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Abstract

Digital dentistry has made significant advancements, yet numerous challenges remain.
This paper introduces the FDI 16 dataset, an extensive collection of tooth meshes
and point clouds. Additionally, we present a novel approach: Variational FoldingNet
(VF-Net), a fully probabilistic variational autoencoder for point clouds. Notably, prior
latent variable models for point clouds lack a one-to-one correspondence between input
and output points. Instead, they rely on optimizing Chamfer distances, a metric that
lacks a normalized distributional counterpart, rendering it unsuitable for probabilistic
modeling. We replace the explicit minimization of Chamfer distances with a suitable
encoder, increasing computational efficiency while simplifying the probabilistic extension.
This allows for straightforward application in various tasks, including mesh generation,
shape completion, and representation learning. Empirically, we provide evidence of lower
reconstruction error in dental reconstruction and interpolation, showcasing state-of-the-art

performance in dental sample generation while identifying valuable latent representations-.

1 Introduction

Recent advancements and widespread adoption of intraoral
scanners in dentistry have made micrometer-resolution 3D
models readily available. Consequently, the demand for ef-
ficiently organizing these noisy scans has grown in parallel.
To this end, we propose a variational autoencoder (Kingma
& Welling, 2014; Rezende et al., 2014) specifically designed for
point clouds, enabling the identification of continuous repre-
sentations. This approach effectively captures the continuous
changes and degradation of teeth over time.

Our solution is a probabilistic latent variable model that
ensures a one-to-one correspondence between points in the
observed and generated point cloud. This one-to-one connec-
tion throughout the network allows for optimization of the
original variational autoencoder objective. This is achieved
by projecting the point cloud onto an intrinsic 2D surface
representation, which allows for efficient sampling and also
discourages storage information about the overall shape within
this space. These 2D projections impart a strong inductive
bias, proving highly beneficial when the input point cloud and
the 2D surface share topology. Notably, this also bottlenecks
the model, preventing it from learning the identity mapping.

1

Figure 1: VF-Net teeth samples, generated
by our probabilistic variational autoencoder
for point clouds. Note the wide variety
in the samples which retain anatomical
details in its cusps/fissure composition.

Specifically, Variational Foldingnet (VF-Net) learns a projection from the 3D point cloud input down to
2D space, which then is deformed back to reconstruct the input point cloud. Finally, these projections
facilitate mesh generation without further training, as well as straightforward shape completion and shape
extrapolation, all without compromising the quality of the learned representations (see Fig. 1 for samples).

LCode available at [redacted]
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Previous point cloud models generally lack one-to-one correspondence throughout the network due to their
invariant architecture design. Instead, they evaluate reconstruction error using Chamfer distances (CD)
(Barrow et al., 1977) defined as
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where m and n are the number of elements of x and y respectively. This metric solves the invariance
problem. However, it also poses a new one: The Chamfer distance does not readily lead to a likelihood,
preventing its use in probabilistic modeling. For instance, when used in the Gaussian distribution, the
function x +— 1/c exp(—CHAMP-DIST? (x, 1)) cannot be normalized to have unit integral due to the explicit
minimization in Eq. 1. Consequently, previous latent variable models are closer to regularized autoencoders
than the variational autoencoder. Since our model ensures one-to-one correspondence between points in the
point clouds, we can easily build a proper probabilistic model.

Moreover, to encourage further research, we release a new dataset, the FDI 16 Tooth Dataset, providing a
large collection of dental scans, available as both meshes and point clouds?. This dataset provides real-world
representations with planar topology. We consider this an excellent compromise between high-quality
computer-aided design (CAD) models and sparse LiDAR scans (Chang et al., 2015; 2017; Caesar et al.,
2020; Armeni et al., 2016). In digital dentistry, significant challenges are found in diagnostics, tooth (crown)
generation, shape completion of obstructed areas of the teeth, and sorting point clouds, etc.

