Under review as a conference paper at ICLR 2026

JET EXPANSIONS: RESTRUCTURING LILLM COMPUTA-
TION FOR MODEL INSPECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models are becoming general knowledge engines for diverse ap-
plications. However, their computations are deeply entangled after training, re-
sisting modularization which complicates interpretability, auditing, and long-term
maintenance. We introduce Jet Expansions, a framework for expanding compu-
tational graphs using jet operators that generalize truncated Taylor series. Our
method systematically decomposes language models into explicit input-to-output
computational paths and complementary remainders. This functional decompo-
sition provides a principled, knife-like operator for cutting through entanglement
in LLMs, enabling scalable model inspection. We demonstrate how Jet Expan-
sions ground and subsume the popular interpretability technique Logit Lens, re-
veal a (super-)exponential path structure with respect to recursive residual depth,
and support several interpretability applications, including sketching a transformer
language model with -gram statistics extracted from its computations and indexing
model toxicity levels without curated benchmarks.

1 INTRODUCTION

Symbolic Al systems stores knowledge in modular, addressable units: rules, facts, or graphs that
mirrors human reasoning (Xu et al., |2025). Large language models (LLMs), by contrast, disperse
knowledge across billions of entangled parameters. This mismatch between computation layout
and knowledge layout is at the heart of the opacity of LLMs, creating practical challenges. Once
trained, LLMs cannot be easily audited, updated, or corrected: removing toxic knowledge, deleting
private information, or incorporating new policies is far from straightforward (Kadhe et al.|[2024; |L1
et al., [2025). In contrast, such operations could be trivial in systems that structure knowledge into
addressable units, such as symbolic systems. The opacity of LLM computations thus raises con-
cerns about transparency, accountability, and long-term maintenance in high-stakes domains such as
healthcare (Smith, 2021} [L1u et al., [2023; (Comeau et al., [2025)) and robotics (Wachter et al., 2017}
Raptis et al., [2024} |[Fernandez-Becerra et al., [2024)).

Existing interpretability methods often take a data-then-explanation approach: curate inputs, hy-
pothesize which sub-computations matter, and observe activations to refine the hypothesis (Wang
et al., [2022; [Meng et al.| [2022} |Goldowsky-Dill et al.| [2023)). But the real challenge is structural:
LLM computations are entangled, preventing us from isolating embedded knowledge into mean-
ingful units. While one can gain valuable insights with data-driven interpretability approaches, we
posit that the ability to reorganize computation into smaller, less entangled, end-to-end components
“mechanically” — rather than “experimentally” — is central to tackle such issue at scale.

We present Jet Expansions, a principled, general-purpose framework for manipulating LLM com-
putations. Noting that LLMs are particular types of residual networks (He et all 2016} [Vaswani
et al.| [2017), our key idea is to recursively expand residual computations using jet operators (Ehres-
mann, [1951), the functional counterpart of truncated Taylor series. This process yields functional
rewritings of the model into two parts: (i) explicit input—output polynomial functions, which we
call jet paths, and (ii) complementary nonlinear remainders. Crucially, Jet Expansions operates at a
functional level, requiring no additional data, nor training. We show that jet expansions encompass
existing interpretability tools such as the logit lens (nostalgebraist, [2021b), and extend them to new
instantiations such as jet n-grams. This enables data-free, symbolic sketches of transformer LLMs
and allow us to perform global interpretability studies. Figure|l|illustrates the pipeline.

Under review as a conference paper at ICLR 2026

4iliaiaiaia e e e e e e R N P < .
1 Functional v\ I nterpertability]
1 Space 11
. Computation| | — !
. of Interest [T Roadout Application 1
' . token contribution heatmap 1
1 . component role identification 1
1 11 . . . model diff
' * jet/logit lens . training monitoring 1
1 * et ngrams - finetuning verification 1
1 1 - knowledge quantification
L Remainder | 1 1 oo |
\ 1 3
4 \
N - S e mEm e EmEEEmeEmEmEmeEEm == ’

Figure 1: Jet Expansions restructure residual computations into explicit input—output paths and a comple-
mentary remainder. From these paths we can extract logits, and n-grams without retraining or additional data.
These readouts support downstream applications such as token contribution heatmaps, model comparison, train-
ing monitoring, and fine-tuning verification.

We validate our framework through case studies across diverse autoregressive LLMs (GPT, Llama,
OLMo). Jet expansions enable several empirical usages: i) understanding inner mechanisms (Sec-
tion[5.2.1); ii) assessing fine-tuning effects, e.g. quantifying toxicity levels with jet n-grams, showing
RLHF alignment (Bai et al., [2022) reduces but does not eliminate toxic knowledge (Section @;
iii) analyzing pretraining dynamics, e.g. tracking how bi-grams such as “at least” are promoted then
suppressed in OLMo (Appendix [F). These results demonstrate that jet expansions provide a pow-
erful, data-free operator for restructuring LLM computations, paving the way for more transparent,
interpretable, and maintainable foundation models.

Our contributions.

1. A new angle on interpretability: treating it as function decomposition, rather than input-
driven attribution or circuit identification on particular datasets.

2. A principled theoretical framework, based on jet operators, formally grounding existing
tools such as logit lens (nostalgebraist, 2021bga) and path expansion (Elhage et al., 2021}

3. Preliminary but wide-ranging case studies, revealing insights into LLM internal mecha-
nisms, training dynamics, and toxicity levels.

2 BACKGROUND AND PRELIMINARIES

Language models as residual networks. We focus on transformer language models (Vaswani
et al., [2017), which are residual networks (He et al [2016) consisting of L stacked residual blocks
sandwiched between an encoder Enc and a decoder Dec. Formally, the full computation is

f =Deco (Of;(id + 7)) o Enc, (1)

where 7, is the non-linear transformation in block ¢. Unrolling the recursion, the hidden state after
¢ blocks is

he = hg + Z?:l Yj © hj_l, hog = EHC(Z). 2)

This recursive form makes clear that residual links accumulate contributions from all preceding
layers. We adopt the notion of residual streams (Elhage et al.,2021)), where the computation can be
viewed as nested terms entangling contributions across blocks (see also (Veit et al., [2016)). Table|I|
summarizes the notation.

Taylor expansions and jets. To handle nonlinearities when restructuring residual computations,
we rely on jets (Ehresmann, |1951), which generalize Taylor expansions. For f € C*+1(R? R%),
Taylor’s theorem at base point x gives

F(@) = f(zo) + X5, 4 DI f(20) (x — 20) + Ol — o). 3)
The k-th order jet operator abstracts this expansion as
JEf R PR 3R f (o) () = f(z0) + Xy % DY f(w0) (x — 20)®,)

Under review as a conference paper at ICLR 2026

or equivalently, by leaving the polynomial action implicit,
JEf(w0) = f(wo) + 25—y 5 DY f(x0)-

Intuitively, J* f(zo) captures the local structure of f up to order k, and we write f(x) =~
J* f(20)(z) to indicate agreement up to order k. Jets thus provide a principled operator for rewriting
residual computations into decomposable pieces.

Remark 1 (Base points and variables as functions). When tracing back to the input z € X, base
points x(and variables x may themselves depend on z. In that case, jets define maps X —) via
J¥ f(20(2))(z(2)). For brevity, we often omit explicit dependence on = when clear from context.
(See Appendix [A]for details.)

Table 1: Summary of notation used in the paper.

Symbol Meaning Symbol Meaning

X Input space L Depth (no. of blocks)
\%4 Vocabulary size id Identity map

y=R"Y Output logits U Unembedding matrix

d Hidden dimension v Final normalization

f: X2y Full network hy Hidden state at layer £
Enc: X — R? Encoder Be Residual block at layer £
Dec:R? - Y Decoder Ye Residual transform inside block £
zo Base point (center) T Variable

DI f(zo) j-th differential (z —x0)®7 j-fold tensor product
JE f(x0) k-jet at zo JEf Jet operator

pk Degree-k polynomial space

3 RELATED WORK

Mechanistic interpretability and path rewriting. A large body of work has sought to interpret
the inner computations of large language models. One prominent category is mechanistic inter-
pretability (MI) (Ferrando et al., 2024), which aims to reverse-engineer model computations by
identifying, clustering, and labeling behaviors (Shah et al., |2024; Meng et al., 2022} Bricken et al.,
2023)) and attributing them to specific components, such as MLPs (Geva et al.| 2021} 2022) or
circuits (Conmy et al.| 2023} [Ferrando & Voita, [2024). However, these approaches often restrict
analysis to atomic components (neurons, layers, or weights), which may not reveal the full mech-
anism of information processing. For example, Templeton et al|(2024) highlight the difficulty of
drawing conclusions at the neuron level compared with higher-level feature representations, while
Bolukbasi et al.[(2021)); |Goldowsky-Dill et al.| (2023) emphasize that many findings depend heavily
on the chosen data distribution. A second category of approaches attempts explicit path rewriting.
Veit et al.| (2016) expand residual networks into paths of varying length to study gradient behavior.
Elhage et al.| (2021) decompose one- and two-layer transformers into sums of unigram and bigram
computation paths. |Goldowsky-Dill et al.[(2023)) extend this line of work by developing path patch-
ing methods that aim to preserve functional faithfulness while isolating specific behaviors. Aligning
with the second category, our approach manipulates functions directly rather than activations. It
requires neither probe datasets (Belrose et al.l 2023) nor sampling (Conmy et al., 2023} [Ferrando
& Voita, [2024; [Voita et al., |2024). By allowing arbitrary portions of computation to be isolated
from the monolithic transformer, jet expansions abstract and generalize prior path-based character-
izations (Veit et al 2016} |[Elhage et al., 2021), including nonlinear components often ignored or
simplified (e.g. layer norms and MLPs).

N-gram models as symbolic counterparts. n-gram models, dating back to[Shannon|(1948)), rep-
resent one of the earliest symbolic approaches to language modeling. They store explicit proba-
bilities of token sequences, e.g. Pr(w; | w;i—1,...,w;—p+1), in tabular form. This makes their
knowledge layout identical to their computation layout: each sequence has a directly addressable
probability entry. Such symbolic modularity enabled early successes in language modeling (Good-
man, 2001) and tasks like machine translation (Brants et al., 2007). While later work combined
n-grams with networks (e.g. Liu et al., |2024), recent studies revisit their role in relation to LLMs:
for instance, analyzing the ability of transformers to simulate n-gram statistics (Svete & Cotterell,
2024])) or measuring agreement between LLM predictions and n-gram rulesets (Nguyen, 2024).

Under review as a conference paper at ICLR 2026

Taylor expansions and jets. Taylor expansions are popular tools in analyzing learning behaviours
(Jastrzebski et al.,[2017), notably with linearization (k = 1). For example, Belrose et al.| (2024) ap-
plied Taylor expansion on the loss function to demonstrate the learning preference of neural network
models. |Xu et al.|(2022) used a second-order Taylor expansion over the data distribution to interpret
optimal features. The generalized jet notions was introduced in machine learning in the context of
automatic differentiation tools by [Bettencourt et al.| (2019), and is an experimental feature in Jax
(Bradbury et al., 2018]), but has been studied before (see e.g.|Griewank & Walther, |2008). We lever-
age jets not merely as approximation tools, but as operators to restructure residual computations in
LLMs into explicit input—-output paths and complementary remainders.

4 RESTRUCTURING LLM COMPUTATION WITH JET EXPANSIONS

Traditional interpretability tools (e.g., probing, distillation, attention visualization) provide only par-
tial and often data-dependent insights; they do not entirely reorganize the underlying computation.
Jets approximate functions locally and, crucially, can be leveraged as a carving operator that makes
otherwise entangled computations decomposable.

4.1 LINEAR CASE: EASY TO RESTRUCTURE

We begin with the linear case, where residual computations can be reorganized exactly without any
approximation. Consider a linear residual network, with y,(x) = A,z for some A, € R%*?, encoder
Enc = FE, and v = id. Then

f =Deco (Oszl (id + W)) o Enc = U(ngzm [Ties Al)E = ngz[m Iss (5)

where 2[X] is the power set of [L] = {1,...,L} and each path fg = U(Hles Al)E =

UWgE, Wy = 1, is itself a linear map from X to). Thus, the entire network can be written
as the sum of 2% explicit input-to-output paths fg. This exact decomposition makes linear residual
networks intrinsically easy to restructure. In the nonlinear case, however, such a clean decomposi-
tion no longer holds, motivating the use of jets.

