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Abstract

Continual Learning (CL) poses a significant challenge in Artificial Intelligence,1

aiming to incrementally acquire knowledge and skills. While extensive research has2

focused on CL within the context of classification tasks, the advent of increasingly3

powerful generative models necessitates the exploration of Continual Learning of4

Generative models (CLoG). This paper advocates for shifting the research focus5

from classification-based CL to CLoG. We systematically identify the unique6

challenges presented by CLoG compared to traditional classification-based CL.7

We adapt three types of existing CL methodologies—replay-based, regularization-8

based, and parameter-isolation-based methods—to generative tasks and introduce9

comprehensive benchmarks for CLoG that feature great diversity and broad task10

coverage. Our benchmarks and results yield intriguing insights that can be valuable11

for developing future CLoG methods. We believe shifting the research focus to12

CLoG will benefit the CL community and illuminate the path for AI-generated13

content (AIGC) in a lifelong learning paradigm.14

1 Introduction15

The development of Artificial Intelligence Generated Content (AIGC) marks a paradigm shift from16

classification-based applications, such as image recognition [48, 91, 102, 23, 45], to powerful17

generative models [21, 95, 29, 99]. Continual learning (CL), which involves AI systems incrementally18

mastering a sequence of tasks T (1), T (2), . . . , T (T ) [36, 14], is a crucial challenge in AI research.19

Currently, advancements on CL [85, 111, 61, 37] mainly lies in classification-based models [103]20

settings. Given the rising importance of generative models, we believe that now is an opportune21

time to pivot the research focus towards the Continual Learning of Generative models (CLoG).22

CLoG typically necessitates the use of sophisticated generative models, such as VAE [41], GAN [21],23

score-based models [98], to model the complicated data distributions.24

In this paper, we establish a foundational framework for studying CLoG. Initially, we define the25

problem of CLoG and delve into it by leveraging insights from the existing research on classification-26

based CL (Section 2). We then meticulously develop benchmarks for CLoG, focusing on task27

selection (Section 3.1), baseline setup (Section 3.2), metrics design (Section 3.3), and training28

specifics (Section 3.4). We maintain a clean baseline set by adapting representative CL methods to29

CLoG, employ unified evaluation metrics, and enhance the efficiency of evaluation by focusing only30

on the specifics crucial for CL. Our benchmarks provide valuable insights and are intended to inspire31

further advancements in CLoG methodologies. This paper also aims to reflect on current CL research,32

inspiring advancing CL methods tailored for foundation models. Our extensible codebase will be33

released for the benefit of CLoG research.34
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Figure 1: Overview of benchmarks. Seven label-conditioned and one concept-conditioned CLoG benchmarks
are studied, with details presented in Table 15 and Section 3.1. Label-conditioned CLoG learns a sequence of
generation tasks conditioned on label indices. Concept-conditional CLoG learns to synthesize a sequence of
concepts (denoted as V ∗

i for the ith concept) given arbitrary text prompts.

Figure 2: Overview of baselines. Three types of CL baselines are adapted to CLoG, which include
regularization-based, replay-based, and parameter-isolation-based methods, resulting in a total of twelve
different CLoG baselines. The detailed information on the baselines are in Section 3.2.

2 From Traditional CL to CLoG35

2.1 Continual Learning36

The mathematical formulation of general CL is presented in Appendix A.1. A main assumption37

of CL is that once a task is learned, its training data D(t) is no longer accessible (or with limited38

access). This assumption causes catastrophic forgetting for machine learning models, which refers39

to performance degradation of previous tasks in learning each new task [64]. The existing CL40

methods to prevent forgetting include: (1) Regularization-based Methods: The idea of this family41

is to add regularization to penalize changes to important parameters learned for previous tasks in42

learning a new task [44, 122, 3, 6, 53]. (2) Replay-based Methods: These methods store a small43

subset of training data from previous tasks [60, 8, 76, 75, 39] or learn a data generator to synthesize44

pseudo data [90, 12, 113, 127] of previous tasks. The saved data, the synthesized data, and the45

new task data are both used in training. (3) Parameter-isolation Based Methods: These methods46

allocate task-specific parameters to prevent subsequent tasks from interfering the previously learned47

parameters [112, 84, 19, 80, 2, 62, 55].48

2.2 Continual learning of generative models (CLoG)49

The mathematical formulation of general CL is presented in Appendix A.2. The key difference lies in50

the input space X and output space Y . In image generation, the input x may be some label conditions51

(e.g., one-hot class) or instructions (text or images), and the output y ∈ RC×H×W should be images52

(C,H,W denote the number of channels, height, and width). Thus CLoG is more challenging as its53

output space inherently possesses a significantly larger cardinality. Model architectures also diverge:54

classification-based CL typically requires a simple mechanism, such as linear mapping or MLP55

head [70], while CLoG necessitates sophisticated generative models as VAE [41], GAN [21], or56

score-based models [98], which are generally more complex to optimize [77, 97].57
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3 Benchmark Design58

3.1 Task selection59

The fundamental criterion for choosing tasks for our benchmark is to ensure they are diverse and60

representative. Diversity is crucial for evaluating the CLoG methods across various dimensions,61

making them relevant for different real-world applications. Selecting representative tasks is essential62

for efficiency since executing numerous redundant tasks can be resource-intensive and unproductive.63

We follow traditional CL literature [75, 4, 40, 55, 109] to split a publicly available dataset into a64

sequence of tasks for CLoG, including MNIST, CIFAR-10, ImageNet-1k, etc. The detailed description65

can be found in Appendix F.1. The specific partition of tasks is depicted in Appendix F.2.66

3.2 Baseline setup67

To establish the baselines, we adapt the three types of CL techniques (i.e., regularization-based,68

replay-based, parameter-isolation-based) to CLoG. Note that there are several classification-based CL69

or CLoG methods that combine multiple techniques, but we did not include these baselines in our set70

as many of their basic components can be unified into the three types of methods (see Appendix B).71

Adapted Baselines We adapted 12 baselines, encompassing parameter-isolation-based methods72

e.g. ensemble, C-LoRA, replay-based methods e.g. experience replay and generative replay, and73

regularization-based methods e.g. L2, EWC, SI, with Naive Continual Learning and Non-Continual74

Learning involved for comparison. For detailed introduction, please refer to Appendix D.75

Generative models We apply CLoG methods on two representative generative models: Generative76

Adversarial Networks (GAN) [21] and Diffusion Models [28]. We introduce them in Appendix B.1.77

3.3 Metrics design78

In this paper, we provide unified metric choices for evaluating CLoG, including Average Incremental79

Quality (AIQ), Average Final Quality (AFQ) and Forgetting Rate (FR) to reveal average quality,80

final performance, and the extent of forgetting respectively. Please refer to Appendix A.3 for81

definitions.82

3.4 Training specifics83

Given the diverse training specifics (e.g., image augmentation, network configurations, etc.), the key84

idea is to fix the specifics irrelevant to CL performance (which might otherwise affect the generation85

performance) in implementing CLoG baselines. Specifically, we fix the backbone for GAN and86

Diffusion Models to StyleGAN2 [35] and DDIM [96] for label-conditioned CLoG, DreamBooth [78]87

and Custom Diffusion [49] for concept-conditioned CLoG. We fix CL-irrelevant configurations88

such as DDIM steps, condition encoding, etc., with full details presented in Appendix G. This89

standardization improves evaluation efficiency by significantly reducing the hyper-parameter space,90

allowing us to focus on optimizing the hyper-parameters crucial for CL.91

4 Experiments and Results92

Experiment details are presented in Appendix G. Besides, we present the AFQ results as Tables 193

and 2, and postpone the AIQ, FR results in Appendices E.2 and E.4. We also conduct additional94

study on different configurations such as DDIM steps, replay buffer size, task numbers within the95

same dataset, different alignment score metrics in Appendix E.1, and visualize the generation results,96

compare efficiencies in Appendices E.3 and E.5. We draw some observations as follows.97

NO single method works well across all settings. Specifically, the seemingly best-performing98

parameter-isolation-based methods (i.e., ensemble, C-LoRA) work well on MNIST, CIFAR-10,99

ImageNet-1k, and Custom-Objects, but fail on Oxford-Flowers, CUB-Birds, and Stanford-Cars. This100

is because by isolating parameters, they inhibit knowledge transfer, which is significant for tasks that101

share similar features. Besides, these methods may also be memory-hungry (see Table 11) as they102

allocate parameters for each new task. Above all, the current methods are not satisfactory enough and103

our CLoG benchmark remains an open challenge.104

NCL is comparable to regularization-based methods. Although NCL naively trains on the current105

task data without knowledge-preserving techniques, it exhibits similar performance compared to106

regularization-based methods. Some of them achieve even worse performance than NCL because107

the regularization makes them hard to learn new tasks, for example, MAS achieves poor AFQ on108

Oxford-Flowers and Stanford-Cars based on Diffusion Models, but it also has almost zero forgetting109

(shown in Tables 9 and 10). Note that we have grid searched the regularization weights from 0.001 to110
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Table 1: AFQ results for label-conditioned CLoG benchmarks. The best result in each column with the same
architecture (StyleGAN2, DDIM) is highlighted in red, while the second best and third best are highlighted in
blue and yellow, respectively. The quality metric is FID (the lower value is better). We average each AFQ value
on 5 class orders and show the standard deviations as superscripts. We use dashlines to split different categories
of baselines (Non-CL & NCL, replay-based, regularization-based, parameter-isolation-based).

