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Abstract

There has been a growing excitement that implicit
graph generative models could be used to design
or discover new molecules for medicine or ma-
terial design. Because these molecules have not
been discovered, they naturally lie in unexplored
or scarcely supported regions of the distribution
of known molecules. However, prior evaluation
methods for implicit graph generative models have
focused on validating statistics computed from the
thick support (e.g., mean and variance of a graph
property). Therefore, there is a mismatch between
the goal of generating novel graphs and the eval-
uation methods. To address this evaluation gap,
we design a novel evaluation method called Verti-
cal Validation (VV) that systematically creates thin
support regions during the train-test splitting proce-
dure and then reweights generated samples so that
they can be compared to the held-out test data. This
procedure can be seen as a generalization of the
standard train-test procedure except that the splits
are dependent on sample features. We demonstrate
that our method can be used to perform model se-
lection if performance on thin support regions is
the desired goal. As a side benefit, we also show
that our approach can better detect overfitting as
exemplified by memorization.

1 INTRODUCTION

Over the past decade, significant progress has been achieved
in enhancing implicit generative models (GANs [Goodfel-
low et al., 2014], VAEs [Kingma and Welling, 2022], and
diffusion models [Sohl-Dickstein et al., 2015, Ho et al.,
2020]), leading to their extensive use in diverse domains
like image and graph generation. In the image generation
domain, efforts have been made to standardize evaluation

metrics [Wang et al., 2004, Zhang et al., 2018, Heusel et al.,
2017] for comparing the effectiveness of different implicit
generative models. However, the graph generation domain
has yet to adopt a similar standardization. Moreover, while
visual inspection of an image can reveal much about its
semantic characteristics, this cannot be applied to graphs.
Perhaps, more importantly, the application of graph genera-
tive models in different areas is quite different than image
generators. Instead of aiming to generate an image that looks
like others, most graph generative models are designed in
hopes that they will be able to generate novel yet interesting
graphs, e.g., new molecules with specific properties.

While extrapolating far from the known distribution of
graphs is indeed challenging, there’s potential for generative
models to explore novel graphs within underexplored re-
gions of the graph space by leveraging patterns observed in
existing graphs. We illustrate this concept and our proposed
evaluation methodology in Figure 1, using molecules as an
example. Thick support regions represent known molecules,
while thin support regions denote the space of novel graphs.
We note that unlike this toy 2D illustration, real graph distri-
butions (like image distributions) are expected to have many
areas of thin support in high dimensions though they may
be difficult to identify or characterize. Thus, the question
arises: How can we measure a graph generative model’s
ability to generate novel graphs on thin support regions?

The most intuitive and potentially ideal evaluation approach
would involve computing the negative log-likelihood on
a test dataset. This metric, relying on the KL divergence,
is inherently sensitive to thin support regions. However,
for modern implicit generative models, log-likelihood is
difficult to compute exactly or even approximate well.

Given these challenges, most recent evaluations of genera-
tive models seek to compare statistics between generated
samples and a held-out test set. A simple approach is to
merely compare the means of these distributions or the
means of various graph properties. Extending the difference
in means to the worst case difference between the expecta-



Figure 1: VV systematically thins the distribution in a cer-
tain region for training (top row) and then evaluates whether
the generated samples in the thinned region after reweight-
ing matches the complementary held-out test dataset (bot-
tom row). In contrast, standard evaluations will seek to
match the macro properties (e.g., mean) of this distribution
which emphasizes the regions of thick support. The original
data (left) illustrates both thick support regions (i.e., areas
with many samples) and thin support regions (i.e., areas
with very few samples).

tion of a function is known as Maximum Mean Discrepancy
(MMD). The current and most commonly used standard pro-
cedure for evaluating graph generative models is to compute
the MMD for the degree, clustering coefficient and orbit
count distributions between the generated samples and a
held-out set [Niu et al., 2020, Chen et al., 2021, Liao et al.,
2019a, Hoogeboom et al., 2022, Vignac et al., 2022]. How-
ever, these mean-based approaches focus on the regions of
thick support where the most mass is. Thus, they can fail to
detect a generative models’ performance on the thin support
regions—the exact regions where novel graphs could exist.
We illustrate this problem in more detail Appendix A.

To address this evaluation gap, we focus on matching the
statistics (e.g., KS [Kolmogorov-Smirnov et al., 1933]) of
systematically constructed thin regions of support as illus-
trated in Figure 1. Inspired by the classic train-test split
idea, we develop a novel method to “vertically” split the
graph dataset into train and test datasets depending on one
graph property. Then, after training, we reweight generated
samples and compare them to the corresponding held-out
test dataset. At a high level, our evaluation approach, called
Vertical Validation (VV), artificially simulates a thin region,
but then has ground truth samples from this thinned region
to compare against. After reweighting, any metric that can
handle weights could be used to compare the generated
samples to the held-out samples. We choose the average
KS statistic along graph property distributions though other
metrics could be used within our framework. This proce-
dure enables the evaluation of the generation capabilities in
localized thin support regions rather than focusing on the
thick support regions. We summarize our contributions as
follows:

1. We develop a novel “vertical” train-test splitting ap-

proach that systematically creates thin support in the
training data while the testing data has thick support in
this region. This can be applied to arbitrary 1D distri-
butions and includes two hyperparameters that control
the split sharpness and thickness of full support.

2. We combine this split procedure with a reweighting
step to form a novel methodology for evaluating the
ability to generate data in thin support regions. We
prove that this metric instantiated with the KS statistic
is consistent.

3. We empirically validate our VV approach for model se-
lection in the thin support regime of synthetic datasets
and then apply VV to compare representative graph
generative models on two popular graph datasets.

2 BACKGROUND AND RELATED WORK

Evaluating Graph Generative Models Several methods
have been used for evaluating the performance of graph
generative models. Some methods can be used for all graph
types. These methods include novelty, uniqueness, Wassere-
tian distance between generated samples and a held-out
set, Maximum Mean Dependency (MMD) for the degree,
clustering coefficient and orbit count distributions between
the generated samples and a held-out set as used by Liao
et al. [2019b], Martinkus et al. [2022], Vignac et al. [2022],
Hoogeboom et al. [2022].

On the other hand, some of the metrics are specific for
molecular generation tasks, such as the Frechet ChemNet
Distance(FCD) introduced by Preuer et al. [2018], or the
Neighbourhood subgraph pairwise distance kernel (NSPDK)
MMD introduced by Costa and Grave [2010]. Other metrics
include the percentage of atom stability, molecule stability,
validity of generated molecules as used by Hoogeboom et al.
[2022], Vignac et al. [2022] and others.

As one critique of prior evaluations, O’Bray et al. [2022]
noticed that metrics based on MMD were sensitive to the
choice of the kernel functions, the parameters of kernel, and
the parameters of the descriptor function. Thompson et al.
[2022] also noted that current evaluation methods do not
accurately capture the diversity of the generated samples,
which lead them to propose their own approach based on
using the graph embedding produced by GIN [Xu et al.,
2018] and calculating metrics on that embedding to better
capture diversity.

Southern et al. [2023] recently proposed the use of curvature
descriptors and topological data analysis for a more robust
and expressive metric for evaluating graph generative mod-
els but does not specifically consider thin support regions.
Despite this progress, there are still deficiencies in the cur-
rent metrics particularly, when it comes to measuring the
ability of the model to generate data in thin support regions.



Related Train-Test Validation Methods While classic
cross validation methods sample form i.i.d. splits [Arlot and
Celisse, 2009], our approach creates splits that are nearly
out-of-distribution, which means that there is a distribution
shift between train and test. Evaluating models under distri-
bution shift has been studied for supervised learning under
the names of domain adaptation (DA) [Farahani et al., 2020]
and domain generalization (DG) [Koh et al., 2020]. In both
cases, the accuracy metric is evaluated on a test distribution
that is different from the training distribution. However, both
DA and DG primarily consider supervised learning tasks
while we consider generative models. Thus, our approach
can be viewed as a type of distribution shift evaluation for
generative models.

In a similar vein, Bazhenov et al. [2023] propose a method
for splitting the nodes of a graph into in-distribution and out-
of-distribution nodes based on structural properties. This
splitting enables the evaluation of node-level prediction
tasks under distribution shifts. We differ from this work
because we split along graphs instead of along nodes, and
ours is aimed at evaluating generative models while theirs
is focused on node-level tasks.

3 MEASURING GENERALIZATION FOR
IMPLICIT GRAPH GENERATIVE
MODELS

Our proposed vertical validation method (VV) can be
viewed as a generalized version of cross validation with
two main steps. First, we propose a new way to generate bi-
ased train-test splits 1 that are dependent on a chosen graph
property (e.g., average node degree), which we call the split
property. In particular, our train-test splits thin some re-
gions of the support along the split property. Second, we
propose a meta evaluation metric that reweights the gen-
erated samples to unbias them and then compares them to
the held-out samples using a two-sample metric on other
graph properties. This second step is needed because the
training sample distribution is different than the held-out
test distribution based on our biased train-test splitting. The
biased split and reweighting is carefully controlled using
only the 1D distributions of the split property.