In summary, we present the first fully probabilistic variational autoencoder for point clouds, VF-Net,
characterized by a highly expressive decoder with state-of-the-art generative capabilities. All while learning
compressed representations and being adaptable for shape completion tasks. Furthermore, we release a
dataset of 7,732 tooth meshes to facilitate further research on real-world 3D data.

2 Related work

We focus on point cloud representations of 3D objects, but there are many alternative methods of
representation including voxel grids (Zheng et al., 2021; Wu et al., 2018), multi-angle inference (Wen et al.,
2019; Han et al., 2019), and meshes (Alldieck et al., 2019; Wang et al., 2018; Groueix et al., 2018). A major
paradigm in neural networks for point clouds is to remain permutation and cardinality invariant. In terms
of encoder-decoder models, this frequently leads to designs without a one-to-one correspondence between
inputs and outputs (Yang et al., 2018; Groueix et al., 2018). This becomes an obstacle in adapting the
variational autoencoder to point clouds. Accordingly, other methods have become prominent, including
GANs (Li et al., 2018; 2019), diffusion models (Zhou et al., 2021; Zeng et al., 2022; Zhou et al., 2023), and
traditional autoencoders (Achlioptas et al., 2018; Groueix et al., 2018; Pang et al., 2021).

Existing Point Cloud Variational Autoencoders. Previous attempts to design a variational autoen-
coder for point clouds frequently relies on Chamfer distances as an approximation of the reconstruction
term in the standard evidence lower bound. Consequently, these VAEs fail to evaluate a likelihood, a key
characteristic of VAEs. This includes works like EditVAE, which aims to disentangle each point cloud into
smaller parts. For each disentangled part, they use the Chamfer distance individually and a superquadric
loss that consists of another Chamfer distance term and a regularization term to prevent overlapping parts
(Li et al., 2022). The Venatus Geometric Variational Auto-Encoder (VG-VAE) introduces a Geometric
Proximity Correlator module to better capture local geometric signatures. However, their work also relies on
the Chamfer distance as the reconstruction term. Another latent variable model for point clouds is SetVAE
(Kim et al., 2021), which uses transformers to process point clouds as sets. Their primary novelty being
the introduction of a latent space with an enforced prior inside the transformer block. These transformer
blocks are then stacked to form a hierarchical variational autoencoder (Sgnderby et al., 2016), which com-
plicates evaluation of its representations. However, the SetVAE also approximates their reconstruction loss
via Chamfer distances. Without explicit likelihood evaluation, these models become closer to a regularized
autoencoder than the variational autoencoder.

2Data available at [redacted]
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Zhou et al. (2023) presented FrePolad, another latent dif-
fusion model. Their primary novelty is the introduction
of the frequency rectification module that better captures
high-frequency signals in point clouds. They train their
model via a modified VAE loss to account for frequency
rectified distances. One fully probabilistic work is Point-
Flow (Yang et al., 2019). PointFlow utilizes a continuous
normalizing flow (CNF) both as a prior and decoder, similar to approaches previously applied to images
(Kingma et al., 2017; Sadeghi et al., 2019). Intuitively, one CNF models the distribution of shapes, while
the other models the point distribution given the shape. In a comparable way, VF-Net’s encoder maps
to a global latent space, with point encoding projections providing a latent mapping for each input point.
However, PointFlow’s two CNFs are trained separately, whereas VF-Net trains them simultaneously, result-
ing in a more integrated and efficient process. PointFlow is unfortunately very slow to train (Kim et al.,
2021). On our full proprietary dataset, PointFlow would have required 200 GPU days of training. Thus,
we excluded it from our baselines. Diffusion models such as diffusion probabilistic model (DPM) (Luo &
Hu, 2021) and point-voxel diffusion (PVD) (Zhou et al., 2021) present two diffusion models for the point
clouds, especially PVD generates accurate new samples. However, diffusion models do not find compressed
structured representations of the data as our VF-Net does; see table. 1 for a model property overview.

is a generative model
(GENERATIVE) for point clouds, but it can gen-
erate meshes without additional training (MESH)
and do simple shape completion (COMPLETION).
It is also fully probabilistic (PROBABILISTIC)
and can identify interpretable lower-dimensional
representations (REPRESENTATIONS).

