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Abstract
With the prosperity of the intelligent surveillance, multiple cameras

have been applied to localize pedestrians more accurately. However,

previousmethods rely on laborious annotations of pedestrians in ev-

ery frame and camera view. Therefore, we propose in this paper an

Unsupervised Multi-view Pedestrian Detection approach (UMPD)

to learn an annotation-free detector via vision-language models and

2D-3D cross-modal mapping: 1) Firstly, Semantic-aware Iterative

Segmentation (SIS) is proposed to extract unsupervised representa-

tions of multi-view images, which are converted into 2D masks as

pseudo labels, via our proposed iterative PCA and zero-shot seman-

tic classes from vision-language models; 2) Secondly, we propose

Geometry-aware Volume-based Detector (GVD) to end-to-end en-

code multi-view 2D images into a 3D volume to predict voxel-wise

density and color via 2D-to-3D geometric projection, trained by 3D-

to-2D rendering losses with SIS pseudo labels; 3) Thirdly, for better

detection results, i.e., the 3D density projected on Birds-Eye-View,

we propose Vertical-aware BEV Regularization (VBR) to constrain

pedestrians to be vertical like the natural poses. Extensive exper-

iments on popular multi-view pedestrian detection benchmarks

Wildtrack, Terrace, andMultiviewX, show that our proposed UMPD,

as the first fully-unsupervised method to our best knowledge, per-

forms competitively to the previous state-of-the-art supervised

methods. Code is available at https://github.com/lmy98129/UMPD.

CCS Concepts
• Computing methodologies→ Object detection; Unsuper-
vised learning; • Information systems→ Language models.
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(a) Input: N× Camera Views 

(c) 2D-3D Cross-Modal Mapping for Unsupervised Learning
(Detection Results: 3D Volume Vertically Projected on BEV)

(b) Unsupervised
2D Pedestrian Masks 

(by Vision-Language Models)
2D-to-3D 

Geometric Projection
(Volume-based Detector→)

3D-to-2D
Rendering

Losses

Figure 1: An overview of our proposed unsupervised pedes-
trian detection system. (a) The inputs are images from N×
camera views. (b) Unsupervised 2D pedestrian masks are
obtained via vision-language models. (c) With 2D-3D cross-
modal mapping, 3D volume is predicted by 2D-to-3D geomet-
ric projection, learned from 3D-to-2D rendering losses, and
projected on Birds-Eye-View (BEV) as detection results.
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1 Introduction
Detecting pedestrians is fundamental in various real-world appli-

cations, especially where the fine-grained positions of pedestrians

on Birds-Eye-View (BEV) are required rather than coarse-grained

bounding boxes [21], such as crowd forecasting [1] for safety and

customer behavior analysis [9] for retailing. To avoid occlusion or

smaller scales, as shown in Figure 1(a), multiple cameras around an

interested region are introduced to better detect pedestrians.

https://github.com/lmy98129/UMPD
https://doi.org/10.1145/3664647.3681560
https://doi.org/10.1145/3664647.3681560
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Figure 2: The architecture of our proposed UMPD approach. (a) Semantic-aware Iterative Segmentation (SIS) iteratively segments
the PCA values of the DINOv2 [25] features into pseudo labels, based on vision-language model CLIP [28] as a foreground
selector. (b) Geometric-aware Volume-based Detector (GVD) encodes multi-view 2D images into a 3D volume via 2D-3D cross-
modal mapping, and learns to predict 3D density and color by Lcolor and Lmask with SIS pseudo labels (cameras mean rendering).
(c) Vertical-aware BEV Regularization (VBR) constrains the predicted 3D density to be “human-like” vertical on BEV.

Most previousmethods depend on supervised learning, including

the classic detection-based [4, 36] and anchor-based detectors [2, 5],

as well as more recent perspective-based anchor-free ones [7, 11, 12,

27, 31, 38]. They require supervised models to obtain 2D detection,

segmentation or feature encoding, which are mapped onto the BEV

for detection. Thus, pedestrian BEV positions are annotated.

However, heavy human labors are essential to annotate BEV la-

bels of all-view video frames [4, 8]. Recently, with tinier pedestrians

that harder to label, multi-view counting dataset [37, 39] to count

coarse number is introduced to evaluate accurate BEV detection

[38]. Although game engines can auto-generate images and labels

[12, 39], domain gaps like different image styles or camera poses

hinder better cross-domain performance [33] towards in-domain

real scenes [4]. Therefore, manual labels are still inevitable.

As is shown in Figure 1(b) and (c), we found a potential solution

without manual labels via 2D-3D cross-modal mapping. For 3D

pedestrian density, the BEV labels mean a top-down observation,

and 2D masks from cameras mean the surrounding observations.

Hence, the 3D density becomes a “bridge”, to be predicted by a

volume-based detector from 2D images, learned from unsupervised

2D masks, and finally projected onto BEV as the detection results.

For 2D pedestrian masks, we notice the recent powerful unsu-

pervised vision-language models like DINOv2 [25] and CLIP [28].

Robust representations with inter-image co-exist concepts can be

extracted by DINOv2, and converted into the 1
st
Principal Compo-

nent Analysis (PCA) values to be segmented as foreground masks.