Under these circumstances, if the model can still produce
“good" samples in a region that had thin support, we know
that the model can generalize well. Conversely, if the model
does not capture the underlying smoothness of the true dis-
tribution, it may struggle to generate realistic samples in
regions with reduced training data support (underfitting) or
it will memorize such data (overfitting).

1We use the term “split” here instead of “fold” because “fold”
may seem like uniform splitting.

Notation To describe our method, we begin by introduc-
ing some notations that we will use for the rest of the paper.
Let p(G) denote the true graph distribution of graphs and let
G ∼ p(G) be a random variable representing a graph, which
includes the graph itself and any node or edge attributes if
available. Let m be the number user-specified graph proper-
ties of interest (e.g., average node degree). These properties
are defined by deterministic functions of the graph denoted
by hℓ : G → R, where G is the space of all valid graphs
and ℓ ∈ {1, · · · ,m}.

Let h(G) : G → Rm be the vector function that
maps G to its m graph property values, i.e., h(G) =
(h1(G), h2(G), · · · , hm(G)). Furthermore, let Z = h(G),
where the distribution of Z is the pushforward of the graph
distribution under h. Let the true marginal CDFs of each
dimension of Z be denoted by FZℓ

(Zℓ). We now define
the random vector U ∈ [0, 1]m, where each element is the
corresponding CDF value of Zℓ, i.e., Uℓ = FZℓ

(Zℓ) =
Fhℓ(G)(hℓ(G)),∀ℓ ∈ {1, 2, · · · ,m}.

Train-Test Split Notation Let (Gi)
n
i=1 be our given

dataset which are i.i.d. samples from p(G) and where each
Gi is a random variable. For k-fold cross validation, we
introduce m split variables corresponding to each graph
property, denoted as Si,1, Si,2, · · · , Si,m ∈ {1, 2, · · · , k},
that indicate the test split for the i-th graph using the ℓ-th
split property. Let Si,ℓ ∼ p(S|Gi, hℓ), where p(S|Gi, hℓ)
denotes the splitting distribution which can depend on the
graphGi and the ℓ-th graph property. Moving forward, iwill
be used for the index of the graphs in the sequence (Gi)ni=1,
i.e. i ∈ {1, 2, · · ·n}, and j is used for the index of the
splits, i.e. j ∈ {1, · · · , k}. Given these split variables, the
held-out dataset from (Gi)

n
i=1 of the j-th split and ℓ-th split

property will be denoted as G(ℓ,j)
held = {{Gi|∀i, Si,ℓ = j}},

where double curly braces {{}} denotes a multi-set indicat-
ing that any element can have a multiplicity more than 1.
The corresponding training dataset will be denoted G(ℓ,j)

train =

{{Gi|∀i, Si,ℓ ̸= j}}. Finally, let {Ḡ(ℓ,j)
i }nℓ,j

i=1 be nℓ,j i.i.d.
samples from q(Ḡ(ℓ,j)|θ = θ∗

Ω(G(ℓ,j)
train )

), which denotes the

generated graph distribution using a training algorithm Ω

that only has access to G(ℓ,j)
train and let the generated dataset

be denoted by G(ℓ,j)
gen = {{Ḡ(ℓ,j)

i |∀i}}.

3.1 STEP 1: SHIFTED SPLITTING

In the first part of our framework, we need to define the
distribution p(S|Gi, hℓ) to create k biased splits for a given
graph Gi and ℓ-th graph property. By biased splits we
mean that the split variable depends on the graph, i.e.,
P (Si,ℓ|Gi) ̸= P (Si,ℓ). For simplicity, we will assume that
the conditional distribution is only dependent on the value
of the ℓ-th graph property, i.e., p(S|Gi, hℓ) = p(S|Zi,ℓ).
This will enable us to focus on a 1D distribution for splitting
and reweighting. Many distributions of P (Si,ℓ|Gi) could



give biased splits, but we wanted both a generic and bal-
anced splitting method, and hence we incorporate the two
constraints mentioned below.

For the first constraint, we want our method to work gener-
ically for any arbitrary distribution of Zi,ℓ. Thus, instead
of using Zi,ℓ directly, we only consider the CDF value of
Zi,ℓ, i.e., we assume p(Si,ℓ|Gi, hℓ) = p(Si,ℓ|Ui,ℓ), where
Ui,ℓ = FZi,ℓ

(Zi,ℓ) = Fhℓ(Gi)(hℓ(Gi)). This means that the
splitting only depends on the rank of the ℓ-th graph property
rather than a specific value and thus it can be generically ap-
plied to any graph property. Essentially this constraint acts
to restrict the space of distributions to those that only depend
on Ui,ℓ making it applicable to any property distribution.

For the second constraint, we want the splits to have equal
sizes in expectation to ensure that the splits are balanced.
To achieve such effect, the marginals of S must be uniform,
i.e., we must ensure that p(Si,ℓ) = 1/k. To satisfy this last
constraint, we notice that we can decompose the conditional
distribution via Bayes rule p(Si,ℓ|Ui,ℓ) = p(Si,ℓ)p(Ui,ℓ|Si,ℓ)

p(Ui,ℓ)
,

where p(Si,ℓ) = 1/k to ensure equal splits and p(Ui,ℓ) is the
uniform distribution by the fact thatUi,ℓ is based on the CDF
ofZi,ℓ. Thus, we can choose any distribution for p(Ui,ℓ|Si,ℓ)
that satisfies the constraint that the marginal is uniform, i.e.,∑
j p(Si,ℓ = j)p(Ui,ℓ|Si,ℓ) is uniform. In other words this

constraint can be simplified to finding a component distri-
bution whose mixture is a uniform distribution and whose
weights are equal to p(Si,ℓ). One such choice of p(Ui,ℓ|Si,ℓ)
could be disjoint uniform splits corresponding to the quan-
tiles of Ui,ℓ, i.e., p(Ui,ℓ|Si,ℓ = j) = pUnif[ j−1

k , jk ](Ui,ℓ),
where pUnif[a,b](U) = 1

b−a denotes a Uniform distribution
between the interval [a, b].

However, there are two issues with quantile splits: (1) sharp
cutoff for splits would create unnatural sharp edges in the
training and test distributions, and (2) this would mean zero
support on parts of the distribution, which would mean
generative models would have to extrapolate beyond their
training data—something that cannot be easily done with
current methods (see Figure 3d for an illustration for quan-
tile splits). To address the issues with the uniform quantile
splits, we can resolve to using a different distribution for
p(Ui,ℓ|Si,ℓ) that satisfies the constraint mentioned above.

Using Beta Distributions to Create Smoothed Quan-
tile Splits: For the first issue of unnaturally sharp dis-
tribution edges, inspired by empirical Beta copula mod-
els [Segers et al., 2017], we first note that a simple mix-
ture of Beta distributions will have a uniform marginal
distribution—the exact property we need for splitting
(ie. satisfies Ui,ℓ ∼ Uniform[0, 1] ). Specifically, a mix-
ture of k Beta distributions with parameters defined
as: αj = j and βj = k + 1 − j and for j ∈
{1, 2, · · · , k} will have a uniform distribution [Segers et al.,
2017], i.e.,

∑
j pBeta[αj ,βj ](U) = pUnif[0,1](U). Thus we

can choose p(Ui,ℓ|Si,ℓ) = pBeta[αj ,βj ](Ui,ℓ), which will
lead to

∑
j p(Si,ℓ = j)pBeta[αj ,βj ](Ui,ℓ|Si,ℓ = j) =

pUnif[0,1](Ui,ℓ) = p(Ui,ℓ).

However, we still notice some potential issues with this ap-
proach, first the intervals have more overlap than what we
want, which will be the case if k is relatively small, and
second this approach doesn’t guarantee a support for all the
regions in the current split. To deal with the first concern,
we propose adding a sharpness scale (ψ) that acts to sharpen
the edges of the distribution (i.e., making the splits more
vertical). The sharpness scale identifies the number of ad-
jacent Beta distributions to mix together for a single split
distribution. Specifically, if we use ψ · k to be the total num-
ber of Beta distributions, then we can let each of the split
distributions be mini mixtures of adjacent distributions, i.e.,
pBetaMix(Ui,ℓ|Si,ℓ = j) = 1

ψ

∑ψ
a=1 pBeta[αj,a,βj,a](Ui,ℓ),

where αj,a = (j−1)ψ+a and βj,a = ψk+1−αj,a. Using
this setting will increase the sharpness of the splits, there by
decreasing the regional overlap between the adjacent splits.
As ψ increases we combine more Beta distributions together,
and this will lead to a more concentrated and refined edges
of the distribution. In the limit as ψ goes to infinity, we
would recover the quantile splits—thus, this can be seen as
relaxation of quantile-based splitting. For the second issue
due to zero or near zero support, while our smoothed quan-
tiles can alleviate this somewhat, the support may still be
near-zero in certain regions. Thus there will be no samples
in training corresponding to the held-out samples. We ap-
proach this by mixing our previously defined mixture of the
Beta distributions with the uniform distribution as follows:
p(Ui,ℓ|Si,ℓ) = (1−ϵ)pBetaMix(Ui,ℓ|Si,ℓ)+ϵ·pUnif[0,1](Ui,ℓ)

(1)
where ϵ ∈ [0, 1] is the mixing parameter. This addition
will ensure a minimum representation of each region of
support in our split, and if ϵ = 1, we will get completely
random splitting which is similar to standard CV splitting.
We summarize our whole splitting procedure in Figure 2a,
and illustrate the effects of different parameters on our splits
in Figure 3. Additional figures for illustrating the Beta re-
lated splits are in Appendix C. We also prove Proposition 1,
which states that this current choice of p(Ui,ℓ|Si,ℓ) will yield
biased splits, in Appendix F.