Digital Dentistry. In computational dentistry, extrapolating the tooth’s obstructed sides is a well-known
task. Qiu et al. (2013) presents an attempt to use classic computational geometry methods. They attempt
to reconstruct the missing parts of the distal and mesial sides of the tooth. This leads to a very smooth
extrapolation, which performs well. Several works within dentistry take this a step further, e.g., attempting
to extrapolate not just the sides but also the roots of the teeth (Wei et al., 2015; Zhou et al., 2018; Wu et al.,
2016). We are optimistic that our model could adapt to such a task given that dental cone beat computed
tomography (CBCT) of the dental roots was available in the training data. Unfortunately, CBCT scans are
expensive and rare; thus, we do not have a large enough dataset for neural network training.

3 Variational Point Cloud Inference

Background: FoldingNet. To handle varying sizes and arbitrary order in point clouds, a common strategy
is to employ neural networks exhibiting invariance to changes in cardinality and permutation, as proposed
by Qi et al. (2017) in PointNet. FoldingNet employs a very similar encoder, e, that operates independently
on each point of the point cloud to identify a latent code, z. Subsequently, the folding-based decoder,
f:ZxR? = R3, “folds” a chosen constant base shape with points, ¢, according to the latent code. In our
case, the base shape is a constant uniform grid in the two-dimensional planar patch [—1,1]? (Yang et al.,
2018). Both the encoder, e, and the decoder, f, are jointly trained to minimize the reconstruction error
approximated via Chamfer distances (1),

&€ = CHAMF-DIST (%, f(e(x),c)) . (2)
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Figure 2: VF-Net is a variational autoencoder with a normalizing flow prior over the shape latent. Individual
points are projected to 2D space, establishing a one-to-one connection and facilitating mesh generation and
shape completion. The decoder follows FoldingNet’s with added residual connections, while the variance
network consists of 3 folding modules as introduced in FoldingNet.

This ensures invariance to cardinality and permutation changes, although it complicates variational inference
extensions. A variational autoencoder yields a distribution for each input point (Kingma & Welling, 2014;
Rezende et al., 2014). However, FoldingNet and most current permutation-invariant neural networks do not
have a correspondent output for each individual input point in a point cloud.

3.1 The Variational FoldingNet

Motivated by unsupervised probabilistic representation learning’s benefits across many tasks, including
generative modeling (Kingma & Welling, 2014; Rezende et al., 2014; Dinh et al., 2017; Ho et al., 2020),
out-of-distribution detection (Nalisnick et al., 2019; Havtorn et al., 2021), handling missing data (Mattei &
Frellsen, 2019) etc, we introduce Variational FoldingNet (VF-Net). Architecturally, VF-Net closely resembles
FoldingNet, employing a PointNet encoder, with the decoder structure mirroring that of FoldingNet. For
a complete overview, consult Fig. 2.

The major technical innovation is the introduction of a novel projection for each input point into the planar
space, defined as G = [—1, 1]?. These projections are referred to as our point encodings, g. It is important to
note that the point encodings are not constrained by any prior distribution. Decoding these point encodings
instead of a static planar patch establishes a one-to-one correspondence throughout the entire network, a
necessity for evaluating likelihoods using the classical variational autoencoder objective. As VF-Net learns
the point projections from x, the projected points, g, are now dependent on x. The folding of the point
encodings, f(z,g), continues to be governed by the parameter vector z predicted by the PointNet encoder,
e. The optimal projections are thus given by

g = argmin [|x — f(z,8")|* (3)
g'eg
We use a neural network to amortize the calculation of g such that the encoder network outputs both g
and the distribution of z. By enabling the model to adjust the point encoding, we circumvent the need
for optimizing through costly Chamfer distances. Furthermore, the learned projections allow the point
encodings to adapt to their input, mitigating common pitfalls observed in FoldingNet, see Fig. 4.