Meanwhile, CLIP model can identify object classes by texts, e.g., “A
picture of a human”, following the default template of CLIP [28].

To construct a 3D volume from multi-view images, some super-

vised methods for 3D object detection [30, 32] or 3D pose estimation

[14] project each pixel of 2D features into potential 3D voxels based

on geometric correspondence. Such powerful 3D volume frame-

works inspire us to design a novel fully-unsupervised detector.

Furthermore, differentiable rendering framework [15] can render

3D density predicted by a volume-based detector into the 2D mask

of each view, which is learned via unsupervised 2D masks. To better

discriminate the pedestrian instances from their appearances, the

colors are also rendered and learned via original 2D images.

In summary, we have observed a high dependency of the current

mainstream supervised methods on the laborious manual labels.

As is illustrated in Figure 2, we propose a novel approach to tackle

this problem via Unsupervised Multi-view Pedestrian Detection
(UMPD). Our main contributions are:

• Firstly, Semantic-aware Iterative Segmentation (SIS) method

is proposed to extract the PCA values of DINOv2 represen-

tations, and segment them into 2D masks as pseudo labels.

To identify the pedestrians, iterative PCA is adopted with

zero-shot semantic classes of vision-language model CLIP.

• Secondly, we propose Geometric-aware Volume-based Detec-

tor (GVD) to encode multi-view 2D images into a 3D volume

via geometry, and learn to predict 3D density and color from

this volume via rendering losses with SIS pseudo labels.

• Thirdly, Vertical-aware BEV Regularization (VBR) method is

further proposed to constrain the predicted 3D density to be

vertical on BEV, following the natural pedestrian poses.

• Finally, formed by these key components, our proposed

UMPD, as the first fully-unsupervised method in this
field to our best knowledge, performs competitively on

popular Wildtrack, Terrace, and MultiviewX datasets, espe-

cially compared with the previous supervised methods.

2 Related Works
2.1 Multi-view Pedestrian Detection
To detect the pedestrians in multi-view images, various detection

methods have been proposed based on different architectures.
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Following the pedestrian detection for monocular image, RCNN

& Clustering [36] firstly detects pedestrians by a supervised 2D

detector in each view, and then fuses them via clustering. Similarly,

POM-CNN [4] fuses 2D masks by supervised model as final results.

Due to weaker cross-view consistency of the single-view 2D boxes

or masks, their performances are worse than BEV-based methods.

In an anchor-based style, DeepMCD [5] predicts the BEV posi-

tions by anchors. Deep-Occlusion [2] trains Conditional Random

Field (CRF) on anchor features. In an anchor-free style, MVDet [12]

firstly uses homography mapping from 2D features onto BEV to

predict positions. Following MVDet, SHOT [31] makes multi-height

projection. 3DROM [27] learns with a random occlusion augmenta-

tion. More augmentation is adopted by MVAug [7]. MVDeTr [11]

predicts pedestrian directions via Transformer. With source domain

labels, GMVD [33] is still inferior to in-domain methods. Recently,

an unsupervised view fusion component is applied to supervised

detection [38]. All these methods rely on laborious BEV labels.

Differently, without any manual labels, our proposed volume-

based detector GVD performs 2D-3D cross-modal mapping to pre-

dicting the 3D density of pedestrians, learned from our 2D SIS

masks as pseudo labels with our VBR as an extra regularization.

2.2 Unsupervised Feature Representation
In the past decade, unsupervised learning of feature representa-

tions has achieved powerful performance. Specifically, popular con-

trastive learning discriminates paired samples, which is capable of

more unsupervised zero-shot tasks than supervised fine-tuning.

For single modality, DINOv1 [3] learns a self-distillation for

only positive samples, which is utilized by CutLER [34] to segment

all salient objects in a single 2D image rather than multi-view

ones. Recently, DINOv2 [25] with better data quality and learning

scheme yields more robust representations, which segments shared

concepts across images, by dividing the 1
st
PCA values of features.

For multiple modalities, CLIP [28] learns on paired images and

texts collected from the internet. Furthermore, MaskCLIP [40] pre-

dicts 2D masks queried by input texts, and CrowdCLIP [20] merely

predicts people count. But these unsupervised methods are too

coarse-grained for accurate masks as single-modal DINOs [3, 25].

In this paper, we complement these powerful unsupervised mod-

els as our proposed SIS to obtain pseudo labels for Unsupervised

Multi-view Pedestrian Detection (UMPD), which iteratively seg-

ments PCA of DINOv2 features for 2Dmasks, with zero-shot seman-

tic capability of vision-language model CLIP to identify pedestrians.

2.3 Multi-view Construction of 3D Volume
For various 3D perception tasks, it is crucial to construct an ex-

plicit 3D volume from multi-view images. For example, 3D pose

estimation methods [14] or 3D object detectors [30, 32] assigns 2D

features to their corresponding 3D voxels as an explicit volume.

Neural Radiance Field (NeRF) [17, 23, 24] learns a neural network

to represent implicit volume. However, typical ≤ 10 [4, 12] or even 4

views [8] in multi-view pedestrian detection datasets are too sparse

for RFP [23] that needs 20∼80 views, and LERF [17] that fits videos

with 400∼600 views. They distill implicit semantics of DINO [3]

and CLIP [28], while our SIS yields explicit 2D labels by [25, 28].