Proposition 1. For any ϵ < 1 and ψ ∈ {1, 2, . . . }
and assuming the splits are equal size in expectation, i.e.,
p(Si,ℓ) =

1
k , if p(Ui,ℓ|Si,ℓ) = (1−ϵ)pBetaMix(Ui,ℓ|Si,ℓ) +

ϵpUnif[0,1](Ui,ℓ) , where

pBetaMix(Ui,ℓ|Si,ℓ=j) =
1

ψ

ψ∑
a=1

pBeta[αj,a,βj,a](Ui,ℓ)

and where αj,a ≜ (j − 1)ψ + a and βj,a ≜ ψk + 1− αj,a,

then p(Ui,ℓ) = Uniform[0, 1] and the splits will be biased,
i.e., p(Si,ℓ|Gi) = p(Si,ℓ|Ui,ℓ) ̸= p(Si,ℓ) or equivalently
I(Si,ℓ, Gi) > 0.
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Figure 2: (a) The VV splitting process has 5 steps: 1) compute the relevant graph properties for each graph, 2) project
samples via the CDF to a uniform distribution 3) Define the split distributions via a mixture of Beta distributions and a
unifrom distribution, 4) Compute the split probability conditioned on Uℓ using Bayes rule, and finally 5) sample the split
variable based on these conditional probabilities. This will result in different splits. In the histograms above we plot the
distribution of the split property ℓ in both the train and held parts for different splits. (b) An illustration of the reweighting
process performed by VV for one of the splits (for j = 1 and ℓ = 1 where the total number of properties is m = 2 ).

3.2 STEP 2: DEFINING A META-METRIC TO
ADJUST FOR SHIFTED SPLITS

The second step in our approach is re-weighting the samples
generated by our model to account for initially training
the model with a biased dataset. The generative model (Ω)
was initially trained with G(ℓ,j)

train to produce samples G(ℓ,j)
gen

(whose true distribution is q(Ḡ(ℓ,j)|θ = θ∗
Ω(G(ℓ,j)

train )
)). Those

generated samples -or more precisely the properties of such
generated samples which we can denote by Z̄- will follow a
similar distribution to that of the training dataset (assuming
that the model doesn’t underfit), but will be different from
the distribution of the held-out samples G(ℓ,j)

held . We will refer
to the true distributions of a property ℓ in G(ℓ,j)

train and G(ℓ,j)
held

as p(Zi,ℓ|Si,ℓ ̸= j) and p(Zi,ℓ|Si,ℓ = j) respectively, and
to that of the generated samples as q(Z̄i,ℓ|θ = θ∗

Ω(G(ℓ,j)
train )

).

To account for such a shift in distribution, we need to un-
bias the generated samples, and one way of doing so is by
re-weighting them, thus we define the importance weight
of each sample Ḡi in G(ℓ,j)

gen with property Z̄i,ℓ as follows:
W (ℓ,j)(Ḡi) :=

W (ℓ,j)(Z̄i = h(Ḡi)) :=
p(Z̄i,ℓ|Si,ℓ = j)

q(Z̄i,ℓ|θ = θ∗
Ω(G(ℓ,j)

train )
) (2)

Using the definition above, we can extend our graph multi
sets to a weighted version where GW = {{(Gi,W (Gi)) :
Gi ∈ G}}, so for Ggen we will have a corresponding Ggen,W .
Furthermore, let ϕ be a metric that can compare two dis-
tributions and handle weighted samples, we can define our
meta-metric as:

ϕVV(G(ℓ,j)
held,1,G

(ℓ,j)
gen,W ;ϕ) = ϕ(G(ℓ,j)

held,1,G
(ℓ,j)
gen,W ) (3)

For two-sample tests, we will use an estimate of the number
of effective samples based on [Monahan, 2011, Sec. 12.4]
defined as:

Neff(G(ℓ,j)
gen,W ) =

(
∑

(Ḡi,W (Ḡi)∈G(ℓ,j)
gen,W

W (ℓ,j)(Ḡi))
2∑

(Ḡi,W (Ḡi)∈G(ℓ,j)
gen,W

W (ℓ,j)(Ḡi)2
. (4)

3.2.1 Concrete Instantiation of the Metric via KS
Statistics

As one instantiation for our generic framework, we can
choose ϕ to be a weighted version of a two-sample KS
statistic. One of the reasons for choosing the KS statistic is
that its values are always between 0 and 1, and its weighted
version can handle weighted samples from two distributions.
Given any two weighted graph datasets G1,W1

and G2,W2
.

The empirical weighted KS statistic of a specific graph
property function h(·) with Zi = h(Gi) can be defined as
follows:



(a) ψ = 1, ϵ = 0 (b) ψ = 10, ϵ = 0 (c) ψ = 10, ϵ = 0.1 (d) ψ = 1000, ϵ = 0 (e) ψ = 1, ϵ = 1

Figure 3: The Figure showcases stacked conditional split probabilities p(Sℓ|Uℓ) obtained using VV with different sharpness
ψ and uniform mixing parameter ϵ. In (a), the split distributions may overlap too much when ψ = 1. In (b), the splits are
sharper but still smooth. In (c), the uniform mixing parameter allows all splits to have some support. In (d) and (e), we
demonstrate the extremes of our approach that yield either quantile splits as ψ → ∞ or uniform splits as in standard CV if
ϵ = 1.

ϕKS(G1,W1
,G2,W2

;h) = sup
Gi

|F̂W1(h(Gi))− F̂W2(h(Gi))|

= sup
Zi

|F̂W1(Zi)− F̂W2(Zi)|, (5)

where F̂W1(z) =
1∑
iWi

∑
iWi1(Zi≤z) is the weighted em-

pirical CDF associated with G1,W1 and similarly for F̂W2(z)
associated with G2,W2 . For our specific case, we want to ob-
tain that metric between our unweighted G(ℓ,j)

held,1 dataset (we
can assume it’s re-weighted by ones) and the re-weighted
generated samples G(ℓ,j)

gen,W with the chosen graph property
function hℓ′ we would like to evaluate on, therefore we’ll
have:
ϕVV(G(ℓ,j)

held ,G
(ℓ,j)
gen ;ϕKS, hℓ′) = ϕKS(G(ℓ,j)

held,1,G
(ℓ,j)
gen,W ;hℓ′),

(6)
where ℓ′ ∈ {1, ..,m} and where ℓ′ ̸= ℓ. For an illustration of
our unbiasing and re weighting procedure refer to Figure 2b
(A full version of the figure is presented in Appendix B).
We also prove that this chosen metric will converge to zero
if the model generalizes well with the rate of convergence
depending on the number of samples in the dataset. Below
we state the theorem, while the full proof is presented in
Appendix F.

Theorem 1 (ϕKS(G(ℓ,j)
held,1,G

(ℓ,j)
gen,W ;hℓ′) consistent). Using VV

for generating data splits and corresponding datasets G(ℓ,j)
train ,

G(ℓ,j)
held and using an implicit generator Ω trained on G(ℓ,j)

train

to generate data G(ℓ,j)
gen .

Then, if G(ℓ,j)
gen is generated with the same distribution as

G(ℓ,j)
held , for any ϵ ∈ [0, 1],

P (ϕKS(G(ℓ,j)
held,1,G

(ℓ,j)
gen,W ;hℓ′) > ϵ) ≤

4 exp

(
−2min(|G(ℓ,j)

gen |, |G(ℓ,j)
held |)

( ϵ
2

)2
)
, (7)

Implementation of Vertical Validation The comprehen-
sive implementation details are presented in Appendix E,
but we summarize a few key points here. First, we use a

smoothed version of the empirical CDF instead of the true
CDF of graph properties. Second, we Kernel Mean Match-
ing (KMM) [Huang et al., 2006] to estimate the importance
weights. Lastly, to sample from the generative model, we
iteratively generate samples until the count of effective sam-
ples reaches a predetermined fixed number.

4 EXPERIMENTS

In our experiments, we first demonstrate the effectiveness
of our method in measuring the generalization of graph
generative models. Once this foundation is established, we
proceed to compare different graph generative models using
our approach.

4.1 VALIDATING THE EFFECTIVENESS OF VV

For the experiments in this section, we focus on one split
property ℓ and one split index j in VV, similar to concen-
trating on a single fold in the traditional CV scheme, which
we will denote as HV for Horizontal Validation. We also
opt to use data with a known distribution, providing ac-
cess to ground truth for generating additional samples when
necessary. We generate 500 Erdős-Rényi random graphs
[Erdős and Rényi, 1960] with nnodes = 20 and p = 0.5.
Additionally, we generate 500 samples of the community
dataset (which we refer to as Comm20), consisting of two
equally sized communities with nnodes ranging between 6
and 10 per community (12-20 in total). The probability of
an edge within each community is p = 0.7, while across
communities, it’s a function of the number of nodes within
a community, pint = 0.1

nnodes/2
.

