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ABSTRACT

Current LLM customization typically relies on two deployment strategies: closed-
source APIs, which require users to upload private data to external servers, and
open-weight models, which allow local fine-tuning but pose misuse risks. In this
paper, we argue that (1) deploying closed-source LLMs within user-controlled
infrastructure (on-premises deployment) enhances data privacy and mitigates mis-
use risks, and (2) a well-designed on-premises deployment must ensure model
confidentiality—by preventing model theft—and offer privacy-preserving cus-
tomization. Prior research on small models has explored securing only the output
layer within hardware-secured devices to balance confidentiality and customization
efficiency. However, we show that this approach is insufficient for defending
large-scale LLMs against distillation attacks. We therefore introduce a semi-open
deployment framework that secures only a few, carefully chosen layers, achieving
distillation resistance comparable to fully secured models while preserving fine-
tuning flexibility. Through extensive experiments, we show that securing bottom
layers significantly reduces functional extraction risks. Our findings demonstrate
that privacy and confidentiality can coexist, paving the way for secure on-premises
AI deployment that balances usability and protection.

1 INTRODUCTION

Vendors of Large Language Models (LLMs) have introduced advanced models with remarkable
capabilities to address diverse user needs (Minaee et al., 2024). To enable customization and drive
industry progress, vendors typically adopt two approaches. Closed-source vendors, like OpenAI,
provide fine-tuning APIs that allow users to upload data to customize proprietary models such as
GPT-4. In contrast, companies like Meta offer open-weight models, such as Llama3 (Dubey et al.,
2024), which users can adapt within their own infrastructure, ensuring greater flexibility and control.

However, both approaches present significant limitations for privacy-sensitive users, such as financial
institutions, healthcare organizations, and government agencies, which prioritize data security. Fine-
tuning APIs from closed-source vendors offer encryption for sensitive data and comply with strict
privacy regulations (Pang et al., 2024). However, their security fundamentally depends on vendor
trust, raising ethical concerns and exposing users to potential data breaches (Sun et al., 2023).

Alternatively, fine-tuning open-weight models within private infrastructure—commonly referred to as
on-premises deployment, where all data and model adaptation occur locally—ensures data protection
and customization (Nevo et al., 2024). However, full disclosure of model architectures and weights
heightens the risk of misuse by malicious actors, enabling misinformation generation, automated
cyberattacks, and security bypasses (Hendrycks et al., 2023). These risks discourage vendors from
releasing SOTA models as open-weight, as uncontrolled distribution could lead to widespread
harm. Beyond security concerns, maintaining high-quality open-weight models imposes substantial
computational and financial costs (Wolfe et al., 2024), further disincentivizing full disclosure.

In this paper, we argue that deploying closed-source SOTA models on-premises with restricted
access to authorized users offers a middle path to mitigate privacy leakage and model misuse
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risks. However, prior research has shown that hardware-based extraction attacks can recover model
parameters and architectures directly from CPUs and memory (Hu et al., 2020) within local infras-
tructures, enabling unauthorized users to steal proprietary model information from the deployment
server. This underscores the need for stronger security measures. Therefore, we further argue that a
well-designed on-premises deployment strategy must fully prevent model theft while preserving
data privacy, ensuring no reliance on untrusted servers.
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Figure 1: Semi-open Deployment.

Our work provides an affirmative step toward address-
ing the fundamental challenge of balancing security
and customization in on-premises LLM deployment.
Existing approaches have sought to protect propri-
etary models using Trusted Execution Environments
(TEEs) (Narra et al., 2019), but fully enclosing mod-
els within TEEs incurs prohibitive computational
costs, limiting their practicality (Nayan et al., 2024).
Prior research has attempted to mitigate this trade-off
by securing only critical layers, such as the output
layer, while leaving the remaining layers exposed for
fine-tuning (Zhang et al., 2024b; Mo et al., 2020). However, our findings align with prior work show-
ing that securing only the output layer is insufficient against distillation attacks (Zanella-Beguelin
et al., 2021). Extending these attacks to Llama2-70B, we confirm that this vulnerability persists at
scale, enabling near-complete functionality distillation in six domains, as shown in Figure 1. These
vulnerabilities raise skepticism about whether model confidentiality and customization can truly
coexist in on-premises deployment, highlighting the need for a security paradigm beyond final-layer
protection. Without a viable solution, vendors risk intellectual property theft, while users must
compromise data privacy when relying on external servers.

Our work suggests that this dilemma can be resolved. We propose a theoretically inspired semi-
open deployment strategy that secures only a few, carefully chosen layers, balancing security and
customization while mitigating distillation risks. This enables secure on-premises AI adoption in
privacy-sensitive industries such as healthcare, finance, and government. More broadly, it highlights
the need for hybrid security solutions that balance usability and protection, lowering barriers to
responsible AI deployment.

By demonstrating that confidentiality and customization can coexist, our work shifts the narrative
from skepticism to opportunity, paving the way for AI-driven innovation in regulated sectors. Future
research should explore optimal layer selection, adaptive security mechanisms, and distillation-
resistant architectures to further enhance model confidentiality. We hope this work inspires the AI
community to develop scalable solutions that ensure AI remains both secure and widely accessible.
We summarize our contribution as follows.

• Semi-open on-premises LLM deployment. We propose a semi-open deployment framework
that secures a single, carefully chosen layer, achieving distillation resistance comparable to full
encryption while preserving customization flexibility comparable to full parameter fine-tuning.

• Layer-wise security transitions. We provide the first theoretical result identifying a transition
layer that resists distillation attacks, revealing fundamental differences in security across layers.

• Comprehensive empirical evaluations. We have conducted extensive empirical evaluations
across five models (Llama2 (70B,7B), Mistral-7B, Phi-2 (2.7B), and Phi-1.5 (1.3B) ) under three
distillation strategies with a 51k attack set, comparing its performance with three baselines.

2 RELATED WORKS

Data Privacy Risks. Using LLM services for customization introduces significant data privacy risks,
as user data is exposed during transmission, storage, and processing (Li et al., 2024b). To address this,
prior research has explored Homomorphic Encryption (Lee et al., 2022), which allows computations
on encrypted data, and Differential Privacy (Wei et al., 2021), which injects noise to prevent sensitive
data memorization. However, these methods suffer from high computational overhead (Zhou et al.,
2024) and limited protection coverage (Wei et al., 2020). A more effective approach is on-premises
deployment, which ensures data remains under user control (Nevo et al., 2024). While this mitigates
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privacy concerns, it shifts the risk to LLM vendors, who lose control over model usage and face
heightened risks of theft and misuse (Hendrycks et al., 2023).

Model Theft Risks Deploying LLMs on user-controlled infrastructure increases exposure to model
extraction threats (Atli et al., 2020). Attackers can recover model parameters through hardware-
based techniques, including side-channel attacks targeting GPUs (Nayan et al., 2024) and bus
monitoring attacks (Hu et al., 2020). In addition to direct parameter extraction, distillation attacks
allow adversaries to replicate model functionality using only black-box access, a process known as
functional distillation (Nevo et al., 2024; Xu et al., 2024; Ezzeddine et al., 2024). While distillation
attacks have been extensively studied in smaller models, such as CNNs (Orekondy et al., 2018),
BERT (Sanh et al., 2020; Zanella-Beguelin et al., 2021), and ReLU-based models (Canales-Martínez
et al., 2024; Jagielski et al., 2020), their effectiveness against large-scale LLMs remains an open
question. Our work extends these attacks to Llama2-70B and demonstrates that securing only the
output layer remains insufficient to prevent near-complete functionality replication.

Traditional Approaches. Balancing data privacy and model security in on-premises deployment
requires novel solutions. One direction is privacy-preserving federated deployment, where a model is
split between user-controlled infrastructure and vendor-managed servers (Shen et al., 2023; Huang
et al., 2024). Users fine-tune local layers while the vendor controls deeper layers, with privacy-
preserving techniques like differential privacy (Zhou et al., 2024) protecting sensitive data. However,
industries with strict data regulations, such as banking, healthcare, and government, often require full
on-premises deployment (Schillaci, 2024; Guerra-Manzanares et al., 2023), ensuring models remain
within their infrastructure while allowing customization. To secure models in on-premises settings,
research has explored hardware-based protections such as Arm TrustZone (Pinto & Santos, 2019)
and secure execution environments (Zhang et al., 2024a; Li et al., 2024a). These approaches isolate
computations to prevent unauthorized extraction but impose high resource demands and restrict
customization (Mo et al., 2020). A more flexible alternative is layer-wise security, where only critical
layers are protected while others remain exposed (Lin et al., 2024; Chen et al., 2024; Zhang et al.,
2024b). Studies suggest different strategies, including securing shallow layers (Elgamal & Nahrstedt,
2020), intermediate layers (Shen et al., 2022), or the output layer (Huang et al., 2024). However, most
research has focused on smaller models, leaving the effectiveness of different security placements in
large language models unclear.