Implicit volume is also inapt for vertical constraints like our VBR.

DINOv2
Features

…

of the 1st Image

of the Nth Image

Calculate 1st PCA 
Values 𝝓(𝟏) of 
Features from 

All Camera Views
(Lemma 1)

𝝓𝒕𝒉𝒓PCA Values >𝝓𝒕𝒉𝒓 
as Foreground

(Eq. 2)

P=N×
H×

W

…
…

P=N×H×W

Back to Each View
…

D

Histogram (Y-axis) of 
Different PCA Values (X)

Figure 3: Our proposed unsupervised segmentation of the 1st

PCA. DINOv2 features X ∈ RP×D represent distinguished
background and “foreground” across all views, e.g., BEV
ground plane vs pedestrians and their contexts, which are
mapped into the 1st PCA values Φ ∈ RP for a further division.

Another explicit technique is unsupervised Multi-View Stereo

(MVS) [19, 35], but 3D volume of the whole scene is constructed

from images, rather than only foreground like pedestrians. Differ-

ently, for 3D volume by our proposed GVD, differentiable rendering

framework PyTorch3D [15] renders 3D densities and colors into

both 2D masks and images, learned via our SIS pedestrian masks.

3 Proposed Method
As is illustrated in Figure 2, our proposed UMPD approach com-

prises three key components: 1) Semantic-aware Iterative Segmen-

tation (SIS) segments the PCA values into masks iteratively, with

zero-shot semantic capability of CLIP to identify pedestrians; 2)

Geometric-aware Volume-based Detector (GVD) encodes multi-

view 2D images into a 3D volume via geometric correspondence,

and learns to predict density and color by the rendering losses with

SIS masks; 3) Vertical-aware BEV Regularization (VBR) method con-

strains the 3D density from GVD to be vertical on the BEV plane.

More details will be introduced in the following sections.

3.1 Semantic-aware Iterative Segmentation
With the powerful unsupervised methods like DINOv2 [25], similar

PCA values of cross-image features indicate the same concepts,

which can be better controlled than the merely single-image salient

objects in the previous unsupervised methods [3, 34]. In the figures

of DINOv2 paper, even abstract concepts like “wings” of airplane

and bird in different images are co-segmented. Thus, it is adopted to

identify pedestrians based on multi-view cross-image information.

3.1.1 Unsupervised Segmentation of the 1st PCA. As shown in Fig-

ure 3, DINOv2 features ofN× image views areX = (𝑋⊤
1
, 𝑋⊤

2
, · · · , 𝑋⊤

P
)⊤,

where P = N × H ×W is total pixels and each 𝑋𝑝 ∈ RD. Denote
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(a) 2nd Iter PCA on Features at Foreground of All Views

(b) CLIP to Identify the Foreground after 2nd Iter PCA

“More overlap.
=Foreground!”

“Less overlap.
=Background.”

From CLIP
(Eq. 3)

Histogram of 
PCA Values at 
Foreground

𝝓𝒕𝒉𝒓

Figure 4: Our proposed Semantic-aware Iterative Segmen-
tation (SIS). (a) Since the 1st iteration of PCA yields coarse-
grained “foreground” with pedestrians and their contexts,
the 2nd iteration is performed, with PCA values and their
histograms in XY-axes. (b) Vision-language model CLIP [28]
identifies the foreground after the 2nd iteration of PCA.

𝑍 (1) as a linear mapping from X to 𝜙 (1) = (𝜙 (1)
1

, 𝜙
(1)
2

, · · · , 𝜙 (1)
P
)⊤,

where

∑
P

𝑝=1 𝑥𝑝𝑑 = 0 after the Zero Standardization of each 𝑋𝑝 :

𝑍 (1) = 𝜙
(1)
1

𝑋1 + 𝜙 (1)
2

𝑋2 + · · · + 𝜙 (1)
P

𝑋P . (1)

Lemma 1. The 1st PCA vector 𝜙 (1) of X: (a) maximizes the global
variance var(𝜙 (1) ) = 1

P

∑
P

𝑝=1 (𝜙
(1)
𝑝 )2; (b) minimizes the reconstruc-

tion loss min𝑍 (1) ∥X − X𝑍 (1) (𝑍 (1) )⊤∥2, where 𝑍 (1) is a bi-direction
mapping between high-dimensional X and low-dimensional 𝜙 (1) .

Given the foreground or background that co-exist in multiple

images, if their DINOv2 features X are similar, according to the

bi-direction mapping ensured by a minimized reconstruction loss

in Lemma 1, the 1
st
PCA values 𝜙 (1) of these features are also

similar and distinguished from the opposite parts, as is illustrated

by the two peaks in the histogram of Figure 3. Then, 𝜙
(1)
𝑝 ∈ R

as scalars can be more easily divided by a threshold value than

the complicated DINOv2 feature vectors 𝑋𝑝 ∈ RD. The proofs of
Lemma 1 are provided in our supplementary materials†.

