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Introduction: Planetary science investigations often
involve analyzing vast volumes of orbital data from Mars
and other planets to map features and quantify other prop-
erties. However, analyzing large volumes of such data
manually is time-consuming and laborious. To address
this challenge, researchers have increasingly developed
machine learning (ML) models to automate data analy-
sis. Existing work has demonstrated the ability of ML
models to accelerate Mars-based tasks, such as crater and
cone mapping [1, 2], landmark classification [3, 4, 5]
and many others [6, 7]. However, building efficient ML
models for individual planetary science use cases often
requires the creation of large labeled training datasets.
Transfer learning offers a powerful solution, leveraging
knowledge from one domain to facilitate learning in an-
other. Despite the potential of models pre-trained on
large datasets like ImageNet (14M images), prior work
showed that fine-tuning still requires substantial labeled
digital images (~70,000 data samples for HIRISENet).

Recent work in ML introduced “Foundation Models”
which are neural networks pre-trained on large amounts
of diverse datasets (labeled or unlabeled) and generalize
efficiently to new tasks. Foundation models have been
shown to perform remarkably well on a wide range of
natural language processing and computer vision tasks
[8,9, 10]. This remarkable performance can be attributed
to the pre-training since it learns a broad base of knowl-
edge and improves the performance on downstream tasks
via fine-tuning even with smaller, labeled datasets. Pre-
training can be performed in different ways depending
on the model’s architecture and the type of data. For in-
stance, supervised pre-training can be done when labels
are available for training data, mapping input-output cor-
relations. In contrast, self-supervised pre-training can be
done when labels are not available and the model gen-
erates or predicts input data itself. Foundation models
have gained significant attention in Earth Observation
(known as Geospatial Foundation Models) for solving
tasks across diverse categories, e.g., agriculture, natural
disaster, and landmark classification [11, 12, 13]. While
previous work explored foundation models for Mars rover
images [14, 15, 16, 17, 18], foundation models have not
been investigated for orbital Mars data.

In this research, we developed foundation models and
explored their efficiency in doing Mars science tasks for
orbital data. Specifically, we focus on two downstream
tasks: HiRISE (High Resolution Imaging Science Exper-
iment) Landmark Classification, and identifying Martian

Frost in HiRISE images. To develop the foundation mod-
els, we employed various pre-training data strategies over
the Inception and ViT models. Specifically, we developed
baseline models using zero pre-training and supervised
pre-training with ImageNet and DoMars16 data. We then
leveraged the self-supervised pre-training strategy using
CTX data and compared the performance on two down-
stream tasks with the baseline. Our preliminary results
demonstrate that self-supervised pre-training is a promis-
ing approach for building a foundation model for a wide
variety of Martian tasks.

Downstream tasks: We selected Martian Frost [19]
and HiRISE Landmark classification [3] as our initial
downstream tasks. Martian Frostis a binary classification
task to classify between frost and background surface
(non-frost). HiRISE Landmark Classification is a multi-
class classification task across 8 classes: Bright Dune,
Crater, Dark Dune, Impact Ejecta, Slope Streak, Spider,
Swiss Cheese, and Other. It is currently in operation at
the Planetary Data Service Imaging Node. For all the
experiments, we used the published training, validation,
and testing sets associated with these tasks.

Models: To develop the foundation model for Mars-
based tasks, we pre-trained and fine-tuned the Vision
Transformer (ViT) [20] model (specifically, ViT-Large)
and compared its performance with the Inception-v3
baseline [21] (as benchmark results available in [15]).

Baseline Pre-training Data Strategies: As a base-
line, we considered the following three pre-training data
strategies:

1. Zero Pre-training: When the model is not pre-
trained on any dataset and the downstream task is
directly performed on randomly initialized weights.

2. ImageNet: ImageNet is a large-scale database with
more than 14 million images across 1300 classes
of daily-life objects (e.g., cat, dog, chair, etc) [22].

3. DoMars16: DoMars16 is a Martian surface land-
mark classification dataset with 16150 data sam-
ples across 15 classes [4]. This dataset was created
from the Context Camera (CTX) [23] installed on
the Mars Reconnaissance Orbiter (MRO) satellite.
We used the original training and validation split
to pre-train the model.

