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Abstract—

Automated analysis of electrocardiogram (ECG) signals using
deep learning (DL) methods has shown substantial promise in
atrial fibrillation (AFib) classification, particularly for detecting
subtle indicators during normal sinus rhythm and for predicting
new-onset AFib. However, many existing state-of-the-art models
exhibit high computational demands, characterised by large
parameter and floating-point operations (FLOPs) counts. This
presents a high barrier to entry for training in budget-limited
institutes and hinders the models’ deployment on medical edge
devices. This paper introduces CSD-AFNet, a computationally
efficient DL model specifically designed for AFib-related ECG
classification tasks. CSD-AFNet achieves substantial reductions
in both parameter and FLOPs counts by replacing expensive
temporal convolutions with novel Feature-Preserving Pooled
Convolutions (FPP-Convs). FPP-Convs enable the combination of
striding and dilation without input feature loss, preserving tem-
poral coverage while reducing the computational cost. The model
further incorporates two-dimensional causal padding to prevent
temporal leakage in downstream representations. Evaluation on
the public CODE-15% and PTB-XL datasets demonstrates that
CSD-AFNet matches the classification performance of leading
benchmark models while reducing parameter count by a factor
of 71 and FLOPs by a factor of 122 compared to the ResNet-
10 inspired baseline. These findings support the suitability of
CSD-AFNet for practical clinical scenarios, enabling training
under resource constraints and efficient inference on medical
edge devices, thereby facilitating scalable and cost-effective ECG-
based AFib screening and monitoring.

Index Terms—Electrocardiography, Atrial Fibrillation, Deep
Learning, Computational Efficiency, Compact Model, Causal
Convolution, Strided Dilated Convolution, Arrhythmia Detection

I. INTRODUCTION

The electrocardiogram (ECG) is a standard clinical diagnos-
tic tool, valued for its affordability, non-invasive nature, and
ease of data acquisition. A conventional 12-lead ECG provides
detailed cardiac electrophysiological information, supporting
early detection and effective management of cardiovascular
conditions.
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Automated analysis of ECG signals using artificial intelli-
gence, and in particular deep learning (DL), has gained traction
due to its ability to deliver rapid, consistent, and accurate
diagnostic interpretations. These DL models can surpass the
limitations of manual interpretation, which relies heavily on
expert pattern recognition.

The application of DL-based ECG analysis to atrial fibrilla-
tion (AFib), one of the most prevalent cardiac arrhythmias
with substantial clinical impact, demonstrates this potential
for improved diagnostic insight. In contrast to traditional
methods and clinician-led assessments, DL models can detect
subtle patterns indicative of AFib during normal sinus rhythm
(NSR) or even before new-onset AFib (Prediction), enhancing
both monitoring and risk stratification possibilities [1]-[4].
Furthermore, these models’ capacity to analyse large ECG
datasets enables retrospective analysis and the development
of data-driven screening strategies.

Despite the demonstrated effectiveness of DL models in
ECG analysis, many current state-of-the-art (SOTA) architec-
tures are computationally demanding, characterised by large
parameter and floating-point operations (FLOPs) counts. Dur-
ing training, models with high parameter and FLOPs counts
require substantial graphics processing unit (GPU) memory
and processing capacity, significantly increasing training time
and cost. This creates a practical barrier for institutions in
developing countries or smaller clinical centres, where budget
constraints and limited access to high-end GPU infrastructure
hinder the ability to train models on locally available data. In
deployment settings, particularly on medical edge devices such
as the ECG acquisition device itself, the memory requirements
associated with large parameter counts and the compute inten-
sity driven by high FLOPs introduce latency and energy con-
sumption challenges. Such constraints make high-complexity
models unsuitable for low-power or real-time applications
where inference must be fast, efficient, and reliable without
access to dedicated GPU resources [5]. Therefore, reducing
both parameter and FLOPs count is critical to improving the
accessibility, scalability, and practical deployment of DL-based
ECG analysis models across a wider range of clinical and
resource-constrained environments [3].



Emerging solutions, such as photonics-based neural net-
works, offer substantial efficiency improvements on a hard-
ware level but necessitate fixed model architectures optimised
for these hardware constraints [6]. Such photonic hardware
would benefit from compact model designs with minimal
parameter and FLOPs count as they require less complex chips
to be created.