Therefore, given the pixel-wise PCA valuesΦ𝑛𝑖 𝑗 ofΦ ∈ RN×H×W,

where Φ are reshaped from the vector 𝜙 (1) ∈ RP, they are seg-

mented into 2D masks M𝑡=1
𝑛 of each view 𝑛 in Figure 3 via the

threshold value 𝜙thr , which is formulated as:

M𝑡=1
𝑛𝑖 𝑗 =

{
1.0, Φ𝑛𝑖 𝑗 > 𝜙thr , as foreground,

0.0, Φ𝑛𝑖 𝑗 ≤ 𝜙thr , as background.
(2)

† For further proofs, experimental results, and visualizations, please refer to our sup-

plementary materials: https://lmy98129.github.io/academic/src/UMPD-Appendix.pdf.

Algorithm 1 Semantic-aware Iterative Segmentation

1: function SemIterSeg(I,TPCA, UseCLIP)
2: Prompts← ‘A picture of ’ + {‘human’, ‘ground’, ‘sky’}
3: X← ∅; S← ∅
4: for 𝑛 ∈ [1,N] do ⊲ Features & CLIP masks per view 𝑛

5: X← X ∪ DINOv2(I𝑛); S← S ∪ CLIP(I𝑛, Prompts)
6:

7: X1 ← X ⊲ Feature collection of all views

8: for 𝑡 ∈ [1,TPCA] do ⊲ Iterative Segmentation of PCA

9: Φ𝑡 = PCA(X𝑡 ) ⊲ Lemma 1

10: M𝑡 ← Filter PCA values Φ𝑡 by Eq. 2

11: if UseCLIP then
12: M𝑡 ← Select foreground by S of CLIP in Eq. 3

13: if t>1 then ⊲ Update foreground

14: M𝑡−1 [1(M𝑡−1 = 1.0)] ← M𝑡
;M𝑡 ← M𝑡−1

15: X𝑡+1 ← X𝑡 [1(M𝑡 = 1.0)] ⊲ Update features

16: return MTPCA ⊲ Output pseudo labels

3.1.2 Semantic-aware Iterative Segmentation of PCA. Recalling the

Lemma 1, DINOv2 features are bi-directionally mapped to their

PCA values. However, as is illustrated in the Figure 3, they represent

the ground plane as the most distinguished background, but the

remaining parts are pedestrians and their contexts. Thus, more PCA

iterations in Algorithm 1 is used to further segment the pedestrians

and non-human background inside these coarse-grained features.

Firstly, “foreground” features X𝑡 [1(M𝑡 = 1.0)] ∈ RP′×D, P′ ≪ P

are collected to calculate the 1
st
PCA values and yield new mask M𝑡

by Eq.2. Differently, the mask is only updated inside foreground of

𝑡 − 1, where new background is thus merged into the previous ones.

However, in Figure 4(a), the ≤ 𝜙thr part is the real foreground, which

is inconsistent with Eq. 2, because merely inter-image concepts are

segmented, regardless of which part means the real pedestrians.

Inspired by the zero-shot semantic capability to recognize the

object classes [20] of vision-languagemodels like CLIP [28], the orig-

inal pooling is modified [40] to obtain 2D masks. Denoted as “⊛” in
Figure 2(a), cosine similarity 𝑆𝑐

𝑛𝑖 𝑗
= ((W𝑐 )⊤ (V𝑛𝑖 𝑗 ))/(∥W𝑐 ∥∥V𝑛𝑖 𝑗 ∥)

is calculated between pretrained linguistic vectorW𝑐 ∈ RD′ of
each class 𝑐 and the vision featureV𝑛𝑖 𝑗 ∈ RD

′
of each pixel (𝑖, 𝑗)

of view 𝑛 to indicate semantic classes (i.e., “human”, “ground”, and

“sky”, background classes are necessary), where Shuman ∈ RN×H×W.

Given a view 𝑛 like Figure 4(b), foreground M𝑡
𝑛 is decided by the

overlapping “∩” with Shuman

𝑛 ∈ S:

M𝑡
𝑛 =

{
M𝑡

𝑛, if
Shuman

𝑛 ∩M𝑡
𝑛

 > Shuman

𝑛 ∩ (1 −M𝑡
𝑛)
,

1 −M𝑡
𝑛, otherwise.

(3)

3.2 Geometric-aware Volume-based Detector
Manual BEV labels and 2D pedestrian masks from SIS can represent

different observations of 3D pedestrians, i.e., the former are the

top-down observations, and the latter are the surrounding ones.

To learn from these pseudo labels and predict the BEV pedestrian

positions, a 3D volume as a “bridge” between them is constructed

from encoding the input multi-view 2D images by our proposed

fully-unsupervised detector, which is a 2D-3D cross modal mapping.

https://lmy98129.github.io/academic/src/UMPD-Appendix.pdf
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Figure 5: Our proposed Geometric-aware Volume-based Detector (GVD) and Vertical-aware BEV Regularization (VBR). (a)
2D features 𝐹𝑛 of each view 𝑛 are extracted by a visual encoder. (b) 2D-to-3D geometric projection assigns 2D features (like
highlighted red boxes) to potential 3D voxels. (c) 3D-to-2D rendering losses with SIS labels render the predicted 3D density and
color by PyTorch3D [15] to 2D masks and images. (d) Our proposed VBR constrains vertical density for better detection results.

