF-V2 7.59 15.90 9.52 40.87 34.41 37.3 12.07 23.00 15.26
Qwen2-VL-TCF-V3 6.30 8.87 6.89 37.70 34.41 35.88 11.02 22.42 14.35
Qwen2-VL-VCF-Color0 5.83 6.73 6.04 20.24 28.94 25.04 8.77 18.52 11.62
Qwen2-VL-VCF-Noise400 7.59 21.41 10.80 21.03 25.72 23.62 10.22 24.17 14.29
Qwen2-VL-VCF-Noise500 7.59 21.71 10.87 20.63 27.33 24.33 10.62 25.15 14.86
Qwen2-VL-TIE 16.20 16.82 16.35 45.63 36.66 40.67 20.27 27.29 22.32
Qwen2-VL-VCD 15.74 21.71 17.13 46.83 40.84 43.52 20.11 30.41 23.12
Qwen2-VL-M3ID 19.81 21.71 20.26 47.22 41.16 43.87 23.65 30.6 25.68
Qwen2-VL-UMCI3 (ours) 21.67 26.30 22.74 44.05 42.44 43.16 24.54 32.75 26.94
Qwen2-VL-UMCI5 (ours) 24.91 25.69 25.09 47.22 42.44 44.58 28.00 33.14 29.50
Qwen2-VL-UMCI7 (ours) 27.04 29.66 27.65 47.22 45.98 46.54 29.61 36.84 31.72

Table 9: The complete experiments on Bias Subset, Sensitivity Subset, and BS Subset across two
widely used base LVLMs demonstrate the effectiveness of the proposed UMCI framework. Bold
texts indicate the best result of each column.

Method Single Dataset Gathered by Question Type
MMB-C MMB-E MME CCB MMS ViLP MCQ Others Overall

LLaVA-NeXT 78.0 79.72 79.57 47.0 44.75 51.53 70.12 71.86 70.46
LLaVA-NeXT-TC-V1 77.46 79.95 76.20 46.75 43.92 51.53 69.87 69.42 69.78
LLaVA-NeXT-TC-V2 77.44 77.51 78.78 46.20 42.08 50.14 68.68 70.90 69.12
LLaVA-NeXT-VC-C0 29.97 31.85 50.29 27.02 25.08 28.47 29.66 44.29 32.55
LLaVA-NeXT-VC-N500 30.69 33.08 48.29 28.25 25.0 29.03 30.55 42.99 33.01
LLaVA-NeXT-TIE 78.28 80.28 77.30 45.65 46.00 53.19 70.36 70.68 70.42
LLaVA-NeXT-VCD 78.38 80.28 78.09 46.63 45.00 54.31 70.44 71.55 70.66
LLaVA-NeXT-M3ID 78.31 80.18 78.62 45.89 45.92 54.03 70.36 71.86 70.66
LLaVA-NeXT-UMCI5 (ours) 78.21 80.08 80.15 46.20 45.75 53.06 70.32 72.70 70.79

Qwen2-VL 85.26 86.36 87.89 73.22 59.50 56.53 80.91 79.27 80.58
Qwen2-VL-TC-V1 85.28 86.11 87.79 73.18 59.73 58.09 80.84 79.63 80.60
Qwen2-VL-TC-V2 85.26 86.39 87.96 72.92 59.53 56.37 80.88 79.27 80.56
Qwen2-VL-VC-C0 34.46 35.54 50.45 25.37 27.33 24.72 32.66 43.38 34.77
Qwen2-VL-VC-N500 31.33 31.82 50.13 25.43 28.50 26.81 30.29 43.72 32.94
Qwen2-VL-TIE 86.00 86.59 86.52 73.84 59.00 57.08 81.30 78.43 80.73
Qwen2-VL-VCD 86.05 86.56 86.41 73.77 60.08 57.92 81.42 78.58 80.86
Qwen2-VL-M3ID 85.69 86.46 86.10 73.96 59.75 57.78 81.25 78.31 80.67
Qwen2-VL-UMCI5 (ours) 85.97 86.67 87.36 73.59 59.92 58.06 81.39 79.31 80.98

Table 10: Experiments on MMB(ench-Dev)-C/E(N-V11), MME, CCB(ench), MMS(tar), and ViLP
including all counterfactual inference results used by UMCI5. Blue texts indicate an improvement
over the baseline.
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Original Prompts TC-V1 Prompts

Please select the correct answer from the options above. Think about the question based on details in the given image. 
Please select the correct answer from the options above.

Please answer yes or no. Think about the question based on details in the given image. 
Please answer yes or no.

Please try to answer the question with short words or phrases if 
possible.

Think about the question based on details in the given image. 
Please try to answer the question with short words or phrases if 
possible.

Answer the question directly using a single word or phrase. Think about the question based on details in the given image. 
Answer the question directly using a single word or phrase.

Answer with the option's letter from the given choices directly. Think about the question based on details in the given image. 
Answer with the option's letter from the given choices directly.

(Chinese Prompts) 请直接回答选项字母。 (Chinese Prompts) 结合问题与选项仔细观察图像中的信息，请直
接回答选项字母。

Figure 3: The list of all TC-V1 prompts that add an additional system prompt instructing the model
to focus on image details.

Original Prompts TC-V2 Prompts
Please select the correct answer from the options above. (Chinese Prompts) 请仔细观察图像中的信息，然后结合问题与选

项，从上述所有选项中直接回答正确选项对应的字母。

Please answer yes or no. (Chinese Prompts) 观察给出的图片，请直接回答yes或no。

Please try to answer the question with short words or phrases if 
possible.

(Chinese Prompts) 请仔细观察图像中的细节，然后结合图像上的
信息回答问题，请直接用一个简短的英语单词或数字回答。

Answer the question directly using a single word or phrase. (Chinese Prompts) 请仔细观察图像中的细节，然后结合图像上的
信息回答问题，请直接用一个简短的英语单词或数字回答。

Answer with the option's letter from the given choices directly. (Chinese Prompts) 请仔细观察图像中的信息，然后结合问题与选
项，从上述所有选项中直接回答正确选项对应的字母。

(Chinese Prompts) 请直接回答选项字母。 Please carefully examine the information in the image, then 
consider the question and options, and reply directly with the 
letter corresponding to the correct answer from the options above.

Figure 4: The list of all TC-V2 prompts that further modify the system prompt’s language from
English to Chinese or vice versa.

Original Prompts TC-V3 Prompts
Please select the correct answer from the options above. You are a smart student who is good at answering multiple-choice 

questions. Please select the correct answer from the options 
above.

Please answer yes or no. You are a smart student who is good at answering yes or no 
questions. Please answer yes or no.

Please try to answer the question with short words or phrases if 
possible.

You are a smart student who is good at answering questions. 
Please try to answer the question with short words or phrases if 
possible.

Answer the question directly using a single word or phrase. You are a smart student who is good at answering questions. 
Answer the question directly using a single word or phrase.

Answer with the option's letter from the given choices directly. You are a smart student who is good at answering multiple-choice 
questions. Answer with the option's letter from the given choices 
directly.

(Chinese Prompts) 请直接回答选项字母。 (Chinese Prompts) 你是一名擅长回答选择题的聪明学生，请直接
回答选项字母。

Figure 5: The list of all TC-V3 prompts that inject identity information by prompting the model to
respond as a clever student.
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