Recent work, including the ECGencode feature encoder
designed for ECG signals, has demonstrated that substantial
reductions in computational load are possible without com-
promising diagnostic accuracy. The ECGencode model 1 by
Bontinck et al. [3] achieves classification performance on
par with leading models, yet retains a relatively high FLOPs
count. In contrast, AFibri-Net by Phukan et al. [S] achieves
lower FLOPs and has been shown to run on low-resource
inference devices, though at the cost of lower classification
performance [3].

To further bridge this gap, and achieve AFibri-Net level
efficiency without the performance trade-off, this paper pro-
poses a novel compact DL model specifically developed for
ECG-based AFib classification. The proposed CSD-AFNet
model integrates strided dilated convolutions to reduce the
computational burden of early temporal operations. To solve
the issue of missed input features present in the conventional
combination of striding and dilation (see Fig. 2), Feature-
Preserving Pooled Convolutions (FPP-Convs) are introduced.
Furthermore, ECG-specific 2D causal convolutions are em-
ployed to eliminate “future leakage”, thereby improving the
interpretability and fidelity of the latent space representations.

The key contributions of this work are threefold: (1) incor-
poration of 2D causal padding to ensure temporal consistency
in latent 2D ECG representations; (2) introduction of FPP-
Convs, enabling strided dilated convolutions without feature
loss and with greatly reduced computational cost; and (3)
empirical demonstration that CSD-AFNet matches current
SOTA AFib classification performance across datasets and
tasks, while significantly improving computational efficiency.

II. BACKGROUND AND RELATED WORK
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Fig. 1: Temporal distribution of ECGs from AFib-positive pa-
tients, categorised as Prediction (pre first AFib), AFib (active
episode), and NSR (post AFib without rhythm disturbance).

Recent years have seen substantial progress in the applica-
tion of DL techniques to AFib-related ECG analysis. While
traditional approaches focus on detecting active AFib episodes,
a task routinely handled by cardiologists and feasible through
algorithmic integration into medical edge devices (i.e., ECG
acquisition devices), DL models have extended this scope
significantly.

Beyond active rhythm detection, DL-based approaches now
tackle more complex predictive tasks such as identifying AFib
during periods of NSR and predicting future onset AFib. These
tasks cannot be accomplished using conventional diagnostic
methods. The three subtypes of AFib-related signals, namely
prediction, active AFib, and NSR, from an AFib-positive
patient are illustrated in Fig. 1.

Given the growing demand for both prospective and retro-
spective analysis on resource-limited platforms, computational
efficiency has become a central focus. This work introduces
CSD-AFNet, a novel DL model that incorporates causal
strided dilated convolutions and key concepts from Temporal
Convolutional Networks (TCNs) [7], thereby enhancing com-
putational efficiency while preserving diagnostic accuracy.

A. Computational Efficiency in ECG-based AFib Models

The model proposed by Attia et al. [1], from now on referred
to as the Attia model, represents a foundational approach to
AFib-related ECG analysis. Their use of a Residual Network
(ResNet) with ten residual blocks demonstrated that subtle
AFib markers could be detected during NSR, benefitting
from skip connections to mitigate potential negative effects
of increased model depth [8]. This architecture has since
become a common baseline for various AFib and general
ECG classification tasks. However, the depth and complexity
of ResNets inherently result in high parameter and FLOPs
counts, increasing training cost and limiting deployment on
edge devices and in resource-constrained settings.

To address these limitations, the AFibri-Net model was
proposed by Phukan et al. [5] for AFib classification from
raw ECG signals with reduced computational cost. AFibri-
Net achieves notable FLOPs efficiency, with demonstrated
feasibility for inference on low-resource hardware. However,
its high parameter count raises concerns about memory usage
and potential overfitting, despite the mitigating effect of the
double-descent phenomenon [9].

Additionally, empirical results from the ECGencode study
by Bontinck et al. [3] suggest that AFibri-Net’s compactness
compromises its ability to achieve SOTA classification per-
formance. To strike a better balance between computational
cost and diagnostic accuracy, the authors of the ECGencode
study introduced ECGencode Model 1, from now on referred
to as the ECGencode model, which reduces high-dimensional
input to a compact latent space and achieves classification
performance comparable to Attia’s model for various AFib-
related tasks, with orders of magnitude fewer parameters
and FLOPs. Despite these benefits, ECGencode still exhibits
higher FLOPs than AFibri-Net, primarily due to its use of
variable-length kernels in the temporal convolutional layer.