MNIST Fashion-MNIST CIFAR-10 CUB-Birds Oxford-Flowers Stanford-Cars ImageNet-1k

- StyleGAN2
Non-CL 41.19±3.44 66.53±1.46 63.02±5.18 48.36±2.16 99.50±10.4 33.68±2.95 NA

NCL 60.98±6.13 94.10±13.20 103.34±10.59 112.57±23.05 131.98±16.39 68.20±2.05 NA
ER 87.91±24.33 133.24±35.98 236.44±11.18 175.99±20.19 134.94±2.55 147.88±6.00 NA
GR 113.37±38.97 115.18±26.15 128.81±8.37 189.27±11.55 161.96±10.80 161.55±27.85 NA
KD 55.04±4.88 86.94±4.05 105.73±13.27 108.68±11.16 120.66±17.47 80.45±4.02 NA
L2 63.15±13.15 113.41±7.12 108.52±6.24 191.43±17.52 158.55±11.97 201.80±32.95 NA

EWC 54.73±4.52 87.20±11.12 95.33±19.04 156.06±13.38 131.62±6.00 100.22±10.81 NA
SI 93.12±17.59 102.29±7.57 100.13±4.85 204.44±14.61 170.53±15.07 211.72±46.52 NA

MAS 57.89±8.53 86.86±5.29 85.22±2.83 186.34±17.63 144.31±14.99 149.11±19.21 NA
A-GEM 41.51±16.42 85.37±18.99 98.42±11.47 116.37±13.30 127.93±12.64 75.46±5.54 NA

Ensemble 8.64±1.74 27.76±0.37 45.26±0.61 180.71±2.46 145.59±1.61 230.74±3.93 NA

- DDIM
Non-CL 5.59±3.67 9.02±0.23 30.19±1.29 49.30±4.43 48.81±0.84 27.97±0.42 47.27

NCL 115.47±9.30 139.81±19.04 115.60±20.51 98.89±6.06 102.98±16.39 42.81±8.91 91.46
ER 28.64±2.74 52.47±2.85 132.07±8.92 72.53±6.39 77.03±2.62 81.26±6.44 101.15
GR 90.28±4.72 34.96±6.31 73.15±2.48 106.93±4.67 180.68±27.60 261.59±3.24 NA
KD 149.72±13.17 233.55±11.89 162.13±16.11 181.40±8.86 176.84±20.88 103.06±12.55 107.57
L2 184.05±27.14 190.04±5.81 174.78±16.90 182.79±13.50 191.90±33.87 254.21±28.00 119.22

EWC 158.22±22.70 139.52±20.07 127.09±19.23 101.12±14.87 99.34±8.27 49.02±2.72 99.93
SI 182.80±25.55 156.63±22.67 142.32±26.74 113.30±15.91 98.04±7.78 57.06±8.39 100.13

MAS 137.28±14.51 162.25±19.61 124.31±10.24 197.73±15.76 213.12±33.11 282.49±14.23 130.21
A-GEM 86.28±5.94 139.46±5.21 129.24±27.59 105.93±2.67 121.27±10.92 50.13±2.44 100.45

Ensemble 4.12±0.14 10.42±0.02 36.52±0.55 133.32±2.07 70.16±8.67 202.15±0.52 56.97
C-LoRA 9.45±0.38 24.83±5.23 60.11±6.15 148.81±1.22 117.11±7.15 250.90±35.87 79.72

Table 2: AFQ results for concept-conditioned CLoG benchmark. The best result in each row with the same
base method (DreamBooth, Custom Diffusion) is highlighted in red, while the second best and third best are
highlighted in blue and yellow, respectively. The quality metric is the average of text and image alignment
scores (the higher value is better). The AFQ is also averaged over 5 orders.

Model NCL Non-CL KD L2 EWC SI MAS Ensemble C-LoRA

DreamBooth 78.54±0.53 80.09±0.1 78.73±0.16 79.00±0.38 79.45±0.41 78.54±0.39 78.00±0.46 80.09±0.25 80.42±0.25

Custom Diffusion 79.56±0.17 80.30±0.21 79.71±0.1 79.92±0.14 80.10±0.05 79.59 ±0.27 78.79±0.18 80.39±0.24 -

10000 according to prior works [44, 3, 87]. The failure of regularization-based methods demonstrates111

the challenge of CLoG due to the use of sophisticated deep generative models.112

Replay-based methods face imbalance issue. Surprisingly, replay-based methods don’t always113

outperform non-exemplar methods on CLoG. We relate this phenomenon to the amplification of CL114

imbalance [22] and data imbalance [1, 33]: the limited replayed samples have been seen and trained115

many times which make them easier to learn than new task data, and lead to mode collapse [100].116

The severe mode collapse can be observed in GAN-based ER (see Appendix E.3). CLoG tends to be117

more sensitive to these issues than classification-based CL possibly because the modeling of data118

distribution p(x) is more difficult than classification distribution p(y|x) as discussed in Appendix A.2.119

Comparison between GAN and Diffusion Models. Generally, GAN is harder to optimize than120

Diffusion Models on CLoG, with worse Non-CL and Ensemble performance as shown in Table 1.121

This suggests that Diffusion Models are more promising as the base architecture for CLoG.122

Comparison between label-conditioned and concept-conditioned CLoG. With pre-trained back-123

bone and fewer training samples, results on concept-conditioned CLoG exhibit less forgetting (NCL124

performs well), aligning with [87, 5]. However, the visualization results in Figures 10 and 11 are far125

from perfect, suggesting the necessity to improve concept-conditioned CLoG methods in future.126

5 Conclusion127

In this paper, we introduce a foundational framework for Continual Learning of Generative Models128

(CLoG). We explore the challenges CLoG presents compared to classification-based CL. We establish129

unified benchmarks, baselines, evaluation protocols and training guidelines for CLoG. Our findings130

underscore the necessity to develop advanced CLoG methods and advocate for a shift in focus from131

classification-based CL to CLoG, given the growing importance of generative foundation models.132
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were chosen)? [Yes] Appendix G.538

(c) Did you report error bars (e.g., with respect to the random seed after running experi-539

ments multiple times)? [Yes] Our main tables include standard deviations.540

(d) Did you include the total amount of compute and the type of resources used (e.g., type541

of GPUs, internal cluster, or cloud provider)? [Yes] Appendix G.542

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...543

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the papers544

for the datasets. Our code largely depends on HuggingFace and PyTorch, and we also545

include the link to their website and publication in Appendix. The models were trained546

by ourselves.547

(b) Did you mention the license of the assets? [NA]548

(c) Did you include any new assets either in the supplemental material or as a URL? [NA]549

(d) Did you discuss whether and how consent was obtained from people whose data you’re550

using/curating? [NA]551

(e) Did you discuss whether the data you are using/curating contains personally identifiable552

information or offensive content? [NA]553

5. If you used crowdsourcing or conducted research with human subjects...554

(a) Did you include the full text of instructions given to participants and screenshots, if555

applicable? [NA]556

(b) Did you describe any potential participant risks, with links to Institutional Review557

Board (IRB) approvals, if applicable? [NA]558

(c) Did you include the estimated hourly wage paid to participants and the total amount559

spent on participant compensation? [NA]560
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A Mathemetical Definitions596

A.1 Formulation of general CL597

CL learns a sequence of tasks T (1), T (2), · · · , T (T ) incrementally. Each task T (t) has an input598

space X (t), an output space Y(t), and a training set D(t) = {(x(t)
j ,y

(t)
j )}|D

(t)|
j=1 drawn i.i.d. from599

distribution PX (t)Y(t) . The goal of continual learning is to learn a function f : ∪T
t=1X (t) → ∪T

t=1Y(t)600

that can achieve good performance on each task T (t).601

A.2 Formulation of CLoG602

CLoG learns a sequence of generation tasks T (1), T (2), · · · , T (T ) incrementally. Each task T (t) has603

an input space X (t) (generation conditions) and output space Y (generation targets), and a training604

set D(t) = {(x(t)
j ,y

(t)
j )}|D

(t)|
j=1 drawn i.i.d. from distribution PX (t)Y(t) . The goal of CLoG is to learn605

a mapping f : ∪T
t=1X (t) → ∪T

t=1Y(t) that can achieve good performance on each task T (t). The606

generation conditions can be text [52, 126], images [124, 126], or label indices [27], while the target607

can be various modalities such as images [74, 81], audio [32, 104], or 3D objects [89, 121]. As an608

initial step towards CLoG, we only focus on image generation conditioned on text or label indices in609

this paper.610

A.3 CLoG Metrics611

Suppose m(f, T ) is a metric to evaluate the generation quality of a generative model f on a task T ,612

when learning the task sequence T (1), T (2), · · · , T (T ), we denote the model after learning T (i) as613

f (i), CLoG metrics are as follows:614

Average Incremental Quality (AIQ) [18, 30] We first define the average quality (AQ) when the615

model just learns the t-th task T (t) as AQ(t) = 1
t

∑t
i=1 m(f (t), T (i)). Then the average incremental616

quality (AIQ) is defined to evaluate the historical performance as AIQ = 1
T

∑T
t=1 AQ(t).617

Average Final Quality (AFQ) [6, 60] Since AIQ evaluates the historical performance of the model618

during CL, while in downstream applications we may only care about the final performance of the619

model (i.e., the performance of f (T )), average final quality (AFQ) is defined as AFQ = AQ(T ).620