3 PRELIMINARIES

3.1 SECURITY THREAT: MODEL DISTILLATION

Adversary’s Objective. The adversary aims to replicate the functionality of a semi-open victim
LLM, partially secured in a protected environment, by building a replacement model. The agreement
between the victim and replicated models is measured through fidelity on specified testing datasets.

Adversary’s Knowledge. It is assumed that the adversary knows the architectures of both secured
and unsecured modules, as prior work (Gou et al., 2021; Boix-Adsera, 2024) has shown that using
the same architecture as the secured module significantly improves the effectiveness of distillation
attacks. However, the adversary knows only the parameters of the unsecured module, while those of
the secured module remain unknown due to their concealment within hardware-secured environments.
Additionally, given that LLMs are typically trained on proprietary data derived from publicly available
sources (Dubey et al., 2024), we assume that the adversary does not have direct access to the exact
training data of the victim model, but is aware of its approximate distribution.

Attack
Dataset

Victim

Supervised
Distillation

Functional Equivalent

Replace 
& Initialize 

Replaced
Public

Distilled

Replica
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Figure 2: Workflow of model distillation attack

Adversary’s Capability. The adversary is ca-
pable of querying the semi-open model, obtain-
ing both the semantic output produced by the
complete model and the representation vector
generated by the secured module. Utilizing this
information, the adversary constructs a distil-
lation attack dataset denoted as D. Since the
adversary knows the architecture of the secured
module, the adversary next replaces the secured
module with a randomly initialized module of
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the same architecture. Using the constructed set D, the adversary employs three distinct supervised
distillation strategies to replicate the functionality of the secured module: (1) FT-all: Fine-tunes
both the replacement and unsecured modules using output of the entire model as training labels. (2)
FT-closed: Fine-tunes only the replacement model using output of the entire model, keeping the
unsecured module fixed. (3) SEM (Tamber et al., 2024): Fine-tunes the replacement model using
outputs from the secured module without involving the unsecured component.

3.2 PROBLEM FORMULATION

In this paper, we analyze the performance of a large language model under a defined distribution
PX×Y , describing the relationship between input matrix X and label Y . We assume the victim LLM
f(X;θ) performs well on this distribution, and the attack set D comprises samples drawn from
PX×Y . To evaluate agreement between the distilled LLM and ground-truth labels, we use a scoring
function s : Y × Y → R+. Secured layers are indexed by I ⊆ [L] = {1, . . . , L}. Let θdist(I,D)
represent the parameter vector of the distilled replica of a victim model, where layers indexed by I
are secured, and adversaries utilize the attack set D to replicate its functionality. For each secured set
I , we define the "Distillation Ratio" R(I), which quantifies how well the distilled model θdist(I,D)
replicates the behavior of f(X;θ), expressed as

R(I) =
E[s(f(X;θdist(I,D)), Y )]

E[s(f(X;θ), Y )]
. (1)

Here, E in the numerator reflects the expectation computed over random samples (X, Y ) drawn from
PX×Y , the random attack set D, and the random initialization of parameters within the secured layers
during fine-tuning. Conversely, the term E in the denominator solely considers the expectation over
random samples. With this definition, R([L]) represents the distillation ratio when the entire model
is secured, reflecting the highest level of security. This leads to the question:

What is the smallest secured set I such that R(I) closely approximates R([L])?

This question aims to identify the minimal secured set I such that securing the layers indexed by I
achieves a level of security comparable to securing the entire model.

4 METHODOLOGY
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Figure 3: Security and adaptability comparison in
Llama2-70B. Lower scores indicate better security
in Fig.(a) and weaker adaptability in Fig.(b).

In this section, we investigate the impact of
securing specific layers on security and cus-
tomization against distillation attacks. We be-
gin with an experiment with two semi-open
deployments of Llama2-70B: one securing the
bottom two decoder layers (Bottom2-Secured)
and the other securing the top two decoder lay-
ers (Top2-Secured). As shown in Figure 3,
both deployments achieve similar customization
performance in six downstream tasks. How-
ever, securing the bottom layers provides signif-
icantly stronger security. Additionally, compar-
ing Bottom2-Secured to fully-secured deploy-
ment reveals comparable security with improved customizability. This suggests that securing a certain
number of bottom layers can effectively balance strong security against distillation attacks and high
customization performance.

4.1 SECURITY TRANSITION IN DEEP TRANSFORMERS

Model Overview. In this subsection, we consider a deep transformer f with L layers, expressed
as f(X;θ) = φL ◦ · · · ◦ φ1(X). The input feature matrix X ∈ Rn×d consists of n rows, each
representing a d-dimensional token vector. Each layer φi is a transformer that incorporates a
normalized residual self-attention mechanism, defined as:

φi(X;Ki, Qi) = X+ softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)
X.
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Here, Qi ∈ Rd×dQ and Ki ∈ Rd×dQ are projection matrices for the query and key components,
respectively. The terms

√
dQ and ∥X∥ serve as normalization factors, ensuring stable computations

within the attention mechanism. We consider the semi-open deployment of securing the αL-th layer
with α ∈ [0, 1] and αL ∈ N while keeping other layers unsecured. After the distillation attack, we
assume the parameters of the distilled model in the unsecured layers are identical to the victim model,
while those in the secured layer deviate. Let K̂αL and Q̂αL denote the distilled weight matrix of the
proprietary layer, i.e., θdist({αL}) = {(K1, Q1), ..., (K̂αL, Q̂αL), ..., (KL, QL)}. Let φ̂αL denote
the function of the distilled proprietary layer, i.e., the αL−th layer, in the distilled model. In this
subsection, we consider the normalized output of an infinitely deep model whose αL-th layer is
hidden and subjected to the attack. The output of the distilled model is

f̂∞(X) = lim
L→∞

f(X;θdist({αL}))
∥f(X;θdist({αL}))∥F

,

where ∥ · ∥F denotes the Frobenius norm. We consider an infinitely deep network as the ideal
model, reflecting the sufficient depth of most large-scale models in practice. The following theorem
establishes the existence of a critical value α∗ such that if α < α∗, the output matrix of the distilled
LLM has rank one. Conversely, if α > α∗, the output matrix has rank strictly greater than one.

Theorem 1. Assume that PX×Y is defined on a countable domain X × Y with 0n×d /∈ X . Assume
that parameter matrices {Ki, Qi}i≥1 in the victim model f have uniform bounded norms, i.e.,
∥Ki∥ ≤ D and ∥Qi∥ ≤ D for some D > 0. There exists an α∗ ∈ (0, 1) depending on D such that
the following two statements are true.

(1) If α < α∗ and {Ki, Qi}i≥1 are parameter matrices of the victim model, with K̂αL and Q̂αL as
distilled parameters drawn from a continuous distribution on Rn×d, the matrix f̂∞(X) almost surely
has rank one for all inputs X.

(2) If α > α∗, there exists a victim model with parameter sequence {Ki, Qi}i≥1 such that for any
distilled parameters K̂αL and Q̂αL, the matrix f̂∞(X) has rank greater than one for some X.

Remark 1: The proof is provided in Appendix A. This theorem demonstrates that if the distilled
parameters of the bottom layers (i.e., α < α∗) are obtained through a randomized algorithm, such
as stochastic gradient descent, with a continuous distribution supported on Rn×d, the distillation
will certainly fail, as the feature matrix degenerate. In contrast, keeping the later layers secured (i.e.,
α > α∗) does not maintain this property, indicating that it is more effective to secure the bottom
layers before the transition layer, rather than the later ones.

Remark 2: The existence of f̂∞(X) is a non-trivial result. While the mapping φi admits a fixed point
at X = 0n×d, the convergence of the iterative process governed by φi cannot be guaranteed using the
contraction mapping theorem, as φi does not satisfy the contraction property for any pair (Qi,Ki).
This complexity becomes particularly evident in the special case where n = 1 and X is a column
vector. Here, the output of φi satisfies the relation ⟨1d, φi(X;Ki, Qi)⟩ = 2⟨1d,X⟩, implying that
the iteration diverges unless X is orthogonal to 1d. However, the divergence is not arbitrary; rather,
the theorem reveals that it occurs in a fixed, well-defined direction. This insight ensures the existence
of a normalized output, which remains stable and meaningful despite the lack of strict convergence.

Remark 3: The existence of α∗ ∈ (0, 1) is also a non-trivial statement, as α∗ could potentially be
zero, which would imply the absence of a critical layer such that securing layers prior to it guarantees
the failure of the recovered model’s functionality. The primary challenge lies in demonstrating that
perturbations to the earlier layers result in rank-one outputs, a property that does not universally hold
for arbitrary perturbations. To address this, we establish an alternative result: given an input matrix X,
rank-one outputs can be guaranteed if the perturbation matrices Ki and Qi are chosen to avoid specific
zero-measure sets, denoted as K(X) and Q(X), respectively. Assuming a countable domain X × Y ,
which is typical for structured inputs such as sentences or images, it follows that the perturbation
matrices to be avoided belong to the countable union of these sets, defined as K =

⋃
X∈X K(X) and

Q =
⋃

X∈X Q(X). Since this union remains a zero-measure set, avoiding these specific sets ensures
that the conditions of the theorem are satisfied for any input matrix X.