This work addresses both the computational inefficiency
and a temporal ambiguity present in ECGencode by introduc-
ing enhanced versions of existing convolutional mechanisms:
strided dilated convolutions and causal padding.

B. Strided Dilated Convolution

Strided convolutions reduce the number of kernel applica-
tions by increasing the step size, effectively decreasing feature
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Fig. 2: Visualisation of skipped feature issues when combining
striding and dilation in temporal convolutions. The example
shows a conventional kernel with size k = 4, dilation d = 2,
and stride s = 4 which, given s is a multiple of d, results in
d — % of the input features being skipped.
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map resolution and overall FLOPs. Conversely, dilated convo-
lutions increase the receptive field by spacing kernel elements,
capturing longer temporal dependencies without increasing the
kernel size and thus parameter and FLOPs count.

Combining these two operations, however, can result in
skipped input features due to compounded downsampling.
This issue is visualised in Fig. 2 and is a known limitation.

To avoid skipping input features, a novel Feature-Preserving
Pooled Convolution (FPP-Conv) is introduced and used in
the proposed CSD-AFNet model, as further discussed in
Section III-B. This means CSD-AFNet can benefit from a large
temporal reach while maintaining computational efficiency.

C. Causal Padding in Causal Convolutions
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Fig. 3: Illustration of 1D causal padding to prevent “future
leakage”. (a) In conventional convolutions, outputs include
future time steps. (b) Causal convolutions left-pad the input by
(k—1)-d zeros, with k the kernel size and d the dilation rate,
restricting outputs to present and past inputs. Examples shown
use k=4, d=1 with the input row showing the time steps of
influence for the single same-coloured output time step.

Causal padding as used in causal convolutions ensures that
each convolution output at a given time step is only influenced
by present and past inputs, thus avoiding “future leakage” (see
Fig. 3). This property is especially important in sequential
modelling tasks and is widely employed in domains such as
audio signal processing [10].

Causal padding is typically applied to one-dimensional
time series data, where an ECG signal could be seen as a
1D time series signal with multiple channels (leads) [11].
However, ECG signals are often represented as 2D matrices to
explicitly retain a leads x time shape throughout the model,
aiding latent space interpretability. To further aid this intuitive
understanding of the latent space, and ensure timepoints don’t
exhibit the “future leakage” problem, the proposed CSD-
AFNet model adopts the causal padding technique for 2D ECG
representations as further discussed in Section III-A.

D. Comparison with Temporal Convolutional Networks (TCN)

Traditional TCNs are end-to-end architectures that model
long-range dependencies using stacked causal and dilated
convolutions, and have shown promise in ECG analysis [7],
[11]. In contrast, CSD-AFNet focuses on efficient temporal
feature extraction within a fixed receptive field, using 2D
causal padding and FPP-Convs to balance efficiency and
interpretability without aiming for global sequence modelling.

III. CSD-AFNET AFIB CLASSIFICATION MODEL

The proposed CSD-AFNet model, visualised in Fig. 4,
builds upon the ECGencode model. Unlike the original EC-
Gencode model that employs variable-length convolution ker-
nels and striding in the Temporal Convolution component,
CSD-AFNet uses novel FPP-Convs with a fixed kernel size
of 16, stride of 8 and varying dilation rates. This preserves
a temporal coverage of 0.03, 0.1, 0.5, and 2 seconds while
substantially reducing computational complexity in terms of
parameter and FLOPs count. The FPP-Convs are needed
to address the issue of skipping features when combining
striding and dilation in regular convolutions as discussed in
Section II-B and shown in Fig. 2. Section III-B discusses the
novel FPP-Convs in more detail.

Another important change compared to the ECGencode
model is the use of 2D causal convolutions to preserve
temporal causality and eliminate “future leakage” as discussed
in Section II-C and shown in Fig. 3. This is discussed in more
detail in Section III-A.

A. Causal Padding for 2D ECG Signals

1D Causal padding as discussed in Section II-C and visu-
alised in Fig. 3 can easily be adopted for 2D ECG signals by
left-padding the temporal-axis. The offset is determined by the
temporal reach, requiring left-padding of (k—1)-d with k the
kernel size and d the dilation rate.