4.2 NONLINEAR CASE: JETS TO THE RESCUE

J¥ f(z0) encodes all information about a function f up to
order-k derivatives at a base point x(, providing a vector-free
representation of its local behavior. This makes jets a princi-
pled tool for reorganizing computations in LLMs. LemmalT] ‘
proved in Appendix [A] formalizes their disentangling prop- f(x +x,) Je)\ 4 flx)
erty: the jet at a sum of inputs can be written as a convex

Actual entangled “Ideal” disentangled
output output

combination of jets at the individual inputs, up to higher-order Layer
error. This allows us to carve apart nested residual terms into \ / \
A . v/ + \x, x/ +\x,
separate, analyzable contributions (Figure [2).
Lemma 1 (Disentanglement of Jets). Let f € C>(R% RY), Residual stream
k€N, N € N*, {2}, be a set of jet base points, and w €
AN=Y C RN be a set of jet weights (i.e., w; > 0, >, w; = Figure 2: Convex combinations of jets

disentangle a residual stream h, (a sum
of terms) into sub-streams in function
space.

1). Define the sum T = Zfil x; and r = max; w;||z; — 7.
Then the k-jet of f at the sum T satisfies

Jk?f (Z/\Ll h) :Zf\il lekf(Ll) + O(rk+1),

Example 1 (Jet expansion of ReLU). Consider the ReLU activation function v : R — R¥ defined
as y(z) = [z]4. Forz > 0, v'(x) = 1. For x < 0, 7/(x) = 0. Higher order derivatives are zero
almost every. If z = 21 + x2, then for almost every z, there exist w &€ A such that

V(w1 +x2) = wid y(@)(x2) Fwa I y(@2) (@1) = wi(y(1) +7 (x1)22) + wo (Y(@2) +7 (2)21).

In other words, for almost every center x = x; + x2 there exists a convex combinations of jets that
is exact. Indeed, if either 1,22 > 0 or x1, 25 < 0, then any convex combination is exact. If only

Under review as a conference paper at ICLR 2026

direct
dependency

7 A et center

"7 A jet variate

@ input
encoding
. output
decoding

intermediate
nonlinearity

(@) (a-1) (b) ©

Figure 3: Carving a two-block network. (a) Nested entanglements. (b) Inner expansion at 2. (c) Outer
expansion at Dec, yielding 4 explicit paths.

one of the two terms is positive, say 1 > 0 and x5 < 0, then we can set w; = 1if 1 + 22 > 0 and
wi = 0 otherwise (w2 = 1 — wy). The specular argument applies for the case 1 < 0 and x3 > 0.
From a global perspective, we can think of jet weights w; = w; (21, z2) as functions of z; and x5,
rather then constants — and in the ReLLU case, we obtain (almost everywhere) an exact first-order
expansion. Conversely, one can see that the 0-th order jet expansion of v is not globally exact.

4.2.1 MOTIVATING EXAMPLE: CARVING A TWO-BLOCK RESIDUAL NETWORK.

Now we consider how to use jets to carve a typical computation graph. We begin with the simplest
nontrivial case: a network with two residual blocks. Using Equation (1)), its full computation is

= Deco (Enc +v; o Enc+~5 0o (Enc +7; o Enc)).
Y g Y
N~ N——

x
0 1 za

The nested parentheses entangle contributions: the outer (purple) grouping mixes everything, while
the inner (orange) ties -y to both g and ;. Traditional MI would select paths syntactically, ignoring
this nesting. Jets let us cut both levels systematically.

Step 1: Inner expansion. At 7o, taking {xo,x;} as jet base points and using Lemma [1| the
residual stream xo = 72 o (g + x1) can be decomposed as

To R Jk’)’Q(mQ + Zl) = 'lUOJk'YQ(LEO) +U}1jk’}/2(l’1) +O(’I’k+1),

20 21

so the original entangled stream x5 separates into two sub-streams, as illustrated in Figure 3{(b).

Step 2: Outer expansion. At Dec, the jet base points are updated from {zg,x;,z2} to
{0, x1,T20, T21 } after previous expansion. Using Lemma and jet algebra (Proposition , yields

f =~ JkDec(aco + 1 + X20 + T21) = woJk(DecoEnc) + 1IJ1Jk(Deco'yl oEnc)
fo fay
+ W J* (Deco (wo J* (y20Enc))) 4 w3.J* (Deco (w1 J*5 (v1 0Enc))) +O(rFF1).

froy fri2y

corresponding to four distinct input—output paths fg, f1y, f2}, fr1,2). This is shown in Fig-
ure [3{c). Each term aligns with what one might pick manually as a “path” in the network, but here
it arises systematically from the jet expansion. This toy example illustrates the two key principles
of our approach: recursive jet expansion of residual computations, and the use of convex combina-
tions (LemmalT) to isolate entangled contributions. In deeper networks with many blocks, however,
manual expansion becomes infeasible. This motivates our general-purpose algorithmic framework.

4.3 GENERAL FRAMEWORK

Under review as a conference paper at ICLR 2026

We now develop jet_expand, the general al-

gorithm for expanding residual computations Aleorithm 1 Jot A1 CFk
into atomic input-output paths. Algorithm [T] gor.l m j.e -expand(/f, [, 'C,)
describes the core operation. At each block / Require: Residual net f, block index [€ [L];

(or at the final decoding nonlinearity), the al- jetbase points C = {xi}ﬁvzl;jf?t order k < N.
gorithm applies Lemma [T] to a set of jet base Ensure: Expanded jet terms { with weights w,
points C. The output is (i) a set of expanded and remainder J.

2 & {wildFyga () MY,

if | < L then
£ EU{wIMd () Y,
0+ hl+1 — Zeege

else
6« Decohyp —3 . cce

polynomial terms £, (ii) a nonlinear remain-
der which collects both the higher-order Taylor
terms from Equation (3) and the approximation
error from Lemmal[l] A key property is that jet
base points can themselves be outputs of ear-
lier expansions. This enables recursive applica-
tion of jet_expand throughout the network,
effectively “unrolling” the computation graph
into explicit input—output paths. At the final layer, this gives a functional rewriting of the model: if
(€r,0L) = jet_expand(f, L,C, k) for some choice of centers C and order &, then

f(2) = Yeee, Uelz,w) + 0r(z,w), forw € AN-L (6)
So, the model can be rewritten as a sum of expanded terms (explicit paths) plus a remainder.
Remark 2 (Remainders and weights). Remainders J need not vanish, so jet expansions should be
read as rewritings rather than strict approximations. Special cases (linear or ReLU-only networks)
admit exact expansions. Weights w can be fixed (e.g. uniform) or optimized to minimize § (we used
gradient descent in Sec.[5.2.1)). Empirically, remainders are often small and expansion logits nearly
collinear with model outputs.

AN AN T

Lemma 2. Residual networks with only ReLU nonlinearites admit exact first-order jet expansions.

Runtime. The runtime of algorithm [I]is negligible, as it operates directly on the original computa-
tional graph. Evaluating £ and 6 at z € X requires computing kth-order jets at cost O(|C|(F'+kB)),
where F' and B denote forward and backward passes of q. In practice, higher-order jets can be com-
puted efficiently via recurrence relations and standard automatic differentiation primitives such as
Jacobian-vector products (JVPs) (Griewank & Walther, [2008; Bettencourt et al.|[2019). AppendixB]
reports empirical runtime scaling of our implementation with jet order k.

5 APPLICATIONS OF JET EXPANSIONS

5.1 THEORETICAL APPLICATIONS

The principled framework of jet expansions allows us to ground existing techniques in a uni-
fied theoretical framework and derive new ones. Here we introduce several expansions as direct
applications of the jet_expand algorithm, which set the stage for the empirical case studies.

(Super-)exponential expansion. Alg. ex-
tends our two-block example to arbitrary depth,
producing 2" paths via uniform jet weights. This Require: Residual computation f; order k& € N.
mirrors [Veit et al| (2016)’s exponential view of Ensure: Expanded paths ¢ with uniform
residual networks, but in an explicit and prin- weights (|¢] = 21"y and remainder 4.

Algorithm 2 exp_jet_expansion(f,k)

cipled way. For k > 1, each polynomial term 1: & <= {Enc,y; o Enc}

can be decomposed further by degree, isolat- 2: for[< [L] do

ing higher-order block interactions, hinting at 3 (&,0) + jet_expand(f,1,&, k)

a super-exponential ensemble perspective which 41 § < {e(-,1/|¢]) | e € &} > uniform
we leave as future work. weighting

Jet lenses and the logit lens. The logit lens (nostalgebraist, 2021b; |Geva et al., 2021} [2022;
Merullo et al., [2023; Belrose et al, 2023)) is a popular interpretability tool, applying the decoder
to intermediate hidden states as follows:

LogitLens;(z) = Dec(hy(z)) = Uv(hi(z)) = J°Ded(hi(2)) (hr(2)).

Under review as a conference paper at ICLR 2026

Indeed, Dec(z) ~tk—g J°Dec(h;(z))(z) = Dec(hi(z)). Thus the logit lens is simply the zeroth-
order expansion at final layer with h; as the jet base point jet_expand(f, L, {h;},0). This sug-
gests two generalizations, which we dub iferative and joint jet lenses, respectively. The iterative
Jjet lens is a direct extension of the logit lenses with higher order jets: jet_expand(f, L, {h;}, k).
The joint jet lenses are expansions obtained through jet_expand(f, L, {viohi—1 }le[I k) that are
aimed at highlighting the residual contributions of each block nonlinearity, rather than the iterative
refinement of the residual stream.

Jet bi-grams and skip-n-gram statistics. Our framework allows us to extract n-gram statistics
directly from the language model, without any probing data. Specifically, we systematically evaluate
selected jet paths (the expanded polynomial terms) over the entire input space, usually the vocabu-
lary and its Cartesian products, to obtain symbolic n-gram tables. For example, bi-grams statistics
related to Py (2p|2n—1, ...) can be computed by evaluating bi-gram paths, which we can obtain by
expanding the LLM with Algorithm [2] and filtering out all paths that involve self-attention mod-
ules. Specifically in our case studies (Section [5.2), we focus on encoding-decoding bi-gram path,
obtainable via expanding the LLM with jet _expand(f, L, {Enc}, k = 0), and the bi-gram paths
involving up to one MLP module, which can also be obtained via applying Algorithm] twice. We
can obtain skip-n-gram statistics relating to Py (2, |2n—1,...,2n—2,...,21,...), where dots indi-
cate any number of interceding tokens, by evaluating jet paths with self-attentions (the fewer self-
attentions, the lower the n) and isolated single query-key products. And uni-grams can be obtained
via finding the stable state of the Markov transition equation defined via the conditional bi-grams.

These Jet n-gram statistics generalize Elhage et al.|(2021)) to provide a data-free sketch of an LLM,
casting it into a symbolic n-gram database. They also enable symbolic model comparison (“diffing”)
between any two models with a shared vocabulary, in contrast to parameter-space differencing,
which is architecture-dependent and harder to interpret. Details are given in Appendix[C]

5.2 EMPIRICAL CASE STUDIES

We illustrate two interpretability applications of jet expansions: analyzing the inner workings of
LLMs and assessing the effects of fine-tuning. Additional case studies are provided in Appendix[F

Setup. We experiment on open-source LLMs including GP7-2 (Radford et al. 2019), GPT-
Neo Black et al. (2021)), Llama (Touvron et al., |2023ajb; Roziere et al., |2024), and OLMo (Groen-
eveld et al., 2024). N-gram experiments were run on 128-CPU servers with 1TB memory, while
jet lenses were computed on a single laptop CPU. Jet weights were optimized by gradient descent;
for n-grams we restrict to zeroth-order jets from embedding—MLP—unembedding. Algorithmic
details and evaluation metrics are given in App.|[Cland D]

5.2.1 ANALYZING LLM INNER WORKING

Jet lenses. We use jet lenses to analyze LLMs’ mechanism when processing individual examples.
Figure [(top) visualize a joint jet lens for GPT-Neo 2.7B (Black et al., 2021)) (other examples can
be found in Appendix [[). Here, a block contains one self-attention and one MLP module. All table
cells depict top-1 tokens for the corresponding path, following conventions from prior work (Belrose
et al., 2023). We observe that the joint jet lens captures the synergy among different blocks, as the
model prediction is decomposed into several jet paths, as indicated by the percentages.

