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Abstract001

Speaker verification (SV) models are increas-002
ingly integrated into security, personalization,003
and access control systems, yet their robustness004
to many real-world challenges remains inade-005
quately benchmarked. These include a variety006
of natural and maliciously created conditions007
causing signal degradations or mismatches be-008
tween enrollment and test data, impacting per-009
formance. Existing benchmarks evaluate only010
subsets of these conditions, missing others en-011
tirely. We introduce SVeritas, a comprehensive012
Speaker Verification tasks benchmark suite, as-013
sessing SV systems under stressors like record-014
ing duration, spontaneity, content, noise, mi-015
crophone distance, reverberation, channel mis-016
matches, audio bandwidth, codecs, speaker age,017
and susceptibility to spoofing and adversarial018
attacks. While several benchmarks do exist019
that each cover some of these issues, SVeritas020
is the first comprehensive evaluation that not021
only includes all of these, but also several other022
entirely new, but nonetheless important real-023
life conditions that have not previously been024
benchmarked. We use SVeritas to evaluate sev-025
eral state-of-the-art SV models and observe that026
while some architectures maintain stability un-027
der common distortions, they suffer substan-028
tial performance degradation in scenarios in-029
volving cross-language trials, age mismatches,030
and codec-induced compression. Extending031
our analysis across demographic subgroups, we032
further identify disparities in robustness across033
age groups, gender, and linguistic backgrounds.034
By standardizing evaluation under realistic and035
synthetic stress conditions, SVeritas enables036
precise diagnosis of model weaknesses and es-037
tablishes a foundation for advancing equitable038
and reliable speaker verification systems.039

1 Introduction040

Speaker verification technology has achieved re-041

markable accuracy under controlled conditions,042

driven by advances in deep neural embeddings,043

margin-based losses, and self-supervised pretrain- 044

ing. However, real-world deployments – from se- 045

cure access control and telephony authentication, 046

to personalized assistants, and law enforcement – 047

confront a broad spectrum of challenges that de- 048

grade performance, including degradations to the 049

signal itself, and mismatches between the test ut- 050

terances and the enrollment recordings they are 051

compared to. These mismatches arise from natural 052

variability (e.g., spontaneous versus read speech, 053

cross-language trials, or temporal drift), environ- 054

mental distortions (e.g., reverberation, background 055

noise, far- versus near-field capture), device and 056

codec artifacts, demographic factors (age, health 057

or physical condition), and even malicious manip- 058

ulations such as spoofing or adversarial attacks. 059

Without comprehensive, standardized evaluation 060

across these diverse stressors, it remains unclear 061

which aspects of SV systems are robust in practice 062

and where critical vulnerabilities lie. 063

Existing benchmarks each target a narrow sub- 064

set of these challenges. For example, Common- 065

Bench (Hintz and Siegert) offers large-scale mul- 066

tilingual text-independent trials, yet it relies on 067

an ECAPA-based outlier filter that may prune pre- 068

cisely the hardest cases (e.g., heavy accents or 069

noisy recordings), and omits deliberate distortions 070

such as codec compression or spoofed audio. In- 071

dicSUPERB (Javed et al., 2023) highlights per- 072

formance on twelve Indian languages but focuses 073

exclusively on scripted, read speech in clean or syn- 074

thetic noise conditions, neglecting cross-language 075

scenarios, far-field capture, or adversarial manip- 076

ulations. Other benchmarks examine specific di- 077

mensions in isolation – far-field effects in MultiSV 078

(Mošner et al., 2022), age variation in time-varying 079

SV (Doddington, 2012), or spoofing attacks in 080

ASVspoof (Wu et al., 2017). To the best of our 081

knowledge, no prior suite spans the full gamut of 082

natural, environmental, demographic, codec, and 083

adversarial factors under a unified framework. Fur- 084
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thermore, many datasets lack sufficient metadata085

