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ABSTRACT

Large language models are becoming general knowledge engines for diverse ap-
plications. However, their computations are deeply entangled, resisting mod-
ularization which complicates interpretability, auditing, and long-term mainte-
nance. We introduce JET EXPANSIONS, a framework for expanding recursive
residual computational graphs using jet operators that generalize truncated Tay-
lor series. Our method systematically decomposes language models into explicit
input→output computational paths and complementary remainders. This func-
tional decomposition provides a principled, knife-like operator for cutting through
entanglement in LLMs, enabling scalable model inspection. We demonstrate
how JET EXPANSIONS ground and subsume the popular interpretability technique
Logit Lens, reveal an ensemble of an exponential number of paths analytically ver-
ify prior research in a different branch and support several interpretability appli-
cations, including sketching a transformer language model with n-gram statistics
extracted from its computations and indexing model toxicity levels without cu-
rated benchmarks.

1 INTRODUCTION

The earlier wave of artificial intelligence (AI) featured symbolic systems, which store knowledge in
units, such as entities and relations. The latest advancement in AI, however, surfaces a largely un-
structured paradigm, particularly since the inception of large language models (LLMs) training with
massive unorganized web texts (Radford et al., 2019; Brown et al., 2020; Touvron et al., 2023a;b;
Rozière et al., 2024). Unlike symbolic AI, LLMs disperse knowledge across billions of entangled
parameters. This mismatch between knowledge layout and computation layout is at the heart of
LLMs’ opacity, seeding regulatory concerns about their security and maintainability. Once trained,
LLMs cannot be easily audited or updated. Removing toxic knowledge (Gehman et al., 2020), delet-
ing private information (Carlini et al., 2021), or incorporating new policies (Mitchell et al., 2021;
2022; Meng et al., 2022) is far from straightforward. In contrast, such operations could be trivial in
systems that structure knowledge into addressable units, as in symbolic AI. Therefore, this opacity
issue of LLMs fuels growing demands for interpretability, particularly in high-stakes domains such
as healthcare (Smith, 2021; He et al., 2025; Comeau et al., 2025) and robotics (Wachter et al., 2017;
Fernández-Becerra et al., 2024; Raptis et al., 2025).

Existing interpretability methods often take a data-then-explanation approach: curate inputs, hy-
pothesize which sub-computations matter, and observe activations to refine the hypothesis (Wang
et al., 2022; Meng et al., 2022; Goldowsky-Dill et al., 2023). But the real challenge is structural:
LLM computations are entangled, preventing us from isolating embedded knowledge into mean-
ingful units. While one can gain valuable insights with data-driven interpretability approaches, we
posit that the ability to reorganize computation into smaller, less entangled, end-to-end components
“systematically” – rather than “empirically” – is central to tackle such issue at scale.

We present JET EXPANSIONS, a principled, general-purpose framework for manipulating LLM
computations. Noting that LLMs are particular types of residual networks (He et al., 2016; Vaswani
et al., 2017), our key idea is to recursively expand residual computations using jet operators (Ehres-
mann, 1951), the functional counterpart of truncated Taylor series. This process yields functional
rewritings of the model into two parts: (i) explicit input→output polynomial functions, which we
call jet paths, and (ii) complementary nonlinear remainders. Crucially, JET EXPANSIONS operates
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Figure 1: JET EXPANSIONS restructure residual computations into explicit input→output paths and a com-
plementary remainder. From these paths we can extract logits, and n-grams without retraining or additional
data. These readouts support downstream applications such as token contribution heatmaps, model comparison,
training monitoring, and fine-tuning verification.

at a functional level, requiring no additional data, nor training. We show that JET EXPANSIONS
encompass existing interpretability tools such as the Logit Lens (nostalgebraist, 2021b), and extend
them to new instantiations such as extracting n-gram probability table from LLMs. This enables
dataset-free, symbolic sketches of transformer LLMs and allow us to perform global interpretability
studies. Figure 1 illustrates the pipeline.

We validate our framework through case studies across several autoregressive LLMs (GPT, Llama,
OLMo). JET EXPANSIONS enable several empirical model inspection usages: i) understanding inner
mechanisms via jet lens (Section 5.2.1); ii) assessing fine-tuning effects, e.g. quantifying toxicity
levels with jet n-grams, showing RLHF alignment (Bai et al., 2022) reduces but does not eliminate
toxic knowledge (Section 5.2.2); iii) analyzing pretraining dynamics, e.g. tracking how bi-grams
such as “at least” are promoted then suppressed in OLMo (Section H). These results demonstrate that
JET EXPANSIONS provide a powerful, dataset-free operator for restructuring LLM computations,
paving the way for more transparent, interpretable, and maintainable foundation models.

Our contributions.

1. A new angle on interpretability: treating it as function decomposition, rather than input-
driven attribution or circuit identification on particular datasets.