3.2.1 2D-to-3D Geometric Projection for 3D Volume. Inspired by

the previous multi-view 3D methods [30, 32] for supervised tasks,

we extract 2D features F𝑛 ∈ RC×H×W of each view 𝑛 via a visual en-

coder [10] as is shown in Figure 5(a), whereC is the channel number.

Then, pixel-wise feature 𝐹𝑛𝑢𝑣 ∈ RC is back-projected into potential

3D voxels via the geometry of 2D-3D cross modal mapping.

Formally, given a pinhole camera calibrated with intrinsic and

extrinsic matrices {K𝑛,Ψ𝑛}, its geometric model to obtain a 2D

pixel (𝑢, 𝑣)⊤ captured from a 3D voxel position (𝑥,𝑦, 𝑧)⊤ is:
𝑢

𝑣

1

 =
1

_
K𝑛Π0Ψ𝑛


𝑥

𝑦

𝑧

1

 ,Π
0 =


1 0 0 0

0 1 0 0

0 0 1 0

 , (4)

where Π0
is an auxiliary matrix to obtain (𝑥 ′, 𝑦′, 𝑧′)⊤ from the 3D

homogeneous coordinate (𝑥 ′, 𝑦′, 𝑧′, 1)⊤ after the transformation of

extrinsic matrix Ψ𝑛
, and _ is the depth distance between this 3D

voxel and camera optical origin.
1

_
ensures the 2D homogeneity of

(𝑢, 𝑣, 1)⊤ from (𝑢 ′, 𝑣 ′, _)⊤ after applying intrinsic matrix K.
In 3D geometry, there are various 3D voxels (𝑥,𝑦, 𝑧)⊤ with dif-

ferent potential depths _ in Eq. 4, that derive the same 2D pixel

(𝑢, 𝑣, 1)⊤. For such a one-to-many 2D-3D cross-modal correspon-

dence, the 2D pixel feature 𝐹𝑛𝑢𝑣 is assigned to all these 3D voxel

positions to form a 3D volume V𝑛 ∈ RC×X×Y×Z from each view 𝑛:

V𝑛 [:, 𝑥,𝑦, 𝑧] = F𝑛 [:, 𝑢, 𝑣] . (5)

To fuse the 3D volumes V𝑛
of each view 𝑛 in Figure 5(b) into a

unified V, a soft-max function is used like supervised volume-based

methods [14] to re-weight V𝑛
, where the highest feature values at

its voxel in all the views 𝑛 are assigned with the largest weights:

V =
∑︁
𝑛

( exp(V𝑛)∑
𝑛 exp(V𝑛) ◦ V𝑛), (6)

where V ∈ RC×X×Y×Z and ◦ denotes Hadamard Product. To predict

the 3D density D ∈ [0, 1]X×Y×Z and color C ∈ [0, 1]3×X×Y×Z from

the volume V, 3D-convolution with a 5 × 5 × 5 kernel is adopted

as a decoder for a larger 3D receptive field, like the large-kernel

2D-convolution of the supervised methods [12] on the BEV features.

3.2.2 3D-to-2D Rendering Losses with Pseudo Labels. With the

2D pedestrian masks M as pseudo labels, differential rendering

framework PyTorch3D [15] renders the predicted 3D density D

into 2D masks M̃ by the pinhole camera model in Eq. 4.

In details, given a 2D pixel position (𝑢, 𝑣)⊤ in a view 𝑛, the 3D

direction of the ray 𝑟 from the 3D position of camera optical origin 𝑜

through (𝑢, 𝑣)⊤ is 𝛿 . Any 3D position along this ray is 𝑟 (𝜏) = 𝑜+𝜏 (𝛿).
𝜏 is the distance between 𝑟 (𝜏) and 𝑜 , whose maximum is Λ. The
rendered 2D mask pixel M̃𝑛 (𝑢, 𝑣) = M̃(𝜏) from D is denoted as:

M̃(𝜏) =
∫ Λ

0

T (𝜏)D(𝑟 (𝜏))𝑑𝜏,T (𝜏) = exp(−
∫ 𝜏

0

D(𝑟 (𝑠))𝑑𝑠), (7)

where T (𝜏) is the transmittance (i.e., optical opacity) at distance 𝜏 .

Similarly, to discriminate crowded pedestrians by their appear-

ances, the predicted 3D colors C are also rendered into 2D images

Ĩ. Each 2D pixel Ĩ𝑛 (𝑢, 𝑣) = Ĩ(𝜏) of rendered image is formulated as:

Ĩ(𝜏) =
∫ Λ

0

T (𝜏)D(𝑟 (𝜏))C (𝑟 (𝜏))𝑑𝜏 . (8)

Note that predicted 3D color C is view-invariant like the real

world, i.e., it is identical in any observations, thus input is 3D po-

sition 𝑟 (𝜏) without view direction 𝛿 as NeRF [24]. Since only fore-

ground have colors, the pseudo labels are images I masked by M.