to analyze fairness across age, gender, or linguistic086

subgroups, rely on relatively large enrollment dura-087

tions, or assume static, text-independent protocols088

that do not reflect modern low-resource, multi-file,089

or cross-domain requirements.090

To address these gaps, we introduce SVeritas,091

the first comprehensive speaker verification bench-092

mark suite that systematically evaluates state-of-093

the-art models across an extensive set of real-world094

and synthetic stressors. SVeritas assembles trials095

spanning (i) content and style variations (read vs.096

spontaneous, same vs. different sentences, multi-097

language), (ii) acoustic and channel mismatches098

(noise types and levels, far- vs. near-field, codec099

and bandwidth variations), (iii) demographic and100

physical factors (age-group mismatches, health101

or emotional states), (iv) enrollment/test duration102

and multi-file enrollment, and (v) security threats103

(spoofing via TTS/VC pipelines, universal and ad-104

versarial perturbations). By unifying these dimen-105

sions, SVeritas not only measures aggregate metrics106

such as equal error rate and detection cost function,107

but also facilitates fine-grained analyses of perfor-108

mance disparities across demographic subgroups109

and operating conditions. Through extensive evalu-110

ation of leading architectures, we uncover systemic111

weaknesses – particularly in cross-language, age-112

mismatch, and codec-compressed trials – and ex-113

pose fairness gaps that vary nontrivially by gender114

and language background.115

In summary, SVeritas establishes a rigorous, re-116

producible foundation for diagnosing robustness117

and equity in speaker verification. By reveal-118

ing hitherto uncharacterized vulnerabilities and119

enabling targeted stress-testing, our benchmark120

paves the way for developing more reliable, in-121

clusive, and secure SV systems suitable for deploy-122

ment in the complex acoustic and demographic123

landscapes of real-world applications. Our code124

is publicly available with documentation, foster-125

ing straightforward reproducibility and extensi-126

bility. https://anonymous.4open.science/r/127

SVeritas-3217/.128

2 Background and Related Work129

2.1 Speaker Verification Systems and their130

Vulnerabilities131

Speaker Verification systems attempt to verify the132

identity of a speaker by comparing (embeddings)133

derived from) their voice recordings to a template134

such as a statistical model (Reynolds et al., 2000), 135

or other embeddings derived from “enrollment” 136

data (Dehak et al., 2010). 137

Besides the models themselves, the performance 138

of the SV system depends on many other factors, 139

primary being the native quality of the signal itself. 140

The best performances are generally obtained with 141

studio-quality broadband signals (Villalba et al., 142

2020), which degrades when the bandwidth of the 143

signal is restricted, such as over telephony or cell- 144

phone channels (Kenny, 2010). The application 145

of various codecs also degrades performance (Nje- 146

govec, 2025). External influences such as back- 147

ground noise, recording room responses and rever- 148

beration also degrade performance (Ko et al., 2017) 149

(Nandwana et al., 2018). Perhaps most concern- 150

ingly, innate biases within the system too result 151

in reduced performances for some categories of 152

subjects (Hajavi and Etemad, 2023). Performance 153

is also dependent on the duration of the recording 154

(longer recordings are better (Poddar et al., 2018)), 155

and on whether the speech is spontaneous or re- 156

cited, e.g. by reading (Nakamura et al., 2008). 157

A second, and equally important source of degra- 158

dation is mismatches between the conditions of 159

the test and enrollment data. Signal differences in 160

bandwidth, channel condition, duration etc. can 161

result in degraded performance. Content variations, 162

such as language and dialectal differences (Abdul- 163

lah et al., 2025), as well as exactly what is spoken 164

(Dey, 2018) can cause degradations. Biological in- 165

fluences, such as changes in the age or health status 166

of the speaker too can cause degradations (Kelly 167

and Harte, 2011). 168

A third and increasingly important source of 169

degradation is active misdirection, such as through 170

voice mimicry (Hautamäki et al., 2013), synthetic 171

voice recordings (Zuo et al., 2024) or adversarial 172

modifications (Alzantot et al., 2018)(Zhou et al., 173

2023)(Jati et al., 2021) which can make an SV 174

system fraudulently accept an imposter or reject a 175

genuine match. 176

2.2 Remediations 177

The most common approach to remediation of nat- 178

ural and mismatch-based degradations is through 179

inclusive training – adding data with the variations 180

that one must be robust to in the training data of 181

the model (Ko et al., 2017), e.g. far-field and 182

noisy conditions (often through simulated room 183

responses and digital addition of noise) (Ko et al., 184

2017; Yakovlev et al., 2024; Thienpondt and De- 185
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Figure 1: Overview of our benchmark SVERITAS.