2. A principled theoretical framework, based on jet operators, formally grounding existing
tools such as Logit Lens (nostalgebraist, 2021b;a) and path expansion (Elhage et al., 2021).

3. Preliminary but wide-ranging case studies, revealing insights into LLM internal mecha-
nisms, fine-tuning knowledge shifts, and toxicity levels.

2 BACKGROUND AND PRELIMINARIES

Language models as residual networks. We focus on transformer language models (Vaswani
et al., 2017), which are residual networks (He et al., 2016) consisting of L stacked residual blocks
sandwiched between an encoder Enc and a decoder Dec. Formally, the full computation is

f = Dec ◦
(
⃝L

ℓ=1(id + γℓ)
)
◦ Enc, (1)

where γℓ is the non-linear transformation in block ℓ. Unrolling the recursion, the hidden state after
ℓ blocks is

hℓ = h0 +
∑ℓ

j=1 γj ◦ hj−1, h0 = Enc(z). (2)

This recursive form makes clear that residual links accumulate contributions from all preceding
layers. We adopt the notion of residual streams (Elhage et al., 2021), where the computation of hl

can be viewed as nested terms entangling contributions across blocks (see also (Veit et al., 2016)).
Table 1 summarizes the notation.

Taylor expansions and jets. To handle nonlinearities when restructuring residual computations,
we turn to jets (Ehresmann, 1951), which generalize Taylor expansions. For f ∈ Ck+1(Rd,Rd),
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Taylor’s theorem at base point x0 gives

f(x) = f(x0) +
∑k

j=1
1
j! D

jf(x0) (x− x0)
⊗j +O(∥x− x0∥k+1). (3)

The k-th order jet operator abstracts this expansion as

Jkf : Rd → P k, Jkf(x0)(x) = f(x0) +
∑k

j=1
1
j! D

jf(x0) (x− x0)
⊗j , (4)

or equivalently, by leaving the polynomial action implicit,

Jkf(x0) = f(x0) +
∑k

j=1
1
j! D

jf(x0).

Intuitively, Jkf(x0) captures the local structure of f up to order k, and we write f(x) ≈k

Jkf(x0)(x) to indicate agreement up to order k. Jets thus provide a principled operator for rewriting
computations of f into decomposable pieces.
Remark 1 (Base points and variables as functions). When tracing back to the input z ∈ X , base
points x0 and variables x may themselves depend on z. In that case, jets define mapsX → Y via
Jkf(x0(z))(x(z)). For brevity, we often omit writing the variable x explicitly when clear from
context. (See Appendix A for details.)

Table 1: Summary of notation used in the paper.

Symbol Meaning Symbol Meaning

X Input space L Depth (no. of blocks)
V Vocabulary size id Identity map
Y = RV Output logits U Unembedding matrix
d Hidden dimension ν Final normalization
f : X → Y Full network hℓ Hidden state at layer ℓ
Enc : X → Rd Encoder βℓ Residual block at layer ℓ
Dec : Rd → Y Decoder γℓ Residual transform inside block ℓ

x0 Base point (center) x Variable
Djf(x0) j-th differential (x − x0)

⊗j j-fold tensor product
Jkf(x0) k-jet at x0 Jkf Jet operator
Pk Degree-k polynomial space wi Jet weight for i-th base point
ξ Set of expanded terms δ Remainder of jet expansion