In our experiments, we explore five possible model types:
1) E.Memo, Exact Memorization, represents a model that
memorizes the original training data, then sample “new"
graphs only by bootstrapping from it. 2) A.Memo, Approx-
imate Memorization, represents a model that memorizes
the training data but introduces subtle variations during
sampling by adding or removing an edge from graphs in



the memorized data. 3) Oracle, represents a model that is
capable of generating data directly from the ground truth
distribution (For Erdős-Rényi graphs the parameters of such
model is nnode = 20 and p = 0.5, for Comm20, the parame-
ters of such model is nnode = 12− 20 and p = 0.7), which
serves as the benchmark for the ideal generative model; 4)
Close, representing a model that posses the ability to gener-
ate data from a distribution that is somewhat “close" to the
ground truth distribution (generating new graphs for Erdős-
Rényi with nnode = 20 and p = 0.45, and for Comm20
with nnode = 12− 20 and p = 0.65). 5) Far, representing a
model that simulates under fitting as it generates data from
a distribution that is not close enough to the ground truth
(generating new graphs for Erdős-Rényi with nnode = 20
and p = 0.4, and for Comm20 with nnode = 12 − 20 and
p = 0.6).

To illustrate the usefulness of our VV approach in model
selection, we use VV with ϵ = 0.01, ℓ = 2 (corresponding
to the split property: number of triads), ψ = 10 and k = 5
to create a train-test split. We choose to hold out the last
split corresponding to j = 5 and we will refer to that part
as v-test and to the parts corresponding to j = 1, 2, 3, 4 as
train. Next we use VV again to further split the train part.
In this case we use ϵ = 0.01, ℓ = 2, ψ = 10 and k = 4
to create a train-val split. We again choose to hold out the
last split corresponding to j = 4 and will refer to it as v-val,
while the splits j = 1, 2, 3 are referred to as v-train. Then
in an alternate setting, we use HV (which we can achieve
by adjusting our model parameters to ϵ = 1 and ψ = 1)
also on the train part to create train-val splits or folds, we
assign the label of h-val to one of those folds (since they
are all similar) and the rest we label h-train. The general
idea is that v-test is an area we are interested in but don’t
have access to, traditionally we would use HV and splits
like h-train/h-val to choose the best model. However we
argue that this approach isn’t ideal if the goal is having a
model capable of generalizing to areas of thin support, and
that using a split like v-train/v-val can help us choose the
best model for that task. To illustrate this, we train the five
models that we previously introduced on Erdos-Renyi and
Comm20 datasets, each of the models is trained and tested
on train/v-test, v-train/v-val and h-train/h-val (those splits
are illustrated in Figure 12 in Appendix D), we then report
the averaged KS for testing on the average degree (ϕDks)
and the average clustering coefficient (ϕCks) properties for
all models and split types in Figure 4, where we see some
trends. First, in the results on h-val, we see that E.MEMO
and A.MEMO seem to have lower KS values than oracle,
this can be explained by the fact that both these models
care only about in-distribution performance, and as such
can achieve low results compared to the oracle that should
have been the best model if we hadn’t initially held out v-
test ie. the oracle produced data covering all of the support,
but our h-val only covers part of that support and hence
HV viewed the performance as inferior. Second, we notice

that the oracle for both of our cases (v-val and v-test) is
indeed regarded as the superior model since our goal is to
give higher rankings to models that generalizes better. Third,
as a side effect of our setting we were also able to detect
that E.MEMO and A.MEMO are models that are inferior to
oracle since they won’t be able to generalize. To summarize,
if a user was interested in a model capable of generalizing
to regions of thin support, then the conventional HV setting
is misleading in model selection, while a VV setting is
favourable.

4.2 COMPARING MODELS WITH VV

4.2.1 Using VV in a Train-Val-Test context

Building on the empirical validation of our metric presented
in the previous section, we now proceed to compare real
graph generative models on realistic datasets using our VV
method. We have implemented our approach in a manner
consistent with the validation experiments described in sec-
tion 4.1. However, in this section, the different models cor-
respond to various representative graph generative models.

Models and Datasets We select two representative graph
generative models for comparison: DiGress [Vignac et al.,
2022], a discrete diffusion-based model that introduces noise
to graphs and then trains a graph transformer to revert the
process, and GDSS [Jo et al., 2022], a score-based diffusion
model employing stochastic differential equations (SDEs)
to generate node, edge attributes, and adjacency matrices
jointly. For this experiment, we choose Qm9, a commonly
used molecular dataset of 130,831 small molecules. We se-
lected five properitie (i.e., m = 5) for Qm9: average degree,
molecular weight (Mlwt), Topological Polar Surface Area
(TPSA) [Prasanna and Doerksen, 2009], ring counts, and
the logarithm of the partition coefficient (logp). We prepro-
cessed the dataset by removing hydrogen atoms and filtering
out molecules where any of the five properties could not be
calculated using the rdkit package. Additional experimental
details are outlined in Appendix G.

Model Comparison Experiment We aim at judging the
performance of different generative models by their abil-
ity to generalize. To accomplish this, we use TPSA as the
split property (which corresponds to index ℓ = 3) with
parameters ψ = 10, ϵ = 0.01, k = 5 and hold out the
split corresponding to j = 5 as the v-test portion. Then,
we further split the data with k = 4 and hold out the split
corresponding to j = 4 as the v-val portion. The remaining
splits j = 1, 2, 3 correspond to v-train and are used for train-
ing the model. We then evaluate the performance of these
models with respect to v-val and v-test for each model type
by generating samples from the trained models such that the
effective number of samples is neff = min(1000, |G(ℓ,j)

held |).
Finally, we calculate the ϕKS scores on the five properties
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(b) Results for Comm20 graphs

Figure 4: On both Erdos-Renyi and Comm20 datasets, our proposed vertical validation approach (VV) can select the best
model for generating in thin support as shown by the test line, whereas the standard train-test splitting (CV) tends to favor
memorization despite poor generalization to the thin support regions. Note that for CV, the oracle distribution seems worse
than memorization because oracle is generating from the true distribution rather than the shifted training distribution—thus
it appears to CV that memorizing is actually a better option. This phenomena does not happen in our validation approach
because we aim to find a model that generalizes to the thin support well. This also showcases that our approach is better able
to detect memorization than the standard train-test split validation.

Table 1: ϕKS values for different test properties for Qm9
when compared against v-val and v-test where ϕD

ks, ϕ
Mlwt
ks ,

ϕRC
ks , ϕLogP

ks , ϕAvg
ks are average degree, molecular weight, av-

erage ring counts, average logP, and the total average over
all these properties respectively

Model ϕD
ks ϕMlwt

ks ϕRC
ks ϕLogP

ks ϕAvg
ks

vv
al DiGress 0.206 0.531 0.206 0.048 0.248

GDSS 0.053 0.343 0.053 0.083 0.133

vt
es

t

DiGress 0.216 0.568 0.204 0.109 0.274
GDSS 0.058 0.444 0.058 0.123 0.171

of interest excluding the cases when the test property is the
same as the split property (ℓ′ ̸= ℓ).

We see in Table 1 that our VV method using v-val is able to
correctly select the model which will perform best on thin
support, i.e., perform the best on the held-out v-test. In most
cases, GDSS is better on both v-val and v-test, but in the
case of LogP, DiGress is better on both v-val and v-test.

Both models seem to struggle when it comes to molecular
weight suggesting the inherent difficulty of generalizing
over that property. This result showcases that using VV can
properly select between model classes when generalization
on thin support is desired—and this selection may depend
on the test property.

Exploratory Visualizations: To explore the properties of
our metric better, we used the samples generated from the
experiment above, sorted them in descending order accord-
ing to the weights assigned by our approach, then filtered for
validity and novelty to get the top weighted 100 molecules.
We then visualized the top four of these molecules gener-
ated by DiGress when testing against v-test in Figure 5 and
visualized the rest of the top generated molecules in Ap-

pendix G. Furthermore, in Figure 6, we indicate the value
of the split property (TPSA) of those 4 molecules and their
location with respect to the entire distribution of the TPSA
property. As expected, the samples with the higher weights
tend to be from the region that the data was held from.

Figure 5: Example of the generated molecules from DiGress.
These are the top 4 -after filtering for validity and novelty-
according to the weights assigned by our method when using
v-test as the held out portion.

4.2.2 Using VV in a Cross-Validation-Like Context

In this section, we choose to train exhaustively on all the
splits from the corresponding split properties and split in-
dices. This approach is similar in spirit to cross-validation,
but rather than having k folds only, we will have k × m
folds, corresponding to each split index j ∈ 1, .., k and split
feature ℓ ∈ 1, ...,m. For our experiments, we chose k = 4
and m = 5 resulting in a total of 20 different data splits. We



Figure 6: Both figures show the distribution of the TPSA property for v-train/v-val/v-test. As expected the top four highest
weighted molecules after filtering for validity and novelty are in high density regions of v-val (left) and v-test (right). The
distribution of v-train is in blue and is overlayed with the distribution of the v-val portion in yellow and v-test in green.
We plotted where would our top molecules lie with respect to their calculated TPSA value (the value of the y-axis is not
meaningful for the molecules, we varied it across the molecule for ease of visualization). We use the first letter to signify
which model generated the sample D for DiGress and G for GDSS.

trained each model on our splits separately and generated
samples from these trained models such that the effective
number of samples is neff = min(1000, |G(ℓ,j)

held |). Finally,
we evaluated the performance of these model on the 5 prop-
erties of interest excluding the cases when the test property
is the same as the split property (ℓ′ ̸= ℓ).