muynck, 2023; Al-Karawi, 2021), codec and band-186

width variations (Polacky et al., 2016), etc.. Ex-187

plicit modeling of, and compensation for effects188

such as noise and reverberation has also been found189

to be effective in some settings (Al-Karawi, 2021).190

Another popular approach to mitigate the effect191

of variations is through contrastive losses that at-192

tempt to neutralize variations by minimizing the193

distances of (embeddings from) recordings and194

their mismatched counterparts (Inoue and Goto,195

2020). Alternate methods attempt to disentan-196

gle confounding sources of variation (Nam et al.,197

2024).198

Defenses against misdirection attacks include199

explicit attempts at detecting mimicry (Hautamäki200

et al., 2013), or through adversarial defenses such201

as adversarial training, which can protect to some202

extent against adversarial attacks (Zhou et al.,203

2023).204

2.3 Benchmarking205

Speaker verification systems are often used in criti-206

cal settings, such as user authentication or law en-207

forcement. Consequently, benchmarking their per-208

formance under these various challenges becomes209

necessary.210

Indeed, benchmarking has been central to the211

development of SV systems, guiding progress212

through standardized evaluation protocols. Tra-213

ditional efforts such as the NIST Speaker Recog-214

nition Evaluations (SREs) (Sadjadi et al., 2022,215

2017) have driven advances in SV for over two216

decades, though their design primarily targets con-217

strained settings involving telephone and micro-218

phone speech. The VoxCeleb Speaker Recogni-219

tion Challenge (VoxSRC) (Nagrani et al., 2020)220

was introduced to evaluate the ability of modern221

speaker recognition systems to identify speakers222

from speech captured ‘in the wild’, To address iso-223

lated robustness factors, several specialized bench-224

marks have been introduced. The Short-Duration225

Speaker Verification Challenge (SDSVC) (Zeinali 226

et al., 2019) and Far-Field SVC (Qin et al., 2020) 227

focus on duration and spatial variability. SU- 228

PERB (Yang et al., 2021) offers a comprehensive 229

suite for evaluating speech representation learn- 230

ing across multiple tasks, including speaker veri- 231

fication, but the SV component remains relatively 232

coarse-grained and lacks detailed stress testing. 233

More recently, VoxBlink (Lin et al., 2024) em- 234

phasized robustness to device mismatch and short- 235

duration utterances, uncovering substantial perfor- 236

mance degradation under realistic deployment sce- 237

narios. Other efforts at benchmarking have been 238

mentioned in Section 1. 239

Notably, while each of these benchmarks evalu- 240

ates the system under subsets of the various chal- 241

lenges a real-life deployment may face, unlike other 242

speech pattern recognition tasks, such as speech 243

recognition (Shah et al., 2025), there is as yet no 244

single benchmark suite that integrates all of the 245

broader robustness dimensions such as recording 246

condition variations, demographic variation, adver- 247

sarial perturbations, and codec-induced compres- 248

sion into a unified diagnostic framework. Some 249

factors related to demographics and content are not 250

addressed by any existing benchmark. SVeritas 251

addresses this gap. 252

3 SVeritas Benchmark 253

SVeritas aims to provide a thorough benchmarking 254

of SV systems, evaluating its performance under 255

various degradations, mismatches, sources of bias, 256

and attacks, providing both detailed and summa- 257

rized evaluations, along with statistical significance 258

reports where appropriate. The tests are not only 259

intended to evaluate the performance of the sys- 260

tem under various conditions and threats that may 261

be expected in real-life deployments, but to also 262

provide a diagnostic tool to identify weaknesses, 263

and detect any systematic biases or vulnerabilities. 264

SVeritas evaluates the robustness of SV models 265
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Condition WavLM-Base WavLM-Base+ RedimNet ECAPA-TDNN MFA-Conformer
Real vs. Synthetic 25.74% 23.76% 5.94% 5.94% 0.00%
FGSM 48.38% 48.39% 37.63% 52.63% 45.26%
FakeBob 25.81% 18.28% 10.75% 62.36% 35.48%

Table 1: EARS: EER for SV models under clean, spoofing, and adversarial attack conditions.

Category Subgroup WavLM-Base WavLM-Base+ RedimNet ECAPA-TDNN MFA-Conformer

Gender
Female (59 spks) 13.74% 10.86% 1.50% 3.72% 2.44%
Male (43 spks) 17.26% 12.77% 1.79% 4.41% 2.76%

Age

F (18–25), 13 spks 13.01% 10.97% 2.34% 7.00% 4.62%
F (26–35), 13 spks 15.26% 12.71% 1.80% 4.24% 3.11%
F (36–45), 7 spks 10.91% 8.30% 0.27% 1.41% 1.07%
F (46–55), 14 spks 14.25% 11.99% 1.47% 3.31% 2.49%
F (56–65), 10 spks 16.84% 15.04% 1.52% 3.07% 1.83%
F (66–75), 2 spks 26.28% 18.63% 0.73% 3.67% 1.61%
M (18–25), 14 spks 23.35% 16.85% 3.61% 7.81% 4.99%
M (26–35), 10 spks 16.16% 13.75% 2.02% 3.72% 2.78%
M (36–45), 10 spks 14.22% 10.79% 1.78% 3.43% 1.88%
M (46–55), 4 spks 23.40% 18.07% 2.50% 7.89% 4.04%
M (56–65), 5 spks 26.21% 19.52% 2.16% 6.43% 4.46%

Ethnicity

F, White (40 spks) 14.67% 11.99% 1.44% 3.90% 2.44%
F, Hispanic (4 spks) 8.12% 5.88% 0.43% 2.02% 1.24%
F, Black (13 spks) 15.70% 13.63% 2.34% 5.18% 3.68%
F, Asian (2 spks) 6.51% 2.24% 0.95% 6.59% 2.09%
M, White (31 spks) 19.18% 14.30% 1.94% 4.87% 2.92%
M, Hispanic (5 spks) 20.74% 15.86% 1.30% 5.97% 3.28%
M, Black (5 spks) 16.23% 15.26% 1.47% 3.10% 1.50%
M, Asian (2 spks) 17.58% 9.15% 0.06% 0.30% 0.06%

Table 2: EARS: EER for SV models across gender, age, and ethnicity subgroups.

through a structured three-stage pipeline: (1) sce-266

nario simulation, (2) embedding extraction, and (3)267

performance evaluation. As illustrated in Figure 1,268

the first stage introduces a wide range of real-world269

and synthetic perturbations to both enrollment and270

test audio. These include natural variations (e.g.,271

speaking style, duration, and linguistic content),272

environmental conditions (e.g., noise, reverbera-273

tion, and microphone distance), and recording ar-274

tifacts (e.g., codec compression and bandwidth275

limitations). SVeritas also incorporates physical276

and demographic variability, such as speaker age,277

health, and accent, as well as adversarial factors in-278

cluding spoofing attempts and both black-box and279

white-box attacks. The second stage applies mul-280

tiple state-of-the-art embedding models to extract281

speaker representations. Finally, performance is282

evaluated using metrics such as Equal Error Rate283

(EER) across matched/mismatched scenarios and284

demographic subgroups, enabling a comprehensive285

assessment of model robustness and fairness.286

3.1 Scenario Simulation 287

SVeritas evaluates speaker verification systems 288

across a range of real-world and synthetic scenar- 289

ios. These simulations are organized into six broad 290

categories, each capturing a unique aspect of de- 291

ployment variability or robustness challenge. 292

The data themselves were obtained by simulat- 293

ing the various effects on a number of public cor- 294

pora such as EARS (Richter et al., 2024), AMI 295

Meeting Corpus (Kraaij et al., 2005) and Mozilla 296

CommonVoice 21 (Ardila et al., 2020). In order 297

to maximally ensure fair implementation of the 298

benchmark we only employed the test portions of 299

the corpora, under the assumption that developers 300

of SV systems are unlikely to have used these to 301

train the model. 302

3.1.1 Audio Capture 303

The audio capture benchmark evaluates the perfor- 304

mance of SV systems under various audio capture 305

conditions that may be encountered in real life. 306

1. Broadband clean: These are 16-bit resolution 307

linear PCM 16khz sampled studio-quality data. 308

In the context of speech processing tasks, this 309
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Age Gender WavLM-Base WavLM-Base+ RedimNet ECAPA MFA-Conformer

Teens
F 112 spks 31.15% 31.61% 13.82% 14.08% 15.01%
M 112 spks 23.12% 19.98% 4.53% 5.02% 6.89%

Twenties
F 582 spks 23.27% 19.34% 3.67% 5.41% 5.93%
M 582 spks 22.95% 20.87% 6.62% 8.16% 8.27%