Theorem 1 shows that securing bottom layers improves security. Next, we propose SOLID, a
preliminary LLM deployment framework solution that balance model protection and customization.
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4.2 SOLID: SEMI-OPEN LOCAL INFRASTRUCTURE DEPLOYMENT FRAMEWORK

We propose a method to approximately find the smallest bottom layer index set I that satisfies
R(I) ≤ (1 + ε)R([L]) for any small ε > 0. A simple approach is to start with Il = {1, . . . , l} for
each l beginning from 1, then evaluate the distillation ratio R(Il) after the attack, and identify the
smallest l that meets the inequality. This extensive fine-tuning process is time-consuming, prompting
the critical question: Can we create a fine-tuning-free metric that predicts LLM performance under
model distillation attacks? Hence, our goal is to establish a metric directly correlated with the
distillation ratio.

In the distillation ratio R(I), each I has the same denominator, so our focus is on a metric related
to the numerator, specifically E[s(f(X;θFT(I,D)), Y )], which measures the average performance
score of the distilled model. This average performance score generally inversely correlates with
the average testing loss with the expression L(θ) ≜ EX×Y [ℓ(f(X;θ), Y )], where ℓ denotes the
cross-entropy loss employed by LLM. Hence, we aim at finding the smallest I such that

L(θdist(I,D)) ≥ (1− ε)L(θdist([L],D)).

However, calculating both sides of this inequality requires knowing the distilled parameters from the
fine-tuning process. To bypass this, we aim for an approximate solution. The distilled parameters are
generated through gradient descent, starting from the initial parameters θ0(I), with the hidden layers
being randomly initialized. Using the Taylor Expansion, we find

L(θdist(I,D)) = L(θ0(I,D)) +O(E∥θdist(I,D)− θ0(I)∥2).
Previous research (Choi et al., 2024; Bailly et al., 2022) indicates that the difference ∥θdist(I,D)−
θ0(I)∥2 is minimal in large networks compared to the dataset size |D|. In models such as single-layer
ReLU networks (Anthony et al., 1999; Zou et al., 2020), this difference scales as O

(
|D|√
N

)
(Jacot

et al., 2018; Wei et al., 2019), where N , the number of model parameters, far exceeds the dataset size
in large language models (LLMs) (Dubey et al., 2024; Liu et al., 2024). The first term, independent
of fine-tuning, dominates and effectively predicts the distillation ratio. We refer to this term as the
Distillation Difficulty (DD(I)), defined as

DD(I) = E[L(θ0(I))].
This score, which can be estimated using a sample average, represents the distilled model performance
of the model when specific layers I are secured. A higher DD(I) suggests better security performance,
indicating a lower distillation ratio R(I). Therefore, our SOLID operates in the following way. SOLID
begins by sampling evaluation data targeting general capabilities from the underlying distribution,
and then computes DD(Il) for each set of secured layers Il = {1, ..., l} for l = 1, ..., L. SOLID stops
at the smallest l∗ that satisfies DD(Il∗) ≥ (1− ε)DD([L]).

5 EXPERIMENTS

In this section, we conduct experiments to answer the following research questions:

• RQ1. Can query-based distillation attacks distill the functionality of the entire model under the
baseline deployment that secures the top layer?

• RQ2. How do secured layer location and amount affect the security-customization trade-off?
• RQ3. Does securing bottom layers (SOLID) offer a better balance between model theft risk and

customization performance compared to baseline deployments?

5.1 EXPERIMENTAL SETTINGS

We begin by introducing our experimental setups. Details can be found in Appendix B.

Models. We consider five open-source, decoder-only structured LLMs with various architec-
tures. Specifically, we select Llama2-70B-chat, Llama2-7B-chat (Touvron et al., 2023), Mistral-7B-
v0.1 (Jiang et al., 2023), Phi-2 (Abdin et al., 2024), and Phi-1.5 (Li et al., 2023). We designate these
pre-trained models as the base models for adaptation and victims in model distillation attacks.

Attack Methods. We distill models produced by different protection approaches using three attack
methods: FT-all, FT-closed and SEM. Following (He et al., 2021), a diverse attack set is required
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for full distillation. Therefore, we merge data evenly form two general datasets, MMLU bench-
mark (Hendrycks et al., 2021) and Alpaca 52k (Wang et al., 2022), resulting in a 51k combined set.
Additionally, we build four larger general datasets (100k–500k) to strengthen the attack.

Baselines. We compare SOLID with three baselines: SAP-DP, the fully-secured approach (Eiras
et al., 2024), and DarkneTZ (Mo et al., 2020). The SAP (Shen et al., 2023) framework exposes the
first six decoder layers and secures the rest. SAP-DP extends SAP by adding Laplace noise to model
outputs to enhance protection (Lee et al., 2018). The fully-secured approach represents the extreme,
securing all layers for maximal security, while DarkneTZ protects only the final decoder layer.

Implementation Details of SOLID. We apply the SOLID algorithm to identify the smallest secure
set I such that R(I) ≤ (1 + ε)R([L]). To calculate distillation difficulty (DD), we use cross-
entropy loss and approximate the expectation over samples distributed on the general domain and
randomly initialized secured parameters. This is done using a 1,500-sample evaluation set randomly
sampled from the MMLU benchmark and Alpaca 52k, with secured parameters initialized via Xavier
initialization and averaged over three random seeds (20, 42, 1234). In our experiments, we find that
ε = 0.05 yields optimal performance.

Evaluation Benchmarks We assess the model adaptability on six downstream tasks: Code (Zheng
et al., 2024b), Math (Yue et al., 2023), Medical (Zhang et al., 2023), Finance (Wang et al., 2023b),
Law (Guha et al., 2024), and Alignment (Meng et al., 2024). To fully evaluate recovered functionali-
ties, we focus on six capabilities domains following Llama2 report (Touvron et al., 2023). Specifically,
we assess the recovered model across sixteen benchmarks grouped into (1) Commonsense Reasoning
(Rsn.); (2) Reading Comprehension (Read.); (3) World Knowledge (Knl.); (4) Code; (5) Math; and
(6) General Ability (Gen.).

Metrics. We measure customization through model’s improvements on benchmarks. For security,
we calculate the “Average Distillation Ratio” (ADR) by averaging the distillation ratios across
benchmarks. A lower ADR indicates higher security offered by the secure set.

5.2 FAILURE IN DEFENSE (RQ1)

We evaluate security of DarkneTZ using three distillation strategies. Based on the results shown in
Tables 1 and 2, we have following observations.

Obs1: DarkneTZ, which secures only the last decoder layer, fails to protect the model against
all three attacks. As shown in Table 1, DarkneTZ achieves ADRs generally exceeding 73%. Notably,
on Llama2-7B, it surpasses 100% distillation ratio on the MMLU and BBH datasets, indicating that
the distilled model outperforms the original on these tasks. Similarly, Table 2 highlights consistent
failure patterns against FT-closed and SEM attacks, with DarkneTZ maintaining ADRs above 75%,
demonstrating the ability of these strategies to recover significant model functionality.

5.3 SECURITY-CUSTOMIZATION TRADE-OFF (RQ2)
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Figure 4: (a) shows the trade-off between security and cus-
tomization for Llama2-7B and Phi-2 with different place-
ments of same-sized secured sets. (b) shows the trade-off
as the secured set size increases from the first decoder layer.
Smaller ADR indicates higher security and higher ACC
reflects better customizability.

We conduct two experiments to analyze the
impact of secured layer placement and quan-
tity on the trade-off between security and
customization. First, we secure one layer
in Llama2-7B and two in Phi-2, varying their
placement. Second, we incrementally secure
both models by adding protected layers, start-
ing from the smallest module (k_project)
of the first decoder layer. These models are
evaluated under the FT-all distillation attack
and customized for the math domain. The
results, as shown in Figure 4, lead to the fol-
lowing observations.

Observation 2: Secured layer placement
significantly impacts security, consistent
with Theorem 1, but has small effect on customization performance. As shown in Figure 4(a), for
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Table 1: Distillation ratios on 6 functionalities under FT-all (SOLID|SAP-DP|Fully-secured|DarkneTZ). “H.E.”
in Code domain presents the benchmark “HumanEval”.

Benchmark Llama2-70B Llama2-7B Mistral-7B Phi-2

Rsn.