Forgetting Rate (FR) [6, 60] Defined to measure the capability to preserve the learned “knowledge”621

during the CL process, the forgetting rate (FR) of task T (t) is calculated by the performance difference622

between the current m(f (T ), T (t)) and that when the model first learns this task m(f (t), T (t)):623

FR =

{
1

T−1

∑T−1
t=1

(
m(f (t), T (t))−m(f (T ), T (t))

)
(if larger m is better)

1
T−1

∑T−1
t=1

(
m(f (T ), T (t))−m(f (t), T (t))

)
(if smaller m is better)

(1)

For label-conditioned CLoG, we choose Fréchet inception distance (FID) [25] as m(f, T ) (smaller m624

is better), which is commonly used to assess the generation quality of image generation models [96,625

28]. 1 For concept-conditioned CLoG, we follow DreamBooth [78] to compute the average of the626

CLIP alignment score [72] between generated image and provided concept (image alignment score),627

and between generated image and text prompts (text alignment score).628

1Some existing CLoG works used pre-trained classifiers to compute the accuracy of conditional generation,
while we find it unsuitable for CLoG and do not adopt it. For example, a pre-trained classifier is not always
available for some datasets, and the classifiers often assign wrong prediction for OOD generated images.
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B Related Work629

B.1 Generative Models630

Generative Adversarial Networks. (GAN) GAN [21] consists of two interacting networks: a631

generator and a discriminator. The generator Gθg , fed with random noise z ∼ pz , is designed to632

produce images that mimic the true samples from a data distribution pdata closely enough to deceive633

the discriminator. Conversely, the discriminator Dθd attempts to discern between the authentic data634

points x and the synthetic images Gθg (z) produced by the generator. The training objective for this635

adversarial process is formulated as follows [21] :636

min
θg

max
θd

[Ex∼pdata logDθd(x) + Ez∼pz log(1−Dθd(Gθg (z))] (2)

Diffusion Models. Diffusion probabilistic models [95, 29, 99] generate samples by an iterative637

denoising process. It defines a gradual process of adding noises, which is called the diffusion process638

or forward process and generate images by removing the noises step-by-step, which is referred to639

as the reverse process. In forward process, gaussian noises are added to xt, beginning from data x0640

[29]:641

q(xt+1|xt) = N (
√

1− βtxt, βtI), 0 ≤ t < T (3)
where βt stands for the variance schedule of noise added at time t. With diffusion steps T → ∞, xT642

virtually becomes a random noise sampled from N (0, I). In contrast, the reverse process starts from643

Gaussian noise xT ∼ N (0, I), during which diffusion network predicts noises xt [29]:644

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)), 0 < t ≤ T (4)

where ϵθ(xt, t) is parameterized by a neural network and can be converted to µθ(xt, t) with repa-645

rameterization trick [42] and Σθ(xt, t) = σtI under the isotropic Gaussian assumption of noises646

[29]. To learn the reverse process, diffusion models are trained by optimizing the variational lower647

bound [43] of probability pθ(x0:T ) = pθ(xT )Π
T
t=1pθ(xt−1|xt). One commonly used and simple648

loss equivalent is written as [29]:649

L(θ) = Et,x0,ϵ∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t∥2 (5)

where ϵ ∼ N (0, I) and ᾱt = Πt
s=1(1 − βs). The sampling process starts from xT ∼ N (0, I),650

iterates t = T, . . . , 1 and denoises according to formula [29]:651

xt−1 =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) + σtz (6)

where z ∼ N (0, I) if t > 1 else z = 0.652

B.2 Continual learning of generative models653

The earliest related work of CLoG proposes generative replay (GR) [90] for classification-based CL.654

GR utilizes a continually trained generator to synthesize data from previous tasks, thereby preventing655

forgetting when training a continual learning classifier. The primary goal of GR methods, however,656

is to enhance classification performance rather than the quality of the generated data. In past years,657

pioneering studies in CLoG have emerged [123, 11, 101], but they often lacked a unified evaluation658

protocol and tested on distinctive distinct tasks, making the comparison difficult. Additionally, the659

diversity in model architectures, data processing techniques, training pipelines, and evaluation metrics660

complicates fair comparisons between different CLoG methods. This contrasts with classification-661

based CL, where these choices are relatively standardized [59, 13, 110]. Relevant works on CLoG662

are listed below, classified based on model architecture.663

Continual Learning of GAN Since GAN [21] was proposed, several works have brought out664

continual learning settings for GANs and incorporated different methods to overcome catastrophic665

forgetting. Seff et al. [82] first integrated EWC [44] into continual learning for GANs. Zhai et al.666

[123] adopted knowledge distillation to distill knowledge from the previous model to the current667

model to mitigate catastrophic forgetting. Wu et al. [114] implemented deep generative replay [90],668

e.g., joint retraining and replay alignment, on a conditional GAN to avoid potential accumulate669

classification errors. Cong et al. [11] prevents forgetting by adding additional parameters to learn670
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newly encountered tasks. Following FiLM and mAdaFM, the authors tailored these modulators671

for fully connected and convolutional networks to better perceive new information. Following this672

strategy, CAM-GAN [105] proposed a combination of group-wise and point-wise convolutional673

filters to learn novel tasks while further improved CL performance by leveraging task-similarity674

estimation with Fisher information matrix. Hyper-LifelongGAN [124] decomposed convolutional675

filters into dynamic task-specific filters generated by a filter generator and task-agnostic fixed weight676

components. Knowledge distillation techniques were adopted to further reduce forgetting issues.677

LFS-GAN [83] introduced newly proposed modulators termed LeFT, a rank-constrained weight678

factorization method while additional mode-seeking losses are adopted to prevent mode collapsing679

and enhance generation diversity.680

Continual Learning of Diffusion Models Diffusion models [95, 29, 99], a model that have been681

proved to be capable of high-quality image generations recent years, have also been experimented in682

CL. Gao and Liu [20] trained a classifier and diffusion model bi-directional way, where the classifier683

is used to guide the conditional diffusion sampling. Doan et al. [17] added trainable class prototypes684

to represent previous classes and utilize gradient projection in diffusion process to alleviate forgetting.685

In addition to classifier-guided methods, Zając et al. [120] tested several common forgetting-prevent686

methods on MNIST [15] and Fashion-MNIST [117] including experience replay, generative replay687

and L2 regularization, scratched the surface of continual diffusion model learning. Masip et al. [63]688

introduced generative distillation process, aligning predicted noises with previous task models at689

each step of the reverse sampling trajectory. Smith et al. [93] proposed C-LoRA that trained distinct690

self-regulated LoRA [31] blocks in cross attention layers respectively for different tasks. We extend691

the C-LoRA method in our benchmarks to more general CLoG settings.692
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C Discussions and Limitations693

C.1 Discussions694

There has long been a period that CL research focusing on addressing forgetting for classification695

tasks, and although many advancements have been achieved in the past years, CL methods are rarely696

applied in real world applications. With the emergence of various “all-in-one” foundation models,697

the relevance of focusing mainly on classification-based CL is increasingly questionable. Current698

trends suggest that generative-based foundation models are poised to become the next generation699

of AI products, integral to everyday life. In this context, CLoG becomes crucial, addressing how700

these models of diverse architectures, complex learning objectives, and open-ended domains can701

continuously learn newly emerged knowledge [38, 106, 56], cater to personalized needs [73, 69, 86],702

and possibly enhance human-AI alignment in an evolving world [94, 10, 51]. Our benchmark results703

reveal disappointing performance with traditional CL methods, highlighting a pressing need for704

refined CLoG strategies for future applications.705

C.2 Limitations and outlook706

This study primarily presents initial benchmarks and baselines for CLoG, with a focus on traditional707

representative methods. Future work will include expanding these benchmarks across a wider range708

of image generation tasks, incorporating various generative conditions [123, 125], and extending to709

additional modalities such as molecules [118]. Although we only include baselines from classification-710

based CL, it is interesting to design methods specifically for generative models by applying techniques711

such as classifier-guidance [16], and include more generative models [57, 68, 58] other than GAN712

and Diffusion Models. Our current analysis is based solely on existing datasets; hence, we plan713

to enhance the scope of concept-conditioned CLoG benchmarks by acquiring and incorporating714

more diverse datasets and domains. Furthermore, while this paper primarily conducts an empirical715

investigation, advancing the theoretical framework of CLoG will be crucial for its development and716

understanding.717

C.3 Remarks on text generation in CL.718

CL of text generation tasks [88, 115] has garnered increasing interest in the so-called “post-LLM719

era” [54]. Including CL of text generation tasks in CLoG is logical, given their generative nature.720

However, text generation typically operates under the framework of “next token prediction” [71],721

which substantially differs from the typical probabilistic generative models. Specifically, text genera-722

tion models the conditional data distribution, P(y|x), through autoregressive generation of the form723 ∏|y|
j=1 P(yj |y1,y2, · · · ,yj−1,x), with y0 representing the “start of sentence” token and yj the jth724

token of y. This approach simplifies the modeling of complex data distributions into predicting a725

sequence of categorical distributions over the vocabulary space. Existing studies have shown that726

text generation tasks tend to exhibit less forgetting when integrated into CL frameworks, indicating727

a potentially smoother adaptation to continual learning [119, 87, 5]. While we advocate for the728

inclusion of text generation in CLoG due to its alignment with CLoG’s formulation, the primary focus729

of this paper remains on general probabilistic generative modeling due to its broader applications and730

the insufficient attention it has received in research.731
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D Adapted Baselines732