In this sense, the jet lenses with £ > 0 may serve as tools to systematically discover such synergic
behaviors. We also find that higher-orders (£ > 0) help iterative lenses deliver more meaningful
interpretations than the logit lens (k = 0) for GPT-Neo-2.7B (see Figures[§]to[I0). This is poten-
tially due to their capability to trace indirect impacts of early layers on the final logits, which were
otherwise missing under logit lens. Our findings are consistent with |nostalgebraist| (2021a); |Can-
ceddal (2024) where naive implementations of logit lens are shown to fail on GPT-Neo model family.
Figure {4] (bottom) present mean cosine similarities of joint and iterative jet lenses for various GPT
models and orders, averaged over 100 example sentences. The similarities are high and close to 1
for various k, showing however different behavior across model families and sizes. This indicates
jet expansions highly correlate with model outputs, potentially providing faithful interpretations. In
particular, the right plot compares the similarities of the logits obtained through iterative jet lenses

Under review as a conference paper at ICLR 2026

new simple _neural _architecture B
Block 1 (7.36%) (3.40%) ton (8.06%) _network (8.57%) _for (8.22%) _which (7.51%) _first (7.30%) former (7.43%) . (8.36%)
Block 2 (4.83%) - (239%) _(5.23%) _network (6.91%) for (4.98%) _which (4.60%) _neural (4.77%) former (5.09%) . (4.68%)
Block 4 (7.81%) _impover (1.62%) _unpop (1.29%) _impover (1.31%) _impover (1.28%) _impover (1.25%) _Neural (1.22%) former (1.20%) _Networks (1.32%)

_the _Trans former

Block 24 (6.02%) (5.74%) _infographic (8.48%) _network (8.76%) _unve (8.45%) _unve (7.67%) Neural (7.51%) former (7.39%) _model (8.45%)
Block 30 (6.24%) _4G}" (5.29%) _(1.31%) _network (1.30%) _which (1.29%) _neural (1.26%) former (1.25%) A(1.31%)
Block 31 (7.76%) 11" (5.33%) _(1.33%) _network (1.31%) _for (1.29%) _the (1.26%) _Conv (1.23%) former (1.23%) L (1.32%)
Block 32 (7.84%) 3G1." (3.56%) 17 (137%) _network (136%) | L (133%) | _and (1.28%) _neural (1.24%) former (1.25%) _model (1.32%)

[Logits | _ [_ [_network _neural former)
[Expan. (0.993) | _ | _ | _networl _for _whic|

Joint jet lenses Iterative jet lenses
> >
£ 1.00 1 —— GPT2; w=opt. (left) or k =0 (right) £ 1.00 1
© . o
E 0.95 - --- GPT2; w=avg. (left) ork=1 (rlght). £ 0.95 1
@ —— GPT2-large; w=opt. (left) or k=0 (right) @
£ 0.904 ——- GPT2-large; w = avg. (left) or k=1 (right) £ 0904
S —— GPT-Neo 2.7B; w=opt. (left) or k=0 (right) S
0.85 0 1 5 é —-—- GPT-Neo 2.7B; w = avg. (left) or k=1 (right) 0.85 (') 1'0 2'0 3'0
Jet order (k) Block index

Figure 4: (Top) example of a joint jet lens on GPT-Neo 2.7B with k = 1, visualizing the seven blocks with
highest average jet weights after optimization. Each table cell indicates the most likely token of the jet path
related to each block nonlinearity. Optimized jet weight are in the brackets next to the most likely token. We
used a diverging blue-to-red color map tracking logit scores, centered around zero. The second table with two
rows shows the model logits (Logits) and the expansion logits (Expan.), with cosine similarity in brackets; in
this case, all top-1 tokens perfectly coincide. (Bottom) plots of average cosine similarities between original
and jet logits of joint (left) and iterative (right) lenses.

Table 2: MLPs in OLMo-7B and Llama-2-7B performing certain linguistic functions based on jet bi-grams
extracted from the corresponding jet paths.

OLMo-7B Llama-2-7TB
MLP Index 1 3 9 17 19 | 6 7 18 19
Role -ly, --else -ing -'t —_than -s -ing -es -ing,-ity -ly
A logit after intervention —4.19, —3.35 —0.58 —9.73 —4.26 —7.42 | —14.61 —-3.55 —9.69,—11.93 —9.14

for £ = 0 (solid, line, the same as LogitLens) and for & = 1 (dashed lines), indicating an higher
correlation of the latter with model outputs, potentially providing more faithful interpretations.

Jet paths of individual components. By examining the representative jet bi-grams that are cap-
tured by each MLP path, we find some MLPs perform special linguistic functions. For example,
in OLMo-7B, the jet path which passes through the 3rd MLP promotes the addition of the “-ing”
suffixes to the current token. Similar MLPs with certain linguistic functions are listed in Table [2]
Note that the relationship between functions and components are not necessarily one-to-one map-
pings. Particularly we find that paths through multiple MLPs might work together to complete one
linguistic function e.g. MLP 6 and MLP 18 in Llama-2-7B can add “~ing” suffix. This echos work
on circuit discovery (Elhage et al.| 2022} |Conmy et al., |2023; |[Ferrando & Voital [2024), where the
role of each component cannot be easily dissected and multiple components collaborate.

5.2.2 ANALYZING FINE-TUNING EFFECT

Jet n-gram diffing provides a human-readable way to track knowledge shifts during fine-tuning.

Code fine-tuning. Comparing Llama-2-7B with its Codellama variants, jet bi-grams diffing high-
lights code-specific patterns such as “x xkwarg” or “Assertion” (Table[3), confirming the acqui-
sition of programming knowledge. This suggests jet bi-gram can be a tool for verifying if fine-tuning
is effective in acquiring relevant knowledge.

RLHF alignment. While ToxiGen scores suggest detoxification of LLAMA-2-7B-CHAT, jet bi-
gram masses remain nearly unchanged (Table[d), indicating toxic associations persist in latent form.
Challenging prompts from RealToxicityPrompts (Gehman et al.l [2020) confirm that these associa-
tions can still be triggered. Thus, RLHF appears to mask rather than erase toxic knowledge, a finding
revealed directly by data-free jet bi-gram indices. This showcases a potential application of jet bi-
grams in constructing data-free indices that reveal embedded knowledge, offering complimentary
views beyond traditional data-driven benchmark evaluations.

Under review as a conference paper at ICLR 2026

Table 3: The bi-grams before and after coding-finetuning. For space reason, we only show the bi-grams at
every 50 ranks among the top 1000 bi-grams. We highlight the bi-grams that are relevant to coding, such as
“**kwargs” a keyword in python programming. This demonstrate that our method has the capability to extract
representative bi-grams that reflect fine-tuning quality.

Rank LLAMAZ2-7B CodeLLAMA-7B CodeLLAMA-Python-7B
0

_more, _than) (_1ike, wise) _like, wise)

((
50 (_Now, here) (-just, ification) (_Like, wise)
100 (.system, atically) (-in, _case) (-all, udes)
150 (-all, erq) (-no, 1isy)
200 (_on, ions) (ktdber, s)
300 (_other, world) (_all, ud)
350 (_Just, ified) (gebiet, s)
400 (.trust, ees) (-Protest, s) (_can, nab)
450 (_at, he) (-transport, ation)
500 (_book, mark) (Class, room)
550 (_from,) (_access, ory) (_personal, ized)
600 (_WHEN, ever) (_.In, variant) (_excess, ive)
650 (.where, about) (_I, _am) (.Add, itional)
700 (ag, ged) (add, itionally)
750 (_he, he) (name, plates)
800 (_all, anto) (_select, ive)
850 (_Tom, orrow)
900 (-for, ays) (_-Program, me) (blog, ger)
950 (_.Bach, elor) (_.can, cellation)

Table 4: Toxicity indexes for Llama-2-7B and Llama-2-7B-chat using different methods: ToxiGen, jet bi-
grams, and RealToxicityPrompts challenge prompting. Higher numbers indicate higher toxicity scores on the
corresponding benchmarks and higher toxic knowledge possession for jet bi-grams.

ToxiGen Score Jet Bi-grams RTP Challenging Prompts
Hartvigsen et al.|(2022) Mass of “toxic” bi-grams No Very mild Medium Hard
Liama-2-7B 21.25 0.03445 38% 49% 64% 88%
Llama-2-7B-chat 0.0 0.03377 23% 35% 64% 84%

6 CONCLUSION

We introduced jet expansion, a principled framework for restructuring the computational graphs of
large language models. Specialized here to LLMs, our method systematically disentangles contri-
butions of user-selected input—output paths from the overall computation, yielding interpretable
functional components plus a complementary remainder. Operating directly in function space, jet
expansions cut through entanglement (a “scalpel” for residual computation), respect residual struc-
ture (recursive expansion of skip connections), and are grounded in approximation theory (jets as
generalized truncated Taylor operators). This enables modular inspection: one can pull out paths of
interest (e.g., logit lens, n-gram paths) while bracketing the rest as remainder.

Limitations. Jet expansions are not strict function approximations in the Taylor sense; they rewrite
the computation into interpretable polynomial terms plus a remainder. Remainder size and alignment
with model outputs depend on the jet order k and weight choices (hyperparameters), and expansions
are not unique (higher orders contain lower orders). While graph manipulation is lightweight, sys-
tematic evaluation of many (and higher-order) paths can be costly; heuristics or subsampling may
be needed for large input spaces. Our n-gram studies focused on bi- and tri-grams; longer-context
expansions are left to future work.

Implications and future work. We envision a Fourier-transform style decomposition for LLMs
and jet expansions is perhaps only one way of choosing the basis. Theoretically, we aim to connect
with attribution (e.g., Shapley values), and formalize model equivalence via jet spaces to ground
model diffing. We see fruitful links to linear algebraic decompositions and to Markov/HMM view-
points (e.g., structured decoding (Zhang et al.l [2023)). We will also study the implications of the
super-exponential path growth with depth. Practically, beyond longer n-grams, we will develop
safety/transparency tools (e.g., search features for unwanted associations or PII leakage). Finally,
although our experiments are mainly observational, jet_expand may help guide interventions,
complementing causal tracing and path patching.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on developing a mathematical framework (jet expansions) for analyzing large
language models. Our study does not involve human subjects, proprietary or sensitive data, or ex-
periments that raise privacy, security, or legal concerns. We acknowledge that interpretability tools
may potentially be misused to extract or expose harmful content (e.g., toxic or private knowledge)
embedded in pretrained models. We use the public datasets for LLM toxicity research. We empha-
size that our intent is to promote transparency, safety, and responsible analysis of LLMs, and we
recommend future work carefully consider these implications in line with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our results. All definitions, assumptions, and
theoretical proofs are included in the main text and appendix. Detailed algorithms (Algorithm
Algorithm[2)) and mathematical derivations are provided for clarity. Experimental procedures, model
families used (GPT-2, GPT-Neo, LLaMA, OLMo), and metrics are described in Section [5.2] and
Appendix [D] We will open-source the code implementing jet expansions, extracting jet n-grams,
and reproducing jet lenses, ensuring that all empirical results reported can be replicated.

LLM USAGE ACKNOWLEDGMENTS

We used LLMs to assist with grammar and writing polishing. All equations, analysis, and research
contributions are entirely our own.

REFERENCES

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens. arXiv preprint arXiv:2303.08112, 2023.

Nora Belrose, Quintin Pope, Lucia Quirke, Alex Mallen, and Xiaoli Fern. Neural networks learn
statistics of increasing complexity. arXiv preprint arXiv:2402.04362, 2024.

Jesse Bettencourt, Matthew J. Johnson, and David Duvenaud. Taylor-mode automatic differentiation
for higher-order derivatives in JAX. In Program Transformations for ML Workshop at NeurIPS
2019,2019. URL https://openreview.net/forum?id=SkxEF3FNPH.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autore-
gressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.org/
10.5281/zenodo.5297715, If you use this software, please cite it using these metadata.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and Martin
Wattenberg. An interpretability illusion for bert. arXiv preprint arXiv:2104.07143, 2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jaxk

Thorsten Brants, Ashok Popat, Peng Xu, Franz Josef Och, and Jeffrey Dean. Large language models
in machine translation. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pp. 858-867, 2007.

10

https://openreview.net/forum?id=SkxEF3FNPH
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
http://github.com/google/jax
http://github.com/google/jax

Under review as a conference paper at ICLR 2026

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Nicola Cancedda. Spectral filters, dark signals, and attention sinks, 2024.

Mary M. Comeau et al. Preventing unrestricted and unmonitored ai. npj Digital Medicine, 8(1):63,
2025. doi: 10.1038/s41746-025-01443-2.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 16318-16352. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/34eldbe95d34d7ebaf9909bcaebbb2be—-Paper—Conference.pdf.

Charles Ehresmann. Les prolongements d’une variété différentiable: 1’espace des jets d’ordre r de
vn dans vim. C. R. Acad. Sci. Paris, 233:777-779, 1951.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.
Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy_model/index.html.

Pablo Fernandez-Becerra et al. Enhancing trust in autonomous agents: An architecture for ac-
countability and explainability through blockchain and large language models. arXiv preprint
arXiv:2403.09567,2024. URL https://arxiv.org/abs/2403.09567.