PIQA 62.6|59.8|63.0|99.3 64.7|64.7|64.6|99.1 63.0|61.2|60.2|92.2 68.3|65.6|65.7|99.1
Winogrande 68.5|67.7|68.3|98.3 76.8|74.8|76.6|100. 67.2|69.0|68.3|89.5 68.3|64.9|64.8|99.1
ARC-easy 31.9|32.8|31.3|98.5 36.3|35.5|34.9|97.6 32.3|34.7|32.0|86.6 43.2|35.3|33.9|99.5

ARC-challenge 38.5|38.1|44.2|99.2 47.8|46.6|50.9|100. 39.7|42.6|44.5|81.4 36.8|36.6|35.3|99.5
Hellaswag 31.4|31.4|32.4|98.1 33.9|34.0|35.0|96.6 32.2|32.0|31.3|84.6 37.4|37.3|34.3|96.5

Read.
LAMBADA 0.01|0.00|0.00|88.6 0.02|0.00|0.01|92.2 0.16|0.00|0.01|67.9 1.34|0.04|0.00|94.6

BoolQ 47.2|47.1|53.9|100. 59.5|56.0|65.0|99.6 48.3|46.8|56.7|97.3 56.7|50.3|55.8|100.
SQuADv2 1.50|1.68|0.34|55.3 0.68|0.88|0.82|59.5 1.69|0.36|0.93|50.7 3.65|0.39|0.90|62.9

OBQA 54.5|54.5|57.1|99.6 57.4|52.5|59.2|94.8 57.7|56.8|56.3|84.0 0.00|0.00|0.02|94.3

Knl. NaturalQuestions 0.00|0.02|0.00|40.1 0.01|0.01|0.08|53.6 0.00|0.00|0.02|31.8 0.01|0.00|0.06|87.4
TriviaQA 0.00|0.02|0.00|72.3 0.00|0.00|0.03|73.8 0.00|0.00|0.01|38.7 0.01|0.00|0.01|68.9

Code MBPP&H.E. 0.00|0.00|0.00|58.6 0.00|0.00|0.00|90.9 0.00|0.00|0.00|40.2 0.00|0.00|0.00|91.1

Math GSM8K 0.02|0.00|0.06|79.6 0.00|0.00|0.00|78.6 0.00|0.00|0.00|31.1 0.00|0.00|0.00|86.2

Gen. MMLU 36.8|38.3|36.5|96.7 52.9|50.0|53.3|110. 40.4|36.9|37.2|81.7 42.6|40.3|40.5|99.5
BBH 0.00|0.00|0.00|93.3 0.00|0.00|0.00|101. 0.00|0.00|0.00|63.3 0.01|0.00|0.00|94.8

Avg. Distil. Ratio(↓) 21.9|21.8|22.8|77.9 25.3|24.4|25.9|86.5 22.5|22.4|22.8|73.7 23.9|22.3|22.4|88.9
Secured Ratio(↓) 2.50|92.5|100.|1.25 3.16|81.3|100.|3.16 3.16|81.3|100.|3.16 6.25|81.3|100.|3.16

Llama2-7B, security transitions at the fourteenth layer, with ADR consistently near 20% for earlier
sets, indicating stronger security than protecting later layers. Meanwhile, customization accuracy
remains stable across placements, highlighting the advantage of securing pre-transition layers. In
contrast, Phi-2 transitions earlier at the first layer set, where only the first set balances security and
customization, with later sets reducing security. These results suggest that securing layers before the
transition layer optimizes the security-customization trade-off. More results are in Appendix B.7.

Observation 3: Increasing the number of secured layers enhances security but reduces cus-
tomization. As shown in Figure 4(b), the ADR of Llama2-7B decreases from 85% to 22% after
securing an entire decoder layer, indicating improved security. However, customization accuracy
drops from 29% to 21% as the number of secured layers increases from one to five, reflecting reduced
customization flexibility. A similar trend is observed in Phi-2, suggesting that while increasing
the number of secured layers enhances security (lower ADR), it negatively impacts customization
flexibility (lower ACC) in both models. Further details are in Appendix B.8.

5.4 EFFECTIVENESS OF SOLID (RQ3)

We compare the security of SOLID with baseline deployments across three distillation strategies. The
results lead to the following observations.

Table 2: Distillation ratios of Llama2-70B under FT-
closed and SEM attacks.

Strat. Method Rsn. Read. Knl. C.&M. Gen. ADR

FT-c.
SOLID 47.1 21.6 0.00 0.03 18.7 22.6
SAP-DP 46.2 19.5 0.00 0.00 19.0 21.8
F-Secured 47.8 21.2 0.00 0.08 18.5 22.8
DarkneTZ 98.7 69.3 58.3 65.9 95.0 78.1

SEM
SOLID 48.2 21.9 0.00 0.00 18.5 22.4
SAP-DP 47.1 21.1 0.00 0.00 18.3 22.3
F-Secured 47.8 21.2 0.00 0.08 18.5 22.8
DarkneTZ 98.8 71.2 54.2 66.3 94.1 77.4

Observation 4: SOLID offers comparable
security against model distillation to the
highest level of protection (fully-secured),
while securing significantly fewer parame-
ters. As shown in Table 1, SOLID achieves a
similar security level (ADR) to SAP-DP and
the fully-secured approach across four archi-
tectures and various domains, while securing
at most 6.25% of parameters, compared to
at least 80% for the others. For example, on
Llama2-70B, SOLID secures only 1.25% of
parameters yet achieves an ADR of 21.9%,
comparable to SAP-DP (21.8%) and the fully-secured approach (22.8%), which protect 92.5% and
100% of parameters, respectively. Furthermore, under FT-closed and SEM attacks, SOLID also
matches the security level provided by SAP-DP and the fully-secured approach. Table 2 shows
that under FT-closed attack, the ADR differences between SOLID, SAP-DP, and the fully-secured
approach remain below 2.1% across six domains. Similarly, under SEM attack, the distillation ratios
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Figure 5: Customization performance comparison of secured models on six downstream tasks.

closely aligned with the other two approaches. These results confirm that SOLID effectively protects
against distillation attacks while securing significantly fewer parameters.

Table 3: SOLID vs. Dataset scales. ADR-Da.
represents the ADR by DarkneTZ.

Scale Rsn. Read. Knl. C.&M. Gen. ADR ADR-Da.

51k 51.7 21.6 0.01 0.00 28.3 25.3 86.5
100k 51.3 21.5 0.13 0.00 29.6 25.3 89.1
200k 51.4 21.7 0.11 0.00 29.7 25.2 91.3
300k 51.6 21.7 0.11 0.00 30.5 25.5 94.5
500k 51.8 22.0 0.09 0.00 30.8 25.8 96.9

Observation 5: The security of SOLID cannot
be easily compromised by simply increasing
the dataset scale. As shown in Table 3, the dis-
tillation ratios for SOLID increase marginally
with larger datasets, showing only a 0.5% ADR
rise when scaling from 51k to 500k samples.
In contrast, DarkneTZ exhibits a significant in-
crease in the ADR, from 86.5% to 96.9%, over
the same dataset size range. This highlights the
robustness of SOLID’s security against increas-
ing attack dataset sizes. Details of the attack datasets are provided in Appendix B.2.

Observation 6: SOLID consistently outperforms baseline deployments in customization while
achieving security levels comparable to fully-secured approaches. Its customization perfor-
mance approaches the flexibility of full parameter fine-tuning. As the results shown in Figure 5,
we observe that, in the Law domain, SOLID improves scores by 10% over SAP-DP and fully-
secured approach on Llama2-70B, with a 35% improvement on the 7B models. Similar gains are
observed on Phi-2, though the improvement in Law reduces to 1%. Additionally, the performance
of SOLID consistently matches the performance of full parameter fine-tuning across four architec-
tures, with differences within 4%. This demonstrates that securing a small portion of parameters
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Figure 6: ADRs vs. average customization score. Points
closer to the bottom-right indicate better balance.

minimally impacts customization while
providing strong protection against distilla-
tion attacks. Further results can be found
in Appendix B.6.

We summarize the security and customiza-
tion performance of each deployment in
Figure 6. SOLID achieves an optimal bal-
ance between distillation prevention and
customization, outperforming other base-
lines. In the next subsection, we discuss
how the distillation difficulty metric opti-
mizes the security-customization trade-off.

6 CONCLUSION

In this paper, we advocate for a balanced approach to on-premises LLM deployment, addressing
the dilemma between data privacy and model confidentiality. Building on our theorem, we propose
SOLID, a simple yet effective semi-open solution that efficiently secures a few bottom layers of
LLMs. We believe that our work shifts the view from skepticism to opportunity, paving a viable
middle path for secure AI deployment that protects user privacy, safeguards vendor intellectual
property, and preserves model customization flexibility. While our position may invite both support
and critique, we hope it provides meaningful insights and fosters ongoing discourse. If this paper
contributes to constructive engagement within the community, it will have fulfilled its purpose.
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A PROOF OF THEOREM 1

In this section, we prove Theorem 1. We first revisit the our model, present several important lemmas
and finally present the proof.

A.1 MODEL OVERVIEW

The distilled model f(X;θ) is structured as a sequence of L transformer layers,

f(X) = φL ◦ φL−1 ◦ ... ◦ φαL+1 ◦ φ̂αL ◦αL−1 ◦... ◦ φ1(X), (2)

where X ∈ Rn×d represents the input, interpreted as an assembly of n tokens, each possessing d
hidden dimensions. Each transformer layer, indexed by 1 ≤ i ≤ L, is represented by φi, which maps
Rn×d to Rn×d and can be defined as follows,

φi (X;Ki, Qi) =

[
In + softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)]
X, (3)

where Qi ∈ Rd×dQ , Ki ∈ Rd×dQ represent projection parameter matrices. Here, the αL-th layer is
the distilled layer and the others are the public layers. For simplicity, we use the function φ̂αL to
denote mapping of the distilled layer, i.e., φ̂αL(X) = φαL(X; K̂αL, Q̂αL).