As discussed above, since labels are available for Im-
ageNet and DoMars16 datasets, we employ a supervised
pre-training strategy and directly pre-train the model (ViT
and Inception) on these datasets.
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Self-Supervised Pre-training: We conducted a pre-
liminary investigation to evaluate the performance of a
foundation model that is pre-trained using CTX data in
a self-supervised manner. CTX has global coverage of
Mars and this data is easily accessible through Murray
lab [24]. The dataset is a seam-corrected global im-
age mosaic of Mars rendered at ~ 5.0 meters/pixel and
subtiles are 2° x 2° wide. We randomly sampled 90 sub-
titles (resolution of 23710 x 23710) from each longitude
(ranges -180° x 180° and with a step size of 4°). From
each subtile, we created non-overlapping data samples of
size 200 x 200, resulting in a total of 13,924 samples per
subtile and 1,253,160 (1.2M) samples overall. Finally,
we split these data samples at tile-level into 90%-10% of
training and validation, i.e., we used data from 81 sub-
tiles for training and the 9 subtiles for validation to avoid
spatial autocorrelation between training and validation.

Self-supervised pre-training for CTX data has been
done using the Masked AutoEncoder (MAE) model,
where the encoder (backbone) of the MAE [8] model
is ViT. During pre-training, 75% of the portion of the
CTX data samples were masked and the task of the MAE
model is to predict the masked portion of the CTX im-
ages. Once the pre-training of MAE is completed, the
backbone (ViT model) is used in the downstream tasks.

Experiment Results: The Martian Frost task was
evaluated using the Area Under Curve (AUC) score,
which quantifies how well the model differentiates be-
tween positive and negative classes; and the HiRISE
Landmark classification task was evaluated using Ac-
curacy. Results are shown in Table 1. Results for both
tasks show that all the pre-trained models showed bet-
ter performance compared to Zero-pretraining for both
models (ViT and Inception). In addition, for both tasks,
the ViT model pre-trained on ImageNet outperformed
all other pre-training and Inception baselines. Interest-
ingly, despite ImageNet being a cross-domain dataset for
Mars-based tasks, it outperformed the DoMars16 and
CTX data pre-training for Martian Frost and showed a
comparable performance for HiRISE Landmark Classi-
fication. These results demonstrate that cross-domain
pre-training can still be beneficial to improve the perfor-
mance for Martian tasks. We can observe that the number
of pre-training data samples in ImageNet is significantly
higher compared to DoMars16/CTX. This suggests that
the model’s ability to learn general feature extraction ca-
pabilities from a huge amount of data can be advanta-
geous. A similar observation is shown by Atha et. al
for Martian terrain segmentation task in [14]. For CTX
data, we can see that despite having a smaller number of
samples (1.2M) compared to ImageNet data (14M), the
model pre-trained on CTX data shows comparable per-
formance with the model pre-trained on ImageNet. This
suggests that a smaller amount of in-domain data (CTX)

Pre-training Pre-training Martian HIRISE

Model Data Data Size Frost Landmark

AUC T  Accuracy 1
Zero Pre-training 0 0.83 0.46
VIT ImageNet 14M 0.99 0.88
DoMars16 16K 0.95 0.56
CTX data 1.2M 0.93 0.86
Inception Zero Pre-training 0 0.95 0.44
P ImageNet 14M 0.96 0.68

Table 1: Result for Martian Frost and HiRISE Landmark Clas-
sification (Here, K and M indicate thousands and millions, re-
spectively). 1 indicates higher the result, better the performance.

can be just as effective for pre-training compared to a
much larger, but out-of-domain dataset (ImageNet).

Conclusions and Future Work: In this research,
we built and investigated the capability of foundation
models for two Martian tasks. Our experimental results
show that the foundation models improve performance
compared to supervised training. Furthermore, our pro-
posed self-supervised pre-training strategy based on CTX
data shows promising results, suggesting value for explor-
ing curated data preparation methods for self-supervised
learning. Our future work involves, developing a more
curated foundation model for Martian tasks and including
a wide variety of downstream tasks, e.g., crater counting
and mapping, finding the existence of water bodies, etc.
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