Following the official instruction of PyTorch3D [15], Huber Loss

Lℎ𝑢𝑏𝑒𝑟 [13] is usedwith inputs ˜\𝑛𝑖 𝑗 ∈ Θ̃, \𝑛𝑖 𝑗 ∈ Θ as 2D predictions

and pseudo labels for 2D mask M or image I in Figure 5(c):

Lℎ𝑢𝑏𝑒𝑟 (Θ̃,Θ) = 1

NHW

NHW∑︁
𝑛,𝑖, 𝑗=1

����√︃∥ ˜\𝑛𝑖 𝑗 − \𝑛𝑖 𝑗 ∥2 + 1 − 1���� . (9)

3.3 Vertical-aware BEV Regularization
As is shown in Figure 2(c) and 5(d), if predicted pedestrians are

leaning or laying down, their BEV occupancies, i.e., maximized 3D
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Table 1: Detailed information of the multi-view pedestrian detection datasets for performance evaluation.

Datasets

Camera

Number

Input

Resolution

Data

Collection

Train

Frames

Test

Frames

Area

(𝑚 ×𝑚)

Crowdedness

(person/frame)

Wildtrack [4] 7 1920 × 1080 Real World 360 40 12 × 36 20

Terrace [8] 4 360 × 288 Real World 300 200 5.3 × 5 10

MultiviewX [12] 6 1920 × 1080 Simulation 360 40 16 × 25 40

Table 2: Ablation study on our proposed Semantic-aware It-
erative Segmentation (SIS) about the PCA iteration TPCA and
the usage of zero-shot semantic capability from unsuper-
vised vision-language model CLIP to identify pedestrians.

TPCA UseCLIP MODA MODP Precision Recall

1

15.0 58.0 95.0 15.9

✓ 19.1 55.1 68.9 34.9

2

49.8 58.5 89.5 56.4

✓ 76.6 61.2 90.1 86.0

3

9.1 43.7 85.0 11.0

✓ 57.4 60.9 91.4 63.3

Table 3: Ablation study on the threshold 𝜙𝑡ℎ𝑟 of our proposed
SIS, where 𝜙𝑡ℎ𝑟 = 2 is the overall best among all benchmarks.

𝜙𝑡ℎ𝑟 Wildtrack Terrace MultiviewX Average Rank

1 61.1 57.9 78.9 2.7

2 61.2 59.0 79.4 1.6
3 60.9 59.7 77.6 2.3

Table 4: Ablation study on our proposed Geometric-aware
Volume-based Detector (GVD) and Vertical-aware BEV Reg-
ularization (VBR). Concatenation and adding are compared
with Eq. 6. Loss functions Lcolor and LVBR are also ablated.

Settings MODA MODP Precision Recall

our UMPD 76.6 61.2 90.1 86.0

Eq. 6→ Concat. 71.3 60.8 83.4 89.1

Eq. 6→ Adding 74.5 61.0 86.1 88.9

→ w/o Lcolor 71.0 60.3 83.2 89.0

→ w/o LVBR 27.3 52.1 65.9 56.7

density along Z-axis, are unnaturally larger than standing. Thus,

Vertical-aware BEV Regularization (VBR) is proposed to regularize

the pedestrian poses with minimized BEV occupancy:

LVBR (D) =
1

XY

XY∑︁
𝑥,𝑦=1

��
max(D𝑥𝑦𝑧)𝑧

�� ,D𝑥𝑦𝑧 ∈ D. (10)

Finally, the overall loss function L that optimizes the parameters

\∗ = argminL of our UMPD to predict the best 3D color and

density based on rendered Ĩ and M̃ in Eq. 8 and 7 is formulated as:

L = Lcolor + Lmask + LVBR

= Lℎ𝑢𝑏𝑒𝑟 (Ĩ, I) + Lℎ𝑢𝑏𝑒𝑟 (M̃,M) + LVBR (D),
(11)

TPCA=1

(a) PCA Iteration with CLIP

TPCA=2 TPCA=3
Foreground

Foreground

Background

Background

(b) PCA Iteration without CLIP

Update
New

Background 

Update

Update
New

Background 

Update

Update
New

Background 

Update

Update
New

Background 

Update

Figure 6: Visualization of different PCA iteration TPCA and
CLIP usage in our proposed SIS. Orange and green arrows are
foreground and new background updated from previous fore-
ground. Blue arrows are the inherited previous background.

where weights = 1.0 of all loss item follow popular supervised multi-

view 3D detectors [30, 32]. For inference, the detection results of

our proposed UMPD are the predicted 3D densityD projected on

BEV, i.e., Ω = max(D𝑥𝑦𝑧)𝑧 ∈ RX×Y, where D𝑥𝑦𝑧 ∈ D.

4 Experiments
In this section, extensive experiments are conducted on popular

multi-view pedestrian detection benchmarks, i.e., Wildtrack, Ter-

race, and MultiviewX, to evaluate our proposed UMPD. Ablation

study is performed on our proposed key components SIS, GVD,

and VBR. Furthermore, qualitative analysis and state-of-the-art

comparisons on these benchmarks are also reported.