(1) Naive Continual Learning (NCL) means continually training the same model without any CL733

techniques to deal with forgetting, which is the simplest baseline in CL.734

(2) Non-Continual Learning (Non-CL) means pooling the data from all tasks together and training735

only one model for all tasks. This is not under a CL setting but its performance can be viewed as an736

upper bound for CL baselines.737

(3) Ensemble trains a separate model for each task. This baseline is forgetting-free, but the memory738

consumption is huge when more tasks arrive, and there is no knowledge transfer between different739

tasks.740

(4) Experience Replay (ER) [60] directly combines replay samples and current task samples in741

training batches to train the model. The replay data is saved by reservoir sampling [8, 76].742

(5) Generative Replay (GR) [90] replaces the replay samples used in ER with generative replay743

samples. When training a new task in CLoG, the model is copied and the replay samples are generated744

via the copied model.745

(6) Knowledge Distillation (KD) [26] is a regularization-based method in CL. The model is copied746

as a fixed teacher model before learning the new task. An ℓ2 auxiliary loss between the new and old747

model outputs is added to the NCL objective.748

(7) L2 [92] is also a regularization-based method and copies the model before learning a new task.749

An ℓ2 distance between the current and copied network parameters is added as an auxiliary loss.750

(8) Elastic Weight Consolidation (EWC) [44] is also a regularization technique that reweights the751

ℓ2 loss for different parameters. The weights are based on the degree of overlap between the two752

tasks’ Fisher matrices.753

(9) Synapse Intelligence (SI) [122] is a regularization method that is similar to EWC, while the754

parameter weights are computed by measuring the parameter updating trajectory during training.755

(10) Memory Aware Synapses (MAS) [3] is also a regularization-based method. It measures the756

importance of parameters by the magnitude of the gradient and penalizes changes to parameters that757

are essential to previous tasks.758

(11) Averaged Gradient Episodic Memory (A-GEM) [7] is a regularization-based method that759

exploits replay data. It prevents the loss increasing on replay samples by gradient projection.760

(12) C-LoRA [93] is a parameter-isolation-based CL method that was first designed for concept-761

conditional CLoG. It overcomes forgetting by learning task-specific LoRA [31] upon a pre-trained762

backbone. We adapt it to from-scratch-training by fully training the backbone on the first task and763

adopting LoRA tuning in the subsequent tasks.764
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E Comprehensive Results765

E.1 Ablation study766

In this section, we conduct a series of ablation studies on the configurations that we fixed in our767

benchmark experiments.768

Different DDIM steps. Since a larger DDIM step, though may improve the generation quality, will769

result in significant inference overhead and is irrelevant to CL capability, we fix it to a small value. In770

our experiments, we set DDIM steps as 50 for all the DDIM-based baselines. We evaluate the CLoG771

baselines with a larger number of DDIM steps on CIFAR-10, and the results are in Table 3. It shows772

that the DDIM step as 50 can already faithfully reflect the performance of CLoG baselines without773

2× or 4× computations.774

Table 3: Performance of Different DDIM Steps on CIFAR-10
DDIM Step 50 100 200

NCL
AFQ 115.60±20.51 112.41±16.62 105.34±13.65

AIQ 108.19±15.02 96.82±8.82 95.04±6.47

FR 107.04±27.11 104.75±21.75 95.94±18.22

ER
AFQ 132.07±8.92 132.94±2.91 131.77±2.35

AIQ 138.22±6.12 131.59±3.84 136.80±3.82

FR 93.81±13.71 95.53±5.78 90.00±5.49

EWC
AFQ 127.09±19.23 126.23±10.22 129.14±7.79

AIQ 113.06±8.89 104.48±4.22 109.01±2.16

FR 119.74±25.80 120.61±13.86 118.46±3.53

Ensemble
AFQ 36.52±0.55 35.91±0.48 37.73±0.95

AIQ 36.57±1.57 34.97±1.70 40.70±3.52

FR 0 0 0

C-LoRA
AFQ 60.11±6.15 61.21±5.89 63.94±5.30

AIQ 173.43±45.28 56.67±6.21 58.54±5.33

FR 0 0 0

Different memory sizes. In our benchmarks, we follow the existing CL works to set replay buffer775

sizes as 200 for small-scale CL datasets, and 5000 for large-scale ImageNet-1k. Table 4 shows the776

results of varying replay buffer sizes on CIFAR-10. It suggests that the performance of ER method is777

not sensitive to the memory size ranging from 20 to 400.778

Table 4: Performance of Different Memory Size of Experience Replay (ER)
Memory Size 20 50 100 200 400

ER
AFQ 133.65 136.11 138.15 135.47 133.83
AIQ 109.35 133.10 110.96 113.66 137.00
FR 96.58 100.11 102.45 97.98 95.99

Different class separation. As a dataset can be split into different numbers of tasks, here we779

experiment on CIFAR-10 with 2, 5, 10 tasks. The results are shown in Table 5.780
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Table 5: Performance of Different Class Seperation on CIFAR-10
Task number 10 5 2

NCL
AFQ 153.32 115.60 83.50
AIQ 159.97 118.19 61.09
FR 125.27 107.04 96.84

ER
AFQ 227.92 132.07 119.95
AIQ 251.29 138.22 86.94
FR 189.41 93.81 126.09

EWC
AFQ 174.98 127.09 96.50
AIQ 167.55 113.06 67.73
FR 149.96 119.74 123.77

Ensemble
AFQ 54.08 36.52 38.12
AIQ 57.87 36.57 38.39
FR 0 0 0

C-LoRA
AFQ 93.47 60.11 44.68
AIQ 87.04 173.43 41.91
FR 0.01 0.31 0.21

Different alignment scores. We also evaluate the concept-conditioned CLoG on another alignment781

score computed by DINO [67]. The results are shown in Table 6.782

Table 6: AFQ results for concept-conditioned CLoG benchmark with different alignment scores.
The best result in each row with the same base method (DreamBooth, Custom Diffusion) is highlighted
in red, while the second best and third best are highlighted in blue and yellow, respectively. The
quality metric is the average of text and image alignment scores (the higher value is better). The
AFQ is also averaged over 5 orders.

Metric Model NCL Non-CL KD L2 EWC SI MAS Ensemble C-LoRA

CLIP Avg DreamBooth 78.54±0.53 80.09±0.1 78.73±0.16 79.00±0.38 79.45±0.41 78.54±0.39 78.00±0.46 80.09±0.25 80.42±0.25

Custom Diffusion 79.56±0.17 80.30±0.21 79.71±0.1 79.92±0.14 80.10±0.05 79.59 ±0.27 78.79±0.18 80.39±0.24 -

DINO Avg DreamBooth 70.81±0.72 71.76±0.2 70.55±0.71 70.90±0.76 70.57±0.58 69.69±0.81 64.47±2.3 72.81±0.68 73.677±0.38

Custom Diffusion 67.43±0.71 69.96±0.4 67.64±0.28 67.91±0.51 69.21±0.47 69.60±1.2 64.93±1.6 70.95±1.30 -
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E.2 AIQ and FR Results783

In this section, we present the AIQ and FR results on all benchmarks.784

We can observe the average forgetting rate becomes negative in some cases on the CUB-Birds,785

Oxford-Flowers and Stanford-Cars datasets. This phenomenon suggests the existence of positive786

knowledge transfer among these datasets. Note that the FR of the ensemble and C-LoRA method is787

set to zero since we train a separate model for each task.788

Table 7: AIQ results for label-conditioned benchmarks.
MNIST Fashion-MNIST CIFAR-10 CUB-Birds Oxford-Flowers Stanford-Cars ImageNet

- GAN
Non-CL 38.33±1.89 49.87±3.94 57.13±3.63 86.62±7.27 118.11±2.21 67.97±1.13 NA

NCL 45.50±4.41 73.49±5.27 80.23±5.46 125.13±10.88 127.18±13.54 97.77±10.44 NA
ER 37.23±6.24 61.62±10.59 173.08±3.13 180.04±6.14 151.53±12.58 159.86±4.94 NA
GR 54.19±12.55 36.13±12.30 71.66±0.67 180.82±2.02 158.24±2.65 190.07±19.21 NA
KD 39.31±0.34 69.12±3.48 80.98±4.71 135.21±8.06 131.76±13.04 102.79±9.81 NA
L2 44.01±9.44 81.90±10.70 82.65±4.54 182.36±11.50 159.24±9.57 202.29±37.37 NA

EWC 38.94±2.48 58.17±3.96 67.39±9.77 155.24±6.27 134.34±3.98 150.31±22.91 NA
SI 75.24±28.81 77.05±9.37 78.55±3.69 189.11±13.55 164.99±8.35 198.58±37.99 NA

MAS 48.93±2.05 61.70±2.27 70.24±4.03 179.28±9.21 143.04 ±9.29 169.43±12.43 NA
A-GEM 31.99±7.05 60.94±5.47 78.23±3.48 125.17±5.61 131.95±7.06 101.79±4.75 NA

Ensemble 10.85±3.26 27.30±1.04 44.35±2.04 177.25±3.59 148.64±6.28 232.97 ±6.27 NA

- Diffusion Model
Non-CL 4.47±1.30 9.13±0.32 31.08±2.32 65.24±1.60 53.76±2.55 33.56±0.39 46.08