In addition to the representative models mentioned in sec-
tion 4.2.1, we also include an additional model GGAN
[Krawczuk et al., 2021], which is a GAN-based model that
employs adversarial training to generate graphs. This model
is suitable only for non molecular datasets as node proper-
ties are not easily incorporated. Thus we choose to evaluate
all 3 models (DiGress, GDSS and GGAN) on a variation
of the previously used community dataset which we de-
scibe in more details in Appendix G and refer to as Comm
dataset, and we choose to evaluate DiGress and GDSS on
Qm9 again in this current context. We elaborate more on
the results of Comm dataset below, and also present the
results on Qm9 in Table 3 for completeness. For the results
on the Comm dataset, We aggregate according to different
use cases depending on the user’s interest.

Use Case 1: The user seeks the best model for overall perfor-
mance across all predefined m properties: we calculate the
average ϕKS across all combinations of ℓ, j, and ℓ′, with
ℓ ̸= ℓ′, and we report a single averaged value per model.
Lower values indicating better generalization capabilities.
To demonstrate this case, we report the overall average per-
formance for: DiGress: 0.567 GDSS: 0.51 and GGAN: 0.17.
From these numbers, it seems that GGAN performed the
best, followed by GDSS, with DiGress falling slightly be-
hind. It can also be useful to consider more specific use
cases rather than this broad one.

Use Case 2: The user aims to identify a model that excels
in generalizing over a specific property of interest: we can
compute separate average ϕKS values for each test property
ℓ′ by averaging across all (ℓ,j) splits s.t ℓ′ ̸= ℓ. This will
enable the user to make decisions based on the performance

Table 2: Average ϕKS values for different test properties in
Use Cases 2 and 3: ϕD

ks, ϕ
T
ks, ϕ

S
ks, ϕ

C
ks, ϕ

M
ks are average de-

gree, average number of triads, average shortest path length,
average clustering coefficient, average maximal cliques, re-
spectively

Model ϕD
ks ϕT

ks ϕS
ks ϕC

ks ϕM
ks

U
se

C
as

e
2 DiGress 0.678 0.59 0.779 0.493 0.333

GDSS 0.546 0.511 0.727 0.484 0.285
GGAN 0.334 0.108 0.188 0.165 0.057

U
se

C
as

e
3 DiGress 0.688 0.601 0.783 0.437 0.294

GDSS 0.516 0.47 0.709 0.492 0.293
GGAN 0.376 0.06 0.155 0.167 0.044

of their specific property of interest. We report the results
of this use case in Table 2. Based on the results, GGAN
generally outperforms the other models. GDSS occupies
middle ground, DiGress consistently falls behind. To fur-
ther understand this behaviour, We examined the ECDFs
of the generated properties for the models, and compared
them to the ECDFs of the held-out data (see Appendix G
for a list of Figures), and noticed an overall trend where
the original data (held-out) tend to have pronounced dis-
continuities, a characteristic which GGAN tend to replicate
with fewer modes. In contrast, models such as DiGress and
GDSS demonstrate smoother distributions. Additionally, it
appears that average shortest path length is the most chal-
lenging property for GDSS and DiGress models to capture
and generalize correctly. Through examining the ECDFs
we conjecture that GDSS and DiGress are not able to con-
centrate the generations near the middle of the distribution.
Given their reliance on diffusion-based mechanisms, this ob-
servation could imply that while these models may perform
adequately at higher noise levels, they exhibit diminished
precision at lower noise levels.

Use Case 3: The user seeks a model that generalizes well
on the edges of the distribution for a particular property: we
can compute the average ϕKS of test properties ℓ′ across all
combinations of ℓ values (with ℓ′ ̸= ℓ) and for only j = 1



and j = 4 (since these particular splits are focused on the
edges of the distribution, as illustrated in Figure 2a). The
results are presented in Table 2 and are also consistent with
Use Case 2, and they reveal distinct strengths and weak-
nesses in capturing various properties. GGAN consistently
exhibits strong performance across most of the properties,
while GDSS remains at second place. DiGress, although
performing slightly better than GDSS in modeling average
clustering coefficients and having a similar performance to
GDSS in modeling maximal cliques, tends to rank lower
overall.

For Qm9 dataset, the scores for use case 1 for DiGress were:
0.174, and for GDSS were: 0.096. The results of use cases
2 and 3 are presented in Table 3. Overall the results follow
a similar trajectory to these of the Comm dataset in this
setting, that is the performance of GDSS and DiGress were
close, but GDSS overall achieves a better score. It is also
worth comparing the results previously introduced in sec-
tion 4.2.1 in Table 1 (and in particular those under v-val) to
the current results of use case 2. We see that overall the trend
didn’t change, however the scores on the Mlwt property got
better in the later suggesting that the particular split (i.e. the
combination of the choice of split property ℓ and split index
j ) chosen in section 4.2.1 was a particularly hard one, as
averaging over multiple splits made the scores better. This
again emphasize the role of choosing the split features, and
we discuss this point in more details in Appendix G and in
section 5

Table 3: Average ϕKS values for different test properties for
Use Cases 2 and 3: ϕD

ks, ϕ
Mlwt
ks , ϕTPSA

ks , ϕRC
ks , ϕLogP

ks are average
degree, molecular weight, TPSA, average Ring Counts, and
logp

Model ϕD
ks ϕMlwt

ks ϕTPSA
ks ϕRC

ks ϕLogP
ks

U
se

C
as

e
2

DiGress 0.136 0.368 0.082 0.128 0.156
GDSS 0.088 0.171 0.080 0.080 0.059

U
se

C
as

e
3

DiGress 0.113 0.347 0.067 0.102 0.154
GDSS 0.100 0.173 0.067 0.086 0.070

5 DISCUSSION AND CONCLUSION

Generating Molecules on Thin Support Regions In
practice, novel molecule generation may focus on generat-
ing molecules within the thick support (rather than thin sup-
port) of the marginal property distributions because those
molecules would be most similar to known molecules. How-
ever, we argue that evaluating generation on thin support is
still important because thin support regions in the joint distri-
bution could be hidden in the thick support of marginal dis-
tributions, especially when considering a high-dimensional
distributions. For example, consider samples on a 3D sphere.
When projected onto any of the three dimensions, it will
look like the support is dense near zero. However, the dis-
tribution has no support at or near the all zero vector. Thus,

we hypothesize that in high dimensional spaces, there are
many thin support regions that are hidden. When we system-
atically create thin support regions using our approach, the
goal is to measure the model’s ability to generalize to thin
support in general (including thin support of the joint distri-
bution). Thus, while in practice novel molecule generation
may focus on generating molecules with the thick support
of the marginal property distributions, we test the ability of
the model to generate in those regions as this will reflect its
ability to generate in thin support of the joint distribution.

Limitations Our approach when used exhaustively as pre-
sented in the experiments of section 4.2.2 can be computa-
tionally burdensome, however practically we would choose
only a single split feature and a single split index as we did
in section 4.2.1 and this would avoid the added computa-
tional cost. While we recommend choosing a split feature
that is maximally dependent on other features as we discuss
in Appendix G, choosing the split property is still an area
of potential optimization. Additionally, because our method
depends heavily on the joint distribution of the chosen prop-
erties, we recommend that the user pre-examine the property
distributions and carefully select relevant properties, where
properties with smooth distributions will likely be better for
evaluation. Also, our method is limited to 1-dimensional
properties. Generalizing our method to multivariate splits is
an area for future work. Finally, we note that estimating sam-
ple weights is complex and while our kernel mean matching
(KMM) approach worked reasonably well in our case, choos-
ing the kernel parameters or using more advanced weight
estimation approaches is an open area of exploration (more
discussion in Appendix E). Therefore, we hope our work
opens up new avenues of research

Conclusion In summary, we introduced Vertical Valida-
tion, a new framework for biased splitting and reweighting,
to evaluate the generalizability of implicit graph generative
models on thin support regions. We developed a practical
algorithm to perform this given a set of graph properties.
We demonstrated that this validation approach can be used
to select models which will generalize better to thin sup-
port regions. Ultimately, we hope that our approach is a
step in establishing more concrete and robust evaluation
methodologies for graph generative models.
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A MORE DETAILS ON THE PROBLEMS OF MEAN BASED METHODS

We illustrate the problem of man based methods in Figure 7 where we show that using cross-validation with the difference in
means or the more complex Wasserstein-1 distance2 does not provide useful signal for selecting a model whereas negative
log-likelihood provides a strong signal. In summary, prior evaluation approaches for implicit generative models are limited
in their ability to measure performance on thin support regions. In Figure 7, we also show that our VV approach provides
reliable signal for selecting the correct model in this toy example.