Javier Ferrando and Elena Voita. Information flow routes: Automatically interpreting language
models at scale. arXiv preprint arXiv:2403.00824, 2024.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R Costa-jussa. A primer on the inner
workings of transformer-based language models. arXiv preprint arXiv:2405.00208, 2024.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. RealToxic-
ityPrompts: Evaluating neural toxic degeneration in language models. In Trevor Cohn, Yulan
He, and Yang Liu (eds.), Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 3356-3369, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.findings-emnlp.301. URL https://aclanthology.org/2020.
findings—-emnlp.301.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5484-5495, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary space. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 30-45, 2022.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://arxiv.org/abs/2403.09567
https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/2021.emnlp-main.446

Under review as a conference paper at ICLR 2026

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching. arXiv preprint arXiv:2304.05969, 2023.

Joshua T Goodman. A bit of progress in language modeling. Computer Speech & Language, 15(4):
403-434, 2001.

Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algo-
rithmic differentiation. STAM, 2008.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
science of language models. arXiv preprint arXiv:2402.00838, 2024.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Ka-
mar. ToxiGen: A large-scale machine-generated dataset for adversarial and implicit hate speech
detection. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3309-3326, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.234. URL https://aclanthology.org/2022.
acl-long.234.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Stanislaw Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. arXiv preprint arXiv:1710.04773, 2017.

Swanand Kadhe, Long Phan, Milad Nasr, Xinyang Zhang, et al. Split, unlearn, merge: Leveraging
data attributes for more effective unlearning in llms. arXiv preprint arXiv:2406.11780, 2024.

Jinxin Li, Tianle Wang, Yuxin Shi, Shiyu Li, et al. Editing as unlearning: Are knowledge editing
methods strong baselines for large language model unlearning? arXiv preprint arXiv:2505.19855,
2025.

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-
gram: Scaling unbounded n-gram language models to a trillion tokens. arXiv preprint
arXiv:2401.17377, 2024.

X. Liu et al. A survey of large language models for healthcare. arXiv preprint arXiv:2310.05694,
2023. URL https://arxiv.org/abs/2310.05694.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359-17372, 2022.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Language models implement simple word2vec-
style vector arithmetic. arXiv e-prints, pp. arXiv—2305, 2023.

Aaron Mueller. Missed causes and ambiguous effects: Counterfactuals pose challenges for inter-
preting neural networks. arXiv preprint arXiv:2407.04690, 2024.

Timothy Nguyen. Understanding transformers via n-gram statistics. arXiv preprint
arXiv:2407.12034, 2024.

nostalgebraist. logit lens on non-gpt2 models + extensions, 2021a. URL https://colab.
research.google.com/drive/1MJjdfK2srcerLrAJDRaJQKO0sUiZ—-hQtA.

nostalgebraist. interpreting gpt: the logit lens, 2021b. URL https://www.lesswrong.
com/posts/AcKRB8wDpdaN6veru/interpreting—gpt—-the-logit-lens#
HEf5abD7hqgAY 2GS0l

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
alization beyond overfitting on small algorithmic datasets, 2022.

12

https://aclanthology.org/2022.acl-long.234
https://aclanthology.org/2022.acl-long.234
https://arxiv.org/abs/2310.05694
https://colab.research.google.com/drive/1MjdfK2srcerLrAJDRaJQKO0sUiZ-hQtA
https://colab.research.google.com/drive/1MjdfK2srcerLrAJDRaJQKO0sUiZ-hQtA
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens#HEf5abD7hqqAY2GSQ
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens#HEf5abD7hqqAY2GSQ
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens#HEf5abD7hqqAY2GSQ

Under review as a conference paper at ICLR 2026

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

George Raptis et al. Agentic llm-based robotic systems for real-world autonomous tasks: challenges
and opportunities. Frontiers in Robotics and Al, 11, 2024. doi: 10.3389/frobt.2024.1240269.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.

Harshay Shah, Andrew Ilyas, and Aleksander Madry. Decomposing and editing predictions by
modeling model computation. arXiv preprint arXiv:2404.11534,2024.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
Jjournal, 27(3):379-423, 1948.

Helena Smith. Clinical ai: opacity, accountability, responsibility and liability. Al & Society, 36:
535-545,2021. doi: 10.1007/s00146-020-01019-6.

Anej Svete and Ryan Cotterell. Transformers can represent n-gram language models. arXiv preprint
arXiv:2404.14994, 2024.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Andreas Veit, Michael J] Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. Advances in neural information processing systems, 29, 2016.

Elena Voita, Javier Ferrando, and Christoforos Nalmpantis. Neurons in large language models:
Dead, n-gram, positional. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings
of the Association for Computational Linguistics ACL 2024, pp. 1288-1301, Bangkok, Thailand
and virtual meeting, August 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.findings—-acl.75.

Sandra Wachter, Brent Mittelstadt, and Luciano Floridi. Transparent, explainable, and account-
able ai for robotics. In Proceedings of IJCAI Workshop on Explainable Artificial Intelli-
gence, 2017. URL https://www.researchgate.net/publication/318819126_
Transparent_Explainable_and_Accountable_ AI_for_ Robotics.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Xiangxiang Xu, Shao-Lun Huang, Lizhong Zheng, and Gregory W Wornell. An information theo-
retic interpretation to deep neural networks. Entropy, 24(1):135, 2022.

13

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://aclanthology.org/2024.findings-acl.75
https://aclanthology.org/2024.findings-acl.75
https://www.researchgate.net/publication/318819126_Transparent_Explainable_and_Accountable_AI_for_Robotics
https://www.researchgate.net/publication/318819126_Transparent_Explainable_and_Accountable_AI_for_Robotics

Under review as a conference paper at ICLR 2026

Xueliang Xu, Haoyue Wang, Bowen Yu, Dongyan Zhao, and Rui Yan. Reasoning based on symbolic
and parametric knowledge. arXiv preprint arXiv:2501.01030, 2025.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107—
115, 2021.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for au-
toregressive language generation. In International Conference on Machine Learning, pp. 40932—
40945. PMLR, 2023.

14

Under review as a conference paper at ICLR 2026

A ADDITIONAL DETAILS ON JETS

A jet of a function represents an equivalence class. We thus can perform algebraic operations among
functional equivalence classes using jet algebra stated below.

Proposition 1 (Jet algebra). Let f,g € C(R% R?) and k € N*. Then,

(i) J¥(af +bg)(x0) = aJ*(f)(z0) + bI*(g9)(x0), for a,b € R (linearity);

(ii) JFf(x) o g € IFf(xo) and JF f(x0) o g(y) = I* f(20)(g(y)) (jet after endomorphisms);
(iii) goJ¥f(xo) = {gou : ue J*f(x)} (endomorphism after jet);
(iv) I*(f 0 g)(xo) = J*f(g(x)) 0 I*g(w0) (composition of jets);

Properties (i)-(iii) follow directly from the definition; (iv) is a consequence of the chain rule and
truncation.

ProofofLemma Take y € RY, N > 1, x; € R4 fori € [N], w € AN~! and an order k > 0.

Since w belongs to the simplex AN ~!, we have Zfil w; = 1. Multiplying f(y) on both hands, we
obtain

N N k
Fl) =Y wif(y) = wi | fl@:)+ Y D flw)(y —:)® +O(ly —]|*)
=1 =1 s=1

N
= Zwika(;zri)(x) + O(w;lly — xi||k+1)7
i=1

by applying eq. (Taylor expansion) and the definition of jet with each x; as the center. At the
. . N
same time, we can expand f(y) with > ." | x; as the center
N

fly) = ka(z 2)(@) + Oy = Y ail**).

Now let us take y = va:l x; and observe that O(|ly — Y. a;||**1) = 0 and O(w;||y — z:||**1) =
O(willz; — 32, x; |¥+1). Finally we observe that the class of functions in the last O are dominated
by the class of function in O(r**1) where 7 = max; {w;||z; — > ; %5} is the maximum remainder.
This concludes the proof.

As a side note, jet weights would not need to form convex combinations, but rather linear combina-
tions) |, w; = 1. However, restricting to convex combinations has two major advantages:

* optimizing over a convex set guarantees the existence of maxima and minima (Weierstrass
theorem) and uniqueness of minima if we are optimizing a strictly convex loss as in general
is the case for expansions that only affect the decoder module.

» weights within the probability simplex have a clearer interpretation for interpretability pur-
poses.

B ADDITIONAL DETAILS ON RUNTIME

We report in fig.[5]a plot of the runtime for evaluating expansions originating from the joint jet lenses
of section as a ratio of the input model evaluation (forward pass), for both the uniform and the
optimized jet weights w setup, for different jet orders k.

C ADDITIONAL DETAILS ON JET n-GRAMS

General concept of n-gram models The general concept of n-gram models linked to
(transformer-based) LMs involves defining or constructing mappings that functionally depend only
on n — 1 input tokens (with the n-th token being the output token) to capture and describe the be-
haviour of the original LM. We are not the first to explore this idea; for instance Nguyen| (2024) fits
n-grams on the same dataset used to train the LM.

15

Under review as a conference paper at ICLR 2026

Average runtimes ratios (+ std)

15 - /_—/

—— GPT2 (w = optimized)
-==- GPT2 (w=average)
—— GPT2-large (w = optimized)

Runtime/original forward runtim

10 1
—-==- GPT2-large (w = average)
—— GPT-Neo 2.7B (w = optimized) 5
-=- GPT-Neo 2.7B (w = average) ;:%-—‘/f";"/_:::::::::;:;;;;;
0 1 2 3
Jet order (k)

Figure 5: Empirical runtime of evaluations of jet expansions originating form the joint jet lenses as a ratio of
the evaluation of the input model.

Jet expansions for in-model n-Grams Jet expansions allow us to define n-grams statistics that
are derived solely and directly from the model itself — producing in-model n-grams rather than
in-data n-grams. This approach offers at least two significant advantages:

* No Dataset Preparation: It eliminates the need for dataset preparation to collect activation
patterns when interpreting the model globally, thereby saving time and computational re-
sources. This process can be conducted entirely on CPU, which is approximately 10 times
cheaper per hour compared to GPUs in the current market.

» Avoidance of Fitting Artifacts: It avoids potential artifacts that could arise from the se-
lection of external n-gram fitting methods.

We describe the detailed relationship between the bi-gram/tri-gram, which we used in our case
studies, and the jet expansion as follows.

Jet bi-Grams Jet bi-grams are paths that do not pass through self-attention layers. In experiments,
we focus on two types of bi-gram paths. a) the embedding-unembedding path that can be obtained
as jet_expand(f, L, {Enc}, 0). b) paths that pass through one MLP module, assuming MLPs are at
odd block indices in the residual network architecture, the procedure to extract the path is:

C ={Enc}

forl=1,3,...,L—1:
&, 6 = jet_expand(f, !, {Enc}, 0)
C=Cu{e(, 1)}665
£, = jetexpand(f, L,C,0)

This procedure results in a series of functions in é&—one for each MLP layer—that depend only on
the last input token. Applying softmax normalization to their logit output allows these functions
to define (conditional) bi-grams. Similar constructions can be performed for paths through multiple
MLPs. We will release code for these procedures and also provide equivalent algorithms that directly
use transformer modules.

Jet tri-Grams Jet tri-grams involve paths that pass through at least one self-attention layer, with
a need to isolate the contribution from the first token of the tri-gram. The procedure for extracting
a 0-th order jet trigram path that passes through the ith self-attention layer (assuming it has one
head and o5 is a function that extracts the last two tokens from a sequence of length at least 2) is as
follows:

Define 02(2) = (2¢—1, 2t)
Compute &, = jet_expand(f, i, {Enc o o3},0)
Complne 57 6= jet*expand(fv L, {6('7 1)}€€§a 0)

16

Under review as a conference paper at ICLR 2026

This procedure yields a map that depends only on two input tokens, isolating the contribution of the
ith self-attention layer on pairs of tokens. Once softmax normalization is applied, this defines a tri-
gram. The tri-gram could represent either a skip trigram or a contiguous trigram, depending on how
positional information is encoded (e.g., absolute positional embeddings versus rotary embeddings).

D ADDITIONAL DETAILS ON THE EXPERIMENTAL METRICS

A logit after intervention To compute A logits, we calculate the logits for the given n-gram both
before and after applying the intervention, then determine the change in the logits. For example,
consider the trigram (Lemma, let, s). We compute the logit of “s” conditioned on the input “Lemma
let”. The intervention involves removing the corresponding attention head (e.g., head 2). We then
measure and report the change in the logit for “s” as a result of this intervention.

One-to-one bi-grams like and many-to-many bi-grams One-to-one bi-bigrams are (approxi-
mately) unimodal bi-grams that concentrate all mass on a single token: i.e. given z1, P-D(z2]z1) ~ 1
and given zo, Pp(21]22) = 1 for a specific pair of token and close to O for all others. In the example
in the paper, z; = “&”, and zo = “amp”. Pp is the probability distribution induced by the pre-
training data. Many-to-many bi-grams we refer to the opposite scenario where both the conditional
probabilities are highly multi-modal. In the example z; ="make” and 25 ="sure” we have that
many other tokens can succeed z; ="make” or precede zo ="sure”.