NCL 105.79±4.02 128.78±13.05 108.19±15.02 104.31±2.03 101.15±9.07 54.47±4.27 92.08
ER 19.76±1.02 36.91±2.13 138.22±6.12 79.46±4.26 77.44±2.09 77.75±3.06 97.16
GR 61.22±1.27 27.28±4.84 60.58±1.08 194.27±8.32 98.31±3.77 244.96±7.85 NA
KD 150.13±3.35 237.93±10.01 185.38±2.31 178.04±1.76 169.74±10.38 113.08±7.12 110.09
L2 158.51±14.52 175.01±13.47 164.06±6.92 175.35±10.14 188.30±21.85 267.73±25.74 112.21

EWC 137.11±17.60 131.18±5.44 113.06±8.89 104.53±8.63 101.60±4.54 59.11±3.80 98.19
SI 149.27±12.98 130.66±12.96 114.16±13.86 115.62±6.39 105.92±3.90 64.62±1.77 102.01

MAS 112.17±10.32 135.52±13.56 109.80±10.04 189.30±13.95 191.96±32.86 227.41±16.70 113.23
A-GEM 106.25±6.83 135.17±10.41 115.26±10.26 108.94±2.31 100.64±5.55 56.85±3.03 62.99

Ensemble 4.13±0.21 10.29±0.22 36.57±1.57 131.94±3.45 72.84±14.34 201.71±2.99 56.86
C-LoRA 140.51±4.74 229.63±5.09 173.43±45.28 186.01±23.20 288.38±7.12 269.84±29.35 73.16

Table 8: AIQ results for the concept-conditioned CLoG benchmarks.
Model NCL Non-CL KD L2 EWC SI MAS Ensemble C-LoRA

CLIP Avg DreamBooth 78.40 79.07 78.57 78.75 79.43 78.73 77.87 0 0
Custom Diffusion 79.86 79.40 79.64 79.86 79.77 - 79.39 0 -

DINO Avg DreamBooth 73.66 73.71 72.06 73.15 73.02 72.32 69.24 0 0
Custom Diffusion 71.89 72.87 71.55 71.94 71.88 - 70.46 0 -
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Table 9: FR results for label-conditioned CLoG benchmarks.
MNIST Fashion-MNIST CIFAR-10 CUB-Birds Oxford-Flowers Stanford-Cars ImageNet

- GAN
Non-CL 5.13±4.30 10.42±7.03 5.91±1.29 -44.36±8.99 -18.58±9.94 -38.33±4.21 NA

NCL 68.91±7.78 94.67±17.44 74.34±13.26 -8.44±20.19 19.52±10.22 -32.05±7.63 NA
ER 94.27±31.22 128.76±3.26 209.16±16.74 15.72±26.08 13.42±11.76 56.72±3.45 NA
GR 120.05±45.12 110.12±24.27 112.96±10.23 101.54±15.07 56.11±13.07 85.51±25.89 NA
KD 60.64±5.64 87.50±4.45 74.82±16.83 -22.49±13.06 -3.91±15.64 -24.21±6.45 NA
L2 49.38±11.48 66.41±10.29 40.87±12.91 12.41±7.87 0.57±2.88 5.21±5.22 NA

EWC 58.96±6.14 80.06±13.34 50.91±32.37 7.16±12.56 2.30±4.31 -47.16±11.31 NA
SI 4.93±3.61 0.08±0.64 2.46±3.16 14.99±12.91 1.68±5.34 17.05±12.49 NA

MAS 52.57±15.81 72.31±7.88 32.45±8.39 9.18±10.15 4.18±7.28 -14.71±7.45 NA
A-GEM 44.45±20.32 84.84±23.35 66.91±14.49 0.48±11.85 0.45±12.30 -30.09±7.05 NA

Ensemble 0 0 0 0 0 0 0

- Diffusion Model
Non-CL 1.82±3.74 −0.72±1.34 −2.46±0.99 −30.08±4.29 −12.73±6.43 −20.21±2.31 0.19

NCL 139.69±11.51 163.36±23.95 107.04±27.11 6.99±8.89 36.76±13.03 1.76±12.15 62.89
ER 14.70±30.99 54.18±3.92 93.81±13.71 −26.90±4.34 8.34±9.06 53.60±7.25 57.61
GR 100.28±6.87 32.37±5.54 54.74±3.98 75.37±24.00 51.59±12.10 178.51±7.15 NA
KD 70.52±11.67 58.28±19.35 17.22±24.80 14.89±8.13 35.30±32.65 −17.80±18.44 25.68
L2 202.09±35.42 193.35±15.23 132.67±24.35 25.69±6.33 26.03±34.77 1.25±20.09 21.49

EWC 192.15±29.17 161.97±25.18 119.74±25.80 24.14±15.32 45.24±5.50 0.05±3.74 69.17
SI 212.38±33.81 179.85±28.77 122.83±35.85 20.66±17.76 35.40±11.75 7.57±8.37 62.61

MAS −0.16±0.28 0.75±0.83 0.96±0.94 0.72±0.99 −0.46±0.34 0.35±0.26 0.27
A-GEM 138.81±11.12 163.41±5.92 123.51±34.69 11.80±5.91 57.86±14.35 −0.61±1.22 62.99

Ensemble 0 0 0 0 0 0 0
C-LoRA 0 0 0 0 0 0 0

Table 10: FR results for concept-conditioned CLoG benchmark
Model NCL Non-CL KD L2 EWC SI MAS Ensemble C-LoRA

CLIP Avg DreamBooth 0.6827 -0.7118 1.4377 0.4194 0.9916 1.5471 0.2172 0 0
Custom Diffusion 0.3503 0.0846 0.256 0.0588 -0.1222 0.276 0.0049 0 0

DINO Avg DreamBooth 2.5382 0.6054 3.3108 2.1836 3.3122 3.2506 0.3461 0 -
Custom Diffusion 2.5568 1.5127 2.3811 1.5137 0.5065 1.1772 -0.0017 0 -
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E.3 Visualization Results789

We present visualization results of the generated images in this section. Figures 3, 4, 5, 6, 7, 8,790

and 9 showcase synthesized images in the label-conditioned CLoG across the seven datasets in our791

benchmark. We visualize the synthesized images from the models over the last five tasks using the792

first class order, with images selected randomly to avoid cherry-picking. We select five representative793

methods to showcase the results: NCL, Non-CL, ER (replay-based), EWC (regularization-based),794

and Ensemble (parameter-isolation based).795

As shown in the figure, a naive way of CL without additional techniques leads to severe forgetting.796

The regularization-based methods can preserve knowledge of previous tasks to some extent, but the797

results are still far from satisfying, especially as the number of learning tasks increases. Replay-based798

methods significantly mitigate the challenges of catastrophical forgetting. However, our empirical799

studies suggest that they are prone to mode collapse when training GANs, mainly due to the limited800

size of the replay memory. This may reveal a novel challenge in CLoG compared to traditional801

classification-based CL. Furthermore, the ensembling method achieves superior performance on each802

task on the first three datasets, including MNIST, Fashion-MNIST and CIFAR-10. Nevertheless, it803

synthesizes images with relatively low quality on the other three datasets (see Fig. 6, 7, 8). Take804

Oxford-Flowers as an example, the separate model trained on each task fail to capture the correct805

structures of flowers, in contrast to other CL methods. This verifies our analysis that knowledge806

transfer among different tasks contribute to performance boost on these datasets.807

Figures 10, and 11, showcase synthesized images in the concep-conditional CLoG with Custom808

Diffusion [49] and DreamBooth [78] in our benchmark. We visualize the synthesized images from809

the models over the five tasks using the third class order, with images selected randomly to avoid810

cherry-picking. We select five representative methods to showcase the results: NCL, Non-CL,811

KD (regularization-based), EWC (regularization-based), and Ensemble (parameter-isolation-based).812

A naive method of continual learning without additional techniques produces relatively high-813

quality images, particularly when using the DreamBooth method with more training parameters.814

Regularization-based methods can preserve knowledge from previous tasks to some extent, but the815

results are still unsatisfactory, especially as the number of learning tasks increases. For example, in816

Figures 11, the EWC method shows that by the fifth task, the Custom Diffusion has almost entirely817

forgotten the color of the bear plushie and the blue hat decoration. Furthermore, Ensemble method818

achieves superior performance with both Custom Diffusion and DreamBooth.819
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Figure 3: Visualization results of label-conditioned CLoG on the MNIST [15] dataset.
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Figure 4: Visualization results of label-conditioned CLoG on the Fashion-MNIST [116] dataset.
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Figure 5: Visualization results of label-conditioned CLoG on the CIFAR-10 [47] dataset.
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Figure 6: Visualization results of label-conditioned CLoG on the Oxford-Flowers [66] dataset.