3 RELATED WORK

Mechanistic interpretability and path rewriting. A large body of work has sought to interpret
the inner computations of large language models. One prominent category is mechanistic inter-
pretability (MI) (Ferrando et al., 2024), which aims to reverse-engineer model computations by
identifying, clustering, and labeling behaviors (Shah et al., 2024; Meng et al., 2022; Bricken et al.,
2023) and attributing them to specific components, such as MLPs (Geva et al., 2021; 2022) or cir-
cuits (Conmy et al., 2023; Ferrando & Voita, 2024). However, these approaches often restrict anal-
ysis to atomic components (neurons, layers, or weights), which may not reveal the full mechanism
of information processing. For example, Templeton et al. (2024) highlight the difficulty of drawing
conclusions at the neuron level compared with higher-level feature representations, while Bolukbasi
et al. (2021); Goldowsky-Dill et al. (2023) emphasize that many findings depend heavily on the cho-
sen data distribution. A second category of approaches attempts explicit path rewriting. Veit et al.
(2016) syntactically expand residual networks into exponentially many paths of varying length to
study gradient behavior. Elhage et al. (2021) decompose one- and two-layer transformers into sums
of uni-gram and bi-gram computation paths. Goldowsky-Dill et al. (2023) extend this line of work
by developing path patching methods that aim to preserve functional faithfulness while isolating
specific behaviors. Aligning with the second category, our approach manipulates functions directly
rather than activations. It requires neither probe datasets (Belrose et al., 2023) nor sampling (Conmy
et al., 2023; Ferrando & Voita, 2024; Voita et al., 2024). By allowing arbitrary portions of computa-
tion to be isolated from the monolithic transformer, JET EXPANSIONS abstract and generalize prior
path-based characterizations (Veit et al., 2016; Elhage et al., 2021), where nonlinearities were often
ignored or simplified (e.g. omitting layer norms, linearizing components, or implicitly assuming the
nonlinear compositionality does not destroy the supposed independence of paths).
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N -gram models as symbolic counterparts. N -gram models, dating back to Shannon (1948),
represent one of the earliest symbolic approaches to language modeling. They store explicit prob-
abilities of token sequences, e.g. Pr(wi | wi−1, . . . , wi−n+1), in tabular form. This makes their
knowledge layout identical to their computation layout: each symbol sequence has a directly ad-
dressable probability entry. Such symbolic modularity enabled early successes in language mod-
eling (Goodman, 2001) and tasks like machine translation (Brants et al., 2007). While later work
combined n-grams with networks (Liu et al., 2024), recent studies revisit their role in relation to
LLMs: analyzing the ability of transformers to simulate n-gram statistics (Svete & Cotterell, 2024)
or measuring agreement between LLM predictions and n-gram rulesets (Nguyen, 2024). This re-
newed attention motivates a direct bridge between n-grams and LLMs. JET EXPANSIONS provide
this bridge, allowing corpus-free extraction of n-gram statistics directly from LLMs and thereby
recovering a form of symbolic modularity within their entangled computations.

Taylor expansions and jets. Taylor expansions are ubiquitous tools in analyzing learning be-
haviours (Jastrzebski et al., 2017), notably with linearization (k = 1). For example, Belrose et al.
(2024) applied Taylor expansion on the loss to demonstrate the learning preference of neural net-
works. Xu et al. (2022) used a second-order Taylor expansion over the data distribution to interpret
optimal features. The generalized jet notions were introduced in machine learning in the context
of automatic differentiation tools by Bettencourt et al. (2019), and is an experimental feature in Jax
(Bradbury et al., 2018), but has been studied before (see e.g. Griewank & Walther, 2008). We lever-
age jets not merely as approximation tools, but as operators to restructure residual computations in
LLMs into explicit input→output paths and complementary remainders.

4 RESTRUCTURING LLM COMPUTATION WITH JET EXPANSIONS

4.1 LINEAR CASE: EASY TO RESTRUCTURE

We begin with the linear case, where residual computations can be reorganized exactly. Assuming
γℓ(x) = Aℓx for some Aℓ ∈ Rd×d, encoder Enc = E, and ν = id, eq. (1) expands as follows

f = Dec ◦
(
⃝L

ℓ=1 (id + γℓ)
)
◦ Enc = U

(∑
S⊆2[L]

∏
ℓ∈S Aℓ

)
E =

∑
S⊆2[L] fS , (5)

where 2[L] is the power set of [L] = {1, . . . , L} and each path fS = U
(∏

ℓ∈S Aℓ

)
E =

UWSE,W∅ = I, is itself a linear map from X to Y . Thus, the entire network can be written
as the sum of 2L explicit input→output paths fS . This exact decomposition makes linear resid-
ual networks intrinsically easy to restructure for interpretability because the output is a simple sum
of its components: one can directly analyze the contribution of each path, study their interactions,
and understand the global input→output relationships. In the nonlinear case, however, such a clean
decomposition no longer holds, motivating the use of jets.

4.2 NONLINEAR CASE: JETS TO THE RESCUE

f

x1 x2

f (x1) f (x2)

f

x1 x2

f (x1 + x2)

Actual entangled 
output

“Ideal” disentangled 
output

Residual stream

 Layer

Figure 2: Convex combinations of jets
disentangle a residual stream hℓ (a sum
of terms) into sub-streams in function
space, each isolated for further analysis.

Jkf(x0) encodes all information about a function f up to
order-k derivatives at a base point x0, providing a vector-free
representation of its local behavior. This makes jets a princi-
pled tool for reorganizing computations in LLMs. Lemma 1,
proved in Appendix A, formalizes their disentangling prop-
erty: a jet at a sum of inputs can be written as a convex com-
bination of jets at individual inputs, up to higher-order error.
This allows us to carve apart nested residual terms into sep-
arate, analyzable contributions (Figure 2).
Lemma 1 (Disentanglement of Jets). Let f ∈ C∞(Rd,Rd),
k ∈ N, N ∈ N+, {x}Ni=1 be a set of jet base points, and w ∈
△N−1 ⊂ RN be a set of jet weights (i.e., wi ≥ 0,

∑
i wi =

1). Define the sum x̄ =
∑N

i=1 xi and r = maxi wi∥xi− x̄∥.
Then the k-jet of f at the sum x̄ satisfies

Jkf
(∑N

i=1 xi

)
=
∑N

i=1 wi J
kf(xi) + O(rk+1).
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Figure 3: Carving a two-block network. (a) Nested entanglements. (b) Inner expansion at γ2. (c) Outer
expansion at Dec, yielding 4 explicit paths.