A.2 BOUNDS ON DIFFERENT ORTHOGONAL COMPONENTS

Lemma 1. For any 1 ≤ l ≤ L, 1 ≤ p ≤ d, any X ∈ Rn×d, we have

max
v:∥v∥2=1,v⊥In

∣∣v⊤φl (X;Kl, Ql) [p]
∣∣ ≤ (1 + βD) max

v:∥v∥2=1,v⊥In

∣∣v⊤X[p]
∣∣ , (4)

where In is a column vector with dimensions n× 1 and each element is 1, X[p] is the p-th column of
the input X, φl (X;Kl, Ql) [p] is the p-th column of the l-th self-attention output, the coefficient βD

satisfies 0 < βD < 1 and it is related to the upper bound of the L2-norm of matrices Kl, Ql.

Proof. Let u =
{
ul,1 = In√

n
,ul,2, . . . ,ul,n

}
denote the eigenvectors of softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
.

Assume σl,1, σl,2, . . . , σl,n denote the eigenvalues of softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)
and −1 < σl,n < βD

for any l, n. Thus we have

v⊤φl (X;Kl, Ql) [p] = v⊤

[
In + softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)]
X[p] (5a)

= v⊤

[
In + softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)]
n∑

k=1

αpkul,k (5b)

= v⊤
n∑

k=1

αpk(1 + σl,k)ul,k (5c)

≤ max
v:∥v∥2=1,v⊥In

∣∣∣∣∣
n∑

k=2

αpk(1 + σl,k)v
⊤ul,k

∣∣∣∣∣ (5d)

=

∥∥∥∥∥
n∑

k=2

αpk(1 + σl,k)ul,k

∥∥∥∥∥
2

(5e)

=

[
n∑

k=2

α2
pk(1 + σl,k)

2

]1/2
(5f)

≤ (1 + βD) max
v:∥v∥2=1,v⊥In

∣∣v⊤X[p]
∣∣ , (5g)
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where

βD = max
∥Kl∥2≤D,∥Ql∥2≤D

max
v:∥v∥2=1,v⊥In

∥∥∥∥∥softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
v

∥∥∥∥∥
2

< 1.

The equation equation 5c is due to ul,k are the eigenvectors of softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
. The

inequality equation 5e is because when v =
∑n

k=2 αpk(1+σl,k)ul,k

∥∑n
k=2 αpk(1+σl,k)ul,k∥

2

, we have the maximum value.

Lemma 2. For any Kl, Ql ∈ Rd×s and any X ∈ Rn×d, the following equation always holds:∣∣I⊤nφi (X;Ki, Qi) [p]
∣∣ = 2

∣∣I⊤nX[p]
∣∣ , (6)

where X[p] is the p-th column of the input X, φi (X;Ki, Qi) [p] is the p-th column of the l-th
self-attention output.

Proof. Assume that a set of orthogonal basis for Rn is {u1,u2, . . . ,un}, where u1 = In√
n

. Then we
can rewrite X[p] as X[p] =

∑n
j=1 αpjuj , where αpj(1 ≤ p ≤ d) are the corresponding coefficients

for the p-th column of X under the orthogonal basis. Next, we calculate
∣∣I⊤n f(X)[p]

∣∣ and
∣∣I⊤nX[p]

∣∣,
respectively. Note that I⊤nuj = 0 for all j ̸= 1. Therefore, we can obtain that,

I⊤nX[p] =
√
nαp1. (7)

Then we can get ∣∣I⊤nX[p]
∣∣ = |√nαp1|. (8)

Let σi1, σi2, . . . , σin denote the eigenvalues of softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)
. Applying the Per-

ron–Frobenius theorem for Markov matrices (Lemmens & Nussbaum, 2012), we deduce that for

the matrix softmax

(
XQl(XKi)

⊤√
dQ∥X∥2

)
, there exists only one eigenvalue equal to 1, while all other

eigenvalues in absolute value are strictly less than 1. Without loss of generality, we assume σi1 = 1,
implying |σij | < 1 for j ̸= 1. Recalling the definition of φi (X;Ki, Qi) and considering the linear
operation, we can rewrite it as follows:

φi (X;Ki, Qi) [p] =

n∑
j=1

αpj (1 + σij)uj . (9)

Then we calculate the term
∣∣I⊤nφi (X;Ki, Qi) [p]

∣∣ as follows,

∣∣I⊤nφi (X;Ki, Qi) [p]
∣∣ =

∣∣∣∣∣∣I⊤n (
n∑

j=1

αpj (1 + σij)uj

∣∣∣∣∣∣ (10a)

=
∣∣√n (αp1(1 + σi1))

∣∣ (10b)

= 2|√nαp1|, (10c)

where equation 10a is induced by substituting the equation equation 9 into
∣∣I⊤nφi (X;Ki, Qi) [p]

∣∣,
equation 10b is due to I⊤nuj = 0 for all j ̸= 1, equation 10c follows the fact that σi1 = 1 .

A.3 PROOF OF THEOREM 1

We first prove the following result. For simplicity of notations, we use f(X) [p] to denote the p-th
(1 ≤ p ≤ d) column of the the distilled model f(X), where the parameters in the αL-th layer is
replaced with the matrices K̂αL and Q̂αL. We use the function φ̂αL(X) = φαL(X; K̂αL, Q̂αL) to
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denote the mapping of the (αL)-th layer. Then we are going to show that there exists α⋆ = log2
2

1+βD

and 0 < βD < 1 makes the following equations hold.

(1) Assume α < α⋆. For any X, ∥Ki∥2 ≤ D, ∥Qi∥2 ≤ D, there exists a zero measure set K(X) and
Q(X) such that

lim
L→∞

∥∥∥∥ f(X) [p]

∥f(X) [p]∥2
− In√

n

∥∥∥∥
2

= 0. (11)

(2) For any α > α⋆, there exists a sequence of matrix {Ki, Qi}i≥1 such that for any distilled matrix
KαL and QαL, we have ∥Ki∥2 ≤ D, ∥Qi∥2 ≤ D, we have,

lim
L→∞

∥∥∥∥ f(X) [p]

∥f(X) [p]∥2
− In√

n

∥∥∥∥
2

=
√
2. (12)

Proof. Based on Lemma equation 1, we obtain that

max
v:∥v∥2=1,v⊥In

∣∣v⊤f (X) [p]
∣∣ ≤ (1 + β)L max

v:∥v∥2=1,v⊥In

∣∣v⊤X[p]
∣∣ . (13)

Based on Lemma equation 2, we know that∣∣I⊤n f(X)[p]
∣∣ = 2(1−α)L−1

∣∣I⊤n φ̂αL ◦ φαL−1 ◦ · · · ◦ φ1(X)[p]
∣∣ . (14)

We firstly prove the equation equation 11. When∣∣I⊤n f(X)[p]
∣∣ = 2(1−α)L−1

∣∣I⊤n φ̂αL ◦ φαL−1 ◦ · · · ◦ φ1(X)[p]
∣∣ ̸= 0, (15)

then we have∥∥∥∥ f(X) [p]

∥f(X) [p]∥2
− In√

n

∥∥∥∥
2

=

2− 2I⊤n f(X)[p]
√
n

√
(I⊤n f(X)[p])2

n + (v⊤f(X)[p])2)

1/2

(16a)

=
√
2

1− 1√
1 + n(v⊤f(X)[p])2

(I⊤n f(X)[p])2

1/2

(16b)

≤
√
2

1− 1√
1 + n(1+β)2L|v⊤X[p]|2

22[(1−α)L−1]|I⊤n φ̂αL◦φαL−1◦···◦φ1(X)[p]|2

1/2

(16c)

≤ 2
√
2n

(
1 + β

21−α

)L
∣∣v⊤X[p]

∣∣
|I⊤n φ̂αL ◦ φαL−1 ◦ · · · ◦ φ1(X)[p]| , (16d)

where the inequality equation 16c is based on the inequality equation 13 and equation 14. The inequal-
ity equation 16d is based on Lemma equation 3. Therefore, if α < log2

2
1+βD

and
∣∣I⊤n f(X)[p]

∣∣ ̸= 0,

then we have limL→∞

(
1+βD

21−α

)L
= 0. Now we can consider when

∣∣I⊤n f(X)[p]
∣∣ = 0. In fact,

it is easy to show that this can only happens when K̂αL and Q̂αL belong to certain sets making∣∣I⊤n f(X)[p]
∣∣ = 0, which corresponds to zero measure set K(X) and Q(X) depending on the input

X. Since the input space is countable, therefore, the union ∪X∈XK(X) and ∪X∈XQ(X) are also
zero-measure sets.

To prove equation equation 12, let K⋆, Q⋆ with ∥K⋆∥2 ≤ D, ∥Q⋆∥2 ≤ D satisfy the following
condition,

max
v:∥v∥2=1,v⊥In

∥∥∥∥∥softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
v

∥∥∥∥∥
2

= βD. (17)