B DETAILED ILLUSTRATION OF VV’S REWEIGHING PROCESS

In the main paper in Figure 2a, we presented a figure that illustrates the splitting steps of our approach, and here in Figure 8
we illustrate the complete reweighting process of our VV approach. In this illustration, we focus on a particular split and
split feature (for j = 1 and ℓ = 2) and where the total number of properties is m = 2.

C ILLUSTRATION OF BETA SPLITS

In section 3.1 we presented the Beta Splits, and here we add more figures that illustrate how Beta-based splitting works with
different parameters. Figure 9 shows an example for k = 4 beta distributions (and ψ = 1) and Figure 10 shows the same
example but with sharpness of 10, i.e., ψ = 10. In Figure 11, we show an illustration of using the uniform mixing parameter
ϵ to ensure some support on the whole range of the uniform.

2Wasserstein-1 distance is also an integral probability metric like MMD but uses a different class of functions in the optimization
problem. Wasserstein-1 was chosen for this illustration because it can be computed efficiently and has no hyperparameters.



Figure 7: While using standard cross-validation with mean difference or Wasserstein-1 metrics does not provide reliable
signal to select the right model, our vertical validation (VV) method with mean difference or Wasserstein-1 provides reliable
information on the best model and matches the ranking of the negative log-likelihood. This illustration uses the 2D dataset
from Figure 1 as ground truth, and the relative density of the “thin region” is varied to represent different estimated models
(top). For both standard validation and vertical validation, we use 10 folds and 30 repetitions and show the standard deviation
for each method.

Figure 9: First 4 figures are the normalized PDF for 4 Beta distributions parameterized by a set of shifting parameters.
The fifth figure is the aggregation of the 4 figures to the left, and the right most figure is the conditional probabilities of a
projected point falling in a split based on the previously described Beta distributions where each split have a different color.

Figure 10: The same plot as Figure 9 except where the sharpness is 10, i.e. ψ = 10. We notice now that the conditional
probabilities computed have sharper edges as seen in the rightmost figure.
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Figure 8: (1) using G(ℓ,j)
train we train a generative model which then generates G(ℓ,j)

gen . For the generated dataset we can compute
the properties of interest (Z̄1 and Z̄2). (2) Use G(ℓ,j)

held to calculate the weights W (ℓ,j) which will then be used in (3) to
re-weight the samples in G(ℓ,j)

gen by applying those weights to the calculated properties. The Density figures above show
the difference in distribution between the re-weighted and un-weighted versions of the generated data as well as how they
compare to the held-out part of the data. (4) Finally we can compute the KS statistic between the weighted G(ℓ,j)

gen and G(ℓ,j)
held

as detailed in Equation 6.



Figure 11: Leftmost is the mixture of betas for the different splits along with the uniform ϵ = 0.1 (and using ψ = 10).
Middle is the stacked probabilities. Rightmost are the probabilities normalized by the density.

D ILLUSTRATION OF THE SPLITTING APPROACH DESCRIBED IN SECTION 4.1

Figure 12: An illustration demonstrating the created splits described in the main section

E IMPLEMENTATION DETAILS OF VV

We discuss a few implementation details here including how to project samples to the unit interval via the empirical CDF,
how to estimate importance weights via kernel mean matching, and how to generate enough samples from the model (as
they depend on the importance weights).

E.1 A GENERALIZATION OF THE EMPIRICAL CDF

To project samples onto the unit interval, we use a generalization of the empirical CDF (ECDF) where the test points may be
different from the training points and where ties (e.g., in discrete spaces) can be handled appropriately. The core idea is that
for test points we want to project, denoted by A, we find the nearest point in the base dataset (B) and evenly spread out the
projections corresponding to the ECDF interval. We begin with an illustration to explain this in both continuous and discrete
cases in Figure 13 and Figure 14 respectively. To define it formally, we first begin with a simpler randomized uniform
projection method and then develop the non-randomized version that yields a deterministic low discrepancy sequence, also
known as a centered regular lattice [Dick and Pillichshammer, 2010, Chapter 1].
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Figure 13: On the left in orange are continuous valued base samples of dataset B after being projected onto the uniform
space using the ECDF. On the right in green are the continuous valued test samples of dataset A after being projected onto
the uniform space using the nearest point in the base dataset B
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Figure 14: On the left in orange are discrete valued base samples of dataset B after being projected onto the uniform space
using the ECDF and breaking ties between the same points at random. On the right in green are the discrete valued test
samples of dataset A after being projected onto the uniform space using the nearest point in the base dataset B. Note that if
the test samples are outside the original data (as the two test points at 3.0), they will be mapped to the nearest base point (2.0
in this figure) and then projected evenly onto the interval spanning the corresponding part of the ECDF.

Preliminary Notation. First, let us define the left and right empirical CDFs (the standard ECDF is the right empirical
CDF). Informally, these will give us the bottom and top of each “step” in the empirical CDF. Formally, given a 1D dataset C
as:

F̂
(−)
C (a) =

1

|C|
∑
ci∈C

1(ci < a) (8)

F̂
(+)
C (a) =

1

|C|
∑
ci∈C

1(ci ≤ a) , (9)

where 1(·) is an indicator function that is 1 if the condition is true and 0 otherwise. Note that the only difference between
these is that in the left ECDF F̂ (−)

C , the condition does not include equality.

Naïve Randomized Projection to Unit Interval. First, we will consider a randomized projection to the uniform based
on the left and right ECDFs defined above. Formally, with two scalar datasets, A = {ai ∈ R}|A|

i=1 and a base dataset



B = {bi ∈ R}|B|
i=1, we define our function as:

Frand(A;B) ≜ {(1− Vi)F̂
(−)
B (b∗(ai)) + ViF̂

(+)
B (b∗(ai)) : ai ∈ A} , (10)

where b∗(ai) := argminb∈B ∥ai − b∥22 represents the closest point in B to ai and Vi ∼ Uniform(0, 1) is an independent
uniform random variable corresponding to each value ai ∈ A. This projects each point ai uniformly over the interval
[F̂

(−)
B (b∗(ai)), F̂

(+)
B (b∗(ai))]. In the special case where A = B, i.e., the test points are the same as the base dataset, then

this produces a marginally uniform distribution over [0, 1] because each test point is randomly projected on the 1/|B| interval
of the ECDF corresponding to itself. Even if there are ties in the dataset (e.g., with a discrete dataset), this will still produce a
uniform marginal distribution because the ECDF will jump by the nties/|B|, where nties is the number of ties for a particular
value in B.

Low Discrepancy Projection to Unit Interval. The main drawback to the projection method described above is that it is
random and may not evenly space out points across the unit interval [0,1], i.e., the sequence may not have low discrepancy
compared to evenly spaced points [Dick and Pillichshammer, 2010]. Therefore, we propose a non-randomized version of the
above projection method that evenly spaces test points across the corresponding interval instead of choosing a random point
in the interval, i.e., we replace Vi with a deterministic function. This form of spacing is known as a regular centered lattice
[Dick and Pillichshammer, 2010, Chapter 1]. Formally, we define our non-randomized function as:

F (A;B) := {(1− v(ai))F̂
(−)
B (b∗(ai)) + v(ai)F̂

(+)
B (b∗(ai)) : ai ∈ A} , (11)

where b∗(ai) is the closest point as defined in the randomized version but we replace a random Vi with a determinstic
function of the sets defined as follows:

v(ai) :=
sorted_index(ai,A(ai))− 0.5

|A(ai)|
(12)

A(ai) := {aj ∈ A : b∗(aj) = b∗(ai)} . (13)
where A(ai) represents the equivalence class of all points in A that have the same closest point in B and
sorted_index(ai,A(ai)) returns the index (with one-indexing) of the element in the multi-set of A(ai) after sorting
the elements where ties are broken arbitrarily. Note that v(ai) ∈ [0, 1] by construction and it evenly spaces the points
in the equivalence class of A(ai) over the interval corresponding to the equivalence class. For example, if ai = 1 and
A(ai) = {1, 0.5, 1.5}, then v(ai) =

index(ai,A(ai))−0.5
|A(ai)| = 2−0.5

3 = 1.5
3 = 0.5, i.e., it would project this point to the center

of the interval [F̂ (−)
B (b∗(ai)), F̂

(+)
B (b∗(ai))].

E.2 COMPUTING THE IMPORTANCE WEIGHTS

We Used Kernel Mean Matching (KMM) [Huang et al., 2006, Yu and Szepesvari, 2012] implemented inde Mathelin et al.
[2021] to directly estimate the ratio in Equation 2 using the generated and held-out samples. For this approach we used an
RBF kernel and experimented with different values of kernel bandwidth to finally set on using 10

σ(Zi,ℓ)
where σ(Zi,ℓ) is the

standard deviation of the held portion of the data.