Hit ratios of bi-grams The Hit Ratio (HR@n), often referred to as hit rate, is a metric commonly
used in ranking tasks. In our context, we treat each checkpoint of the language model as a “ranker”
of bigrams. The Hit Ratio measures how effectively the current model checkpoint retrieves high-
quality bigrams from the set of all possible bigrams. To quantify the model’s progress, we define
the bigrams at the final step as the “good” bigrams and measure how quickly the model approaches
these high-quality bigrams. Specifically, we compute the HR @n to evaluate how often the model’s
output bigrams match those in the “true” top n ranked bi-grams given by the final step. Formally,
the Hit Ratio@n is given by

1 n
HR@Qn = — Z I(the i-th bigram output by the current model € True_Top_n)
n
i=1

where n is the number of top predictions being considered and

* [is the indicator function that returns 1 if the ¢-th bigram output by the model is present in
the True Top n bigrams, and 0 otherwise,

* True_Top_n represents the set of ”good” bigrams, which in our case is the set of the top n
scoring bigrams from the final model step.

Total mass of bi-grams We use the total mass as a metric to measure the cumulative probabilities
of bi-grams from the top 1K bi-grams, weighted by an empirical unigram distribution derived from
real data. Formally, it is given by: Total Mass = 3, o 1k Pe, (22/21)Pp(21) where:

* ¢, is the embedding-unembedding path at the ¢-th pre-training step,
* (21, 22) are the bigrams being considered,

* P.,(z2|z1) is the probability assigned by the model e; (the embedding-unembedding path)
for the token z, given token 21,

* Pp(z1) is the probability of z; under the empirical distribution D, which is the unigram
probability given by the Infini-gram API (?) on the Dolma dataset (?) (the dataset used to
pretrain the model checkpoints).

This metric is designed to evaluate how much “correct” probability mass the model checkpoints
assign to bigrams (z1, z2), taking into account the empirical unigram probability of z1. It provides
insight into how well the model aligns with the empirical distribution of real-world data during the
pretraining process.

17

Under review as a conference paper at ICLR 2026

E ADDITIONAL DETAILS ON JET n-GRAM DIFFING

We derive the top-K bi-grams for each model from their embedding-unembedding path, which can
be obtained as jet_expand(f, L, {Enc},0). These bigrams are then saved into CSVs, allowing us
to represent models via their respective bigram files. By comparing these files directly, much like
comparing text files, we bypass the challenges of comparing the models in the parameter space,
where measuring behavioral-level differences can be difficult. For example, we extract the bigram
files for Llama-2-7B, and its coding finetuned versions. In summary, by transforming models into
bigram files (Model — Bigram File), we can effectively compare their behavior via bigram file
differences (Model Diff — Bigram File Diff). We will include a demonstration in supplementary
material.

F ADDITIONAL ANALYSIS INTO THE BI-GRAMS PRETRAINING DYNAMICS

Pretraining an LLM is usually extremely resource intensive. Therefore it is crucial to monitor the
progress of a pretraining run to prevent wasting of time and compute. In this section, we show how
jet bi-grams can serve as an effective signaling tool to trace the pretraining dynamics, providing
insights about the model’s maturity. Such signals are especially useful to understand what happens
with the model when the pretraining loss shows marginal improvements and fails to reflect the
changes inside the model.

Identifying the top bi-grams. To assess the model’s progression, we extracted jet bi-grams from
OLMo-7B model checkpoints across 555K pretraining steps. Table [3] presents a summary of the
top 10 jet bi-grams at different stages of training. Due to space reason, we only show the top 10
jet bi-grams every 100K steps. Initially, the network exhibits nonsensical jet bi-grams, such as
“ICUirling”. As training advances, it gradually learns more meaningful combinations, like “at
least”. This process of acquiring sensible bi-grams stabilizes around step 200K, indicating that
the model is reaching a level of maturity where the top 10 bi-grams capture common meaning.

Learning speed. To evaluate the learning speed of jet bi-grams during pretraining, we consider the
jet bi-grams at the final training step (555K) as the ground-truth bi-grams. We then chart the hit ratios
of these ground-truth bi-grams at each pretraining step, as illustrated in Figure[7a] Interestingly, even
though the pretraining loss (the blue curve) shows only minor improvements after the initial 50K
steps, the model’s acquisition of effective bi-grams continues to progress in a steady, consistent
manner. Hence bi-grams learning dynamics are active throughout the training procedure, even after
the training loss stabilizes. This indicates that there is significant behavior change in the model which
is not well captured by the training loss, an observation that is studied also in grokking and double-
descent (Zhang et al., 2021} [Power et al., [2022)). In other words, jet bi-grams may offer another
point of view for analyzing the learning dynamics compared to pretraining loss. In addition, fig.
characterizes the total pseudo-joint probability mass of top 1K bi-grams from empirical data (Liu
et al.,|2024). We derive a pseudo-joint jet bi-gram probability using statistical uni-grams from (Liu
et al.,2024). We observe that the model gradually accumulates probability mass that aligns with the
real corpus data distribution.

Learning schemes for different bi-grams. To understand if there are any differences between the
learning schemes of different bi-grams, we can trace the progression of the jet bi-gram scores for
selected bi-grams. Figure [6] provides a visual comparison of how different bi-grams are promoted
or suppressed during the pretraining process. The different slopes and levels of the lines indicate
varying rates of learning for the respective bi-grams. We observe that, the model first acquires ran-
dom bi-grams due to random parameter initialization. These random bi-grams, like “ICUirling”
and “VENT thanks”, are quickly suppressed in the early steps and never regain high scores. In
contrast, one-to-many bi-grams like “at least” are first promoted to very high scores but then
get suppressed perhaps due to the model seeing more of the scope of the token “at”. One-to-one
bi-grams like “&” (HTML code) are gradually promoted and stabilize. Many-to-many bi-grams
like “make sure” takes the most time to learn and the scores are still increasing even at the end
of pretraining. Our findings suggest that the training process effectively promotes certain “good” bi-
grams, but at different paces, where they might be suppressed later depending on their occurrences
and linguistic nature. These insights could inform future training strategies, such as targeted training
on more relevant bi-grams or adjusting the training data to improve the pretraining speed.

18

Under review as a conference paper at ICLR 2026

0.8 Jet Bigram Score
—— ICUirling
VENT thanks
0.6 —— &
) —— at least
H —_ ke sure
° ma
U 0.4+
(1]
0.2
/
0.0 -
T T T T T T
0 100000 200000 300000 400000 500000

Pretraining Steps

Figure 6: Visualization of OLMo-7B’s promotion and suppression dynamics of jet bi-grams scores.

101 L1.0 101
—— Pretraining Loss —— Hits Ratio @1K r —— Pretraining Loss —— Total Mass /*0,022
R | R — . i 9
0.8 0.020
10.018 4
-
o 7 06 7 5
£ R 0.0165
£ o 5 £ 6 3
© < © t0.014 8
5 5 0.4 1 s 54)
] £ 9 I
g £ @ 0.012
a] a]
F0.2 H0.010
31 31
-0.008
2% ‘ ‘ ‘ 7 ‘ 0.0 24 ; : : : :
0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
Pretraining Steps Pretraining Steps
(a) Top 1K jet bi-gram hit ratios w.r.t. the final step. (b) Top 1K jet bi-gram mass w.r.t. empirical data.

Figure 7: Analysis of OLMo-7B’s pretraining dynamics via measuring its jet bi-gram progression.

G ADDITIONAL TABLES FOR JET BI-GRAMS

See table[3] and table 3

H ADDITIONAL TABLES FOR JET PATHS

Table [6] reports a role identification study on attention heads in the first self-attention of OLMo-7B
using jet tri-grams. Specifically, we find heads associated with math and programming, e.g. head
1 on Math/Latex; heads promoting digits and dash composition into dates, e.g. head 25; and heads
constituting phrase templates, e.g. head 15 managing a “for x purposes”, where z is a placeholder.
To verify the roles we revealed, we further perform preliminary intervention experiments where we
ablate MLPs or attention heads and compute variations in model logits. After the interventions,
the logits drop consistently in all cases, suggesting our jet n-grams indeed can help identify certain
roles for selected components. Varying impact on logit differences is likely due to overdetermination

Table 5: Bi-gram evolution across pretraining steps for OLMo 7B. Each column represents a distinct step, while
each row corresponds to a different rank. The table entries are the bi-grams at each step for each rank. The
number of tokens seen in association with the pretraining steps is also annotated. The model gradually picks
up meaningful bi-grams after starting from senseless bi-grams (due to random initialization).

Rank 0K [#steps] 100K 200K 300K 400K 555K
OB [#tokens] 442B 885B 1327B 1769B 2455B

0 immortal ’s at least & & &
1 ICUirling at least ’'s at least its own its own
2 ords architect its own & its own their own their own
3 yaml Adam okerly your own your own at least his own
4 231 next VENT thanks its own their own your own make sure
5 clonal iums iums more than his own your own
6 Charg@{ you’ re you’ re can’t 2nd 2nd
7 avoir careless Everything v 2nd his own more than at least
8 HOLD worsening erna already you guys 2nd make sure more than
9 Horse dismant ' my more than make sure can’t iums

19

Under review as a conference paper at ICLR 2026

Table 6: Several attention heads in the first residual block of OLMo-7B and their roles identified with jet tri-
grams extracted from corresponding jet paths. We also include an example tri-gram captured by each head.

Head Index 2 16 26 30
Role Math/LaTeX “for ...purposes” date composition “into account/consideration ...”
Example 3-gram (_Lemma, _let, _s) (_for, _use, _purposes) (20, 23, _-) (-into, _account, _possible)
Alogit after intervention —0.1570 —0.0019 —0.0093 —0.0001
new _simple _neural _architecture B _the _Trans former

[Block 1 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters

Block 2 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters

Block 3 Supporters Supporters. Supporters. Supporters Supporters Supporters. Supporters. Supporters

Block 8| Supporters

K9 Supporters Supporters Supporters
Block 10 Supporters Supporters
Block 11 Supporters Supporters Supporters
Block 12 Supporters Supporters Supporters Supporters Supporters

3 Supporters Supporters Supporters Supporters
Block 14 Supporters Supporters Supporters Supporters Supporters
Block 15 Supporters Supporters Supporters Supporters
Block 16 Supporters Supporters Supporters Supporters
Block 17 Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 18 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 19 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 20 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 21 Supporters Supporters Supporters Supporters Engineers Supporters Supporters Supporters
Block 22 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Introduced
Block 23 Supporters Supporters Supporters Supporters Introduced Supporters Supporters Introduced
Block 24 Supporters Supporters Supporters Nonetheless Supporters Introduced
Block 25 Supporters Supporters Supporters Supporters Attempts Nonetheless Supporters Introduced
Block 26 Supporters Supporters Supporters Supporters Attempts Nonetheless Introduced Introduced
Block 27 Supporters Supporters Attempts Nonetheless Introduced Introduced
Block 28 Supporters Supporters Attempts Nonetheless Introduced Tntroduced
Block 29 foreseen Supporters Supporters Supporters foreseen Nonetheless Charges Introduced
Block 30 foreseen Supporters Supporters | Attempts foreseen Charges Introduced
Block 31 Supporters Supporters Supporters or _the aminer former B
Block 32 _ _ “network “neural | former]
(Cog] I [e reve | fomer [

Figure 8: Tterative jet lens (k = 0), equivalent to logit lens(nostalgebraist,[2021b)), applied over GPT-Neo-2.7B
with the input sentence “new simple neural architecture, the Transformer”.

(Mueller, 2024)

) and our partial selection of jet paths (e.g. for tri-grams we only selected encoding-
attention-decoding paths, excluding any MLP).

I ADDITIONAL PLOTS OF JET LENSES

See plots below, referring to the main paper for details. Note that for iterative lenses the last block
coincides with the model logits for all k& by design. We omit the iterative lens for GPT2-large for
k = 2 due to low cosine similarity.