4.1 Datasets
Wildtrack [4] and Terrace [8] datasets are collected from real-world

interested regions surrounded by multiple calibrated and synchro-

nized cameras, where the unscripted pedestrians are naturally walk-

ing or standing. MultiviewX [12] is a challenging dataset using

Unity 3D Engine to simulate more populated scenes, featured with

higher crowdedness than [4, 8]. Multiple Object Detection Accuracy

and Precision [16] (MODA and MODP), Precision, and Recall are

evaluation metrics. Table 1 shows more details of these datasets.
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(b) Non-human Objects

(d) Segmented by our proposed SIS(c) Segmented by CutLER

(f) Segmented by DINOv2-M2F(e) Segmented by Grounded-SAM

(a) Original Image

Figure 7: Different 2D mask segmentation results. CutLER
[34] segments salient objects in red and green circles, while
our multi-view SIS avoids them. Grounded-SAM [29] ignores
small pedestrians in green circle. Supervised DINOv2-based
Mask2Former [6] yields fine-grainedmasks in orange circles.

Figure 8: Detection results of UMPD on Terrace [8] dataset.

4.2 Implementation Details
Our proposed UMPD method is based on PyTorch [26] framework.

For our SIS, unsupervised features for PCA with 𝜙𝑡ℎ𝑟 = 2 are

extracted by ViT-B/14 DINOv2 model [25]. Shuman
is generated

by ResNet-50 [10] of unsupervised vision-language model CLIP

[28, 40]. The visual encoder of our GVD is ResNet-18 [10] following

[12]. The result Ω is post-processed with a 3×3Gaussian Kernel and
> 0.4 threshold used by [12]. 4×A5000 GPUs are used for training

with a mini-batch 4 and learning rate 1 × 10
−2
, and 1×GPU for

testing. Our SIS and VBR are only for training. The inference time

of GVD is ∼1.0s/frame. Each frame comprises multi-view images.

4.3 Ablation Study
The ablation study is performed on the popular real-world dataset

Wildtrack. In Table 2, for our proposed SIS, different PCA itera-

tion TPCA and the zero-shot semantic capability of CLIP are ex-

perimented. “TPCA=1” performs worse with coarse-grained fore-

ground as shown in Figure 3 Meanwhile, “TPCA=3” causes over-

segmentation. Although CLIP fixes some mistakes by keeping some

Table 5: Different 2Dmask segmentationmethods for pseudo
labels: our proposed SIS, single-image method CutLER [34],
supervised Mask2Former [6] based on DINOv2 [25], and
Grounded-SAM [29] with Grounding-DINO [22] prompts.

Methods MODA MODP Precision Recall

SIS(=UMPD)
DINOv2,unsp 76.6 61.2 90.1 86.0

→ CutLER

DINOv1,unsp 38.9 53.5 80.5 51.3

→ DINOv2-M2F

DINOv2,supv 79.3 63.3 90.1 89.1

→ Grnded-SAM

SAM+GD,supv 60.1 58.1 92.3 65.5

pedestrians parts as the foregrounds, the results are still not ideal.

Finally, our SIS is equipped with CLIP to identify pedestrians and

“TPCA=2” as a proper setting. For the threshold 𝜙𝑡ℎ𝑟 of our SIS, the

overall best 𝜙𝑡ℎ𝑟 = 2 is obtained among all datasets in Table 3.

Meanwhile, Table 4 evaluates our proposed GVD and VBR by:

1) 2D-to-3D geometric projection with different volume fusion; 2)

3D-to-2D rendering losses such as Lcolor and LVBR , since Lmask
is inevitable to predict detection results Ω. For the volume fusion

operations, the soft-max re-weighting in Eq. 6 achieves higher

MODA and MODP, while simpler adding and concatenation are

insufficient to directly handle such complex 3D volumes, which is

consistent with the experiments on other multi-view tasks [14].

For the loss functions, Lcolor assists to detect better by discrimi-

nating the different appearances of pedestrian instances thanmerely

Lmask . Note that ourLVBR follows the natural vertical human poses

and thus brings significant improvements (+49.3 MODA and +9.1

MODP) on the default Lmask and Lcolor following PyTorch3D [15].

4.4 Different 2D Mask Segmentation Methods
As is discussed in Section 2.2, CutLER [34] based on DINOv1 [3] is

different from our proposed SIS with DINOv2 [25], which segment

all salient objects in a single image, rather than inter-image con-

cepts. Released by the DINOv2 official code [25], a new version of

Mask2Former [6] is initialized with DINOv2 pre-training, and fine-

tuned with supervision. Recently, Grounded-SAM [29] embraces

SAM [18] with boxes from Grounding-DINO [22] as prompts.

In Table 5, we compare different 2Dmasks from thesemethods, as

pseudo labels to train our UMPD. Single-view masks from CutLER

without cross-view information performs worse. Similarly, single-

view object boxes by Grounding-DINO [22] mislead Grounded-

SAM [29] to yield low-quality masks. Mask2Former achieves better

results by powerful pretraining and supervised fine-tuning, while

our proposed fully-unsupervised SIS also performs competitively. In

summary, the quality of 2D masks greatly affects the performance

of our UMPD, which is worth future researches for better masks.

4.5 Qualitative Analysis
In Figure 6, we visualize the segmentation results of our unsuper-

vised SIS with different PCA iteration TPCA and whether to use the

vision-language model CLIP. At TPCA=1, foregrounds in Figure 6(a)

and (b) are coarse-grained, which is handled by > 𝜙𝑡ℎ𝑟 part in Eq.
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(a) Detection Results on Wildtrack (b) Detection Results on MultiviewX

Figure 9: Detection results by our proposed UMPD onWildtrack [4] and MultiviewX [12] datasets. Gray and Red dots are ground
truths and the detection results from our UMPD, respectively. (a) Grouped crowded pedestrians on Wildtrack are correctly
detected by our UMPD. (b) MultiviewX brings more challenges by larger-scale and more populated scenes than real-world ones.