28



Task 6

Task 7

Task 8

Task 9

Task 10

American Pipit
Common Raven

Bank Swallow
Tree Sparrow

Elegant Tern
Painted Bunting

Palm Warbler
Hooded Warbler

Downy Woodpecker
Marsh Wren

(a) NCL (GAN)

Task 6

Task 7

Task 8

Task 9

Task 10

American Pipit
Common Raven

Bank Swallow
Tree Sparrow

Elegant Tern
Painted Bunting

Palm Warbler
Hooded Warbler

Downy Woodpecker
Marsh Wren

(b) Non-CL (GAN)

Task 6

Task 7

Task 8

Task 9

Task 10

American Pipit
Common Raven

Bank Swallow
Tree Sparrow

Elegant Tern
Painted Bunting

Palm Warbler
Hooded Warbler

Downy Woodpecker
Marsh Wren

(c) ER (GAN)

Task 6

Task 7

Task 8

Task 9

Task 10

American Pipit
Common Raven

Bank Swallow
Tree Sparrow

Elegant Tern
Painted Bunting

Palm Warbler
Hooded Warbler

Downy Woodpecker
Marsh Wren

(d) EWC (GAN)

Task [X]

American Pipit
Common Raven

Bank Swallow
Tree Sparrow

Elegant Tern
Painted Bunting

Palm Warbler
Hooded Warbler

Downy Woodpecker
Marsh Wren

(e) Ensemble (GAN)

Task 6

Task 7

Task 8

Task 9

Task 10

American Pipit
Common Raven

Bank Swallow
Tree Sparrow

Elegant Tern 
Painted Bunting

Palm Warbler
Hooded Warbler

Downy Woodpecker
Marsh Wren

(f) NCL (DDIM)

Task 6

Task 7

Task 8

Task 9

Task 10

American Pipit
Common Raven

Bank Swallow
Tree Sparrow

Elegant Tern 
Painted Bunting

Palm Warbler
Hooded Warbler

Downy Woodpecker
Marsh Wren

(g) Non-CL (DDIM)

Task 6

Task 7

Task 8

Task 9

Task 10

American Pipit
Common Raven

Bank Swallow
Tree Sparrow

Elegant Tern 
Painted Bunting

Palm Warbler
Hooded Warbler

Downy Woodpecker
Marsh Wren

(h) ER (DDIM)

Task 6

Task 7

Task 8

Task 9

Task 10

American Pipit
Common Raven

Bank Swallow
Tree Sparrow

Elegant Tern 
Painted Bunting

Palm Warbler
Hooded Warbler

Downy Woodpecker
Marsh Wren

(i) EWC (DDIM)

Task [X]

American Pipit
Common Raven

Bank Swallow
Tree Sparrow

Elegant Tern 
Painted Bunting

Palm Warbler
Hooded Warbler

Downy Woodpecker
Marsh Wren

(j) Ensemble (DDIM)

Figure 7: Visualization results of label-conditioned CLoG on the CUB-Birds [108] dataset.
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Figure 8: Visualization results of label-conditioned CLoG on the Stanford-Cars [46] dataset.

30



Task 1

Task 2

Task 3

Task 4

Task 5

(a) NCL (DDIM)

Task 1

Task 2

Task 3

Task 4

Task 5

(b) Non-CL (DDIM)

Task 1

Task 2

Task 3

Task 4

Task 5

(c) KD (DDIM)

Task 1

Task 2

Task 3

Task 4

Task 5

(d) EWC (DDIM)

Task [X]

(e) Ensemble (DDIM)

Figure 9: Visualization results of label-conditioned CLoG on the ImageNet-1k [79] dataset.
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Figure 10: Visualization results of concept-conditioned CLoG on the Custom Objects [101] dataset
utilizing DreamBooth [78].
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Figure 11: Visualization results of concept-conditioned CLoG on the Custom Objects [101] dataset
utilizing Custom Diffusion [49].
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E.4 Comprehensive AIQ results for each task820

To comprehensively investigate the performance of AIQ when increasing the number of learning821

tasks, we visualize its evolving curve in Fig. 12 and 13, corresponding to GANs and diffusion822

models, respectively. Generally, the curve exhibits an upward trend, indicating a tendency to forget823

the knowledge of previous tasks. However, the AIQ metric gradually decreases on the CUB-Birds,824

Oxford-Flowers, and Stanford-Cars datasets, demonstrating that incremental learning of similar tasks825

enhances performance on previous tasks.826

(a) MNIST (b) Fashion-MNIST

(c) CIFAR-10 (d) Oxford-Flower

(e) CUB-Birds (f) Stanford-Cars

Figure 12: The evolving performance curve of AIQ across various tasks on label-conditioned CLoG
benchmarks. Here GANs are employed as the generator backbone.
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(a) MNIST (DDIM)
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(b) Fashion-MNIST (DDIM)
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(c) CIFAR-10 (DDIM)
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(d) Oxford-Flower (DDIM)
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(e) CUB-Birds (DDIM)
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(f) Stanford-Cars (DDIM)

(g) ImageNet-1k (DDIM)

Figure 13: The evolving performance curve of AIQ across various tasks on label-conditioned CLoG
benchmarks. Here diffusion models are employed as the generator backbone.

We also visualize evolving curve in Fig. 14 on DreamBooth and Custom Diffusion models, respec-827

tively. If we use CLIP avg to calculate AIQ, the curve exhibits an upward trend, indicating a tendency828

to forget the knowledge of previous tasks. On the other hand, if we use DINO avg to calculate829

AIQ, the metric gradually decreases for both the DreamBooth and Custom Diffusion Methods. This830

demonstrates that incremental learning of similar tasks enhances performance on previous tasks,831
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which is consistent with the actual results of our generated images in Figures 10, and 11. We prefer832

the AIQ calculated by DINO avg because DINO is not trained to ignore differences between subjects833

of the same class. Instead, its self-supervised training objective encourages the distinction of unique834

features of a subject or image.835

(a) DreamBooth CLIP avg (b) Custom Diffusion CLIP avg

(c) DreamBooth DINO avg (d) Custom Diffusion DINO avg

Figure 14: The evolving performance curve of AIQ across various tasks on concept-conditioned
CLoG benchmarks. We show the results on the Custom-Objects dataset utilizing DreamBooth [78]
and Custom Diffusion [49].
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E.5 Computational Budget Analysis836

In this section, we present the memory consumption and training time for different baselines. Notice837

that we use a mix of different types of GPUs for different set of experiments: We use a single NVIDIA838

V100 GPU for GAN, a single NVIDIA RTX4090 GPU for DDIM, a single NVIDIA A100 GPU for839

ImageNet-1k, and a single NVIDIA A800 GPU for Costom-Objects.840

Now we present a detailed analysis of memory consumption of each baseline method. Methods that841

require replay samples (ER and A-GEM) introduce an auxiliary replay memory to retain previous data.842

In addition, all regularization-methods require storing the parameters of a teacher model, doubling the843

total number of model parameters. Among these techniques, EWC, SI and MAS require additional844

computation for determining the loss weight of each parameter, resulting in a threefold increase in the845

model’s parameter count. Lastly, the ensemble method increases memory consumption by a factor of846

T (where T represents the total number of tasks), while C-LoRA introduces T additional trainable847

weights to facilitate conditional generation.848

It is noted that DDIM-based GR is significantly slow, as generating the replay samples for DDIM849

requires multiple denoising steps (50 in our implementation). It is also noted that the parameter-850

isolation-based methods have linearly increasing memory consumption when the number of tasks851

increases, while other methods only consume constant memory budget.852

Table 11: Memory Consumption of label-conditioned CLoG benchmarks: Measured in number of
parameters (M)

MNIST Fashion-MNIST CIFAR-10 CUB-Birds Oxford-Flowers Stanford-Cars ImageNet

- GAN
Non-CL 43.30 43.30 43.30 60.55 60.55 60.55 NA

NCL 43.30 43.30 43.30 60.55 60.55 60.55 NA
ER 43.92 43.92 43.92 70.38 70.38 70.38 NA
GR 86.60 86.60 86.60 121.10 121.10 121.10 NA
KD 86.60 86.60 86.60 121.10 121.10 121.10 NA
L2 86.60 86.60 86.60 121.10 121.10 121.10 NA

EWC 129.91 129.91 129.91 181.65 181.65 181.65 NA
SI 129.91 129.91 129.91 181.65 181.65 181.65 NA

MAS 129.91 129.91 129.91 181.65 181.65 181.65 NA
A-GEM 43.92 43.92 43.92 70.38 70.38 70.38 NA

Ensemble 216.52 216.52 216.52 605.49 302.75 847.69 NA

- Diffusion Model
Non-CL 37.20 37.20 37.20 85.51 85.51 85.51 346.09

NCL 37.20 37.20 37.20 85.51 85.51 85.51 346.09
ER 37.40 37.40 37.40 88.71 88.71 88.71 348.55
GR 74.40 74.40 74.40 171.02 171.02 171.02 NA
KD 74.40 74.40 74.40 171.02 171.02 171.02 692.18
L2 74.40 74.40 74.40 171.02 171.02 171.02 692.18

EWC 111.60 111.60 111.60 256.53 256.53 256.53 778.71
SI 111.60 111.60 111.60 256.53 256.53 256.53 778.71

MAS 111.60 111.60 111.60 256.53 256.53 256.53 778.71
A-GEM 37.40 37.40 37.40 88.71 88.71 88.71 348.55

Ensemble 186.00 186.00 186.00 855.10 427.55 1197.74 6921.84
C-LoRA 43.00 43.00 43.00 103.11 94.31 110.15 476.45

Table 12: Memory Consumption of concept-conditioned CLoG benchmarks: Measured in number
of parameters (M)

Metric Model NCL Non-CL KD L2 EWC SI MAS Ensemble C-LoRA

All Params DreamBooth 1016.84 1016.84 1953.9 1953.9 2890.97 2890.97 2890.97 5084.2 1068.84
Custom Diffusion 1035.12 1035.12 1990.47 1089.59 1144.06 1144.06 1144.06 5175.6 -