Thirties
F 240 spks 22.70% 22.34% 2.94% 4.67% 5.52%
M 240 spks 20.14% 17.05% 2.69% 3.80% 3.99%

Fourties
F 140 spks 20.75% 19.30% 2.47% 4.08% 4.84%
M 140 spks 17.70% 17.33% 1.79% 3.09% 3.00%

Fifties
F 110 spks 24.49% 23.09% 2.88% 5.54% 6.43%
M 126 spks 18.99% 16.55% 1.39% 2.68% 3.78%

Sixties
F 49 spks 27.95% 26.11% 5.60% 11.11% 10.63%
M 57 spks 20.09% 18.27% 1.66% 4.15% 3.71%

Seventy+
F 17 spks 19.61% 16.37% 1.64% 6.56% 1.86%
M 69 spks 21.09% 25.23% 8.89% 11.96% 9.95%

Table 3: CommonVoice: EER variation over age for both genders.

has been the long-standing standard for “ideal”310

recordings.311

2. G-711: The G-711 standard data are captured312

with 8-bit mu law quantization, sampled at 8khz.313

These remain common in telephony applica-314

tions. The G-711 achieves a low bitrate of315

64kbps (CCITT, 1988).316

3. GSM 06.10: The GSM 06.10 is a legacy codec,317

standardized for 2G GSM mobile communica-318

tions, operates on 8 kHz sampled signals and319

uses Regular Pulse Excitation with Long Term320

Prediction (RPE-LTP) to compress speech to321

approximately 13 kbps, introducing character-322

istic bandlimited and quantization distortions323

(TC-SMG, 1993).324

4. Opus: Opus is a dynamic-bitrate codec em-325

ployed in applications such as WhatsApp (Ku-326

mar et al., 2024), Zoom (Zoom Video Commu-327

nications, Inc., n.d.) and WebRTC (Valin et al.,328

2012) . It dynamically adjusts the compression329

of the signal according to current network condi-330

tions. SVeritas uses Opus in two modes, narrow-331

band 8khz and wideband 16khz and randomly332

selects one of the two to apply to any signal, to333

simulate the unpredictable nature of the com-334

pression.335

5. AMR: The “Adaptive MultiRate” (AMR) codec336

is a legacy codec prevalent particularly in 2G337

and 3G cellular networks. It operates on338

8khz mu-law sampled data, and employs vari-339

ants of CELP coding, but the dynamic switch-340

ing enables higher-quality audio. SVeritas341

chooses randomly between AMR-Narrowband 342

(4.75–12.2 kbps)) and AMR-wideband (12.6 343

kbps or higher) (Sjoberg et al., 2007) to emulate 344

the dynamic nature of the codec. 345

We evaluate systems both under conditions of 346

match, where the same codec is used for both test 347

and enrollment data, and mismatch, where the two 348

are different. Note that while the results reported 349

in this paper only consider the codecs mentioned 350

above, our actual package implements and tests 351

against a wider set of popular codecs. 352

3.1.2 Noise and Channel 353

Real-world recordings are often affected by the 354

room responses of the space they are recorded in 355

and any noise sources present in them. These intro- 356

duce distortions which may be further exacerbated 357

by coding schemes that are part of the data capture 358

and transmission. The noise and channel bench- 359

mark evaluates the robustness of the SV system 360

under these conditions. 361

1. Noise: We evaluate the performance under three 362

varities of noise, namely gaussian noise, envi- 363

ronmental noise and crosstalk, at three different 364

signal to noise ratios of 5, 15 and 25dB SNR. 365

2. Real Room Response: We also evaluate the influ- 366

ence of the room response. To implement these, 367

we consider room impulse responses (RIRs) of 368

three different severity levels (in terms of T60 369

times) drawn randomly from the Room Impulse 370

Response and Noise corpus (Ko et al., 2017). 371

The actual benchmarks considers both the room 372

responses and the noises in isolation, and their 373
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compounded effect (with RIRs applied on top of374