Let v⋆ be the solver of the above optimization problem equation 17 and consider the Kl = K⋆,
Ql = Q⋆ and X⋆ = [v⋆,v⋆, · · · ,v⋆]. Clearly, v⋆ ⊥ In. Assume there exists u : ∥u⋆∥2 = 1
satisfying u⋆ ⊥ In, u⋆ ⊥ v⋆, therefore we can rewrite f(X⋆) [p] as follows,

f(X⋆) [p] =
I⊤n√
n
f(X⋆)

In√
n
+ v⋆⊤f(X⋆)v⋆ + u⋆⊤f(X⋆)u⋆. (18)
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For any 1 ≤ l ≤ L, based on Lemma equation 1, we know that∣∣v∗⊤f (X⋆) [p]
∣∣ = (1 + βD)L

∣∣v∗⊤X⋆[p]
∣∣ . (19)

Since ∣∣I⊤n f (X⋆) [p]
∣∣ = 2L

∣∣I⊤nX⋆[p]
∣∣ = |I⊤n v⋆| = 0 (20)

and ∣∣v∗⊤f (X⋆) [p]
∣∣ = (1 + βD)L

∣∣v∗⊤X⋆[p]
∣∣ ̸= 0, (21)

then we have∥∥∥∥ f(X⋆) [p]

∥f(X⋆) [p]∥2
− In√

n

∥∥∥∥
2

=

[
2− 2I⊤n f(X⋆)[p]√

n ∥f(X⋆) [p]∥2

]1/2
(22a)

=

2− 2I⊤n√
n

f(X⋆)[p]√
1
n (I⊤n f(X⋆)[p])2 + (v⋆⊤f(X⋆)[p])2 + (u⋆⊤f(X⋆)[p])2

1/2

(22b)

≥

2− 2I⊤n√
n

f(X⋆)[p]√
1
n (I⊤n f(X⋆)[p])2 + (v⋆⊤f(X⋆)[p])2

1/2

(22c)

=

2− 2

I⊤n f(X⋆)[p]√
n|v⋆⊤f(X⋆)[p]|√

1 +
|I⊤n f(X⋆)[p]|2

n|v⋆⊤f(X⋆)[p])|2


1/2

(22d)

=

2− 2

2(1−α)L−1|I⊤n φ̂αL◦φαL−1◦···◦φ1(X
⋆)[p]|√

n(1+βD)L|v⋆⊤X⋆[p]|√
1 + 22[(1−α)L−1]

n(1+βD)2L
|I⊤n φ̂αL◦φαL−1◦···◦φ1(X⋆)[p]|2

|v⋆⊤X⋆[p]|2


1/2

, (22e)

where equation equation 22b is based on equation 18, equation equation 22e is based on equa-

tion 21 and equation 14. When α > log2
2

1+βD
, we have limL→∞

(
21−α

1+βD

)L
= 0. Thus we have

limL→∞

∥∥∥ f(X⋆)[p]
∥f(X⋆[p]∥2

− In√
n

∥∥∥
2
=

√
2. This indicates that the p-th column of the output matrix f(X⋆)

is not parallel to In for any p. This further indicates that the output matrix does not have the identical
vector in each row.

A.4 TECHNICAL LEMMA

Lemma 3. For any x ∈ (0, 1), it always holds
[
1− 1√

1+x2

]1/2
≤ x.

Proof. To establish the inequality
[
1− 1√

1+x2

]1/2
≤ x, we begin by proving,

1− 1√
1 + x2

≤ x2. (23)

To demonstrate equation 23, we equivalently show

1− x2 ≤ 1√
1 + x2

. (24)

Subsequently, it suffices to verify

(1− x2)(
√
1 + x2) ≤ 1. (25)

This is equivalent to proving
(1− x2)2(1 + x2) ≤ 1. (26)

Thus, our focus shifts to demonstrating
(1− x2)(1− x4) ≤ 1. (27)

Clearly, equation 27 holds true for any x ∈ (0, 1).
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B EXPERIMENT DETAILS

To more intuitively compare the security differences between the SOLID method and a fully-secured
approach, we define ∆ADR(I) = ADR(I)− ADR([L]) to assess the resilience of the secured set I
relative to the fully-secured approach. A smaller value of ∆ADR indicates resilience similar to that
of the fully-secured model.

B.1 MODEL DETAILS.

The foundation models we use in our experiments are selected from open-source repositories, and
Table 4 shows the basic information of the models and their sources. Specifically, we employ
Llama2-70B-chat1, Llama2-7B-chat2, and Mistral-7B-v0.13. For smaller models, we select Phi-24

and Phi-1.55. We also consider OPT model6, which has only 350 million parameters and 24 decoder
layers.

Table 4: Model Info

Model Size Decoder Layers

Llama2-70B-chat (Touvron et al., 2023) 70B 80
Llama2-7B-chat (Touvron et al., 2023) 7B 32
Mistral-7B-v0.1 (Jiang et al., 2023) 7B 32
Phi-2 (Abdin et al., 2024) 2.7B 32
Phi-1.5 (Li et al., 2023) 1.3B 24
OPT (Zhang et al., 2022) 350M 24

B.2 DISTILLATION ATTACKS.

Attack implementation details. In performing FT-all and FT-secure model distillation attacks,
we adhere to the training hyper-parameters outlined in the Llama2 report (Touvron et al., 2023),
employing the AdamW optimizer with a cosine learning rate scheduler. The initial learning rate is
set to 2 × 10−5, with a weight decay of 0.1, a batch size of 128, and bfloat16 precision for input
sequences of 512 tokens. The LLaMA2-70B model is trained for 3 epochs with a random seed of 42,
while other models are trained for 5 epochs across three seeds: 42, 1234, and 20. Despite limiting
training to 3 epochs for the 70B model, the training loss stabilized effectively. Our implementation
builds upon the llama-recipes repository provided by META.

For SEM attacks, distinct configurations were employed for SOLID and SAP-DP. In the case of
SOLID, hidden representations from the secure-source components were collected and paired with
the input data to train a substitute model. In contrast, for SAP-DP, representations from the sixth
decoder layer and the model’s final logits were utilized to construct the training dataset. In accordance
with (Tamber et al., 2024), we applied a learning rate of 1.5e-4, a weight decay of 0.01, and a linear
learning rate scheduler with 500 warmup steps. Both training and validation batch sizes were set to
32, with MSE as the loss function. SOLID was trained for 30 epochs due to its smaller model size,
whereas SAP-DP was trained for 5 epochs.

All distillation experiments were conducted on Nvidia 4090 24G, 6000 Ada 48G, and A100 80G
GPUs, utilizing PyTorch 2.2.0 and CUDA 11.8 on Ubuntu 20.04.6 LTS.

1https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
3https://huggingface.co/mistralai/Mistral-7B-v0.1
4https://huggingface.co/microsoft/phi-2
5https://huggingface.co/microsoft/phi-1_5
6https://huggingface.co/facebook/opt-350m
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Base 51k Distillation Dataset. We ensure dataset coverage and reliability by using a 1:1 ratio of the
MMLU auxiliary training set 7 and Alpaca dataset 8, extracting 25.5k samples from each. From the
MMLU auxiliary training data (Hendrycks et al., 2021), we sample 50%, and from Alpaca (Taori
et al., 2023), we use a step size of 2 to enhance diversity. The datasets are then formatted for model
training, applying Alpaca and MMLU prompts from Table 5.

Table 5: Prompts for Alpaca and MMLU auxiliary training data

Dataset Prompt Type Description

Alpaca
with input

Below is an instruction that describes a task, paired with
an input that provides further context. Write a response
that appropriately completes the request.

w/o input
Below is an instruction that describes a task. Write a
response that appropriately completes the request.

MMLU

Question Answering
Below is a question with no choices. Write the correct
answer that appropriately solves the question.

Multiple Choice
The following is a multiple choice question, paired
with choices. Answer the question in the format:
“Choice:content”.

Extra Distillation Datasets. To enhance dataset diversity, the 100K, 200K, 300K, and 500K
datasets integrate additional specialized sources. As detailed in Table 6, these sources include
Baize (Xu et al., 2023) (158K English multi-turn conversations via ChatGPT’s self-chat), MathIn-
struct (Yue et al., 2023) (260K curated math instruction instances focusing on hybrid reasoning), and
OpenOrca (Mukherjee et al., 2023) (augmented FLAN collection with 1M GPT-4 completions and
3.2M GPT-3.5 completions). These enrichments are intended to support complex computational and
theoretical tasks, offering broader topic coverage.