20

Under review as a conference paper at ICLR 2026

new _neural _architecture B _the _Trans former
Block 1 networl ,
Block 2 Supporters _network former .
Block 3 Supporters networl former B
Block 4 _network z
Block 5 _for _whic| irst .
Block 6 for which irst 2

Block 7 _network _for _which _first former o

Block 8 network _for —which _first former B

Block 9 network for which first former a
Block 10 _network _for _which _first former o
Block 11 _network for which _first former B
Block 12 ton _network _for _which _first former B
Block 13 ton _network _for _which first former 2
Block 14 ton network for which 2
Block 15 _network _for _which B
Block 16 _network _for _which B
Block 17 network for which ,
Block 18 Supporters _for _which B
Block 19 Supporters for which ,
Block 20 Supporters _for _which ’
[Block 21 Supporters ton | _network | —for _which 2
Block 22 Supporters which 2
Block 23 Supporters _which B

Block 24 Supporters
Block 25 Supporters
Block 26 Supporters

for which

Block 27 Supporters for which first former o
Block 28 Supporters _network _for _which B
| Block 29 | foreseen _network _for _which A
Block 30 foreseen network for which B
Block 31 _network _for _which B
Block 32 _ _network for which B
[Logits] _ | _ | _network | _for | _which | _neural | former | s |

Figure 9: Iterative jet lens (k = 1), applied over GPT-Neo-2.7B with the input sentence “new simple neural
architecture, the Transformer”

new _simple _neural _architecture B e _Trans former
Block 1 “the _ _nets T “ former T
Block 2 the _ network _outper aG) aG!" former [
Block 3 _the _ _network _for _trained _Conv. former [
Block 4 the _ _network for _the _Conv former
Block 5 _the _ _for _the _neural former B
| Block 6 _the _ _the “neural former ,
Block 7 the _ the architecture former ,
Block 8 _the _architecture former o
_the —architecture former B
the architecture former .
_the _architecture former B
_the —architecture former B
| _the _architecture former .
_networl _the _neural former B
network the neural former .
_network _the _neural former B
_networl the _neural former ’
network the neural former .
_ _network _the _neural former B
_network _neural former B
_network _neural former .
_neural former ,
neural former .
_neural former B
_neural former ,
neural former .
_neural former
neural former
_neural former
_neural former
neural former
_network _neural former B

(Cos] I [oot IR WHER]rewar | former [

Figure 10: Iterative jet lens (k = 2), applied over GPT-Neo-2.7B with the input sentence “new simple neural
architecture, the Transformer”

21

Under review as a conference paper at ICLR 2026

new _neural _architecture B _the _Trans former
Block 1 bie and the fig _
Block 2 bie _and _main ient former
Block 3 bie simple _and _new ient
Block 4 |——bie way 5nd L S S W —
Block 5 bie _way | _and _next _Prime
Block 6 bie enough architecture and _next Matrix
Block 7 _href _enough _networks _architecture _and _first _Prime
Block 8 _iTunes _enough _neural architecture _which _first _Revolution
Block 9 B enough neural architecture which first Prime
Block 10 B _enough _network _architecture _which _first _Revolution
Block 11 B enough network model —which only _Pro
Block 12 o _enough _network _architecture _which _only _Pro
|Block 13 A —enough _network —model _which _first _Pro
Block 14 o enough network model which first _Pro
Block 15 o _enough _network _model _which _only _Pro
Block 16 A - _network —model —which —only _Revolution
Block 17 B - system model which only Prime
Block 18 B - _system _model _which _Prime
Block 19 o - _system model which Prime
Block 20] E “System “model “which
| Block 21 A - _system —model _which
Block 22 , - network model which
Block 23 B ton _network _model _which
Block 24 o ton _network _model —which
Block 25 2 ton network model which
Block 26 B ton _network _model _which
Block 27 , ton network. for which
Block 28 B - _network " _which
| Block 29 A B _network E _which i
Block 30 , u " which
Block 31 B " " _which i
Block 32 B B " which
Block 33 B " for which neural ,
Block 34 B B ' _which _neural B
Block 35 2 " | network | ' which neural s
Block 36 _ B ' _which _neural B
Cgsl T oewslen] [e [el el

Figure 11: Iterative jet lens (k = 0), equivalent to logit lens(nostalgebraist, 2021b)), applied over GPT-2-large
with the input sentence “new simple neural architecture, the Transformer”.

new _simple _neural _architecture B the _Trans former
T g M—k—* <
Block 2 bie " network ' whic neural € is
Block 3 bie " _network ' _which _neural C _is
Block 4 _ " _network ' _which _neural C s
Block 5 " network ' which neural C is
Block 6 _ " _network ' _which _neural C _is
Block 7 _ " network ! which neural © is
Block 8 _ B _network ' _which _neural C _is
Block 9 _ " _network ' _which _neural C _is
Block 10 0 " network ' which neural C is
Block 11 B " _network ' _which _neural C _is
Block 12 B " _network ' _which _neural C
Block 13 2 " network ' where neural C 0
Block 14 B " _network ' _and _neural C B
Block 15 B " network ! and neural C .
Block 16 B B _network ' _and _neural C ’
Block 17 B " _network ' _and _neural C B
Block 18 B " network ! and neural C ,
Block 19 B " _network ' _and _neural C ’
Block 20 B " _network ' _and _neural C
Block 21 2 " network ' and neural € o
Block 22 B " _network ' _and _neural C B
Block 23 B " network ! the neural C .
Block 24 B B _network ' _and _neural C ’
Block 25 B B _network ' _and _neural C B
Block 26 2 " network ' and neural € 2
Block 27 B B _network ' _and _neural C ’
Block 28 o " _network ' _and _neural C
Block 29 B B _network ' _and _human C B
| Block 30 B B _network ' _and _same C B
Block 31 B " network ! and _same C .
Block 32 o B _network ' _and _same C B
Block 33 B B _network ' _and _neural C B
Block 34 B " network ! which neural C ,
Block 35 - " _network ' _which _neural C B
Block 36 _ " _network ' _which _neural C
[Logits] _ | " | network | ' | which | neural | C | 2 |

Figure 12: Iterative jet lens (k = 1), applied over GPT-2-large with the input sentence “new simple neural
architecture, the Transformer”

22

Under review as a conference paper at ICLR 2026

new simple eural architecture . “the former
Block 1 (4.40%) . (6.62%) _simple (3.91%) _which (4.07%) _same (4.37%) former (3.91%)
Block 2 (4.15%) ., (6.59%) _retro (3.85%) _prog (4.32%) _error (3.74%) _including (3.93%) _resulting (4.14%) ference (3.69%) _Robo (2.99%)
Block 3 (4.23%) . (6.59%) ove (4.13%) _Matter (4.12%) killer (3.51%) _which (4.00%) _AVG (4.01%) em (3.56%) Mars (3.91%)
Block 4 (4.11%) _the (6.59%) _reg (3.51%) lect (4.37%) OX (3.68%) _found (4.05%) netflix (4.09%) Charge (2.95%) A® (3.69%)
Block 5 (6.11%) - (6.59%) ware (3.54%) product (3.68%) “towards (3.70%) —evolution (3.88%) _ones (3.74%) it (20.20%) Mant (3.57%)
Block 6 (3.91%) . (6.58%) ies (3.59%) _networks (4.11%) _developed (3.45%) _developed (3.55%) _Mehran (3.45%) ition (3.54%) bur (3.01%)
Block 7 (4.00%) . (6.56%) face (3.75%) _studies (3.88%) _based (3.52%) _hackers (3.76%) _Turing (3.73%) _Series (2.97%) _Suite (3.83%)
Block 8 (4.06%) . (6.42%) key (3.83%) _model (4.18%) _based (3.53%) _requiring (3.49%) _algorithm (4.14%) ient (3.62%) _11(3.25%)
Block 9 (4.09%) . (7.45%) _clutter (4.08%) _model (3.69%) _test (3.40%) _which (3.11%) _neural (3.55%) verse (3.82%) _Cube (3.66%)
Block 10 (10.50%) (16.50%) Tists (9.61%) g (4.99%) of (16.60%) _which (11.47%) _neural (5.79%) _neural (3.50%) Tis (15.56%)
Block 11 (25.30%) . (16.96%) " (27.59%) _networks (28.89%) " (24.52%) _the (26.92%) _new (29.14%) m (22.95%) _neural (25.40%)
Block 12 (25.13%) (6.56%) . (28.62%) net (29.35%) (26.40%] the (27.77%) the (29.85%) € (25.27%) L (27.23%)
[Logits ,
[Expan. (1.000) B

Figure 13: Joint jet lens with learnable weightings (k = 0), applied over GPT2 with the input sentence “new
simple neural architecture, the Transformer”

new _simple neural _architecture | _the Trans former.
Block 1 (15.30%) . (7.49%) " (16.78%) _networks (16.96%) ", (18.37%) _neural (14.61%) _neural (14.05%) verse (16.45%) _Neural (17.73%)
Block 2 (4.57%) . (13.81%) json (3.21%) _networks (3.29%) _model (3.46%) _which (3.11%) _neural (3.02%) cend (3.23%) _Neural (3.45%)
Block 3 (4.49%) . (14.25%) tons (3.25%) _networks (2.82%) _architecture (3.32%) _neural (3.10%) _neural (3.00%) porter (3.03%) _Neural (3.17%)
Block 4 (4.10%) (11.55%) tons (3.28%) _networks (3.27%) _leveraging (3.19%) _synt (3.04%) _neural (2.98%) verse (2.90%) Neural (2.57%)
Block 5 (4.02%) . (9.58%) tons (3.05%) _networks (3.25%) _algorithm (3.45%) _which (3.14%) _neural (2.99%) mitter (3.24%) _Neural (3.47%)
Block 6 (3.02%) . (2.75%) _linkage (2.65%) _net (3.04%) _algorithms (3.26%) _detecting (2.94%) _neural (2.80%) cend (3.30%) _Neural (3.45%)
Block 7 (2.91%) (2.98%) _teleportation (2.78%) _nets (3.19%) _approach (3.24%) specifically (2.49%) _cortex (2.58%) genic (3.07%) _Cortex (2.95%)
Block 8 (4.60%) bid (3.10%) nex (7.64%) network (2.63%) platform (2.62%) _neural (4.81%) participant (9.06%) cription (3.50%) “Neural (3.45%)
Block 9 (7.44%) iaries (3.10%) url (5.60%) _networks (7.77%) _intelligence (4.86%) _Torch (14.64%) _welcoming (13.48%) Secure (7.21%) _conv (2.83%)
m— ‘widget (14.80%) “network (16.20%) “None (13.05%) “Bund (15.37%) _safest (14.72%) cend (16.11%) disabling (16.06%)
Block 11 (16.50%) ity (3.19%) ton (18.47%) _network (18.79%) _architecture (20.49%) _which (16.34%) _neural (15.62%) istor (18.84%) &H¢ (20.28%)
Block 12 (18.00%; (14.21%) -(18.49%) network (18.78%) that (20.68%) which (16.41%) neural (15.70%) ient (19.11%) is (20.60%]
Logits o - _network that whlcﬁ neural ient is
[Expan. (1.000) akings json networks

Figure 14: Joint jet lens with learnable weightings (k = 1), applied over GPT2 with the input sentence “new
simple neural architecture, the Transformer”