the noise). All data are generated through digital375

simulation of these effects on CommonVoice data.376

Finally, since codecs too will cause additional dis-377

tortion of noisy speech, we also consider the effect378

of codec compression on signals corrupted by noise379

and room response. For the results reported in this380

we have only considered Opus, G-729 and AMR381

codecs applied to signals corrupted by medium382

severity levels of room response and noise; our ac-383

tual package reports results on the comprehensive384

set of combinations and their summary statistics.385

3.1.3 Demographic Variations386

To assess fairness and generalization, we evaluate387

speaker verification models across demographic388

groups, including variations in gender, age, eth-389

nicity, and native language. A key focus of this390

category is cross-lingual robustness: we use Com-391

monVoice (Ardila et al., 2020) to test whether mod-392

els trained primarily on English can correctly ver-393

ify speakers when they speak in other languages.394

Since speaker identity is grounded in vocal acous-395

tics, a robust SV model should recognize the same396

speaker regardless of the spoken language. This397

evaluation reveals whether models rely too heavily398

on language-specific cues and whether they gener-399

alize across linguistic boundaries. We also include400

TTS-generated speech conditioned on demographic401

traits to further probe model behavior under con-402

trolled variation. This setup allows us to measure403

demographic robustness and detect possible bias in404

model predictions.405

3.1.4 Synthetic and Adversarial406

Real-life deployments are also vulnerable to a vari-407

ety of attacks. The synthetic and adversarial bench-408

mark quantifies this vulnerability. We consider the409

following attacks.410

1. Synthetic speech: Here we evaluate the vulner-411

ability of the system to synthetic speech. In all412

test pairs, both recordings are from the same413

speaker. In one case both recordings are real,414

whereas in the other one of the two is syn-415

thetic. Ideally the system must accept the former416

and reject the latter. In this paper we employ417

CosyVoiceTTS (Du et al., 2024) for the syn-418

thetic speech; the full benchmark also evaluates419

other TTS systems.420

2. Adversarial attack: We consider adversarial at-421

tacks where an imposter attempts to mislead422

the system. The test is similar to the synthetic 423

speech attack, except that instead of synthetic 424

speech, we have adversarially modified speech. 425

In this paper we consider two adversarial at- 426

tacks: a white-box (full access to model weights) 427

attack, namely the Fast Gradient Sign Method 428

(FGSM) (Goodfellow et al., 2014), and one 429

black-box attack (access restricted to output la- 430

bel only), namely the Fakebob attack (Chen 431

et al., 2021). The full SVeritas benchmark pack- 432

age also considers other popular attacks. 433

3.2 Metrics 434

We evaluate the performance of speaker verifica- 435

tion systems using three standard metrics: Equal 436

Error Rate (EER), minimum Detection Cost Func- 437

tion (minDCF), and Area Under the Curve (AUC). 438

EER is defined as the point at which the false ac- 439

ceptance rate (FAR) equals the false rejection rate 440

(FRR), providing a balanced indicator of accuracy 441

across operating points. It is used as the primary 442

metric due to its intuitive interpretability. minDCF 443

measures the minimum cost achievable when ac- 444

counting for application-specific penalties (e.g., a 445

higher cost for FAR in high-security contexts) and 446

thus reflects performance under asymmetric deci- 447

sion costs. AUC, a threshold-independent metric, 448

quantifies the separability between genuine and im- 449

postor trials and is particularly sensitive to systemic 450

errors in low-FAR regimes, such as those required 451

in forensic applications. 452

4 Evaluation 453

We evaluate several state-of-the-art SV models us- 454

ing SVeritas and analyze their robustness across a 455

broad range of challenging scenarios. We further 456

extend this analysis to examine model behavior 457

across various demographic subgroups, including 458

speaker age, language background, ethnicity, and 459

gender. Prior work (Hutiri and Ding, 2022) has 460

noted the presence of biases in SV systems, and 461

our findings corroborate and expand upon these 462

observations by revealing that disparities in robust- 463

ness can emerge across subgroups. These results 464

highlight the importance of standardized evalua- 465

tion under real-world conditions and underscore 466

the utility of SVeritas in advancing fair and reliable 467

speaker verification. 468

To further quantify fairness and robustness, we 469

conduct a series of pairwise statistical tests across 470

demographic groups using EER as the primary 471

metric. While each group yields a single EER 472
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Codec Condition WavLM-Base WavLM-Base+ RedimNet ECAPA MFA-Conformer
Clean 23.05% 20.23% 4.69% 6.13% 6.65%

GSM

No Noise 23.09% 20.24% 4.65% 6.15% 6.72%
GaussNoise+RIR 40.64% 36.67% 22.46% 17.89% 27.30%
EnvNoise+RIR 40.32% 38.63% 17.24% 16.47% 20.12%
CrossTalk+RIR 40.47% 38.29% 24.63% 24.68% 24.95%

AMR

No Noise 23.09% 20.24% 4.65% 6.15% 6.72%
GaussNoise+RIR 40.64% 36.67% 22.46% 17.89% 27.30%
EnvNoise+RIR 40.32% 38.63% 17.24% 16.47% 20.12%
CrossTalk+RIR 40.47% 38.29% 24.63% 24.68% 24.95%

Opus

No Noise 23.09% 20.24% 4.65% 6.15% 6.72%
GaussNoise+RIR 40.64% 36.67% 22.46% 17.89% 27.30%
EnvNoise+RIR 40.32% 38.63% 17.24% 16.47% 20.12%
CrossTalk+RIR 40.47% 38.29% 24.63% 24.68% 24.95%

AMI

NearField (F) 39.64% 34.60% 12.12% 21.69% 20.63%
NearField (M) 37.92% 38.69% 17.27% 20.27% 22.31%
FarField (F) 47.06% 47.63% 34.96% 36.04% 36.67%
FarField (M) 46.63% 45.39% 34.65% 35.00% 37.65%

Table 4: CommonVoice: EERs under audio degradation from codecs and noise conditions. AMI results reflect
real-world variability in near-field and far-field social environments.