Example 1 (JET EXPANSIONS of ReLU). Consider the ReLU activation function γ : R → R+

defined as γ(x) = [x]+. For x > 0, γ′(x) = 1. For x < 0, γ′(x) = 0. Higher order derivatives are
zero almost everywhere. If x = x1 + x2, then for almost every x, there exist w ∈ △1 such that

γ(x1 + x2) = w1J
1γ(x1)(x) +w2J

1γ(x2)(x) = w1(γ(x1) + γ′(x1)x2) +w2(γ(x2) + γ′(x2)x1).

In other words, for almost every base point x = x1 + x2, there exists a convex combinations of jets
that can recover the original function γ exactly. Indeed, if either x1, x2 > 0 or x1, x2 < 0, then any
convex combination is exact. If only one of the two terms is positive, say x1 > 0 and x2 < 0, then
we can set w1 = 1 if x1 + x2 ≥ 0 and w1 = 0 otherwise (w2 = 1 − w1). The specular argument
applies for the case x1 < 0 and x2 > 0. From a global perspective, we can think of jet weights
wi = wi(x1, x2) as optimizable functions of x1 and x2, rather then constants – and in the ReLU
case, we obtain (almost everywhere) an exact first-order expansion. Conversely, one can see that the
0-th order JET EXPANSIONS of γ is not globally exact.

4.2.1 MOTIVATING EXAMPLE: CARVING A TWO-BLOCK RESIDUAL NETWORK.

Now we consider how to use jets to carve a typical computation graph. We begin with the simplest
nontrivial case: a network with two residual blocks. Using Equation (1), its full computation is

f = Dec ◦
(
Enc︸︷︷︸
x0

+ γ1 ◦ Enc︸ ︷︷ ︸
x1

+ γ2 ◦
(
Enc + γ1 ◦ Enc

)︸ ︷︷ ︸
x2

)
.

The nested parentheses entangle contributions: the outer (purple) grouping mixes everything, while
the inner (orange) ties γ2 to both x0 and x1. Traditional MI would select paths syntactically, akin
to selecting modules in a PyTorch computation graph, ignoring these nesting effects. Jets let us cut
both levels systematically and isolate the contributions of different input→output paths.

Step 1: Inner expansion. At γ2, taking {x0, x1} as jet base points and using Lemma 1, the
residual stream x2 = γ2 ◦ (x0 + x1) can be decomposed as

x2 ≈k Jkγ2(x0 + x1) = w0J
kγ2(x0)︸ ︷︷ ︸
x20

+w1J
kγ2(x1)︸ ︷︷ ︸
x21

+O(rk+1),

so the original entangled stream x2 separates into two sub-streams, as illustrated in Figure 3(b).

Step 2: Outer expansion. At Dec, the jet base points are updated from {x0, x1, x2} to
{x0, x1, x20, x21} after previous expansion. Using Lemma 1 and jet algebra (Proposition 1), yields

f ≈k JkDec(x0 + x1 + x20 + x21) = w̄0J
k(Dec◦Enc)︸ ︷︷ ︸

f∅

+ w̄1J
k(Dec◦γ1◦Enc)︸ ︷︷ ︸

f{1}

+ w̄2J
k(Dec◦(w0J

k(γ2◦Enc)))︸ ︷︷ ︸
f{2}

+ w̄3J
k(Dec◦(w1J

kγ2(γ1◦Enc)))︸ ︷︷ ︸
f{1,2}

+O(rk+1).

corresponding to four distinct input→output paths f∅, f{1}, f{2}, f{1,2}. This is shown in Fig-
ure 3(c). Each term aligns with what one might pick manually as a “path” in the network, but
here it arises systematically from the JET EXPANSIONS.
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The toy example above illustrates two key principles of our approach: recursive expansion of the
nesting terms, and the use of disentangling property (Lemma 1) to isolate entangled contributions. In
deeper networks with many blocks, however, manual expansion becomes infeasible. This motivates
our general-purpose algorithmic framework, bringing such expansion to any depths.