B. FPP-Conv: Strided Dilated Convolution Without Skipping
Features

Combining striding and dilation in convolutional layers
often results in incomplete coverage of temporal features, as
discussed in Section II-B. To mitigate this, Feature-Preserving
Pooled Convolutions (FPP-Convs) are introduced. A FPP-
Conv is a two-step process taking a target temporal dilation
rate d and target temporal striding rate s together with the
desired number of output channels c.

First, pooling is applied using both temporal kernel and
temporal stride sizes set to p = min(d, s). This results in
a temporal-axis downsampling with the new temporal length
being [%1 where 7 is the original temporal length. Given the
pooling operation, a residual stride $,.s = (%] and a residual
dilation d,.s = (%W remain, one of which is now equal to 1.
Second, a regular convolution is applied using the remaining
stride or dilation (whichever exceeds 1).

This two-step process means FPP-Conv retains the target re-
ceptive field and desired computational benefits of combining
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Fig. 4: Architectural overview of the proposed CSD-AFNet model for binary AFib classification. Building on the ECGencode
model, it replaces the FLOPs-heavy variable kernel approach with the novel and efficient Feature-Preserving Pooled Convolution
(FPP-Conv) module and adds 2D causal padding before each temporal-axis convolution. Regularisation combines 2D Spatial
Dropout and Spatial Gaussian Noise. The full model has 3,058 parameters and approximately 5.5 million FLOPs.

striding and dilation while ensuring no features are skipped.
The complete strategy is visualised in Fig. 5.

The FPP-Convs in CSD-AFNet use a fixed target stride
of 8 and kernel size of 16 with variable target dilations. To
further optimise computational efficiency, intermediate pooled
outputs are reused. For instance, p = 8 pooling is achieved
by applying an additional p = 2 pooling to the existing
p = 4 pooling result. All FPP-Convs of the CSD-AFNet use
an average pooling strategy.

IV. EXPERIMENTAL SETUP

The CSD-AFNet model is trained and evaluated follow-
ing experimental methodology introduced by the ECGencode
study [3] and the authors of the PTB-XL dataset [12].

A. Datasets

TABLE I: Definition of the evaluated AFib classification tasks.
For all tasks, ECGs from AFib-negative patients are used as
negative samples.

Task Positive samples
Detection ECGs from AFib-positive patients during an active AFib episode
NSR ECGs from AFib-positive patients after a Detection sample, but

without an active episode
Prediction ECGs from AFib-positive patients recorded prior to the first
Detection sample
All ECGs from AFib-positive patients (i.e., Detection, NSR, and
Prediction)

Related

The publicly available CODE-15% dataset [13] is used for
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Fig. 5: Visualisation of the proposed Feature-Preserving
Pooled Convolution (FPP-Conv), which avoids feature skip-
ping when combining striding and dilation (see Fig. 2). Given
target stride s=4 and dilation d=2, average pooling with
p=min(d, s)=2 is applied first. This yields residual stride
Sres=[$/p|=2 and residual dilation drs=[d/p]=1, enabling
a regular convolution.

training and evaluation. CODE-15% consists of real-world 12-
lead ECGs acquired across multiple clinical sites and acquisi-
tion devices from the Telehealth Network of Minas Gerais. A
stratified ten-fold split is used to preserve the distribution of
diagnostic labels, patient age and sex while ensuring no patient
overlap. Folds 1-7 are used for training, 8 for validation and
9-10 for testing.

For out-of-distribution evaluation, the PTB-XL dataset [12]
is used. It originates from a different clinical cohort in a
different geographical location, featuring unseen devices and
patients. The predefined folds 1-2 are used for the calibration
split, folds 3-10 for the test split.

Minimal preprocessing is done, with each dataset being
normalised in a global fashion using the train/calibration split
and CODE-15% being upsampled to 500Hz to match the PTB-
XL sampling frequency. To support reproducibility, the fold
assignments used in this study can be made available upon
reasonable request.

Table I shows the definition of four distinct tasks that can
be derived from the different dataset splits. Table IT shows
the number of samples present in the data splits for these
tasks. In CODE-15%, ECG order is estimated using patient
age, since acquisition dates are unavailable. This may cause
some Prediction samples to be labelled as NSR, making the
NSR task harder.

TABLE II: Sample count in the train, validation and test split
of CODE-15% and the calibration and test split of PTB-XL.