value per model, we leverage the diversity of473

five models to enable paired comparisons between474

groups. This design allows us to assess whether475

performance disparities are consistent across ar-476

chitectures. Full statistical test tables, including477

t-statistics, p-values, and significance levels, are478

provided in Appendix A.479

4.1 Models480

We evaluate a range of SOTA SV models which481

are publicly available, including WavLM-Base482

and WavLM-Base+ (Chen et al., 2022), ECAPA-483

TDNN (Desplanques et al., 2020), and RedimNet484

(Yakovlev et al., 2024). In addition, we include485

MFA-Conformer(Zhang et al., 2022), which we486

train ourselves due to the lack of publicly avail-487

able checkpoints. All publicly available models are488

sourced from official repositories or HuggingFace489

implementations, where applicable.490

4.2 Robustness in Noise Environment491

We evaluate robustness to noise and channel vari-492

ability using two benchmarks: synthetic distortions493

applied to CommonVoice and real-world social con-494

ditions captured in the AMI corpus. For synthetic495

testing, we simulate Gaussian, environmental, and496

cross-talk noise at varying SNRs (5, 15, 25 dB)497

with and without room impulse response (RIR) of498

severity levels 2, 3, and 4. These are evaluated un-499

der three codecs (GSM, AMR, Opus), with results500

shown in Table 4. For real-world testing, we use501

AMI recordings captured in near-field and far-field 502

microphone setups to assess model performance in 503

natural interactive environments. 504

As shown in 4 and 13, we observe a consis- 505

tent trend: WavLM-based models degrade rapidly 506

in the presence of noise and reverberation, es- 507

pecially when combined with low-bitrate codecs 508

such as GSM or AMR. For instance, WavLM- 509

Base shows a sharp EER increase from 23.05% 510

in clean conditions to over 40% across nearly all 511

noisy+RIR combinations. In contrast, RedimNet, 512

ECAPA-TDNN, and MFA-Conformer exhibit sig- 513

nificantly stronger robustness, maintaining substan- 514

tially lower EERs in both synthetic and real-world 515

conditions. These results emphasize the need for 516

channel-aware model development and highlight 517

the importance of including realistic acoustic varia- 518

tion during training. 519

4.3 Robustness in Adversarial Scenarios 520

We run different tests for adversarial attacks and 521

TTS spoofing. For the TTS spoofing, we use the 522

EARS dataset, which contains 109 speakers (59 523

female, 50 male). For Real vs. Synthetic evalua- 524

tions, both utterances in a pair originate from the 525

same speaker. Positive pairs consist of two real ut- 526

terances, while negative pairs include one real and 527

one synthetic sample generated by a TTS system. 528

For adversarial attacks, we adopt a targeted verifi- 529

cation setup in which the first utterance is adver- 530

sarially perturbed using either FGSM or FakeBob, 531
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and the second is a clean utterance from the same532

speaker. This design ensures speaker consistency533

while isolating the effect of the perturbation.534

As shown in Table 1, MFA-Conformer demon-535

strates the strongest robustness across all tested con-536

ditions, achieving 0% EER under TTS spoofing and537

the lowest error rates under both FGSM (45.26%)538

and FakeBob (35.48%) attacks. RedimNet also per-539

forms well under TTS spoofing (5.94%), though it540

is more susceptible to adversarial attacks. In con-541

trast, ECAPA-TDNN is highly vulnerable to Fake-542

Bob, reaching an EER of 62.36%. The WavLM-543

based models (Base and Base+) show consistent544

vulnerability under both spoofing and adversarial545

conditions. These findings highlight substantial546

variability in model robustness and underscore the547

need to develop verification systems that are re-548

silient to both synthetic speech and adversarial ma-549

nipulation.550

4.4 Robustness in Demographic Variations551

To investigate demographic bias in speaker ver-552

ification, we generate verification pairs by first553

splitting the dataset by gender, and then further554

dividing each gender group based on the desired555

demographic category such as age, ethnicity, or556

language. Within each subgroup, we form same-557

speaker pairs and compute the EER independently558

for each model. This stratified evaluation allows us559

to analyze whether models exhibit bias or perfor-560

mance disparities across demographic dimensions,561

especially among underrepresented groups. We run562

these experiments on both the EARS and Mozilla563

CommonVoice datasets, leveraging their detailed564

metadata.565

As seen in Table 2, certain language-gender566

or ethnicity-gender combinations (e.g., male-567

Hispanic, female-Asian) have significantly fewer568

speakers and exhibit elevated EERs, suggesting569

weaker generalization. Our analysis reveals signs570

of demographic bias in several models. For in-571

stance, WavLM-Base shows degradation in older572

age groups. In contrast, Redimnet maintains the573

most consistent performance regarding all demo-574

graphic splits, with minimal variation across age,575

gender, and ethnicity.576

Using paired t-tests across five models in the577

EARS dataset (Richter et al., 2024), we assess con-578

sistency of group-level EER differences. Males579

show higher EERs than females (17.3% vs. 13.7%),580

but the gap is not statistically significant (p =581

0.095). Younger males (18–25) outperform older582

males (p < 0.05). Females aged 36–45 signifi- 583

cantly outperform other female age groups (p < 584

0.01). Black females show significantly higher 585

EERs than white females (p < 0.001). Asian and 586

Hispanic males also perform worse, but sample 587

sizes are small (n ≤ 5) (see Appendix A.1). 588

CommonVoice results (Appendix A.2) confirm 589

these trends. Gender identity groups show no sig- 590

nificant EER gap (p = 0.779), but age remains a 591

major factor. Older male and female speakers (60+) 592

consistently underperform compared to younger 593

groups (p < 0.01). 594

These results collectively suggest that demo- 595

graphic imbalance in training data may contribute 596

to uneven generalization and reduced fairness, par- 597

ticularly in age and ethnicity subgroups with lim- 598

ited representation. 599

5 Conclusion 600

We present SVeritas, a comprehensive and extensi- 601

ble benchmark for evaluating speaker verification 602

models under diverse real-world and synthetic stres- 603

sors. Unlike prior work, it covers environmental 604

noise, channel mismatches, codecs, cross-lingual 605

variation, demographic shifts, adversarial attacks, 606

and importantly, TTS-based spoofing—an often 607

overlooked but growing threat. SVeritas enables 608

fine-grained robustness and fairness analysis across 609

gender, age, ethnicity, and language, while offering 610

a modular framework that supports easy integration 611

of new models and evaluation settings. It provides 612

a unified, reproducible foundation for building SV 613

systems that are not only accurate, but also resilient, 614

equitable, and ready for real-world deployment. 615

Limitations 616

While SVeritas provides a broad and extensible 617

evaluation framework, it currently applies stress 618

conditions at fixed levels of severity. This design 619

simplifies benchmarking and ensures consistency 620

across models, but may not fully capture how sys- 621

tems degrade under progressively harder condi- 622

tions. In real-world scenarios, distortions such as 623

noise, reverberation, or compression vary in inten- 624

sity and interact in complex ways. Future work 625

could extend SVeritas with parameterized or con- 626

tinuous stress levels, enabling finer-grained robust- 627

ness analysis and stress-adaptive training strategies 628
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A Pairwise Statistical Tests881