With a one-to-one point correspondence established across the network, we optimize our model using tra-
ditional variational autoencoder methods. In this context, the variational extension aligns closely with
traditional methods, yet with a notable adjustment, the evaluation of likelihood now also depends on the
projected points p(x) = [ p(x|z,g) p(z) dz. This integral remains intractable, and approximations are nec-
essary. Following conventional variational inference (Kingma & Welling, 2014; Rezende et al., 2014), an
evidence lower bound (Elbo) on p(x) is given by

L(x) = Eq(g)x)[log p(x|z, g)] — KL(q(z|x)|[p(2)), (4)

where ¢(z|x) is an approximation to the posterior p(z|x). Note that Eq. 3 is implicitly optimized in the
likelihood term of the ELBo. Most current point cloud models replace the likelihood with a Chamfer distance,
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making the models closer to regularized autoencoders (Yang et al., 2018; Groueix et al., 2018; Kim et al.,
2021). This design loses one-to-one correspondences between input and output, making likelihood evaluation
difficult. In particular, no suitable normalization constant can be derived for probabilistic distributions using
Chamfer distances.

Our novel method for probabilistic evaluation for 3D reconstruction networks avoids the computationally
expensive Chamfer distance (1). In supplementary Fig. S1, we empirically demonstrate that our projections
can effectively replace Chamfer distances. We observe that the two metrics closely align, with Euclidean
distances acting as an upper bound that tightens with improved reconstruction precision.

During the evaluation of the Elbo loss, we use a multivariate student-t distribution with isotropic vari-
ance and three degrees of freedom as the reconstruction term. This choice helps to decrease empha-
sis on outliers and instead focus more on the majority of the data points (Takahashi et al., 2018).
p(x|z,g) = Student-t(z|f(z,g),02(z,g)L,v), where f : Z x R? — R3 and 02 : Z x R? — R, are neural
networks. No major changes were made to the generative process. We let p(z) be a normalizing flow prior
over the parameters describing the shape of an object (Kingma et al., 2017). When the input, X, and the
projections, G, share topology, the bias allows for uniform sampling in the planar patch [—1,1]2. As in
FoldingNet, this grid is subsequently deformed according to z. New samples can thus be generated by first
sampling z and then mapping the uniformly sampled grid points through f and o,

x = f(z,8) + 0(z,8) - t, t ~ Student-t(v). (5)

This also enables straightforward mesh generation as deformations are smooth - points projected closely
to each other correspond to points close in output space. Consequently, we can generate meshes by simply
defining the facets in the 2D planar space.

4 The FDI 16 Tooth Dataset

To improve the state-of-the-art modeling of dental scans, we will release an extensive new dataset alongside
this paper under the CC BY-NC-SA 4.0 license. The FDI 16 dataset is a collection of 7,732 irregular
triangle meshes of the right-side first maxillary molar tooth formally denoted as "FDI 16’ following ISO
3950 notation (see Fig. 3). These meshes were acquired from fully anonymized intraoral scans primarily
scanned using 3Shape’s TRIOS 3 scanners. Each tooth in the FDI 16 Tooth dataset was algorithmically
segmented from an upper jaw scan by 3Shape’s Ortho Systems 2023. As the teeth are a subsection of a full
intraoral jaw scan, there will be areas obstructed by the adjacent teeth. The teeth, therefore, constitute
open meshes and have clear boundaries with no representation of interior object volume. All tooth meshes
are from patients undergoing aligner treatment, and accordingly, aligner attachments will be present in a
substantial number of scans. This introduces a bias towards younger individuals, who generally have fewer
restorations and dental problems. The top row of Fig. 3 shows examples of such meshes. All scans have

Figure 3: Top: Mesh data samples from our released FDI 16 dataset and their corresponding VF-Net

reconstructions. Note the large variety in health conditions between the teeth.