Train Params DreamBooth 937.06 937.06 937.06 937.06 937.06 937.06 937.06 4685.3 10.4
Custom Diffusion 54.47 54.47 54.47 54.47 54.47 54.47 54.47 272.35 -
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Table 13: Training Time of different baselines on the label-conditioned CLoG benchmark:
Measured in hours over all tasks

MNIST Fashion-MNIST CIFAR-10 CUB-Birds Oxford-Flowers Stanford-Cars ImageNet

- GAN
Non-CL 37.65 37.78 32.65 80.32 18.93 79.81 NA

NCL 12.81 12.62 10.82 14.78 6.26 10.64 NA
ER 16.32 15.21 12.66 16.58 7.10 11.81 NA
GR 15.76 14.96 12.78 17.30 7.18 12.20 NA
KD 15.64 15.48 13.38 16.94 7.06 12.07 NA
L2 12.92 12.69 10.74 14.96 6.38 10.51 NA

EWC 15.12 14.92 12.62 20.72 8.54 15.06 NA
SI 16.84 16.52 14.02 25.04 10.14 17.92 NA

MAS 15.16 15.12 12.74 21.17 8.72 14.93 NA
A-GEM 15.68 15.52 13.42 19.19 8.10 13.58 NA

Ensemble 12.64 12.58 10.93 14.51 6.34 10.51 NA

- Diffusion Model
Non-CL 16.11 15.30 12.88 55.01 13.33 58.33 3953.34

NCL 2.83 3.19 3.17 3.33 3.33 10.04 103.84
ER 2.89 2.83 2.55 9.83 5.61 5.53 104.44
GR 6.9 8.83 10.22 12.64 7.89 16.80 NA
KD 3.56 2.56 3.11 7.12 6.88 8.52 135.67
L2 2.94 3.72 2.73 3.98 3.22 4.89 105.33

EWC 3.44 2.65 2.94 9.09 7.38 8.89 121.86
SI 3.89 4.64 5.05 10.72 6.64 4.59 145.86

MAS 3.96 4.14 2.89 7.37 5.94 13.85 109.44
A-GEM 3.87 3.89 2.87 13.92 12.60 10.50 104.94

Ensemble 3.34 2.67 2.22 6.12 4.94 5.83 102.31
C-LoRA 2.04 2.37 2.72 4.10 2.78 3.29 128.88

Table 14: Training Time of different baselines on the concept-conditioned CLoG benchmark:
Measured in minutes over all tasks

Model NCL Non-CL KD L2 EWC SI MAS Ensemble C-LoRA

DreamBooth 26.76 6.29 32.54 33.09 69.79 172.83 38.68 31.58 25.66
Custom Diffusion 12.40 4.02 16.65 12.49 13.33 15.45 12.25 10.15 -
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F Dataset and Task design853

F.1 Dataset description854

The training datasets are summarized in Table 15 and introduced as follows.855

MNIST [50] contains 60,000 grayscale images of handwritten digits (0-9) in a 28× 28 pixel format.856

We resize the images to 32× 32 resolution for image generation.857

FasionMNIST [116] consists of 60,000 grayscale images across 10 fashion categories, such as shirts,858

dresses, and shoes. The images are also resized from 28× 28 to 32× 32 for image generation.859

CIFAR-10 [47] consists of 60,000 colored images sized at 32× 32 pixels, divided into 10 classes860

including airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.861

ImageNet-1k [79] is the most commonly used subset of ImageNet, which spans 1000 classes and862

contains 1,281,167 training images. We use the down-sampled 64× 64 version following Chrabaszcz863

et al. [9].864

Oxford-Flower [66] consists of 102 flower categories that commonly occur in the United Kingdom.865

Each class consists of between 40 and 258 images, with a total of 7,169 images. The images are866

resized to 128× 128 for generation.867

CUB-Birds [108] contains 11,788 images of 200 subcategories belonging to birds, which is a widely-868

used dataset for fine-grained visual categorization task. We resize the images to 128 × 128 for869

generation.870

Stanford-Cars [46] consists of 196 classes of cars with a total of 8,144 images. The images are also871

resized to 128× 128 for image generation.872

Custom-Objects [101] contains 5 customized concepts from users with paired text-image demonstra-873

tions. Each concept has 5 demonstrations with 512× 512 image resolution. The task is to generate874

the customized concepts given arbitrary text conditions.875

Table 15: The detailed configurations of eight CLoG benchmarks studied in this paper.

Dataset Image #Training Images #Tasks Description of Each TaskResolution per Task
MNIST [50] 32× 32 12,000 5 Conditional generation of 2 classes of handwritten digits

FashionMNIST [116] 32× 32 12,000 5 Conditional generation of 2 classes of fashion products
CIFAR-10 [47] 32× 32 10,000 5 Conditional generation of 2 classes of common objects

ImageNet-1k [79] 64× 64 ∼64,000 20 Conditional generation of 50 classes of ImageNet images
Oxford-Flower [66] 128× 128 ∼1,400 5 Conditional generation of 20 categories of flowers
CUB-Birds [108] 128× 128 ∼1,200 10 Conditional generation of 20 species of birds

Stanford-Cars [46] 128× 128 ∼600 14 Conditional generation of 14 classes of cars
Custom-Objects [101] 512× 512 5 5 Generate a customized object given text conditions

F.2 Task Sequences876

We partitioned MNIST, FashionMNIST, and CIFAR-10 into five tasks, assigning two classes to each877

task. ImageNet-1k was divided into 20 tasks with 50 classes per task, Oxford-Flower into five tasks878

with 20 categories per task, CUB-Birds into 10 tasks with 20 categories per task, Stanford-Cars879

into 14 tasks with 14 classes per task, and Custom-Objects into five tasks with one object per task.880

Following the random class order protocol in Rebuffi et al. [75], we generate five different class881

orders for each experiment and report their averaged metrics over five random orders. For a fair882

comparison, the class orderings are fixed in our experiments (see Appendix G.5). It is important883

to note that one dataset can be segmented into varying numbers of tasks [55] or without requiring884

uniformity in class [24]. These customized CL settings can be explored in the future, and our current885

benchmark focuses on addressing more fundamental challenges in CLoG for now.886
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G Implementation887

G.1 Overall description888

To ensure the fair comparison across methods, we follow Section 3.4 to use unified settings with889

common hyperparameters and architecture choices. We follow Heusel et al. [25] to compute FID890

using the entire training dataset as reference images. To achieve the best training performance, we891

compute the quality metrics on current task every 500 steps and save the best checkpoint. If the892

method has CL-related hyper-parameters (e.g., regularization weights), we will search for 8 values893

across different magnitudes and pick the hyper-parameter based on the quality metrics. We found894

it’s hard to train GAN on the long-sequence and large-scale ImageNet-1k benchmark, so we leave895

it as “NA” (Not A Number). We didn’t implement C-LoRA on GAN and Custom Diffusion as it896

is not applicable. We follow Lin et al. [55] to use reservoir replay buffer [107] for ER with buffer897

sizes as 5000 samples for ImageNet-1k, and 200 for the other label-conditioned CLoG benchmarks.898

Replay-based methods are excluded in Custom-Object as it has very few training samples and thus899

replay is equivalent to Non-CL.900

G.2 Label-conditional CLoG901

Implementation Details of StyleGAN2 We employ the official PyTorch implementation of902

StyleGAN2-ADA [34] as our backbone. The detailed hyperparameters used in our experiments903

are presented in Table 16. All training runs are performed for 200 epochs using a single NVIDIA904

Tesla V100 GPU. We utilize six datasets with different image resolutions: 32x32 pixels (MNIST,905

Fashion-MNIST, CIFAR-10) and 128x128 pixels (CUB-Birds, Oxford-Flowers, Stanford-Cars). Two906

variants of StyleGAN2 are implemented to generate images at these resolutions, termed Ours-S and907

Ours-L, respectively.908

We use a minibatch size of 64 for Ours-S and 16 for Ours-L. For the replay-based methods in CLoG,909

we construct a replay memory containing 200 samples from previous tasks, with the replay size set to910

one-fourth of the minibatch size (16 for Ours-S and 4 for Ours-L). Following the configuration for911

CIFAR-10 in the original paper [34], we use 512 feature maps for all layers. The weight of the R1912

regularization is set to γ = 0.01 for Ours-S and γ = 1 for Ours-L. Additionally, we opt for a more913

expressive model architecture for the mapping network and the discriminator when synthesizing914

images at 128x128 pixels. Specifically, we increase the depth of the mapping network from 2 to 8 and915

enable residual connections in the discriminator. For simplicity, we omit several techniques that are916

irrelevant to CL capability used in the original paper, including adaptive discriminator augmentation917

(ADA), style mixing, path length regularization, and exponential moving average (EMA).918

Implementation Details of DDIM We employ the Huggingface diffuser2 implementation of919

DDIM [96] in our codebase. The detailed hyperparameters used in our experiments are presented920

in Table 17. All training runs are performed for 200 epochs using a single NVIDIA RTX 4090921

GPU for MNIST, Fasion-MNIST, CIFAR-10, CUB-Birds, Oxford-Flowers, Stanford-Cars, and a922

single NVIDIA A100 GPU for the large-scale ImageNet-1k dataset. Three variants of DDIM are923

implemented to generate images at small resolution (32x32), meddium resolution (64x64), large924

resolution (128x128), termed Ours-S, Ours-M, Ours-L, respectively. We use a minibatch size of 256925

for Ours-S, 320 for Ours-M, 32 for Ours-L. For the replay-based methods, we maintain a replay926

buffer containing 200 samples from previous tasks with replay size as 64 for Ours-S and Ours-M, and927

8 for Ours-L. Following Nichol and Dhariwal [65], we use different numbers of channel and UNet928

blocks for Ours-S, Ours-M, and Ours-L.929

2https://huggingface.co/docs/diffusers
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Table 16: Hyperparameters of StyleGAN2 [34] used in our CLoG experiments.