new simple neural architecture . the rans former
Block 1 (3.58%) ‘Supporters (1.55%) Supporters (3.24%) Supporters (3.46%) Supporters (5.37%) ‘Supporters (5.08%) Supporters (3.52%) Supporters (3.88%) Supporters (2.56%)
Block 2 (2.13%) foreseen (1.61%) Toreseen (2.97%) foreseen (1.15%) Introduced (3.96%) foreseen (1.09%) Toreseen (154%) Supporters (3.67%) Supporters (1.03%)
Block 3 (2.07%) Amid (1.65%) Supporters (2.01%) Across (1.32%) gewater (1.14%) Supporters (3.66%) Supporters (2.93%) Supporters (2.58%) leground (1.28%)
Block 4 (1.57%) _impover (1.97%) _unpop (2.18%) _unpop (1.46%) _impover (1.33%) impover (1.39%) impover (1.71%) _uphe (1.27%) “impover (1.27%)
Block 5 (1.47%) ‘Attempts (1.76%) _municip (2.15%) airst (1.45%) iinem (1.29%) amiliar (1.32%) peling (1.38%) rieving (1.26%) iinem (1.13%)
Block 6 (1.45%) Residents (1.76%) _athlet (2.17%) tha (1.44%) _twent (1.34%) _way (1.05%) ters (1.40%) ha (1.23%) Xuan (1.25%)
Block 7 (3.57%) Tronically (1.63%) celona (2.74%) wiap (3.76%) look (5.71%) airstrike (1.22%) _equivalent (2.63%) different (6.30%) hollow (4.58%)
Block 8 (4.63%) Supporters (1.61%) imura (3.91%) vantage (3.03%) anola (5.48%) foreseen (6.13%) ileen (4.55%) Enlarge (5.70%) assador (6:59%)
Block 9 (3.14%) Ironically (1.65%) erguson (2.00%) certain (2.53%) OUR (1.28%) local (3.54%) erguson (1.80%) enter (5.43%) bec (6.89%)
Block 10 (1.73%) foreseen (1.65%) Toreseen (2.01%) Engineers (1.20%) Engineers (2.88%) asury (1.19%) thinkable (1.40%) Attempts (2.53%) Uddenly (0.96%)
Block 11 (1.71%) iikely (1.57%) extremely (1.88%) aples (1.18%) _screenplay (1.29%) earances (1.30%) earances (4.13%) oother (1.20%) _resurg (1.12%)
Block 12 (4.53%) Tronically (1.73%) Phones (3.91%) 'ADVERTISEMENT (4.39%) | ADVERTISEMENT (6.03%) isively (4.65%) Bivd (4.46%) ‘ADVERTISEMENT (6.08%) | _ADVERTISEMENT (4.99%)
Block 13 (2.60%) o (168%) 23 (2.83%) imbabwe (1.33%) rone (1.28%) 0T0S (5.38%) ppard (3.08%) ppard (1.07%) i (5.76%)
Block 14 (2.91%) foreseen (1.66%) ADVERTISEMENT (1.83%) Marginal (3.82%) chell (1.32%) _Appalach (1.33%) _Caucasus (4.66%) il (5.47%) . (3.23%)
Block 15 (1.47%) ormons (1.76%) confir (1.89%) ring (1.34%) ured (1.25%) _AGE (1.38%) _Caucas (1.68%) lineman (1.25%) topple (1.22%)
Block 16 (3.98%) Against (1.82%) folios (1.93%) © (6.49%) thinkable (3.49%) tsun (126%) D (4.65%) 1(5.84%) arsh (6.38%)
Block 17 (2.89%) urses (1.38%) untled (4.46%) ortunate (3.72%) ithub (1.21%) _our (4.69%) ortment (1.51%) erenn (4.91%) ombies (1.21%)
Block 18 (5.12%) foreseen (163%) Supporters (4.53%) Nonetheless (6.62%) ronically (5.07%) Thankfully (5.66%) Shortly (4.52%) af (5.80%) s (7.12%)
Block 19 (2.96%) pherd (1.47%) “enough (4.91%) ag (3.58%) for (5.69%) incerity (1.08%) incerity (2.75%) extreme (3.01%) phabet (1.21%)
Block 20 (5.66%) C(2.06%) € 5.07%) just (7.05%) € (6.91%) ‘Attempts (6.51%) paralleled (4.49%) ~(6.53%) (6.87%)
Block 21 (1.46%) iption (1.60%) Tiption (2.15%) _Playoffs (1.48%) isdom (1.06%) irontrunner (1.36%) frontrunner (1.69%) TBD (1.24%) pered (1.06%)
Block 22 (4.55%) _in (3.36%) _first (5.29%) w0 (7.06%) _one (6.98%) _which (6.97%) “one (4.56%) isEnabled (1.03%) elligence (1.15%)
Block 23 (5.21%) ~(.80%)) (5.23%) T 0.13%)) (6.26%) _while (6.31%) point (4.57%) albeit (1.15%) 6 (6.21%)
Block 24 (6.13%) o (5.62%) m (5.26%) it (7.18%) for (7.33%) the (7.33%) 50 (4.70%) trans (5.70%) Tieving (5.90%)
Block 25 (1.55%) foreseen (1.67%) acly (2.14%) _enthus (1.49%) _anecd (1.35%) _trainers (1.43%) _subreddits (1.74%) ithub (1.28%) _Trainer (1.27%)
Block 26 (2.61%) ~(6.25%) _simple (2.08%) _simple (5.95%) ermame (1.30%) haar (1.34%) satell (1.74%) igsaw (1.02%) _headphone (1.17%)
Block 27 (2.65%) 4G (7.40%) 4G (5.48%) _DSM (1.35%) heid (1.30%) dayName (1.38%) _artif (1.75%) —+ (1.27%) _rostalg (1.30%)
Block 28 (2.39%) s (8.56%) >\ (2.30%) 00 (1.42%) tacos (1.30%) _msec (1.41%) _unbeliev (1.75%) hrs (112%) _reminis (1.28%)
Block 29 (1.97%) convol (2.18%) ricanes (1.47%) _Gujar (1.25%) acerb (1.38%) cffff (1.74%) _negoti (1.28%) _automakers (1.27%)
Block 30 (1.84%) necd (2.24%) _unve (1.49%) _overwhel (1.37%) 177 (1.43%) 20439 (1.78%) _negoti (1.29%) _calculates (1.12%)
Block 31 (4.61%) (257%) oreets (1.35%) entert (1.80%) W (4.44%) W (6.14%) “1(5.27%) 1 (6.88%)
Block 32 (5.64%) 461" (9.55%) (4.42%) 461" (2.29%) 4G." (5.37%) _4G!" (6.35%) V (9.03%) © %% (3.34%) aGi" (4.75%)

network for _which [_neural
_the | _first

Figure 15: Joint jet lens with learnable weightings (k = 0), applied over GPT-Neo-2.7B with the input sentence
“new simple neural architecture, the Transformer”

23

Under review as a conference paper at ICLR 2026

new simple “neural architecture , “the Trans former
Block 1 (7.36%) . (3.40%) ton (8.06%) _network (8.57%) _for (8.22%) _which (7.51%) _first (7.30%) former (7.43%) , (8.36%)
Block 2 (4.83%) - (2.39%) (5.23%) network (6.91%) for (4.98%) _which (4.60%) “neural (4.77%) former (5.09%) . (4.68%)
Block 3 (1.31%) _File (1.62%) _(1.29%) _network (1.31%) _for (1.28%) which (1.25%) _CNN (1.22%) former (1.20%) . (1.32%)
Block 4 (7.81%) _impover (5.74%) _unpop (8.48%) _impover (8.76%) _impover (8.45%) _impover (7.67%) _Neural (7.51%) former (7.39%) _Networks (8.45%)
Block 5 (1.79%) User (5.29%) _(1.31%) _network (1.30%) _for (1.29%) _which (1.29%) _neural (1.26%) former (1.25%) . (1.31%)
Block 6 (1.79%) Instance (5.33%) _(1.33%) _network (1.31%) _for (1.29%) _which (1.26%) _neural (1.23%) former (1.23%) L (1.32%)
Block 7 (1.59%) File (3.56%) _(137%) network (1.36%) for (1.33%) _which (1.28%) “neural (1.24%) former (1.25%) L (1.32%)
Block 8 (1.70%) Supporters (5.02%) _(1.29%) _network (1.28%) _for (1.25%) _which (1.24%) _Neural (1.17%) former (1.12%) L (1.21%)
Block 9 (1.77%) Enlarge (5.04%) _(1.37%) _network (1.37%) _for (1.32%) _which (1.26%) _neural (1.23%) former (1.25%) 4 (1.31%)
Block 10 (4.41%) foreseen (5.36%) _(5.77%) _network (6.19%) for (5.99%) _which (1.15%) “neural (0.93%) former (2.45%) | (7.42%)
Block 11 (1.31%) . (1.90%) _(1.30%) _network (1.29%) _for (1.20%) _which (1.18%) _neural (1.19%) former (1.19%) . (1.24%)
Block 12 (1.21%) . (1.74%) _(L11%) _network (1.17%) for (1.10%) _which (1.16%) _neural (1.15%) former (1.07%) L (121%)
Block 13 (1.37%) _ (1.94%) _(1.36%) _network (1.35%) _for (1.32%) _which (1.23%) _neural (1.21%) former (1.23%) . (1.32%)
Block 14 (1.22%) L (1.82%) _(L18%) _network (1.22%) for (1.12%) _which (1.15%) _neural (1.09%) former (1.04%) L (112%)
Block 15 (1.34%) _(1.90%) _(133%) network (1.31%) for (1.29%) _which (1.21%) “neural (1.20%) former (1.20%) L (1.28%)
Block 16 (1.31%) ((1.91%) _(1.28%) _network (1.28%) _for (1.24%) _which (1.18%) _neural (1.19%) former (1.18%) _model (1.23%)
Block 17 (1.31%) _(1.90%) _(1.29%) _network (1.28%) _for (1.26%) _which (1.14%) _neural (1.12%) former (1.16%) L (1.29%)
Block 18 (4.55%) L (165%) _(5.16%) _network (3.55%) for (5.49%) _which (6.28%) “neural (6.05%) former (5.05%) L (3.17%)
Block 19 (1.24%) . (1.84%) _(1.23%) _network (1.17%) _for (1.18%) _which (1.23%) _neural (0.97%) former (1.10%) _model (1.18%)
Block 20 (3.30%) C (1.84%) _(2.30%) _network (1.16%) for (4.21%) _which (6.29%) _neural (5.89%) former (2.70%) _architecture (2.00%)
Block 21 (1.87%) _ (1.80%) _(1.21%) _network (1.12%) _for (1.15%) _which (3.82%) _neural (3.71%) former (1.10%) . (1.02%)
Block 22 (4.81%) - (1.91%) _infographic (8.14%) _network (3.50%) _outper (5.92%) _which (6.89%) _neural (6.76%) former (1.57%) 1(3.83%)
Block 23 (2.01%) L (191%) —(1.14%) network (1.40%) “lears (1.38%) _which (3.94%) ~Conv (3.99%) former (1.14%) “model (1.18%)
Block 24 (6.02%) . (1.94%) _infographic (8.04%) _network (7.20%) _unve (8.00%) _unve (7.47%) _Neural (7.02%) former (3.53%) _model (4.98%)
Block 25 (1.19%) _(1.87%) _(1.19%) _network (1.09%) _for (1.22%) _which (0.96%) 4G (1.07%) former (1.06%) , (1.04%)
Block 26 (1.55%) _(1.89%) _(L18%) “network (2.18%) called (1.22%) _which (1.25%) Conv (1.09%) former (2.57%) . (1.06%)
Block 27 (2.23%) _(1.93%) ton (3.53%) _network (1.09%) _for (1.21%) _which (0.99%) _model (1.13%) former (6.67%) . (1.25%)
Block 28 (2.76%) _(1.73%) json (1.02%) _network (3.49%) for (1.84%) _which (0.95%) _Neural (3.31%) former (6.31%) . (3.42%)
Block 29 (3.22%) (6.01%) _(1.32%) _network (1.00%) _for (1.01%) _and (1.74%) _neural (1.90%) former (7.25%) . (5.54%)
Block 30 (6.24%) (6.04%) _(3.56%) _network (7.34%) _which (6.05%) _neural (6.14%) former (7.30%) A1 (8.04%)
Block 31 (7.76%) (5.96%) _(8.27%) _network (8.68%) for (8.36%) _the (7.67%) —Conv (7.46%) former (7.35%) L (8:37%)
Block 32 (7.84%) &G|." (5.81%) 17" (8.35%) _network (8.78%) I . (8.43%) I _and (7.70%) _neural (7.51%) former (7.57%) _model (8.53%)
[Logits | [network neural former
[Expan. (0.993) | _ | _ for wh

Figure 16: Joint jet lens with learnable weightings (k = 1), applied over GPT-Neo-2.7B with the input sentence
“new simple neural architecture, the Transformer”