E.3 PROCEDURE FOR GENERATING SAMPLES FROM THE MODEL

Because the samples are re-weighted based on the importance weights, the effective number of samples for statistical tests is
less than the number of generated samples. Therefore, we choose to generate the same number of effective samples for each
method where the number of effective samples is defined as in the main paper but repeated here for clarity:

Neff(G(ℓ,j)
gen,W ) =

(
∑

(Ḡi,W (Ḡi)∈G(ℓ,j)
gen,W

W (ℓ,j)(Ḡi))
2∑

(Ḡi,W (Ḡi)∈G(ℓ,j)
gen,W

W (ℓ,j)(Ḡi)2
. (14)

Specifically, we set a target threshold of the number of effective samples t = min(1000, |G(ℓ,j)
held |). We iteratively generated

batches of t samples and checked if the concatenated samples reached the number of effective samples, and we stopped
generating once it reached the desired value.



F PROOFS

Proposition 1. For any ϵ < 1 and ψ ∈ {1, 2, . . . } and assuming the splits are equal size in expectation, i.e., p(Si,ℓ) = 1
k , if

p(Ui,ℓ|Si,ℓ) = (1−ϵ)pBetaMix(Ui,ℓ|Si,ℓ) + ϵpUnif[0,1](Ui,ℓ) , where

pBetaMix(Ui,ℓ|Si,ℓ=j) =
1

ψ

ψ∑
a=1

pBeta[αj,a,βj,a](Ui,ℓ)

and where αj,a ≜ (j − 1)ψ + a and βj,a ≜ ψk + 1− αj,a,

then p(Ui,ℓ) = Uniform[0, 1] and the splits will be biased, i.e., p(Si,ℓ|Gi) = p(Si,ℓ|Ui,ℓ) ̸= p(Si,ℓ) or equivalently
I(Si,ℓ, Gi) > 0.

Proof. In the proof below we suppress the dependency on i and ℓ when needed for simplicity. To prove that P (Ui,ℓ) =
Uniform[0, 1] we first prove that this is true for pBetaMix(Ui,ℓ|Si,ℓ) by marginalizing over the joint distributions of Ui,ℓ and
Si,ℓ to get:

k∑
j=1

pBetaMix(S = j, U) (15)

=

k∑
j=1

p(S = j)pBetaMix(U |S = j) (16)

=

k∑
j=1

P (S = j)
1

ψ

ψ∑
a=1

pBeta[αj,a,βj,a](U) (17)

=
1

ψK

k∑
j=1

ψ∑
a=1

pBeta[αj,a,βj,a](U) (18)

=
1

ψK

k∑
j=1

ψ∑
a=1

pBeta[(j−1)ψ+a,kψ+1−((j−1)ψ+a)](U) (19)

Let n = kψ, r = (j − 1)ψ + a then we can rewrite the above as:

=
1

n

n∑
r=1

pBeta[r,n+1−r](U) (20)

= pUnif[0,1](U) (21)

Equation 20 is similar to Segers et al. [2017] results in section 2.1 if we substitute d = 1 and n = kψ in their results, and
use that to arrive to the last equality leading to Equation 21.

Next, we show that this holds true for p(U |S) as follows:
k∑
j=1

p(S = j, U) (22)

=

k∑
j=1

p(S = j)p(U |S = j) (23)

=

k∑
j=1

p(S = j)[(1−ϵ)pBetaMix(U |S) + ϵpUnif[0,1](U)] (24)

= ϵpUnif[0,1](U) + (1− ϵ)

k∑
j=1

p(S = j)pBetaMix(U |S = j) (25)

= pUnif[0,1](U) . (26)

Invoking the previous results, we see that the above is also uniform.



To prove that the splits will be biased, we will use mutual information as follows: Let p(U, S) denote the joint distribution
of p(Ui,ℓ, Si,ℓ). The mutual information for ϵ < 1 can be written as:

I(U, S) ≡ KL(p(U, S), p(U)p(S)) (27)

= Ep(S)[Ep(U |S)[log
p(U, S)

p(U)p(S)
]] (28)

= Ep(S)[Ep(U |S)[log
p(U |S)p(S)
p(U)p(S)

]] (29)

= Ep(S)[Ep(U |S)[log
p(U |S)
p(U)

]] (30)

= Ep(S)[KL(p(U |S), p(U))]] (31)
> 0 , (32)

where the last inequality is because p(U) is a uniform distribution but p(U |S = j) is not uniform whenever ϵ < 1, i.e., if
ϵ < 1, then p(U |S = j) ̸= p(U),∀j, and thus the KL must be positive for all terms in the expectation.

Remark on Mutual Information Between Splits We also briefly discuss additional design points of the mutual informa-
tion between splits and graphs. If ϵ = 0 and ψ = 1, since p(U) = pUnif[0,1], we also know that the KL terms are equal to
negative differential entropy of the Beta distributions which is known in closed form, i.e.,

KL(pBeta[α,β], pUnif[0,1]) ≡ −H(pBeta[α,β])

= −[log B(α, β)− (α− 1)γ(α)− (β − 1)γ(β) + (α+ β − 2)γ(α+ β)] , (33)
where B(·, ·) denotes the the Beta function and γ(·) denotes the digamma function.

Furthermore, if 0 ≤ ϵ ≤ 1 and we consider the term KL((1− ϵ)pBeta[α,β] + ϵpUnif[0,1], pUnif[0,1]) which we will refer to as
KLϵ, we know that at ϵ = 1 the term becomes KL(pUnif[0,1], pUnif[0,1]) = 0, and on the other extreme at ϵ = 0, it becomes
KL(pBeta[α,β], pUnif[0,1]) which is known in closed form by the result above. Thus for any 0 < ϵ < 1, we are guaranteed to
have: 0 < KLϵ < −H(pBeta[α,β]).

Theorem 1 (ϕKS(G(ℓ,j)
held,1,G

(ℓ,j)
gen,W ;hℓ′) consistent). Using VV for generating data splits and corresponding datasets G(ℓ,j)

train ,

G(ℓ,j)
held and using an implicit generator Ω trained on G(ℓ,j)

train to generate data G(ℓ,j)
gen .

Then, if G(ℓ,j)
gen is generated with the same distribution as G(ℓ,j)

held , for any ϵ ∈ [0, 1],

P (ϕKS(G(ℓ,j)
held,1,G

(ℓ,j)
gen,W ;hℓ′) > ϵ) ≤

4 exp

(
−2min(|G(ℓ,j)

gen |, |G(ℓ,j)
held |)

( ϵ
2

)2
)
, (7)

Proof. Let F be the true data CDF we would like to generate, i.e., the true CDF of the graph property we are testing. Let
F̂

(i)
ni be the empirical CDF obtained from the implicit model after ni samples.3 Let F̂ (h)

nh be the empirical heldout CDF from
nh heldout samples. Finally, let F̂ (m)

nm be the empirical memorization CDF with nm memorization samples (we will use
F̂

(m)
nm rather than Fm in the theorem statement). By the Dvoretzky-Kiefer-Wolfowitz inequality with Massart’s universal

constant [Massart, 1990] we have that for an arbitrary empirical distribution Ĥn with n samples and its true distribution H ,
P (ϕKS(Ĥn, H) > d) ≤ 2 exp(−2nd2), ∀d > 0.

Note that ϕKS satisfies the triangle inequality, and hence,
ϕKS(F̂

(i)
ni
, F̂ (h)

nh
) ≤ ϕKS(F̂

(i)
ni
, F ) + ϕKS(F, F̂

(h)
nh

). (34)
By the total law of probabilities,

P (ϕKS(F̂
(i)
ni
, F ) < d) ≥ 1− 2 exp(−2nid

2)

and
P (ϕKS(F, F̂

(h)
nh

) < d) ≥ 1− 2 exp(−2nhd
2),

3While we prove the theorem statement with respect to an unweighted empirical CDF for the generated samples, we expect a similar
result to hold for a weighted empirical CDF where we use the number of effective samples as defined in the main paper in place of ni.



which together with Equation (34) yields
P (ϕKS(F̂

(i)
ni
, F̂ (h)

nh
) < d) ≥ (1− 2 exp(−2nid

2))(1− 2 exp(−2nhd
2))

≥ 1− 2 exp(−2nid
2)− 2 exp(−2nhd

2) + 4 exp(−2(nh + ni)d
2).

By the total law of probabilities, we obtain
P (ϕKS(F̂

(i)
ni
, F̂ (h)

nh
) > d) ≤ 2 exp(−2nid

2) + 2 exp(−2nhd
2)− 4 exp(−2(nh + ni)d

2)

≤ 2 exp(−2min(ni, nh)d
2) + 2 exp(−2min(ni, nh)d

2)

≤ 4 exp(−2min(ni, nh)d
2)

≤ 4 exp(−2min(ni, nh)(
d

2
)2)

Now, set ϵ ∈ [0, 1], then we have: P (ϕKS(G(ℓ,j)
held,1,G

(ℓ,j)
gen,W ;hℓ′) > ϵ) ≤ 4 exp

(
−2min(|G(ℓ,j)

gen |, |G(ℓ,j)
held |)

(
ϵ
2

)2)

G ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

In this section, we provide additional experimental details concerning the datasets, training setup, as well as additional
results and figures.