Parameter Ours-S Ours-L
Resolution 32×32 128×128

Training epochs 200 200
Minibatch size 64 16

Minibatch stddev 32 32
Replay size 64 16

Memory size 200 200

Feature maps 512 512
Learning rate η × 103 2.5 2.5
R1 regularizationγ 0.01 1

Mapping net depth 2 8
Resnet D - ✓

Table 17: Hyperparameters of DDIM [96] used in our CLoG experiments.

Parameter Ours-S Ours-M Ours-L
Resolution 32×32 64×64 128×128

Training epochs 200 100 200
Minibatch size 256 320 32

Replay size 64 64 8
Memory size 200 5000 200

Learning rate η × 103 2.0 2.0 1.0
Learning rate warm-up steps 500 500 500

Weight decay 0.0 0.0 0.0
# Unet blocks (×2) 4 4 5

Unet blocks dimension (the largest) 256 512 512
Dropout 0.1 0.1 0.1

Time embedding dimension 512 512 512

41



G.3 Concept-conditional CLoG930

Evaluation Metrics For concept-conditioned CLoG, we follow DreamBooth [78] and Custom931

Diffusion [49] to evaluate the alignment between generated image and the provided concept, and the932

text prompts, respectively. To assess subject fidelity, we use two metrics: CLIP Image Alignment and933

DINO Image Alignment. CLIP Image Alignment measures the average pairwise cosine similarity934

between the CLIP embeddings of generated and real images. Similarly, the DINO metric calculates935

the average pairwise cosine similarity between the ViT-S/16 DINO embeddings of generated and936

real images. To evaluate prompt fidelity, we compute the average cosine similarity between the CLIP937

embeddings of the text prompt and the images, which we refer to as CLIP Text Alignment. The938

averages of the image alignment and text alignment scores are combined to derive a single quality939

metric for straightforward comparison, labeled respectively as DINO avg and CLIP avg. We evaluate940

each task using 20 text prompts, generating 50 samples per prompt. This results in a total of 1,000941

images generated for each task.942

Implementation Details DreamBooth and Custom Diffusion both utilize generated by initial943

stable-diffusion-v1-4, rather than real, category images to calculate the prior loss for their training944

processes. 200 regularization images are preemptively created using a DDPM sampler over 50 steps945

with the prompt ’photo of a {category}’. We use DDPM sampling with 50 steps and a classifier-free946

guidance scale of 6 for both DreamBooth and Custom Diffusion. All training runs are performed947

using a single NVIDIA A800 GPU. More details can be found in Table 18948

DreamBooth adheres to the same data augmentation strategies as Custom Diffusion, which will be949

introduced later, to ensure a balanced comparison. It trains by fine-tuning both a text transformer and950

a U-net diffusion model. This training uses a batch size of 1 and a learning rate of 2e-6, which is951

maintained constant regardless of the number of GPUs or batch size. For generating target images,952

DreamBooth employs a text prompt formatted as ’photo of a [V] {category}’, where ’[V]’ is replaced953

with a rarely used token from a specific set (’sks’, ’phol’, ’oxi’, ’mth’, ’nigh’). Each training task954

undergoes 800 steps. Conversely, Custom Diffusion uses a slightly different approach by setting the955

batch size at 2 and a scaled learning rate of 2e-5, adjusted according to the batch size to an effective956

rate of 4e-5. It trains each task for only 250 steps. During training, target images undergo random957

resizing: they are enlarged to between 1.2 and 1.4 times their original size every third iteration, with958

phrases like ’zoomed in’ or ’close up’ added to the text prompts. Other times, images are resized959

to between 0.4 and 1.0 times their original size; when the resizing ratio is below 0.6, terms like ’far960

away’ or ’very small’ are incorporated into the prompts, focusing loss propagation only within the961

valid image regions. The training captions, such as ’photo of a V* dog’, incorporate a rare token962

(’ktn’, ’pll’, ’ucd’, ’mth’, ’nigh’), with both the token embedding and the cross-attention parameters963

being optimized during the training process.964

Table 18: Hyperparameters used in our Concept-conditional CLoG.

Parameter DreamBooth DreamBooth-C-LoRA Custom Diffsuion
Resolution 512×512 512×512 512×512

Training steps 800 800 250
Minibatch size 1 1 2
Inference steps 50 50 50

Learning rate 2e-6 5e-5 2e-5
Learning rate scheduler constant constant constant

Learning rate warm-up steps 0 0 0
Prior loss ✓ ✓ ✓

Prior class images 200 200 200
Data Augmentation ✓ ✓ ✓
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G.4 Class description965

We list the class description for each label index for each dataset as follows.966

• MNIST (10 classes)967

– digit ‘0’, digit ‘1’, digit ‘2’, digit ‘3’, digit ‘4’, digit ‘5’, digit ‘6’, digit ‘7’, digit ‘8’,968

digit ‘9’969

• FasionMNIST (10 classes)970

– T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot971

• CIFAR-10 (10 classes)972

– airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck973

• ImageNet-1k (1,000 classes)974

– tench Tinca tinca, goldfish Carassius auratus, great white shark white shark man-eater975

man-eating shark Carcharodon carcharias, tiger shark Galeocerdo cuvieri, hammerhead976

hammerhead shark, electric ray crampfish numbfish torpedo, stingray, cock, hen,977

ostrich, (... 980 classes are omitted) coral fungus, agaric, gyromitra, stinkhorn carrion978

fungus, earthstar, hen-of-the-woods hen of the woods Polyporus frondosus Grifola979

frondosa, bolete, ear spike capitulum, toilet tissue toilet paper bathroom tissue980

• Oxford-Flowers (103 classes)981

– alpine sea holly, anthurium, artichoke, azalea, ball moss, balloon flower, barbeton daisy,982

bearded iris, bee balm, bird of paradise, (... 980 classes are omitted), toad lily, tree983

mallow, tree poppy, trumpet creeper, wallflower, water lily, watercress, wild pansy,984

windflower, yellow iris985

• CUB-Birds (200 classes)986

– Black footed Albatross, Laysan Albatross, Sooty Albatross, Groove billed Ani, Crested987

Auklet, Least Auklet, Parakeet Auklet, Rhinoceros Auklet, Brewer Blackbird, Red988

winged Blackbird, (... 180 classes are omitted), Red headed Woodpecker, Downy989

Woodpecker, Bewick Wren, Cactus Wren, Carolina Wren, House Wren, Marsh Wren,990

Rock Wren, Winter Wren, Common Yellowthroat991

• Stanford-Cars (196 classes)992

– AM General Hummer SUV 2000, Acura RL Sedan 2012, Acura TL Sedan 2012,993

Acura TL Type-S 2008, Acura TSX Sedan 2012, Acura Integra Type R 2001, Acura994

ZDX Hatchback 2012, Aston Martin V8 Vantage Convertible 2012, Aston Martin995

V8 Vantage Coupe 2012, Aston Martin Virage Convertible 2012, (... 176 classes are996

omitted) Toyota Camry Sedan 2012, Toyota Corolla Sedan 2012, Toyota 4Runner997

SUV 2012, Volkswagen Golf Hatchback 2012, Volkswagen Golf Hatchback 1991,998

Volkswagen Beetle Hatchback 2012, Volvo C30 Hatchback 2012, Volvo 240 Sedan999

1993, Volvo XC90 SUV 2007, smart fortwo Convertible 20121000

• Custom-Objects (5 concepts)1001

– dog, duck toy, cat, backpack, bear plushie1002
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G.5 Random class ordering1003

Table 19 shows the different class orderings we used on different dataset. Due to space limitation, we1004

only show the ordering of datasets with small class sequences. For large sequences, we refer readers1005

to check our supplemental materials for details. The first class sequence is set as the sequence of class1006

ordering from the original dataset, while the other sequences are generated via random shuffling.1007

Table 19: The random class ordering used in our benchmarks. The full orderings can be found in our
supplemental materials.

Dataset Class order Class sequence

MNIST, FasionMNIST, CIFAR-10

1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
2 3, 9, 1, 8, 0, 2, 6, 4, 5, 7
3 6, 0, 2, 8, 1, 9, 7, 3, 5, 4
4 2, 6, 1, 5, 9, 8, 0, 4, 3, 7
5 1, 5, 7, 2, 0, 3, 4, 6, 8, 9

Custom-Objects

1 0, 1, 2, 3, 4
2 4, 3, 1, 0, 2
3 4, 2, 1, 3, 0
4 1, 4, 0, 2, 3
5 2, 1, 0, 3, 4
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H Impact Statement1008

Our work is essential as it contributes to the advancement of generative models’ continuous learning,1009

potentially benefiting human lives and society. Our method approaches a general problem and will1010

not have any direct negative impact or be misused in specific domains as long as the task itself is safe,1011

ethical, and fair. The risks of these models should be evaluated based on the specific deployment1012

context, including training data, existing guardrails, deployment environment, and authorized access.1013

1014
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