4.3 GENERAL FRAMEWORK

Algorithm 1 jet expand(f , l, C, k)

Require: Net f as in eq. (1); block index ℓ ∈
[L + 1]; jet base points C = {xi}Ni=1; jet
order k ∈ N

Ensure: Expanded polynomial terms ξ with
weights w, and remainder δ

1: if ℓ≤L then

2: // residual block from f
3: γℓ ← f.block(l)

4: // residual block computation
5: hℓ ← hℓ−1 + γl(hℓ−1)

6: // jet expansion at block l
7: ξ ← {wiJ

kγℓ(xi) }Ni=1

8: // jet expansion at residual link
9: ξ ← ξ ∪ {wiJ

kid(xi) }Ni=1

10: // calculate remainder
11: δ ← hℓ −

∑
e∈ξ e

12: else

13: // jet expansion at decoder
14: ξ ← {wiJ

kf.Dec(xi)}Ni=1
15: δ ← f.Dec(hL)−

∑
e∈ξ e

16: return (ξ, δ)

Algorithm 1 describes the core operation of JET
EXPANSIONS. At each block l, the algorithm
applies Lemma 1 to a set of jet base points C.
For convenience, here L + 1 indicates the final
decoder, Dec. The outputs are: (i) ξ, the set
of polynomial terms (jet paths), where each term
is the jet expansion centered at each xi ∈ C;
and (ii) δ, a nonlinear remainder, collecting er-
ror stemming from the Taylor expansion in Equa-
tion (3) and error from Lemma 1. A key fea-
ture is that jet base points can themselves be
the outputs of earlier expansions. This enables
recursive application of jet expand through-
out the network, unrolling the computation graph
into end-to-end input→output paths. In particu-
lar, when we apply jet expand at the final de-
coder layer l = L + 1, we obtain a functional
rewriting of the model. Assume (ξL+1, δL+1) =
jet expand(f, L+ 1, C, k) for some choice of
jet base points C and order k, then

f(x) =
∑

e∈ξL+1

e(x,w) + δL+1(x,w), (6)

where the jet weights w ∈ △N−1 can be man-
ually specified or optimized. Hence, recursive ap-
plications of jet expand yield a rewriting of the
model as a sum of explicit paths, plus a comple-
mentary remainder. Each path is an atomic unit
of computation from input to output, mirroring the
original function, but with simpler, additive struc-
tures. This decomposition is purely algebraic and requires no extra data collection.
Remark 2 (Jet weights). The jet weights w can be fixed, for example as wi = 1/N , or optimized
to minimize the remainder at a given x, such as in logit space. This optimization is efficient, as
∥UδL+1(x,w)∥2 = ∥υ(hL(z))−

∑
e∈ξL+1

e(x,w)∥2U⊤U , representing the squared distance between
the expansion and the residual stream in Rd, with the metric induced by U .

Remark 3 (Remainders). Remainders generally do not vanish with increasing k, as the base points
are user-defined. For linear residual networks, however, δ = 0 for all k ≥ 1, showing that Algo-
rithm 1 exactly recovers the rewrite in Equation (5) for any w. In light of Equation (6), jet expansions
should be viewed as algebraic rewrites of computational graphs, intended to aid interpretation rather
than to minimize approximation error. In our experiments, δ is often small, and the cosine similar-
ity between expanded and original logits approaches 1 (Figure 4, bottom). See App.B for detailed
discussion.

Lemma 2. Residual nets with only ReLU nonlinearites admit exact first-order JET EXPANSIONS.

Runtime. Evaluating ξ and δ at x ∈ X requires computing kth-order jets at cost O(|C|(F +
kB)), where F and B denote forward and backward passes of f . In practice, higher-order jets
can be computed efficiently via recurrence relations and automatic differentiation primitives such
as Jacobian-vector products (JVPs) (Griewank & Walther, 2008; Bettencourt et al., 2019). App.D
reports empirical runtime scaling of our implementation.
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5 APPLICATIONS OF JET EXPANSIONS

5.1 THEORETICAL APPLICATIONS

JET EXPANSIONS offer a principled framework that unifies and grounds existing techniques, such as
Logit Lens, while enabling systematic derivations of new methods. Here we present several concrete
instantiations of JET EXPANSIONS, and set the stage for the subsequent empirical studies.

Algorithm 2 exp jet expand(f, k)

Require: Net f as in Equation (1); jet order
k ∈ N.

Ensure: Expanded terms ξ (with uniform
weights, |ξ| = 2L) and remainder δ.

1: // initialize expansion
2: ξ ← {f.Enc, γ1 ◦ f.Enc}
3: for ℓ = 2 to L+ 1 do
4: (ξ, δ)← jet expand(f, ℓ, ξ, k)

5: // reweight terms uniformly
6: ξ ← {e(·, 1/|ξ|) | e ∈ ξ}
7: δ ← f.Dec(hL)−

∑
e∈ξ e

8: return (ξ, δ)

(Super-)exponential expansion. Algorithm 2 ex-
tends our two-block example to arbitrary depth, pro-
ducing 2L paths via uniform jet weights. This mir-
rors Veit et al. (2016)’s exponential view of resid-
ual networks, but in an explicit and principled way.
We defer the discussion on the connection between
the expansion and the ensembling view on LLM
computation to App.C. For k ≥ 1, each polynomial
term can be decomposed further by degree, isolating
higher-order block interactions, hinting at a super-
exponential ensemble perspective which we leave as
future work.