Table 6: Comparisons with the state-of-the-arts on multi-view pedestrian detection datasets. Our UMPD is fully-unsupervised.

Wildtrack Terrace MultiviewX

Methods MODA MODP Precision Recall MODA MODP Precision Recall MODA MODP Precision Recall

RCNN & Clus. 11.3 18.4 68 43 -11 28 39 50 18.7 46.4 63.5 43.9

POM-CNN 23.2 30.5 75 55 58 46 80 78 - - - -

DeepMCD 67.8 64.2 85 82 - - - - 70.0 73.0 85.7 83.3

Deep-Occ. 74.1 53.8 95 80 71 48 88 82 75.2 54.7 97.8 80.2

MVDet 88.2 75.7 94.7 93.6 87.2 70.0 98.2 88.8 83.9 79.6 96.8 86.7

SHOT 90.2 76.5 96.1 94.0 87.1 70.3 98.9 88.1 88.3 82.0 96.6 91.5

MVDeTr 91.5 82.1 97.4 94.0 - - - - 93.7 91.3 99.5 94.2

3DROM 93.5 75.9 97.2 96.2 94.8 70.5 99.7 95.1 95.0 84.9 99.0 96.1

MVAug 93.2 79.8 96.3 97.0 - - - - 95.3 89.7 99.4 95.9

GMVD 70.7‡ 73.8‡ 89.1‡ 80.6‡ - - - - 88.2 79.9 96.8 91.2

UMPD (ours) 76.6 61.2 90.1 86.0 73.8 59.0 88.6 84.8 67.5 79.4 93.4 72.6

2. At TPCA=2, the foreground is corrected by CLIP in Figure 6(a),

while > 𝜙𝑡ℎ𝑟 in Eq. 2 is used in Figure 6(b) and yields wrong mask,

since PCA performs naïve segmentation regardless of semantic

classes. Under the over-segmentation at TPCA=3, CLIP decreases

some mistakes, which is consistent with the results in Table 2.

In Figure 7, 2D masks of different segmentation methods are

visualized. Noisy single-view masks by CutLER [34] comprise non-

human salient objects like tent and truck. Wrong boxes without

small pedestrians fromGrounding-DINO [22]mislead theGrounded-

SAM [29]. With DINOv2 pre-training and supervised fine-tuning,

Mask2Former [6] performs better than our unsupervised SIS, e.g.,

pedestrians with various scales in the orange circles of Figure 7(f).

Moreover, Figure 8 and 9 shows the detection results by our un-

supervised UMPD on both real-world [4, 8] and simulated datasets

[12]. There are still some wrong results near the edges of region,

where less overlapped camera views are insufficient for detection,

especially on more populated MultiviewX in Figure 9(b). Such chal-

lenges remain to be tackled by unsupervised works in the future.

4.6 Comparisons with the State-of-the-arts
In Table 6, we compare our proposed unsupervised approach UMPD

with fully-supervised state-of-the-art methods on Wildtrack, Ter-

race, and MultiviewX benchmarks: detection-based methods RCNN

& Clustering [36] and POM-CNN [4]; anchor-based methods Deep-

MCD [5] and Deep-Occlusion [2]; anchor-free methods MVDet

[12], SHOT [31], MVDeTr [11], 3DROM [27], and MVAug [7]; cross-

domainmethod GMVD [33]. “‡” are results by training on simulated

MultiviewX labels without real Wildtrack labels. For real-world

datasets Wildtrack and Terrace, our proposed UMPD surpasses

RCNN & Clustering, POM-CNN, Deep-Occlusion by MODA and

MODP, as well as DeepMCD and GMVD by MODA, where UMPD

better generalizes without any source domain. As is shown in Table

1 and Figure 9(b), MultiviewX has higher crowdedness. For this chal-

lenging dataset, UMPD out-performs RCNN&Clustering byMODA

and MODP, as well as DeepMCD and Deep-Occlusion by MODP.

In summary, our fully-unsupervised UMPD achieves competitive

performances on all real-world and simulated datasets, without any

manual labels essential to mainstream supervised methods.

5 Conclusion
In this paper, we have proposed a novel unsupervised multi-view

pedestrian detection approach UMPD, which eliminates the heavy

burden of manual annotations. For such a challenging task, three

key components are proposed: SIS segments the PCA values of

DINOv2 features iteratively, with zero-shot semantic capability of

CLIP to identify pedestrians. Based on 2D-3D cross-modal mapping,

GVD encodes multi-view images into a 3D volume, and learns to

predict 3D density and color by the rendering losses with SIS pseudo

labels. VBR constrains the predicted 3D density to be naturally ver-

tical on the BEV ground plane. With these powerful components,

our proposed UMPD achieves competitive performances on chal-

lenging benchmarks Wildtrack, Terrace, and MultiviewX. We hope

this work, as the first fully-unsupervised method in this field, could

be a start and inspire more interesting future researches.
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