Each demographic group has a single EER value per model. While speaker counts are sometimes small882

(as few as 2–3), the number of utterances per speaker is high, resulting in relatively stable EER estimates883

per group. Traditional t-tests require multiple observations per group; instead, we leverage the fact that884

we have five models and treat their EERs as paired samples.885

We apply a paired t-test to assess whether models consistently yield higher EERs for one group than886

another. This test evaluates the consistency of performance differences across models, not population-level887

differences. We report the number of speakers per group and disregard comparisons involving statistically888

underpowered cases.889

Each table below compares pairwise group performance:890

• Rows: Reference groups (with speaker count).891

• Columns: Comparison groups (with speaker count).892

• Cells: t-stat / p-value / significance893

– t-stat < 0: comparison group has higher EER than reference.894

– t-stat > 0: comparison group has lower EER than reference.895

– Significance levels: *** for p < 0.001 (very highly significant); ** for p < 0.01 (highly896

significant); * for p < 0.05 (statistically significant); No star for p ≥ 0.05 (not significant).897

A.1 EARS Dataset (Richter et al., 2024)898

F (n=59) M (n=43)
F (n=59) — -2.18 / 0.095 /
M (n=43) 2.18 / 0.095 / —

Table 5: EARS: Pairwise t-tests for gender groups (t / p / sig).

M_18-25 (n=14) M_26-35 (n=10) M_36-45 (n=10) M_46-55 (n=4) M_56-65 (n=5)
M_18-25 (n=14) — 3.70 / 0.021 / * 3.87 / 0.018 / * 0.34 / 0.751 / -0.45 / 0.678 /
M_26-35 (n=10) -3.70 / 0.021 / * — 2.43 / 0.072 / -2.89 / 0.044 / * -2.32 / 0.081 /
M_36-45 (n=10) -3.87 / 0.018 / * -2.43 / 0.072 / — -3.04 / 0.038 / * -2.47 / 0.069 /
M_46-55 (n=4) -0.34 / 0.751 / 2.89 / 0.044 / * 3.04 / 0.038 / * — -0.78 / 0.478 /
M_56-65 (n=5) 0.45 / 0.678 / 2.32 / 0.081 / 2.47 / 0.069 / 0.78 / 0.478 / —

Table 6: EARS: Pairwise t-tests for male age groups (t / p / sig).

F_18-25 (n=13) F_26-35 (n=13) F_36-45 (n=7) F_46-55 (n=14) F_56-65 (n=10) F_66-75 (n=2)
F_18-25 (n=13) — 0.17 / 0.871 / 4.88 / 0.008 / ** 0.94 / 0.398 / -0.04 / 0.967 / -0.78 / 0.481 /
F_26-35 (n=13) -0.17 / 0.871 / — 5.15 / 0.007 / ** 6.02 / 0.004 / ** -0.32 / 0.762 / -1.12 / 0.327 /
F_36-45 (n=7) -4.88 / 0.008 / ** -5.15 / 0.007 / ** — -4.54 / 0.010 / * -2.58 / 0.061 / -1.93 / 0.126 /
F_46-55 (n=14) -0.94 / 0.398 / -6.02 / 0.004 / ** 4.54 / 0.010 / * — -1.24 / 0.283 / -1.37 / 0.243 /
F_56-65 (n=10) 0.04 / 0.967 / 0.32 / 0.762 / 2.58 / 0.061 / 1.24 / 0.283 / — -1.34 / 0.252 /
F_66-75 (n=2) 0.78 / 0.481 / 1.12 / 0.327 / 1.93 / 0.126 / 1.37 / 0.243 / 1.34 / 0.252 / —

Table 7: EARS: Pairwise t-tests for female age groups (t / p / sig).
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F_white (n=40) F_black (n=13) F_asian (n=2) F_hispanic (n=4) M_white (n=31) M_black (n=5) M_asian (n=2) M_hispanic (n=5)
F_white (n=40) — -9.76 / 0.001 / *** 1.32 / 0.257 / 2.73 / 0.053 / -2.29 / 0.084 / -0.78 / 0.477 / 1.27 / 0.274 / -2.30 / 0.083 /
F_black (n=13) 9.76 / 0.001 / *** — 1.79 / 0.148 / 3.57 / 0.023 / * -0.69 / 0.527 / 0.80 / 0.466 / 2.19 / 0.094 / -1.22 / 0.289 /
F_asian (n=2) -1.32 / 0.257 / -1.79 / 0.148 / — 0.10 / 0.923 / -1.62 / 0.180 / -1.20 / 0.295 / -0.56 / 0.608 / -1.72 / 0.161 /
F_hispanic (n=4) -2.73 / 0.053 / -3.57 / 0.023 / * -0.10 / 0.923 / — -2.62 / 0.059 / -2.02 / 0.113 / -0.91 / 0.415 / -2.56 / 0.062 /
M_white (n=31) 2.29 / 0.084 / 0.69 / 0.527 / 1.62 / 0.180 / 2.62 / 0.059 / — 1.73 / 0.159 / 4.52 / 0.011 / * -1.88 / 0.133 /
M_black (n=5) 0.78 / 0.477 / -0.80 / 0.466 / 1.20 / 0.295 / 2.02 / 0.113 / -1.73 / 0.159 / — 1.72 / 0.161 / -2.32 / 0.081 /
M_asian (n=2) -1.27 / 0.274 / -2.19 / 0.094 / 0.56 / 0.608 / 0.91 / 0.415 / -4.52 / 0.011 / * -1.72 / 0.161 / — -4.09 / 0.015 / *
M_hispanic (n=5) 2.30 / 0.083 / 1.22 / 0.289 / 1.72 / 0.161 / 2.56 / 0.062 / 1.88 / 0.133 / 2.32 / 0.081 / 4.09 / 0.015 / * —

Table 8: EARS: Pairwise t-tests for ethnicity groups (t / p / sig).
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female_feminine (n=45) male_masculine (n=21)
female_feminine (n=45) — 0.30 / 0.779 /
male_masculine (n=21) -0.30 / 0.779 / —

Table 9: CommonVoice: Pairwise t-tests for gender identity groups (t / p / sig).