Jet lens and logit lens. The logit lens (nostalge-
braist, 2021b; Geva et al., 2021; 2022; Merullo et al.,
2023; Belrose et al., 2023) is a widely used mecha-
nistic interpretability tool that applies the decoder to
intermediate hidden states:

LogitLensℓ(z) = Uν(hℓ(z)) = Dec(hℓ(z)).

Aimed at highlighting the iterative refinement of the prediction across blocks,it is related to early
exiting or early decoding in the context of conditional computation (see e.g. Panda et al., 2016;
Elbayad et al., 2020; Geva et al., 2022). We can rewrite the logit lens with jet operator as follows

LogitLensℓ(z) = Dec(hℓ(z)) = J0Dec
(
hℓ(z)

)
(hL(z)) = J0hℓ(z)

Dec (hL(z)).

Here we retain the argument hL(z) to emphasize that the zeroth-order jet is applied within the full
computation, as if the jet operator acts like a knife: slicing the network at layer ℓ and replacing
the sliced computation with a truncated jet expansion. Indeed, Dec(x) ≈k=0 J0hℓ(z)

Dec(x) =

Dec(hℓ(z)), so the logit lens coincides with the zeroth-order jet of the decoder at the base
point hℓ(z), equivalently jet expand(f, L + 1, {hℓ}, 0). This perspective suggests two di-
rect generalizations of logit lens. First, iterative jet lens extends logit lens to higher-order jets:
jet expand(f, L + 1, {hℓ}, k), k ≥ 1. Second, joint jet lens expands with a broader set of base
points rather than merely {hℓ}: jet expand(f, L+ 1, {γℓ ◦ hℓ−1}ℓ∈[L], k), thereby highlighting
contributions of each block instead of the cumulative refinement of the residual stream.

Jet n-grams. n-gram statistics have gain their usage in analyzing LLMs (Elhage et al., 2021;
Svete & Cotterell, 2024; Nguyen, 2024), but existing methods rely on probing datasets. With JET
EXPANSIONS, we can extract n-grams directly from the model. Concretely, since a model can
be rewritten into a sum of polynomial terms or jet paths, we can select paths of interest, particu-
larly shorter ones, and evaluate them over the entire vocabulary space or its cartesian product to
record the resulting logits. Formally, given a model’s expanded terms (jet paths) ξ, each path e ∈ ξ
defines a function e : X = V n−1 → RV . The n-gram score for token i given a context x is
s(x)[i] =

∑
e∈ξ e(x)[i]/|ξ|. By evaluating s(x) for all x ∈ V n−1, we obtain a complete n-gram

table (x, i, s(x)[i]), x ∈ V n−1, i ∈ V , where (x, i) identifies the n-gram and s(x)[i] gives its score.

From theory to applied. The core expansion operator jet expand(f, ℓ, C, k) has three key pa-
rameters for a given model f : the target block ℓ, the expansion center C, and the order k. Together,
they determine which portion of the residual computation f is carved out. Different choices of
(ℓ, C, k) therefore yield different families of jet paths, and all empirical objects in our experiments
correspond to evaluating such paths either input-specifically or function-specifically.
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Iterative jet lenses

Figure 4: (Top) example of a joint jet lens on GPT-Neo 2.7B with k = 1, visualizing the seven blocks with
highest average jet weights after optimization. Each table cell indicates the most likely token predicted by the
jet path of each block. Optimized jet weight are displayed in the parenthesis next to the most likely token. We
used a diverging blue-to-red color map tracking logit scores, centered at zero. The second table with two rows
shows the model logits (Logits) and the expansion logits (Expan.), with cosine similarity (0.993) in parenthesis;
in this case, all top-1 tokens perfectly coincide. (Bottom) plots of average cosine similarities between original
and jet logits of joint (left) and iterative (right) lenses.

(i) Input-specific. For jet lenses (§5.2.1), we select expansion centers tied to a single input example
(e.g. a sentence). When C = {hℓ} and k = 0, the resulting decoder jet expansion recovers the
classical logit lens. Using the same C but k > 0 yields iterative jet lenses, which capture higher-
order refinements of the residual stream. Expanding at the nonlinear outputs {γℓ(hℓ−1)} with k > 0
produces joint jet lenses, decomposing the prediction into contributions from individual blocks.