Dataset split Related  Detection ~ NSR Prediction ~ Negative
C15% Train 7,888 4913 1,298 1,461 234,435
C15% Val 1,153 699 214 204 33,241
C15% Test 2,226 1,420 319 434 66,778
PTB-XL Cal 354 302 32 20 4,002
PTB-XL Test 1,437 1,212 141 84 16,006

B. AFib Classification Models Configuration

The model configuration of CSD-AFNet is illustrated in
Fig. 4. The baseline models included for comparison are the

ECGencode model, the Attia model and AFibri-Net variants
3 and 5. Their hyperparameter configuration is adopted from
the ECGencode study. To enable a direct and unambiguous
comparison of computational cost, the CSD-AFNet hyperpa-
rameters are chosen to mirror the intermediate output shapes
and temporal coverage of the ECGencode model.

All models are trained for 1000 epochs on the CODE-
15% train set using the Related task labels. This unified
strategy addresses class imbalance and feature overlap be-
tween subtasks. The model checkpoint with highest validation
sensitivity is used for evaluation. Training uses a batch size
of 128, AdamW optimiser, and categorical focal loss. To
validate the unified strategy, CSD-AFNet is also fine-tuned
for 200 additional epochs using task-specific labels and the
same selection criterion.

C. Evaluation Metrics

The reported metrics include the the area under the ROC
curve (AUC) as well as the threshold-dependent metrics F1,
sensitivity, specificity, and precision. Used model thresholds
are optimised per evaluation task by maximising validation
or calibration F1. Metrics are reported as point estimates on
the test set. For AUC and F1, confidence intervals are derived
from 10,000 bootstrap iterations. This supports statistical sig-
nificance assessment via non-overlapping intervals, following
the methods in PTB-XL [12] and ECGencode [3].

Computational efficiency is assessed by measuring the num-
ber of FLOPs (as calculated by the keras-FLOPs library') and
the number of trainable parameters.

V. RESULTS AND ANALYSIS

This section evaluates the proposed CSD-AFNet model in
terms of classification performance and computational effi-
ciency compared to the ECGencode, Attia, and AFibri-Net
(3 and 5) models.

A. AFib Classification Performance

Table III summarises classification performance for the
Related task and the Detection, NSR and Prediction subtasks
on the CODE-15% and PTB-XL test set.

CSD-AFNet consistently achieves significantly higher AUC
scores than both AFibri-Net variants across all tasks and
comparable scores to the ECGencode and Attia models, which
represent the current SOTA in this domain.

With respect to F1 scores, the Attia model achieves supe-
rior performance on the Detection task. This Detection task
superiority also translates to a better F1 score for the related
task, which is an aggregate of all subtasks with the majority
of positives being detection samples as visible in Table II.
Notably, even for the F1 scores, CSD-AFNet significantly
surpasses all F1 scores reported by AFibri-Net models, except
for AFibri-Net 5 in the Prediction task. The reported F1
scores, although low in absolute value, reflect results of leading
models in other studies, with the CSD-AFNet precision of

Uhttps://pypi.org/project/keras-FLOPs/



TABLE III: Comparative performance of the evaluated AFib classification models across four tasks and two datasets. All
models were trained using the CODE-15% train split with the Related task labelling scheme, and evaluated on the test splits of
CODE-15% and PTB-XL. Reported metrics include AUC, F1-score, sensitivity, specificity, and precision. Confidence intervals
for AUC and F1 are derived from 10,000 bootstrap iterations on the test set. Thresholds for classification were selected to
maximise F1 performance on a per-task basis using the validation/calibration split. Bold values indicate top-performing models
per task. Asterisks (*) denote statistically significant differences (non-overlapping confidence intervals with the best score).