5
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Reconstruction
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been made publicly available fully anonymously as meshes and point clouds at millimeter scale. The teeth
have been algorithmically rotated to ensure that the z-axis is turned towards the neighboring tooth (FDI
17) while the y-axis points in the occlusal direction (direction of the biting surface). Finally, the z-axis is
given by the cross-product to ensure a right-hand coordinate system.

Dental scans have a diverse set of research applications. This study explores reconstruction, generation
of new teeth, representation learning, and shape completion. All of which have different but critical
applications in digital dentistry. We believe that the FDI 16 dataset addresses a crucial niche within 3D
datasets by offering a dataset that strikes a balance between the highly detailed but idealized CAD scans
(Chang et al., 2015) and sparser real-world LIDAR scans (Chang et al., 2017; Caesar et al., 2020; Armeni
et al., 2016). Note that any method considered for deployment must be capable of running efficiently
on edge devices without a significant performance overhead. This is particularly important as intraoral
scanners must function seamlessly even in areas with limited network connectivity.

5 Experimental results

We next evaluate VF-Net’s performance on point cloud generation, auto-encoding, shape completion, and
unsupervised representation learning. Note that FrePolad (Zhou et al., 2023), EditVAE (Li et al., 2022), and
VG-VAE (Anvekar et al., 2022) has been excluded from comparison as no public implementation is available.

Point cloud generation. To compare sampling performances, we deploy three established metrics for 3D
generative model evaluation (Yang et al., 2019). Namely, minimum matching distance (MMD) is a metric
that measures the average distance to its nearest neighbor point cloud. Coverage (COV) measures the
fraction of point clouds in the ground truth test set that is considered the nearest test sample neighbor for a
generated sample. 1-nearest neighbor accuracy (1-NNA) uses a 1-NN classifier to classify whether a sample
is generated or from the ground truth dataset, 50%, meaning generated samples are indistinguishable from
the test set. Data handling and training details for FDI 16 experiments can be found in supplementary
section S1.3 and S1.4, respectively.

Sampling from VF-Net can be done by sampling a uniform grid in the latent point encodings space, akin to
FoldingNet. However, the corners of the uniform grid cause edge artifacts in the generated samples, evident in
generated meshes in Fig. S2. This can also be observed in the generated meshes in Fig. 3 and Fig. 4, although
it is more difficult to spot. The sampling metrics heavily punish such artifacts. Instead, we trained a minor
network similar to the decoder of FoldingNet to predict the point encodings from the latent representation.
We emphasize that this is entirely unnecessary for regular sampling. The sampling evaluations across five
different seeds can be found in Table 2. The results demonstrate that VF-Net generates much more accurate
samples, as evidenced by the significantly lower MMD and 1-NNA scores while being close in diversity to
PVD and LION (Zhou et al., 2021; Zeng et al., 2022). Furthermore, sampling is much faster than PVD and
LION as VF-Net does not depend on an iterative diffusion process. Note that while MMD is very stable
across seeds, the COV and 1-NNA scores may vary.

Table 2: Across five seeds, VF-Net produces close to as large a variety of teeth as PVD and LION while
generating samples much closer to real teeth. MMD has been multiplied by 100.

MMD(]) COV(%1) 1-NNA(%J)
Method
CD EMD CD EMD CD EMD
Train subsampled  21.00£0.00  51.53x0.06  49.00x0.64  46.95+270  49.83106s  50.97Tx0.s2
SetVAE 39.00+0.7s  66.66+0.3s  10.66+0.66 9.52410.27 97994032 97.9510.34
DPM 20.71 010 51.94x0.00  36.9410.65  33.28x065  70.30x0s2  75.75x0.00
PVD 21.58+0.03  51.64x00s 44111076  43.231092  62.85x07s  60.70x1.06
LION 22124015 52.75x012  45.1210060 43.321128 68.56x073  66.76+0.04

VFE-Net (OU.I’S) 20.38=0.00 49.72+0.04 42.85+0.64 40.20+0.71 56.31+0.30 56.0510.32
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Ground Truth FoldingNet VF-Net (ours)

Figure 4: FoldingNet’s mesh reconstructions have gaps and highly distorted facets. Conversely, VF-Net’s
mesh facets are even more regular than the input point cloud, and points in the reconstruction are placed
closely resembling its input.