(i) Function-specific. For jet n-grams (§5.2.2), we exploit a special property of LLMs: their inputs
are provided by the token embedding function, which is itself part of the model, and thus can serve as
a jet expansion center. Expanding at the embedding recenters the analysis on the entire input space,
yielding jet paths over V n−1 and enabling a holistic, dataset-free characterization of the model’s
global behavior behavior tendency. In practice, bi-gram paths are obtained by: 1) expanding at
Enc, 2) progressively adding MLP ◦ Enc as additional expansion centers, and 3) performing a
final expansion at the decoder (See Alg.3 in App.E). The resulting low-arity paths e : V 1 → RV

can be evaluated exhaustively, producing complete tables of jet bi-grams (xt, xt+1, e(xt)[xt+1]).
These symbolic tables support global, dataset-free analyses: (i) top-K scoring bi-grams, which
reveal broad behavioral tendencies of the model, and (ii) keyword-conditioned bi-gram mass, which
aggregates scores over bi-grams associated with a semantic category (e.g., toxicity), providing a
scalar indicator of how much such knowledge is embedded in the model.

Across both the input-specific (jet lenses) and function-specific (jet n-grams) settings, the connection
to theory is direct: each empirical quantity is simply a jet path evaluated on its natural domain, with
(ℓ, C, k) translating theoretical choices into concrete experimental readouts.

5.2 EMPIRICAL CASE STUDIES

Setup. Experiments are done with open-source LLMs including GPT-2 (Radford et al., 2019),
GPT-Neo Black et al. (2021), Llama (Touvron et al., 2023a;b; Rozière et al., 2024), and
OLMo (Groeneveld et al., 2024). Experiments on jet n-grams were run on 128-CPU servers with
1TB memory, while those on jet lenses were computed on a single laptop CPU. In jet lens, jet
weights w were optimized by gradient descent; for n-grams we restrict to zeroth-order jets from
the jet paths of embedding→MLP→unembedding with uniform weighting. Algorithmic details and
evaluation metrics are given in App.E and App.F.

5.2.1 CASE 1: ANALYZING LLM INNER WORKING

Jet lens. We use jet lens to analyze LLMs’ mechanisms when processing individual examples.
Figure 4 (top) visualize a joint jet lens for GPT-Neo-2.7B (Black et al., 2021). For space reason,
other examples are deferred to App.G.1. The first row is the input sentence. The first column
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Table 2: MLPs in OLMo-7B and Llama-2-7B performing certain linguistic functions based on jet bi-grams
extracted from the corresponding jet paths.

OLMo-7B Llama-2-7B

MLP Index 1 3 9 17 19 6 7 18 19

Linguistic Role -ly
- else -ing -’t - than -s -ing -es

-ing
-ity -ly

∆Logit Intervened −4.19
−3.35 −0.58 −9.73 −4.26 −7.42 −14.61 −3.55 −9.69

−11.93 −9.14

indicates the blocks. Here, a block, e.g. Block 1, contains one self-attention and one MLP module.
All table cells depict top-1 tokens for the corresponding path through the particular block, following
conventions from prior work (Belrose et al., 2023). We observe that the joint jet lens captures the
synergy among different blocks, as the model prediction is decomposed into the contributions of
several jet paths. Optimized jet weights are reported in the percentages.

In this sense, jet lens with k > 0 may serve as tools to systematically discover such synergic be-
haviors. We also find that higher-orders (k > 0) help iterative lenses deliver more meaningful
interpretations than the logit lens (k = 0) for GPT-Neo-2.7B (see Figures 7 to 9). This is potentially
due to their capability to trace indirect impacts of early layers on the final logits, which are otherwise
missing under logit lens. Our findings are consistent with nostalgebraist (2021a); Cancedda (2024)
where naive implementations of logit lens are shown to fail on GPT-Neo model family. Figure 4
(bottom) present mean cosine similarities of joint and iterative jet lenses with respect to model out-
puts for various GPT models and orders, averaged over 100 example sentences. The similarities are
high and close to 1 for various k, showing however different behavior across model families and
sizes. This indicates JET EXPANSIONS highly correlate with model outputs. In particular, the right
plot compares the similarities of the logits obtained through iterative jet lenses for k = 0 (solid, line,
the same as LogitLens) and for k = 1 (dashed lines), indicating an higher correlation of the latter
with model outputs, potentially providing more faithful interpretations.

Jet paths of individual components. By examining the representative jet bi-grams captured by
jet paths of individual components, we can analyze their roles. In our case, we find some MLPs
perform special linguistic functions. For example, in OLMo-7B, the jet path which passes through
the 3rd MLP promotes the addition of the “-ing” suffixes to the current token. Similar MLPs with
certain linguistic functions are listed in Table 2, where the negative ∆logit indicates removing the
corresponding MLP harms the fulfillment of the particular linguistic functions. Note that the rela-
tionships between functions and components are not necessarily one-to-one mappings. Particularly
paths through multiple MLPs might work together to complete one linguistic function e.g. MLP 6
and MLP 18 in Llama-2-7B can add “-ing” suffix. This echos work on circuit discovery (Elhage
et al., 2022; Conmy et al., 2023; Ferrando & Voita, 2024), where the role of each component cannot
be easily dissected and multiple components collaborate. Similar studies on the roles of attention
heads can be be found in App.G.2.