Table 6: Composition of variously sized datasets

Raw Data Set 51k 100k 200k 300k 500k

Alpaca 25.5 50 40 50 50
MMLU auxiliary training set 25.5 50 40 100 100
Baize-MedQuAD 0 0 40 50 50
Baize-Quora 0 0 40 50 50
Baize-Stackoverflow 0 0 40 50 50
MathInstruct 0 0 4 6 20
OpenOrca 0 0 0 0 180

Validation Datasets. Table 7 outlines the composition of the validation datasets. For Validation
Dataset 1, we extracted 50% from each of the 57 MMLU validation sub-datasets, totaling 1.5K
instances, paired with Alpaca data selected using a step size of 751. This dataset is used with the 51K
and 100K training sets. For larger training sets (200K, 300K, and 500K), Validation Dataset 2 was
created by adding 400 instances from three Baize subsets, expanding the validation set to 4.0K.

B.3 BASELINES.

In this section, we provide further details on the baselines used in our comparisons: SAP-DP and
fully-secured. These schemes represent different strategies, each with distinct trade-offs in terms of
customizability and security against model distillation attacks.

7https://github.com/hendrycks/test
8https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json
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Table 7: Composition of validation datasets of different sizes

Raw Data Set Validation Set Evaluation Set
Alpaca 765 765
MMLU auxiliary training set 751 751
Baize-MedQuAD 0 850
Baize-Quora 0 850
Baize-Stackoverflow 0 850

Total Length 1516 4066

SAP. The Split-and-Privatize (SAP) framework (Shen et al., 2023) offers an approach to balance
between protecting model privacy and data privacy while maintaining competitive performance.
Specifically, the SAP framework keeps the bottom six encoder layers open, allowing user access and
fine-tuning while securing the deeper layers on the vendor.

SAP-DP. To further strengthen protection while maintaining competitive performance, we extend
SAP by incorporating differential privacy techniques by adding Laplace noise to perturb the logits
during the fine-tuning process (Lee et al., 2018). The Laplace Distribution with mean µ and scale b is
the distribution with probability density function:

Laplace(x|µ, b) = 1

2b
exp

(
−|x− µ|

b

)
Specifically, in SAP-DP, the noise n is sampled: n ∼ Laplace(0, 0.5) and added to the output logits
of the model to balance privacy protection and model performance.

Fully-secured. Following (Eiras et al., 2024), we use the fully-secured approach as a baseline.
This assumes the adversary has no access to internal model parameters, treating the model as a
black-box, where only output data can be collected. We slightly broaden this setup by assuming
the adversary knows the model’s architecture but no other details. Thus, distilling the fully-secured
model involves using the collected data to retrain a model with the same architecture to restore its
general functionality.

DarkneTZ. Based on the work of (Mo et al., 2020), we use DarkneTZ as a baseline to test whether
protecting only the output layers is sufficient to defend against distillation attacks. In this setup, we
assume the adversary has no access to the model parameters of the output layers, specifically the
last decoder layer. Similar to the SAP framework, this approach allows the adversary to access and
fine-tune all layers except the final decoder layer.

B.4 IMPLEMENTATION DETAILS OF SOLID.

Evaluation Datasets. We created a 1.5K Evaluation Set to assess model security under various
secure-sourcing strategies. This set includes 50% of entries from each of the 57 MMLU validation
sub-datasets (Hendrycks et al., 2021), distinct from Validation Set outlined in Table 7. Additionally,
we selected an equal number of Alpaca dataset (Taori et al., 2023), using a step size of 751, ensuring
no overlap with the Validation Set.

Hyper-parameter Sensitivity. As shown in Figure 7, we evaluate SOLID’s sensitivity to tolerance
magnitude ε, adjusting it from 0.05 to 1 in 0.05 increments while calculating the ∆ADR for six
distilled models. The results indicate that SOLID is minimally sensitive to changes in ε, with ∆ADR
values stabilizing as ε increases. This stability arises from the need for a smaller secured layer at
higher ε, allowing the condition R(I) ≤ (1+ ε)R([L]) to be met with fewer layers. Additionally, the
increase in ∆ADR is smaller for larger models, suggesting that privatizing more parameters beyond
a certain point offers diminishing returns in security.

B.5 EVALUATION BENCHMARKS

Most of our evaluations are conducted using the lm-evaluation suite (Gao et al., 2023), the bigcode-
evaluation-harness platform (Ben Allal et al., 2022), and MT-Bench (Zheng et al., 2023). For specific
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Figure 7: Sensitivity on ε.

domains, such as finance and law, we utilize the official benchmark testing codes provided by their
respective communities, as detailed below.

Evaluation on Customizabilities. We assess the customizability of models across six domains,
as detailed in Table 8. Each domain includes specific benchmarks and metrics designed to
evaluate different aspects of the model’s performance in relation to customizability. In partic-
ular, for evaluating medical capabilities, we select two subcategories from the MMLU bench-
mark that are related to the medical domain: mmlu_anatomy and mmlu_professional_medicine.
For assessing legal reasoning, we select 10 multiple-choice and judgment-based subcategories
from Legalbench. The performance of the model in these legal tasks is measured using per-
plexity, following the prompt structure provided by Legalbench. Specifically, the selected
subcategories include: cuad_audit_rights, canada_tax_court_outcomes, definition_classification,
cuad_affiliate_license-licensee, learned_hands_business, contract_nli_survival_of_obligations, con-
tract_nli_explicit_identification, contract_nli_confidentiality_of_agreement, hearsay, and con-
tract_qa.

Table 8: Details of the Six Customizability Benchmarks

Domain Benchmark Metric n-shot Reference

Code
HumanEval Pass@1 0 (Chen et al., 2021)
MBPP Pass@1 1 (Austin et al., 2021)

Math GSM8K Exact Match 8 (Cobbe et al., 2021)

Medical MMLU_Medical Accuracy 5 (Hendrycks et al., 2021)

Finance FPB F1 0 (Wang et al., 2023a)

Law LegalBench Accuracy 0 (Guha et al., 2023)

Alignment MT-Bench Score (GPT-4) (Zheng et al., 2023)

Evaluation on Security. We follow the Llama-2 report (Touvron et al., 2023) to evaluate the distilled
model, including 16 benchmarks, which are categorized into 6 groups. Table 9 summarizes the
functionality benchmarks used in our experiments, along with their test methods and performance
metrics. Our model ranks choices in multiple-choice tasks and generates answers for open-ended
generation tasks.

B.6 MODEL CUSTOMIZATION

Datasets. To fine-tune the models for domain-specific tasks, we utilized several datasets tailored to
different sectors, including Code (Zheng et al., 2024b), Math (Yue et al., 2023), Medical (Zhang et al.,
2023), Finance (Wang et al., 2023b), Law (Guha et al., 2024), and Alignment (Meng et al., 2024).
Table 10 lists the customization training datasets used in the experiments. For the code domain,
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Table 9: Details of the Sixteen Functionality Benchmarks

Domain Benchmark Metric n-shot Reference

Commonsense Reasoning

PIQA Accuracy 0 (Bisk et al., 2020)
Hellaswag Accuracy 0 (Zellers et al., 2019)
Winogrande Accuracy 0 (Sakaguchi et al., 2019)
ARC_easy Accuracy 0 (Clark et al., 2018)
ARC_challenge Accuracy 0 (Clark et al., 2018)

Reading Comprehension

OpenBookQ Accuracy 0 (Mihaylov et al., 2018)
LAMBADA Accuracy 0 (Paperno et al., 2016)
BoolQ Accuracy 0 (Clark et al., 2019)
SQuADv2 HasAns_EM 2 (Rajpurkar et al., 2018)
SQuADv2 HasAns_F1 2 (Rajpurkar et al., 2018)

World Knowledge
NaturalQuestions Exact Match 5 (Kwiatkowski et al., 2019)
TriviaQA Exact Match 5 (Joshi et al., 2017)

Code
HumanEval Pass@1 0 (Chen et al., 2021)
MBPP Pass@1 1 (Austin et al., 2021)

Math GSM8K Exact Match 8 (Cobbe et al., 2021)

General Ability
MMLU Accuracy 5 (Hendrycks et al., 2021)
BBH Accuracy 3 (Suzgun et al., 2022)

we combine the datasets from CodeFeedback and CodeAlpaca. For law and finance, we merge all
training datasets from Legalbench and FinGPT respectively. These datasets are then prepared for
model training using the Alpaca prompts outlined in Table 5. Additionally, we randomly select 3,000
samples to serve as the validation dataset.