Outside of the FDI 16 dataset, we also train VF-Net on a proprietary dataset, which includes the remaining
teeth from the FDI 16 jaws; see supplementary section S1.5 for training details. However, we did not quantify
sampling performance, as sampling evaluation on 40k test samples would be exceedingly computationally
expensive. We observe that VF-Net can sample from all major teeth types, incisors, canines, premolars,
and molars, see Fig. 1. Additional mesh samples may be found in supplementary Fig. S2.

Point cloud auto-encoding. We evaluate VF-Net’s reconstruction quality to the previously mentioned
generative models and FoldingNet. This evaluation was performed on both on FDI 16 dataset and the larger
proprietary dataset. Please consult supplementary sections S1.3 and S1.5 for data handling and training
details. We compared the reconstruction errors using Chamfer distance and earth mover’s distance (Rubner
et al., 2000),

EMD(X, Y) = in, 3 1x = 660z (6)
The earth mover’s distance measures the least expensive one-to-one transportation between two distribu-
tions. However, this is computationally expensive and thus rarely used for model optimization (Wu et al.,

Table 3: Reconstruction error measured in Chamfer distances (CD) and earth mover’s distances (EMD).
Note both values have been multiplied by 100.

FDI 16 Tooth All FDIs

Method
CD EMD CD EMD
DPM 10.04 43.98 5.67 35.8
SetVAE 21.50 59.24 998 51.48
LION 5.35 22.85  3.02 9.66

FoldingNet 5.26  33.67 3.43 31.25
VF-Net (ours) 1.21 6.30 0.97 5.30
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2021). The reconstruction errors are presented in Table 3. Point-Voxel Diffusion (PVD) (Zhou et al., 2021)
was excluded from comparison due to not returning the same tooth upon reconstruction.

VF-Net achieves a significantly lower reconstruction error than our comparison methods on both the FDI
16 dataset and the proprietary dataset comprising 119,496 teeth, encompassing 32 distinct teeth. As shown
in Fig. 4, VF-Net’s one-to-one correspondence is evident in its reconstruction. The point placements mimic
those in the input point cloud, while FoldingNet’s points are evenly distributed. VF-Net and FoldingNet
can both generate meshes without any additional training of the model.

However, FoldingNet folds the edge across the tooth to accommodate teeth of different sizes. Besides mesh
gaps, this also leads to highly irregular facets that intersect one another. On the other hand, VF-Net can
adjust the point encoding area to avoid such artifacts. However, VF-Net’s reconstructions often exhibit
excessive smoothness and lack the desired level of detail. A common observation in variational autoencoders

(Kingma & Welling, 2014; Vahdat & Kautz, 2021; Tolstikhin et al., 2019).

Variance estimation for point clouds. Predicted
variances from the variance network are shown in Fig. 5,
where red indicates a higher variance and green indicates
a lower variance within each point cloud. Note that all
variances shown are relative intra-point cloud variances.
Notably, the network assigns higher variance to the fifth
cusp and aligner attachments, features only present in a
subset of samples. Furthermore, the border of the mesh
tends to be assigned higher variance, likely due to a
combination of data loading and segmentation artifacts.
When the network is not in doubt about the previously
mentioned two factors, the network assigns the highest Figure 5: Intra-point cloud relative predicted
variance to the occlusal surface. All of which aligns with v, riance (red is high, green is low). Notably, the
expectations of areas of the teeth that have the most . rabelli cusp and aligner attachment arcas ex-

variance. hibit high variance, two features only present in

Simulated shape completion. One significant benefit & subset of individuals.