G.1 MORE INFORMATION ABOUT THE DATASETS

Community datasets: We used two variations of this dataset (referred to as Comm20 in section 4.1 and as Comm
in section 4.2.2) in our experiments. Both variations share the following, they are synthetic graphs made up by exactly
two equally sized communities, with number of nodes ranging from 12 to 20. Each of the communities are generated by
the random graph generator model, E-R model [Erdős and Rényi, 1960] with p = 0.7, and the number of edges added
between the two communities is with probability of 0.05 times the number of nodes in the graph. The variation used in
section 4.1 was generated using the parameters above using the code provided in the git repository of the official GDSS
model implementation 4 after adjusting the seeds in such a way to avoid exactly repeating the same graph, and we generated
500 samples.

The variation used by the experiments in section 4.2.2 was the original dataset available at the same GDSS repository 5

which contains 100 graphs. After close inspection of this dataset, we noted that it has multiple repeated graphs, due to
running the code with similar seeds more than once. In some sense these replications can be considered a form of leakage
when splitting the data, however with our approach since we are doing vertical splitting, identical samples are more likely to
belong to only v-train or only v-test. We leave it as a future work to thoroughly understand the effects of such repetitions.

Qm9: This dataset 6 contains 134k drug-like molecules which made up of at most 9 heavy (non Hydrogen) atoms: Carbon
(C), Oxygen (O), Nitrogen (N), and Flourine (F), and Hydrogen (H) bonding.

The dataset we ended up using after some preprocessing and filtering had a total number of 130,831 samples. We arrived at
this number by prepossessing the dataset by removing the hydrogen atoms from all the molecules, and removing all the
molecules where any of the 5 properties cannot be calculated by rdkit package. The 5 chosen properties for this dataset are
average degree (ϕD

ks), molecular weight (ϕMlwt
ks ), Topological Polar Surface Area (TPSA) (ϕTPSA

ks ) [Prasanna and Doerksen,
2009], ring counts (ϕRC

ks ), and the logarithm of the partition coefficient (logp) (ϕLogP
ks ).

G.2 TRAINING DETAILS FOR EACH GRAPH GENERATIVE MODEL

We chose the models: DiGress [Vignac et al., 2022], GDSS [Jo et al., 2022] and GGAN [Krawczuk et al., 2021] to evaluate.

4https://github.com/harryjo97/GDSS/blob/master/data/data_generators.py
5https://github.com/harryjo97/GDSS/blob/master/data/community_small.pkl
6https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/molnet_publish/qm9.zip

https://github.com/harryjo97/GDSS/blob/master/data/data_generators.py
https://github.com/harryjo97/GDSS/blob/master/data/community_small.pkl
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/molnet_publish/qm9.zip


DiGress Training. for the experiments of section 4.2.2 we trained DiGress on the Comm dataset, we set the number of
epochs to be 100,000 with a batch size of 256, a learning rate of 0.0002, and an AdamW optimizer. The model parameters
used for training were T = 500 diffusion steps, with a cosine noise schedule and 8 layers. Those were the default parameters
provided in the config files in the official code repository7.

For training DiGress with Qm9 dataset, we set the number of epochs to be 1000 with a batch size of 512, a learning rate of
0.0002, a weight decay of 10−12 and an AdamW optimizer. The model parameters used for training were T = 500 diffusion
steps, with a cosine noise schedule and 9 layers.

For the experiments of section 4.2.1, we used the same settings as mentioned above for the respective dataset but trained
with early stopping with a patience of 20 and monitoring the Negative log-likelihood (NLL) of the validation data (v-val).

GDSS Training The code used for GDSS is adapted from their official repository 8. The hyperparameters applied to
train the Community and Qm9 datasets are taken from the config files provided by the the author [Jo et al., 2022]. For
the Community datasets9, the number of epochs is 5000 with a batch size of 128, a learning rate of 0.01, with an Adam
optimizer and Exponential Moving Average (EMA). For Qm9 dataset10, the number of epochs is 300 with a batch size of
1024, a learning rate of 0.005, with an Adam optimizer and Exponential Moving Average (EMA).

For the experiments in section 4.2.1, we incorporated an early stopping criterion. Specifically, training was terminated if the
difference between the MMD loss (estimated partial scores, equation 5 in Jo et al. [2022]) for the training and validation sets
did not decrease below 1e− 10 for 5 consecutive epochs. This prevents overfitting and saves computational resources.

GGAN Training GGAN code is taken from SPECTRE [Martinkus et al., 2022] repository 11 with --use_fixed_emb
argument while training. Only Comm dataset is used with this model. The hyper-parameters to train the model are also
taken from the suggested commands for Comm in the mentioned repository: the number of epochs is up to 12000 with a
batch size of 10, a learning rate of 0.0001, with an Adam optimizer (both discriminator and generator).

G.3 CHOOSING THE SPLIT FEATURE

In section 4.1 we chose a single split property out of 3 possible properties, and in section 4.2.1 we chose one out of 5
possible properties. Intuitively, a split property which is completely independent of the other test properties would not cause
any (indirect) shift of the other properties. Thus, the marginal distributions of each property would be equal for every split.
This would not enable good evaluation of the generalization performance on the thin support since a model could just copy
the marginal distributions of the properties from the training split. Therefore, we choose to find a split property that has high
dependence with all other split properties. Concretely, in both cases we calculated the spearman correlation between all the
features against each other and computed the average absolute correlation that one feature has with the rest, then choose the
feature that has the highest average correlation to be the split feature. As we have mentioned in the discussion, this is still an
area of exploration, but the motivation behind this approach was that choosing a split feature that is somewhat correlated
with the others will cause the distribution of the other features to change accordingly which is the desirable effect in our
case.

G.4 ECDF PLOTS FOR MODEL COMPARISON

In this section we present a list of ECDF plots for some splits that we inspected for further analysis.

In the main paper we mentioned two conjectures and that we arrived to them by inspecting some ECDF plots, we point the
reader to those ECDF plots below. First, the conjecture that GGAN generally matches the modes of the distribution while
DiGress and GDSS tend to be more smooth, this behaviour is emphasized in Figure 15, Figure 18, Figure 16, Figure 17.

Second, the conjecture that GDSS and DiGress are not able to concentrate the generation near the middle of the distribution
for test property average shortest path length, which can be seen in Figure 19, and Figure 20.

7https://github.com/cvignac/DiGress
8https://github.com/harryjo97/GDSS/tree/master
9https://github.com/harryjo97/GDSS/blob/master/config/community_small.yaml

10https://github.com/harryjo97/GDSS/blob/master/config/qm9.yaml
11https://github.com/KarolisMart/SPECTRE/tree/main

https://github.com/cvignac/DiGress
https://github.com/harryjo97/GDSS/tree/master
https://github.com/harryjo97/GDSS/blob/master/config/community_small.yaml
https://github.com/harryjo97/GDSS/blob/master/config/qm9.yaml
https://github.com/KarolisMart/SPECTRE/tree/main
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VV Splits for Split property: average shortest path length and Test property: average degree

Figure 15: Weighted ECDF for DiGress, GDSS and GGAN as compared to held out data for split property average average
shortest path length (ℓ = 3) when test property is average degree (ℓ′ = 1). The legend reads modelName(ϕks) value
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VV Splits for Split property: average clustering coefficient and Test property: average number of triads

Figure 16: Weighted ECDF for DiGress, GDSS and GGAN as compared to held out data for split property average clustering
coefficient (ℓ = 4) when test property is average number of triads (ℓ′ = 2). The legend reads modelName(ϕks) value
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VV Splits for Split property: average maximal cliques and Test property: average number of triads

Figure 17: Weighted ECDF for DiGress, GDSS and GGAN as compared to held out data for split property average maximal
cliques (ℓ = 5) when test property is average number of triads (ℓ′ = 2). The legend reads modelName(ϕks) value
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VV Splits for Split property: average shortest path length and Test property: average number of triads

Figure 18: Weighted ECDF for DiGress, GDSS and GGAN as compared to held out data for split property average shortest
path length (ℓ = 3) when test property is average number of triads (ℓ′ = 2). The legend reads modelName(ϕks) value
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VV Splits for Split property: average degree and Test property: average shortest path length

Figure 19: Weighted ECDF for DiGress, GDSS and GGAN as compared to held out data for split property average degree
(ℓ = 1) when test property is average shortest path length (ℓ′ = 3). The legend reads modelName(ϕks) value
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VV Splits for Split property: average number of triads and Test property: average shortest path length

Figure 20: Weighted ECDF for DiGress, GDSS and GGAN as compared to held out data for split property average number
of triads (ℓ = 2) when test property is average shortest path length (ℓ′ = 3). The legend reads modelName(ϕks) value

G.5 EXAMPLES OF GENERATED MOLECULES

From the top 100 molecules generated from DiGress and GDSS we filter for validity and novelty, and we visualize the top 4
weighted molecules in different scenarios.



(a) Top 4 valid and novel molecules sampled from DiGress
when evaluated against v-val

(b) Top 4 valid and novel molecules sampled from DiGress
when evaluated against v-test

(c) Top 4 valid and novel molecules sampled from GDSS
when evaluated against v-val

(d) Top 4 valid and novel molecules sampled from GDSS
when evaluated against v-test

Figure 21: Visualization of the top 4 highest weighted molecules (after filtering for novelty and validity) that are sampled
from DiGress and GDSS and assigned weights by our approach when testing against the held portion being either v-val or
v-test. These are the same molecules in Figure 6 that were plotted with respect to the TPSA distribution.
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