Task Model AUC Fl1 Sensitivity ~ Specificity ~ Precision ~ PTB-XL AUC PTB-XL F1
Related CSD-AFNet 0.9421 + 0.0064 0.6477 £ 0.0168*  0.6438 0.9885 0.6517 0.9390 + 0.0075 0.6717 = 0.0187*
ECGencode 0.9385 + 0.0063 0.6122 £ 0.0170*  0.6366 0.9852 0.5897 0.9332 + 0.0076 0.6500 + 0.0199*
Attia 0.9365 £ 0.0066 0.6941 + 0.0162 0.6554 0.9922 0.7376 0.9323 + 0.0083 0.7272 + 0.0198
AFibri-Net 3 0.8843 £ 0.0080*  0.3211 + 0.0195*  0.2686 0.9865 0.3989 0.8508 + 0.0101*  0.4295 + 0.0194*
AFibri-Net 5 0.9110 + 0.0078*  0.6046 + 0.0163*  0.6725 0.9816 0.5492 0.9106 + 0.0096*  0.7224 + 0.0201
Detection ~ CSD-AFNet 0.9883 + 0.0023 0.7097 £ 0.0185*  0.7507 0.9922 0.6730 0.9719 + 0.0043*  0.7043 + 0.0194*
CSD-Finetuned  0.9895 + 0.0022 0.7435 £ 0.0176*  0.7725 0.9935 0.7165 0.9795 + 0.0032 0.7414 + 0.0185*
ECGencode 0.9851 + 0.0024 0.6691 £ 0.0186*  0.7592 0.9892 0.5982 0.9653 + 0.0049*  0.6882 + 0.0208*
Attia 0.9853 + 0.0036 0.8042 + 0.0160 0.8275 0.9951 0.7823 0.9750 + 0.0046 0.7873 + 0.0183
AFibri-Net 3 0.9308 + 0.0064*  0.3308 + 0.0241*  0.2965 0.9895 0.3742 0.8764 + 0.0097*  0.4432 + 0.0229*
AFibri-Net 5 0.9747 + 0.0045*  0.6335 + 0.0178*  0.8648 0.9816 0.4998 0.9626 + 0.0070*  0.7799 + 0.0193
NSR CSD-AFNet 0.9032 + 0.0200 0.2587 + 0.0388 0.3480 0.9936 0.2059 0.7770 + 0.0390 0.0699 + 0.0236
CSD-Finetuned  0.8798 + 0.0218 0.1599 + 0.0310*  0.2476 0.9912 0.1181 0.7703 £ 0.0389 0.0905 + 0.0316
ECGencode 0.8949 + 0.0201 0.2158 + 0.0349 0.3292 0.9918 0.1606 0.7663 + 0.0375 0.0766 + 0.0484
Attia 0.8831 + 0.0205 0.2776 + 0.0422 0.3386 0.9947 0.2353 0.7000 + 0.0421 0.0347 + 0.0418
AFibri-Net 3 0.8278 £ 0.0253*  0.0991 + 0.0253*  0.1567 0.9904 0.0725 0.7133 + 0.0433 0.0220 + 0.0340
AFibri-Net 5 0.8346 + 0.0265*  0.1724 + 0.0242*  0.4577 0.9816 0.1062 0.6346 + 0.0406*  0.0993 + 0.0488
Prediction ~ CSD-AFNet 0.8224 + 0.0233 0.1402 + 0.0283 0.1728 0.9916 0.1179 0.7352 + 0.0613 0.0430 + 0.0448
CSD-Finetuned  0.8196 + 0.0232 0.0988 + 0.0239*  0.1336 0.9898 0.0784 0.7295 + 0.0598 0.0259 + 0.0315
ECGencode 0.8235 + 0.0222 0.1047 £ 0.0231 0.1590 0.9878 0.0781 0.7491 + 0.0547 0.0690 + 0.0609
Attia 0.8226 + 0.0216 0.1597 + 0.0323 0.1751 0.9934 0.1467 0.7066 + 0.0596 0.0241 + 0.0304
AFibri-Net 3 0.7740 £ 0.0241*  0.0614 + 0.0198*  0.0783 0.9904 0.0504 0.7124 + 0.0493 0.0576 + 0.0586
AFibri-Net 5 0.7688 + 0.0241*  0.1113 + 0.0205 0.2258 0.9816 0.0739 0.6230 + 0.0529*  0.0664 + 0.0465

0.2059 on the NSR task reflecting a number needed to screen
of 5, which is also in line with leading models [1], [3], [14].

For the calibrated CSD-AFNet variant, F1 improves on the
Detection task, but performance on the other subtasks worsens,
showing overfitting tendencies. This supports the effectiveness
of the unified training strategy in handling class imbalance and
shared features across subtasks.

For out-of-distribution evaluation on PTB-XL, models are
not retrained and only threshold calibration is applied. The
overall performance is lower and the F1 score is less represen-
tative given that no retraining is done. Nonetheless, the relative
ranking between models remains consistent with the CODE-
15% results, suggesting appropriate generalisability beyond
this training dataset.