of the inductive bias from the point encodings is straight-
forward shape completion and shape extrapolation. In
computational dentistry, inferring the obstructed sides of
a tooth and reconstructing the tooth surface beneath ob-
structions such as braces pose a key challenge. Paired
data of obstructed and unobstructed surfaces is exceed-
ingly rare. Therefore, developing a model capable of
extrapolating such surfaces without explicit training is
highly desirable. To this end, we simulate the task by
evaluating the interpolation performance of each model.
This is done by sampling a point on the outward side
of the tooth and deleting its nearest neighbors to a to-
tal of 200 points. Selecting a mid-buccal point simulates
bracket removal prediction ("Bracket sim") while opting
for a lower buccal point simulates the obstructed side pre-
diction ("Gap sim").

An example of a synthetic hole is depicted in Fig. 6, Figure 6: Left: Red points are removed from
where the red points are to be removed. Both recon- the point cloud.  Right: Reconstruction and
structions and latent point encodings remain highly projected point encodings remain highly similar
similar despite the removal of the red points. Extrap- despite point deletion. Sampling the missing area
olation /interpolation can be performed by sampling in is facilitated by sampling within the correspond-
the point encoding space. To quantify the interpolation ing empty region of the latent point encoding.
performance, we calculate the distance from the deleted

Reconstructions and the Corresponding Latent Point Encoding

Reconstruction

Latent Point Encoding

|
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Table 4: Unsupervised generative models in the top half are untrained interpolation, while the bottom half
are trained models. All Chamfer distances have been multiplied by 100.

Method Bracket sim  Gap sim
e DPM 15.88 38.00
t SetVAE 11.50 13.35
g FoldingNet 16.42 20.14
5 VF-Net (ours) 4.35 3.55
E PVD 2.23 2.37
PoinTr 1.84 1.83
H VRCNet 2.42 2.04

points to their nearest neighbor in the completed point cloud; see supplementary Sec. S1.7 for more
experiment details. To contextualize the performance, we trained several shape completion methods (PVD
(Zhou et al., 2021), PoinTr (Yu et al., 2021), VRCNet (Pan et al., 2021)). Since these methods only predict
the missing area, a completely fair comparison cannot be made. The results can be found in Table 4, under
"Bracket sim" and "Gap sim," simulating the removed bracket and the gap between teeth, respectively.
Here, VF-Net outperforms its peers when it comes to untrained interpolation, and as expected there is a
gap in performance between the trained and untrained methods. Shape completion using LION’s latent
points from the original tooth contains information about the shape, rendering a fair comparison infeasible.

Representation learning. We compare our latent representation to FoldingNet’s, as it is the comparison
model with the most interpretable latent variables. First, we follow FoldingNet’s proposed evaluation
method of classifying the input point cloud from the latent space. Using a linear support vector machine
(SVM) to classify which tooth from the larger proprietary dataset is embedded, a 32-class problem. Here,
the SVM achieves 96.80% accuracy on VF-Net’s latent codes compared to 96.36% of FoldingNet. Indicating
all global point cloud information is stored in the latent variables, meaning the latent point encodings
exclusively contain information about specific points. No information pertaining to the overall point cloud
shape is stored in the point encodings. For qualitative assessment, an interpolation between two FDI 16 teeth
and an interpolation example between an incisor and a premolar can be found in Fig. 7. Both interpolations
exhibit a seamless transition in the latent space; for a more detailed view, see supplementary Fig. S3.

Table 5: Percentage teeth which had classification prediction increase according to expectation when moved
in the tooth wear direction. L, M, H denotes light, medium, and heavy wear respectively.