new simple “neural orchitecture . e Tans, Tormer
Block 1 (3.19%) bie (4.48%) Simple (4.99%) “neural (0.95%) architecture (108%) —and (5.08%) the (5.65%) fig (2.07%) Tormer (101%)
Block 2 (1.61%) armivals (2.43%) tons (1.22%) rack (3.63%) _model (1.07%) the (Lo1%) “main (101%) ent (3.10%) “generation (0.65%)
Block 3 (2.49%) “entry (5.53%) fitting (5.41%) lusters (3.05%) et (1.14%) thanks (0.99%) second (1.00%) Cription (0.97%) barrier (1.86%)
Block 4 (3.02%) bies (3.47%) private (5.64%) ey (5.41%) clusters (1.16%) ospiin (1,09%) hypothesis (1.08%) cript (5.55%) “Mund (0.75%)
Block 5 (1.75%) _mansion (3.47%) _Transcript (1.03%) ous (2.48%) _suit (1.15%) chuk (1.11%) _Oracle (1.17%) _Card (2.55%) cknow (1.00%)
Block 6 (1.64%) Parables (2.46%) Bald (L45%) Tzer (0.99%) Sche (121%) 60 (L11%) a (116%) one (5.34%) att (1.01%)
Block 7 (2.51%) DERR (2.47%) “Sp (L62%) “wired (3.21%) inea (1.19%)) (Lo2%) gloss (1.17%) aways (4.96%) system (4.48%)
Block & (1.60%) L (232%) Tall (1.04%) —experiments (0.89%) MIT (1.21%) mac (1.06%) s (1.16%) rock (5.75%) con (0.97%)
Block 9 (1.79%) . (2.19%) onel (1.11%) layer (5.70%) —hum (1.10%) arily (1.06%) _Hots (1.20%) iter (0.98%) “boxes (0.96%)
Block 10 (2.17%) L 218%) tested (1.09%) 1(6.21%) deployed (1.16%) aisrupt (3.01%) ow (L11%) NS (076%) Drive (1.60%)
Block 11 (1.20%) T216%) azon (1.10%) e _(1.00%) a (1.20%) Ro (1.10%) Dive (110%) Revised (0.95%) Prol (1.00%)
Block 12 (1.17%) . (2.20%) _Think (1.05%) _Dish (0.86%) Layer (1.11%) “Sing (0.99%) uts (1.16%) “button (0.94%) proble (1.02%)
Block 13 (1.68%] “and (2.22%) ab 2.77%) ourt (4.71%) _Malf (1.20%) REPL (0.99%) naked (117%) oran (0.98%) cred (101%)
Block 14 (1.60%) “and (2.22%) alg (1.06%) “underestimated (0.97%) percentie (1.19%) “which (2.35%) “nonetheless (1.15%) g0 (3.05%) HUL (061%)
Block 15 (2.19%) _and (2.24%) - (4.45%) _Subst (1.01%) chan (1.16%) ATURES (1.09%) _hitch (1.19%) _Mini (0.99%) _Bre (5.41%)
Block 16 (2.24%) “and (2.26%) “image (5.83%) cell (4.89%) packs (1.05%) _marked (0.91%) Finn (1.09%) ‘omes (0.89%) Cipher (0.99%)
Block 17 (1.72%) “and (2.27%) At (1.11%) formulation (0.96%) isen (1.22%) _modular (1.08%) Space (0.99%) Neural (0.85%) Trainer (5.29%)
Block 18 (1.54%) _and (2.21%) _bond (1.06%) _IPM (1.01%) _(14.36%) build (0.97%) plex (1.04%) brand (0.78%) _Quest (0.91%)
Block 19 (2.17%) “and (2.13%) cross (3.75%) proceeds (5.61%) “named (2.11%) “called (0.93%) parallel (1.08%) Shares (0.96%) Tlost (0.81%)
Block 20 (2.64%) ~3.62%) = (0.98%) rons (1.15%) Neural (2.26%) coupled (4.39%) “omn (2:30%) fect (4.73%) Py (L73%)
Block 21 (1.27%) . (3.47%) _ft (0.97%) ysis (1.03%) _template (1.09%) _with (0.83%) _latter (1.09%) adic (0.79%) &H¢ (0.87%)
Block 22 (3.68%) (3.56%) types (0.98%) uring (215%) (7.00%) which (4.55%) “most (5.96%) gress (1.06%) VT (5.74%)
Block 23 (3.17%) - 3.95%) & (Lo7%) biade (0.96%) o (Lie%) (287 _model (5.98%) du (4.83%) erg (4.52%)
Block 24 (5.36%) - (3.89%) prayers (5.37%) Turing (6.05%) 1 16.95%) _which (5.59%] orain (6.37%) Memory (5.62%) als (3.00%)
Block 25 (2.84%) . (3.80%) _complex (0.86%) _surgery (0.93%) " (0.97%) Neural (1.57%) “one (5.52%) _EEG (3.47%) (5.60%)
Block 26 (5.61%) . (3.63%) _dot (6.73%) _Turing (6.16%) _then (6.26%) _Neural (5.36%) ocy (5.16%) _robot (3.94%)
Block 27 (4.91%) (3.64%) 7 (712%) algorithm (2.21%) “where (5.86%) S0 (5.87%) Vier (1.80%) or (6.21%)
Block 28 (3.91%) . (2.94%) Solution (0.91%) simulation (4.19%) which (5.97%) F (6.14%) imil (0.95%) _Mega (4.63%)
Block 29 (4.07%) . (1.51%) _life (6.69%) _network (2.58%) _using (5.32%) _neural (6.09%) Washington (4.30%) _brains (3.73%)
Block 30 (5.05%) T (196%) AL (5.52%) et (5.50%) “neural (6.24%) neural (6.05%) “underground (4.91%) Brain (2.39%)
Block 31 (5.02%) ~2.04%) ~(6.84%) Machine (3.46%) “neural (6.56%) neural (6.10%) onet (0.95%) “neural (6.19%)
Block 32 (5.00%) - (2.06%) (5.21%) et (0.94%) called (6.27%) simple (6.34%) haus (5.11%) 3 (6.41%)
Block 33 (3.65%) T (2.08%) (083%) assembly (5.90%) 1o (5.86%) W (L51%) Global (5.96%) L (5.41%)
Block 34 (2.57%] L 210%) o (L01%) vide (0.99%) and (115%) class (1.00%) c (5.69%) L 15.73%)
Block 35 (1.67%) 212%) Cllent (1.09%) NET (1.00%) “and (2.74%) reservorr (1.16%) Draft (102%) scripts (0.93%)
Block 36 (1.28%) £0.69%) € (1.06%) gil (103%) € o) Leopard (1.22%) artist (1.05%) stals (1,02%)
[Logits | _ | " which neural
[Expan. (0.980) | P | = networl or whicl neura

Figure 17: Joint jet lens with learnable weightings (k = 0), applied over GPT-2-large with the input sentence
“new simple neural architecture, the Transformer”

24

Under review as a conference paper at ICLR 2026

new simple _neural architecture , “the Trans former
Block 1 (3.50%) bie (3.17%) " (4.75%) _network (5.93%) " (3.61%) _which (1.15%) _neural (1.60%) < (5.06%) s (2.74%)
Block 2 (3.14%) _ (0.84%) " (4.15%) _network (5.49%) ' (1.80%) _which (4.28%) _neural (4.04%) € (3.60%) _is (0.93%)
Block 3 (1.19%) _(0.86%) “(0.91%) _network (0.84%) *(1.05%) _which (1.81%) _neural (2.17%) < (0.78%) is (1.08%)
Block 4 (1.08%) ~(0.77%) ton (1.88%) network (1.27%) "(0.99%) we (0.96%) “neural (0.94%) < (0.75%) Tis (107%)
Block 5 (0.98%) _(0.74%) " (1.03%) _network (0.98%) ' (1.06%) _where (1.01%) _brain (1.00%) c (0.88%) _is (1.13%)
Block 6 (1.29%) _(3.29%) “(1.01%) _network (0.93%) T(1.07%) and (1.00%) _neural (1.00%) € (0.93%) is (1.06%)
Block 7 (1.32%) _(3.60%) *(1.04%) network (0.97%) "(1.10%) _which (1.00%) _neural (1.00%) parent (0.89%) Tis (0.97%)
Block 8 (1.35%) _(3.71%) " (1.05%) _network (0.95%) ' (1.07%) _which (0.98%) _researchers (0.99%) ient (0.97%) _is (1.10%)
Block 9 (1.44%) . (3.74%) " (1.04%) _network (0.83%) ' (1.07%) _which (0.99%) _neural (0.99%) € (0.94%) _is (1.91%)
Block 10 (1.47%) - (3.73%) " (1.04%) _network (1.44%) ' (1.07%) _which (0.97%) _neural (0.99%) former (0.93%) _AI(1.57%)
Block 11 (1.36%) ~(3.71%) *(0.98%) _network (1.01%) (112%) _which (0.98%) _neural (0.98%) < (0.99%) is (110%)
Block 12 (1.36%) —(3.69%) *(1.00%) network (1.04%) "(1.08%) _which (0.97%) neural (0.97%) < (1.03%) L (1.12%)
Block 13 (1.35%) _ (3.65%) " (1.01%) _network (1.04%) " (1.10%) _where (0.96%) _neural (0.96%) € (1.01%) _Cortex (1.09%)
Block 14 (1.31%) _(3.61%) " (1.00%) _network (1.02%) " (1.07%) _a (0.74%) _neural (0.92%) ient (1.00%) _is (1.10%)
Block 15 (1.30%) _(3.54%) *(0.99%) network (1.03%) "(1.07%) _which (0.03%) “neural (0.93%) < (1.00%) —chip (0.00%)
Block 16 (1.30%) _(3.43%) " (1.04%) _network (0.95%) ' (1.09%) _and (0.89%) _neural (0.89%) € (0.99%) . (1.13%)
Block 17 (1.28%) _(3.36%) " (0.97%) _network (0.95%) "(1.09%) _which (0.90%) _neural (0.86%) < (0.99%) (1.10%)
Block 18 (1.14%) _(2.81%) _ (0.92%) _network (1.00%) ' (0.90%) _a (0.74%) _more (0.79%) € (0.90%) _chip (1.09%)
Block 19 (0.99%) _(0.98%) " (0.84%) _network (0.88%) ' (0.95%) _or (1.44%) _neural (0.76%) < (0.98%) _architecture (1.10%)
Block 20 (1.53%) £ (0.95%) x (0.88%) “network (0.95%) "(0.99%) we (3.52%) authors (3.11%) <(0.77%) s (L.07%)
Block 21 (1.23%) . (0.96%) " (0.86%) _networks (0.90%) ' (1.04%) _neural (1.93%) _network (1.16%) € (1.93%) _is (1.07%)
Block 22 (1.92%) ~(0.96%) " (2.47%) _network (0.88%) *(1.05%) we (4.10%) _neural (4.13%) € (0.78%) _Brain (0.98%)
Block 23 (2.10%) —(0.90%) _Stuff (0.79%) network (1.16%) "(0.85%) similar (3.67%) Cu (4.65%) < (3.79%) is (0.99%)
Block 24 (3.00%) _(0.93%) " (2.25%) _network (4.69%) "(2.88%) *(4.60%) _ART (4.85%) € (2.96%) . (0.85%)
Block 25 (3.99%) “1=> (339%) ton (4.25%) _net (2.85%) (2.19%) _with (4.38%) loc (4.88%) < (5.43%) 5 (4.59%)
Block 26 (3.96%) Instance (3.52%) ' (3.67%) _network (3.98%) ' (4.45%) _Cooper (4.93%) _first (4.80%) € (4.25%) . (2.07%)
Block 27 (4.99%) _(3.24%) tons (5.87%) _network (4.56%) _of (5.90%) _but (4.78%) _neuron (4.83%) < (4.85%) _Memory (5.85%)
Block 28 (5.13%) _ (3.08%) ton (5.20%) _network (5.48%) _for (5.93%) _NI (4.98%) _first (4.92%) ient (5.17%) _uses (6.28%)
Block 29 (5.04%) _(3.27%) me (5.80%) _network (5.64%) . (5.22%) _NAT (4.95%) _authors (4.94%) ient (5.52%) 3000 (5.00%)
Block 30 (4.88%) _(3.40%) _kitchen (4.88%) _network (5.69%) " (5.41%) _prototyp (4.94%) _algorithm (4.88%) ient (5.55%) _uses (4.30%)
Block 31 (5.31%) —(3.61%) X (6.06%) “network (3.85%) "(6.79%) _geared (5.16%) traditional (5.00%) < (5.28%) XL (6.76%)
Block 32 (5.51%) - (3.70%) _white (5.66%) _network (5.56%) " (6.48%) ", (5.09%) _WS (5.03%) < (5.33%) _is (7.26%)
Block 33 (5.75%) 1 (3.73%) " (6.05%) _network (6.01%) " (6.91%) _wi (5.15%) _neural (5.05%) < (5.66%) _Robot (7.46%)
Block 34 (5.88%) . (3.73%) ton (6.26%) _network (6.49%) ", (6.91%) _which (5.15%) _neural (5.04%) ient (5.96%) _Cortex (7.50%)
Block 35 (5.77%) - (3.74%) " (6.11%) _network (6.26%) _model (6.90%) _modeled (5.03%) _neural (4.97%) ient (6.03%) _model (7.17%)
Block 36 (5.85%) —(3.67%) “(6.29%) network (6.51%) (6.77%) which (4.95%) “neural (5.00%) < (6.10%) Tis (7.52%)
Logits _ | B network which neural

[
[Expan. (0.994)

Figure 18: Joint jet lens with learnable weightings (k = 1), applied over GPT-2-large with the input sentence
“new simple neural architecture, the Transformer”

25

	Introduction
	Background and Preliminaries
	Related Work
	Restructuring LLM Computation with Jet Expansions
	Linear case: easy to restructure
	Nonlinear case: jets to the rescue
	Motivating example: carving a two-block residual network.

	General framework

	Applications of Jet Expansions
	Theoretical applications
	Empirical Case Studies
	Analyzing LLM inner working
	Analyzing fine-tuning effect

	Conclusion
	Additional details on jets
	Additional details on runtime
	Additional details on jet n-grams
	Additional details on the experimental metrics
	Additional details on jet n-gram diffing
	Additional analysis into the bi-grams pretraining dynamics
	Additional tables for Jet Bi-grams
	Additional tables for jet paths
	Additional plots of jet lenses