M_teens (n=112) M_twenties (n=582) M_thirties (n=240) M_fourties (n=140) M_fifties (n=126) M_sixties (n=57) M_seventy_plus (n=69)
M_teens (n=112) — -2.62/0.059/ 6.61/0.003/** 5.44/0.006/** 11.14/0.000/*** 5.21/0.006/** -2.31/0.082/
M_twenties (n=582) 2.62/0.059/ — 13.86/0.000/*** 14.78/0.000/*** 16.52/0.000/*** 8.21/0.001/** -1.88/0.133/
M_thirties (n=240) -6.61/0.003/** -13.86/0.000/*** — 2.18/0.095/ 4.03/0.016/* -0.12/0.909/ -4.47/0.011/*
M_fourties (n=140) -5.44/0.006/** -14.78/0.000/*** -2.18/0.095/ — -0.24/0.821/ -2.45/0.070/ -7.39/0.002/**
M_fifties (n=126) -11.14/0.000/*** -16.52/0.000/*** -4.03/0.016/* 0.24/0.821/ — -2.63/0.058/ -5.29/0.006/**
M_sixties (n=57) -5.21/0.006/** -8.21/0.001/** 0.12/0.909/ 2.45/0.070/ 2.63/0.058/ — -4.73/0.009/**
M_seventy_plus (n=69) 2.31/0.082/ 1.88/0.133/ 4.47/0.011/* 7.39/0.002/** 5.29/0.006/** 4.73/0.009/** —

Table 10: CommonVoice: Pairwise t-tests for male age groups (t / p / sig).

F_teens (n=112) F_twenties (n=582) F_thirties (n=240) F_fourties (n=140) F_fifties (n=110) F_sixties (n=49) F_seventy_plus (n=17)
F_teens (n=112) — 12.67/0.000/*** 24.19/0.000/*** 25.00/0.000/*** 12.72/0.000/*** 5.07/0.007/** 9.42/0.001/***
F_twenties (n=582) -12.67/0.000/*** — -0.15/0.885/ 3.13/0.035/* -1.25/0.279/ -5.92/0.004/** 2.48/0.068/
F_thirties (n=240) -24.19/0.000/*** 0.15/0.885/ — 2.69/0.055/ -2.89/0.045/* -7.12/0.002/** 1.85/0.138/
F_fourties (n=140) -25.00/0.000/*** -3.13/0.035/* -2.69/0.055/ — -3.27/0.031/* -7.92/0.001/** 1.09/0.338/
F_fifties (n=110) -12.72/0.000/*** 1.25/0.279/ 2.89/0.045/* 3.27/0.031/* — -7.45/0.002/** 2.36/0.078/
F_sixties (n=49) -5.07/0.007/** 5.92/0.004/** 7.12/0.002/** 7.92/0.001/** 7.45/0.002/** — 6.02/0.004/**
F_seventy_plus (n=17) -9.42/0.001/*** -2.48/0.068/ -1.85/0.138/ -1.09/0.338/ -2.36/0.078/ -6.02/0.004/** —

Table 11: CommonVoice: Pairwise t-tests for female age groups (t / p / sig).
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Gender Speakers WavLM-Base WavLM-Base+ RedimNet ECAPA MFA-Conformer
Female 45 28.63% 20.36% 3.47% 5.38% 6.85%
Male 21 17.42% 17.56% 5.41% 9.84% 10.16%

Table 12: CommonVoice: EER when target pairs come from different lanuage while non-target pairs come from the
same language.

Noise SNR RIR WavLM-Base WavLM-Base+ RedimNet ECAPA MFA-Conformer
Clean 23.05% 20.23% 4.69% 6.13% 6.65%

GaussNoise
5 31.86% 34.53% 21.75% 18.95% 31.51%
15 32.00% 31.66% 16.02% 12.66% 18.85%
25 30.11% 29.75% 9.47% 9.21% 12.03%

GaussNoise w/ RIR
5 2 46.57% 47.67% 28.19% 21.89% 35.36%
15 3 40.86% 36.91% 22.52% 18.03% 27.54%
25 4 46.42% 44.18% 42.82% 35.50% 37.37%

EnvNoise
5 42.01% 43.05% 25.04% 24.46% 26.70%
15 34.79% 32.34% 10.52% 13.62% 15.34%
25 27.30% 23.15% 5.95% 8.49% 9.59%

EnvNoise w/ RIR
5 2 45.17% 46.32% 32.75% 25.82% 27.26%
15 3 40.25% 38.65% 19.36% 15.88% 20.04%
25 4 46.37% 44.19% 39.43% 35.93% 36.71%

CrossTalk
5 47.54% 47.35% 38.97% 37.97% 36.15%
15 43.41% 41.61% 20.50% 26.00% 24.11%
25 35.37% 29.27% 8.59% 15.06% 14.02%

CrossTalk w/ RIR
5 2 46.19% 46.75% 41.23% 37.73% 36.13%
15 3 40.54% 38.48% 26.19% 24.54% 24.63%
25 4 46.44% 44.20% 39.25% 36.55% 37.41%

Table 13: CommonVoice: EER degradation due to noise and room reverberations.
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