Method L—-H LM M—L M—H H—M H-—-L

FoldingNet 91.77 91.77 95.02 94.89 97.80 97.80
VF-Net (ours) 92.11  99.31 97.04 96.37 98.24  99.12

Next, we attempt to add and remove toothwear; see Fig. 8. We navigate the latent space of VF-Net in
the direction of tooth wear or away from it. The direction was determined by calculating the average
change in latent representations when encoding 10 teeth from their counterparts with synthetically induced
tooth wear. These teeth were manually sculpted to simulate tooth wear; see supplementary Fig. S4. We

22121111
23211111

Figure 7: Interpolating between two teeth by interpolating their latent codes using the same mesh decoding.
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Removed Tooth Wear Medium Wear Reconstruction Added Tooth Wear

Figure 8: Moving in the tooth wear direction in latent space. Left: Red areas have higher values than the
original. Middle: The original reconstruction. Right: Blue areas are lower than the original. As the level
of tooth wear increases, we observe a gradual smoothing in the occlusal surface.

observe behavior that closely aligns with our expectations of how the tooth would change when adding or
subtracting tooth wear.

To quantify the performance, we train a small PointNet model (Qi et al., 2017) on a proprietary dataset of
1400 teeth annotated with light /medium/heavy tooth wear. Subsequently, validate whether a change in the
latent space yielded the expected change in classifier prediction. In Table 5, each class denotes the base class
before adding/removing tooth wear. For light and heavy, we added and removed tooth wear, respectively,
while medium tooth wear teeth were evaluated both when adding/removing wear. The findings presented
in Table 5 indicate that VF-Net’s latent representations show greater robustness.

Limitations. Similar to variational autoencoders in  Reconstructions and the Corresponding Latent Point Encoding
other domains, VF-Net tends to produce overly smooth
samples. This characteristic could impact applications
such as crown generation, where precise replication of
the biting surface is crucial to prevent patient discom-
fort. Moreover, the model’s tendency towards smoothness
suggests potential challenges in capturing finer details of
teeth, which are essential for comprehensive representa-
tion learning.

Reconstruction

Until now, the inductive bias from folding a 2D plane to a
point cloud has proven highly beneficial. This is only the
case when the input point cloud shares topology with the
2D plane. Unfortunately, this inductive bias is not as ben-
eficial when the two topologies differ. We trained VF-Net
on ShapeNet data (Chang et al., 2015). The drawback i Figure 9: Left: While accurately reconstructed,
not evident through the reconstructions; see supplemen- the airplane forms a non-continuous distribution
tary Table S1. VF-Net has a low reconstruction error, but in the latent point encoding, posing challenges
LION boasts the lowest. Issues arise when attempting to  for sampling. Right: An incisor and its corre-
generate new samples. Due to information of the shape sponding point encodings.

being stored in the latent point encodings, as depicted in

Fig. 9. The latent point encodings form a non-continuous distribution, posing challenges for sampling new
models. Note that for point clouds sharing topology, VF-Net is strongly biased towards generating a con-
tinuous distribution; see Fig. 9. Addressing this issue could involve training a flow or diffusion prior for the
point encodings, similar to the approach used in LION (Zeng et al., 2022). However, since this was not the
focus of our model, we did not pursue this idea.

Latent Point Encoding

10
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6 Conclusion

We have introduced the FDI 16 dataset and Variational FoldingNet (VF-Net), a fully probabilistic point
cloud model in the same spirit as the original variational autoencoder (Kingma & Welling, 2014; Rezende
et al., 2014). The key technical innovation is the introduction of a point-wise encoder network that re-
places the commonly used Chamfer distance, allowing for probabilistic modeling. Importantly, we have
shown that VF-Net offers better auto-encoding than current state-of-the-art generative models and more
realistic sample generation for dental point clouds. Additionally, VF-Net offers straightforward shape com-
pletion and extrapolation due to its latent point encodings. All while identifying highly interpretable latent
representations.

Impact statement. This paper contributes a generative model that is particularly suitable for dental
data. This translates into several positive use cases within clinical practice. However, previous generative
models have shown to be useful for less positive use cases such as deep fakes and fake news. It is not
immediately clear how this could take form in digital dentistry, but destructive minds tend to be creative.

11
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