Given that active AFib detection is feasible through algo-
rithmic integration into medical edge devices already, greater
emphasis is placed on the more challenging NSR and Pre-
diction subtasks in this study. For these subtasks, CSD-
AFNet demonstrates strong performance, on par with both
the ECGencode and Attia models, while outperforming the
AFibri-Net variants, supporting its clinical relevance.

B. Computational Efficiency Analysis

Table IV provides a comparative overview of computational
efficiency across the evaluated binary classification models.
CSD-AFNet exhibits the lowest FLOPs and parameter count
among all evaluated architectures. Specifically, it more than
halves the parameter count and achieves a 15-fold reduction in
FLOPs compared to the ECGencode model, while maintaining
comparable classification performance. Compared to the the

TABLE IV: Comparison of computational efficiency across
the evaluated AFib classification models. Parameter counts and
FLOPs are reported, along with their proportions relative to
the proposed CSD-AFNet model (baseline: 1x).

Model Parameters FLOPs
CSD-AFNet 3,058 (1x) + 5.5M (1x)
ECGencode 8,242 (2.5x) +835M (15x)
Attia 217,350  (71x) + 670M (122x)
AFibri-Net 3 191,106  (62.5x) + 8.5M (1.5x)
AFibri-Net 5 366,594  (120x) +155M  (3x)

Attia model, it has a significant 71x reduction in parameters
and 122x reduction in FLOPs.

VI. DISCUSSION AND CONCLUSIONS

This study introduced the CSD-AFNet model which uses
novel FPP-Convs and ECG-specific 2D causal padding, to de-
liver classification performance on par with SOTA methods for
various AFib classification tasks with significantly improved
computational efficiency.

A. Summary of Findings

With only 3,058 parameters and approximately 5.5M
FLOPs, CSD-AFNet demonstrates remarkable computational
efficiency. Compared to the benchmark Attia model [1], it
achieves a 71-fold reduction in parameters and a 122-fold
reduction in FLOPs. Relative to the ECGencode model, which
serves as its architectural basis, CSD-AFNet reduces the
parameter count by more than half and lowers the FLOPs
count by approximately 15-fold.



These reductions address a key limitation of the ECGencode
model, which, although computationally efficient in terms of
parameters, retained a higher FLOPs count than AFibri-Net 3.
CSD-AFNet surpasses AFibri-Net 3 across all evaluated tasks,
offering significantly higher AUC and F1 scores while using
62.5 times fewer parameters and 1.5 times fewer FLOPs.

B. Practical and Clinical Implications

For the benchmarked AFibri-Net 3 model, the feasibility of
inference on resource-constrained hardware has already been
demonstrated [5]. Given its substantially lower FLOPs and
parameter count with significantly better classification perfor-
mance that matches SOTA models, CSD-AFNet offers an even
more viable solution for real-time deployment on medical edge
devices, including integration within ECG acquisition systems.

In training scenarios, models with fewer parameters are less
demanding in terms of required GPU resources, resulting in
overall lower operational costs. This is especially advanta-
geous for smaller clinical centres or institutions with limited
budget that aim to train models locally on their own datasets
with limited computational resources.

Furthermore, CSD-AFNet’s efficiency aligns well with the
architectural constraints of emerging hardware platforms, such
as photonics-based neural accelerators. Its minimal parame-
ter and FLOPs counts facilitate integration with such fixed-
structure systems, supporting scalable deployment for both
prospective monitoring and retrospective ECG analysis.

C. Limitations and Future Directions

While CSD-AFNet delivers high AUC scores across all
tasks and datasets with a remarkably small computational
footprint, several directions of future research can further
strengthen and extend this work. First, an ablation study
could isolate the impact of key architectural contributions,
FPP-Convs and 2D causal padding, on classification perfor-
mance, informing future model designs. Given the consistently
strong performance across tasks, a stratified 10-fold cross-
validation with hyperparameter tuning and other optimisations
may reveal classification superiority, especially on specific
subtasks. Future work may also explore adapting the model
to single-lead input by removing the spatial convolutions,
enabling use on wearable ECG devices. Moreover, the ar-
chitecture may generalise beyond AFib detection to other
cardiac or physiological conditions. In terms of deployment,
benchmarking inference time and energy use on real medical
edge hardware would validate practical viability, with the PTB-
XL experiments suggesting that pretraining on a broad cohort
followed by local finetuning may be needed to optimise ac-
curacy for specific devices and populations. Finally, releasing
such pretrained CSD-AFNet weights could facilitate transfer
learning for low-resource clinical institutions.
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