Table 10: Customization Training Datasets Composition

Domain Dataset Name Size Reference

Code CodeFeedback 156k (Zheng et al., 2024a)
CodeAlpaca 20k (Chaudhary, 2023)

Math MathInstruction 262K (Yue et al., 2023)

Medical MedMCQA 183k (Zhang et al., 2023)

Law Legalbench 90k (Guha et al., 2023)

Finance FinGPT 204k (Wang et al., 2023a)

Alignment Ultrafeedback 62k (Cui et al., 2024)

Customization Training Hyperparameters. In model customization, we use different hyperparame-
ters depending on the model size. For LLaMA2-70B, we apply QLoRA with the settings outlined in
Table 11, while for 7B models, we use LoRA. For smaller models like Phi2 and Phi-1.5, we fine-tune
all model parameters. For LLaMA2-70B, we fine-tune it as a quantized 4-bit model over 1 epoch,
starting with a learning rate of 1.5 × 10−6. For the 7B models, we train for 3 epochs, with a seed
value of 42. The training setup includes a weight decay of 0.1, a batch size of 128, a warmup ratio of
0.03, and input sequences of 512 tokens, following standard experimental practices (Hu et al., 2021).
For Phi2 and Phi-1.5, we use the training hyperparameters from the LLaMA2 report. We employ the
AdamW optimizer with a cosine learning rate scheduler, starting with a learning rate of 2× 10−5, a
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weight decay of 0.1, a batch size of 128, and use bfloat16 precision for 512-token input sequences.
Specifically, for alignment, we follow SimPO (Meng et al., 2024) and set the preference parameters
β = 2 and γ = 1. The learning rate is 1 × 10−6 for LLaMA2-70B and 5 × 10−7 for the 7B and
smaller models. All experiments are conducted using the LLaMA-Factory on Nvidia 4090 24G, 6000
Ada 48G, and A100 80G GPUs, with PyTorch 2.2.0 and CUDA 11.8 on Ubuntu 20.04.6 LTS.

Table 11: The Hyperparameters for Customization Training.

Model Method Rank r Lora α Dropout Learning Rate Epochs Warmup R.

Llama2-70B QLoRA 96 16 0.05 1.50E-04 1 0.03
Llama2-7B LoRA 32 64 0.05 2.00E-05 3 0.03
Mistral-7B LoRA 32 64 0.05 1.00E-06 3 0.03

B.7 SECURITY AND CUSTOMIZATION TRANSITIONS

For the LLaMA2-7B model, the smallest secure-source layer set identified by SOLID consists of a
single decoder layer, whereas for Phi-2, it includes two decoder layers. Consequently, for LLaMA2-
7B, we opted to secure-source each even-indexed layer, while for Phi-2, we chose to secure-source
non-overlapping pairs of layers (e.g., layers 0-1, 2-3). For each selected layer set, we first secure-
source them, then subjected the semi-open model to FT-all attacks, and subsequently calculated the
∆ADR of the layer set to assess its security.

When verifying the customization transition, due to computational constraints, we validated only
every other layer set for both models (e.g., secure-source layers 0, 0-4, 0-8 . . . ). Specifically, we
applied LoRA-based customization on LLaMA2-7B in the math domain, while for Phi-2, we utilized
the full finetuning approach. The experimental hyperparameters remain consistent with those outlined
in the Appendix B.6.

We further computed the ∆ADR for each secure-source set within Mistral-7B-v0.1 and Phi-1.5. In
these models, the smallest secure-source set identified by SOLID consists of one decoder layer and
two decoder layers, respectively. Following the same experimental configuration as LLaMA2-7B and
Phi-2, we secured each even-indexed layer for Mistral-7B, and non-overlapping pairs of layers for
Phi-1.5. The complete results demonstrating the transition layers within the Mistral-7B and Phi-1.5
model that secure two non-overlapping consecutive layers are depicted in Figure 8. Once again,
we observed a distinct presence of transition layers. Specifically, in Mistral-7B, the transition layer
appears at the 24th layer, while in Phi-1.5, it is located within the first layer set.
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Figure 8: Security changes in Miatral-7B and Phi-1.5.

B.8 SECURITY ACROSS SECURE SIZES

To examine the influence of Secure layer size on model security, we conduct experiments on Secure-
sourcing different amounts and proportions of parameters in the model’s decoder layer. We give
instructions on the detailed setting of secured models in Table 12. The module names are all derived
from the overall implementation functions of each model in the Transformers open-source repositories
in Table 4. We utilize abbreviated module names to denote specific settings.
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Table 12: Secured Sizes Setting. “*” indicates an entire decoder layer.

Llama-7B Mistral-7B Phi2-2.7B Phi1.5-1.3B

0.25% Wk Wq,Wk Wk Wk

0.50% Wq,Wk Wo,MLPup Wq,Wk Wq,Wk

1% Wq,Wk,Wv,Wo Wq,Wk,Wv,Wo Wq,Wk,Wv,Wd Wq,Wk, ,Wv

3% 0 0 0 0

7% 0-1 0-1 0-1 0-1

15% 0-4 0-4 0-3 0-3

30% 0-9 0-9 0-9 0-6

50% 0-15 0-15 0-15,Wem 0-11,Wem

Proportion

100% Fully-secured Fully-secured Fully-secured Fully-secured

20M Wk Wq,Wk Wq,Wk,Wv Wq,Wk,Wv,Wd

50M Wq,Wk,Wv Wq,Wk,Wv,Wo MLP 0

100M Wq,Wk,Wv,MLP Wq,Wk,Wv,Wo,MLP 0, Wq,Wk,Wv 0-1

160M Wq,Wk,Wv,Wo,MLP Wq,Wk,Wv,Wo,MLP 0-1 0-2

200M 0 0 0-1, Wq,Wk,Wv,Wd,MLPf1 0-3

300M 0, Wq,Wv,Wo,MLPup 0, Wq,Wv,Wo,MLPup 0-3 0-5

Quantity

600M 0-2 0-2 0-7 0-11

We further computed ∆ADR by close-sourcing varying quantities and proportions of parameters
under FT-all attacks on three additional models. As shown in Figure 9 and Figure 10(a), we observed
the same pattern as with Llama2-7B, where security emerges once a sufficient number of parameters
are secured. For example, on Mistral-7B, security occurs after secure-sourcing 100 million parameters,
which is less than a single decoder layer. Secure-sourcing fewer parameters leads to a notable drop
in security, with ∆ADR rising to around 40%. Beyond this threshold, security stabilizes near 0%
∆ADR. This pattern holds across all models, highlighting a critical threshold for effective secure-
source. Furthermore, different architectures require varying secure-sourcing quantities to achieve
security, even with similar model sizes. For instance, Mistral-7B reaches security by secure-sourcing
100 million parameters, Llama2-7B requires 200 million, and Phi-1.5 needs a higher rate of 7%,
compared to 3% for Llama2-7B.

20 50 100 160 200 300 600

Secured Quantity (M)

0

10

20

30

40

50

∆
A

D
R

(%
)

(a) Secured(M) vs. ∆ADR

0.25 0.5 1 3 7 15 30 50 100

Secured Proportion (%)

0

10

20

30

40

50

∆
A

D
R

(%
)

(b) Secured(%) vs. ∆ADR

Mistral-7B Phi2-2.7B Phi1.5-1.3B

Figure 9: ∆ ADR for different secure parameter quantities and proportions.

We explore how secured parameter ratio impacts the model security in Llama2-7B, as shown in
Figure 10(b). For instance, technical skills such as Math show earlier transitions, with security
emerging at 1% parameters secured, whereas domains such as Commonsense Reasoning require
hiding 3%. In summary, secure-sourcing a small portion of parameters can provide sufficient security
against model distillation, meanwhile, technical capabilities tend to be more challenging to distill
than other domains.

B.9 EFFECTIVENESS OF DISTILLATION DIFFICULTY

The complete Pearson and Spearman results are presented in Table 13, revealing a negative correlation
between RS and the average distillation ratio. For example, in Llama2-7B, both Pearson and Spearman
coefficients fall below -0.77. Similar trends are seen in models with varying architectures and sizes,
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Figure 10: ∆ADR and ∆DR changes in Llama2-7B with varying secured parameter ratios.

confirming that RD is a reliable predictor of distilled model performance and demonstrating the
effectiveness of SOLID. Additionally, Figure 11 shows scatter plots depicting the relationship between
∆ADR and Distillation Difficulty(↑)s across four models, along with the corresponding Pearson and
Spearman correlation coefficients. The Distillation Difficulty(↑)s were obtained from Section 5.3. As
illustrated in Figure 11, we observe a clear trend: an increase in ∆ADR corresponds to a decrease in
model scores across all models analyzed. This inverse relationship is consistently supported by strong
negative values for both Pearson and Spearman correlation coefficients, with the most significant
negative correlation seen in Phi2-2.7B, indicating a substantial drop in model scores as ∆ADR
increases.

Table 13: Correlation coefficients (Spearman | Pearson) between distillation ratio and distillation difficult.

Model Rsn. Read. Knl. Code & Math Gen. Avg.

Llama2-7B -0.83 | -0.97 -0.77 | -0.96 -0.83 | -0.95 -0.85 | -0.90 -0.82 | -0.93 -0.80 | -0.98
Mistral-7B -0.83 | -0.89 -0.82 | -0.91 -0.82 | -0.94 -0.78 | -0.95 -0.76 | -0.87 -0.87 | -0.92
Phi-2 -0.93 | -0.96 -0.84 | -0.96 -0.84 | -0.87 -0.84 | -0.80 -0.84 | -0.84 -0.87 | -0.95
Phi-1.5 -0.86 | -0.97 -0.78 | -0.94 -0.83 | -0.94 -0.90 | -0.80 -0.84 | -0.89 -0.80 | -0.94
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Figure 11: Correlation Analysis of ∆ADR and Distillation Difficulty Across Different Models.
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