5.2.2 CASE 2: ASSESSING FINE-TUNING EFFECT

Fine-tuning steers an LLM from pretraining’s vastness towards focused, task-specific intent. These
shifts ripple distributedly across high-dimensional parameter space, often escaping full capture with-
out extensive benchmarking. Jet n-grams, however, render the changes legible directly from the
weights, revealing model differences through their n-gram “diffing”.

Code fine-tuning. Comparing Llama-2-7B with its code fine-tuned variants, CodeLlama, reveals
that diffing jet bi-grams highlights code-specific patterns such as **kwargs or Assertion (Table 3),
confirming the acquisition of programming knowledge. This suggests that jet bi-grams can serve as
a practical tool to verify if fine-tuning effectively imparts knowledge in target domains.

RLHF alignment. While ToxiGen scores suggest detoxification of LLAMA-2-7B-CHAT, jet bi-
gram masses remain nearly unchanged (Table 4), indicating toxic associations persist in latent form.
Challenging prompts from RealToxicityPrompts (Gehman et al., 2020) confirm that these associa-
tions can still be triggered. Thus, RLHF appears to mask rather than erase toxic knowledge, a finding
revealed directly by data-free jet bi-gram indices. This showcases a potential application of jet bi-
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Table 3: Bi-grams before and after code fine-tuning. For brevity, we show every 50th bi-gram among the top
1000. Bi-grams relevant to coding, such as **kwargs (a Python keyword), are highlighted. This demonstrates
that our method can extract representative bi-grams reflecting fine-tuning quality.

Rank Llama-2-7B Codellama-7B Codellama-Python-7B

0 ( more, than) ( like, wise) ( like, wise)
50 ( Now, here) ( just, ification) ( Like, wise)
100 ( system, atically) ( in, case) ( all, udes)
150 ( all, erg) ( get, ters) ( no, isy)
200 ( on, ions) (któber, s) (output, ted)
300 ( other, world) ( all, ud) (Object, ive)
350 ( Just, ified) (gebiet, s) ( as, cii)
400 ( trust, ees) ( Protest, s) ( can, nab)
450 ( at, he) ( deploy, ment) ( transport, ation)
500 ( book, mark) (Class, room) (Tag, ging)
550 ( from, 而) ( access, ory) ( personal, ized)
600 ( WHEN, ever) ( In, variant) ( excess, ive)
650 ( where, about) ( I, am) ( Add, itional)
700 (ag, ged) (add, itionally) ( **, kwargs)
750 ( he, he) ( invalid, ate) (name, plates)
800 ( all, anto) (div, ision) ( select, ive)
850 ( Tom, orrow) ( process, ors) ( Assert, ions)
900 ( for, ays) ( Program, me) (blog, ger)
950 ( Bach, elor) ( set, up) ( can, cellation)

Table 4: Toxicity indexes for Llama-2-7B and Llama-2-7B-chat using different methods: ToxiGen, jet bi-
grams, and RealToxicityPrompts challenge prompting. Higher numbers indicate higher toxicity scores on the
corresponding benchmarks and higher toxic knowledge possession for jet bi-grams.

ToxiGen Score Jet Bi-grams RTP Challenging Prompts
Hartvigsen et al. (2022) Mass of “toxic” bi-grams No Very mild Medium Hard

Llama-2-7B 21.25 0.03445 38% 49% 64% 88%
Llama-2-7B-chat 0.0 0.03377 23% 35% 64% 84%

grams in constructing data-free indices that reveal embedded knowledge, offering complimentary
views beyond traditional data-driven benchmark evaluations.

6 CONCLUSION

We introduced JET EXPANSIONS, a principled framework for restructuring the computational graphs
of large language models. Specialized to LLMs, our method systematically disentangles contri-
butions of user-selected input→output paths from the overall computation, yielding interpretable
functional components plus a complementary remainder. Operating directly in function space, JET
EXPANSIONS cut through entanglement, respect residual structure, and are grounded in approxima-
tion theory (jets as generalized truncated Taylor operators). This enables modular inspection: one
can pull out paths of interest, e.g., logit lens, n-gram paths, while bracketing the rest as remainder.

Limitations. JET EXPANSIONS are not strict function approximations in the Taylor sense; they
rewrite the computation into interpretable polynomial terms plus a remainder. Remainder size and
alignment with model outputs depend on the jet order k and weight choices (hyperparameters),
and expansions are not unique (higher orders contain lower orders). While graph manipulation
is lightweight, systematic evaluation of many (and higher-order) paths can be costly; heuristics or
subsampling may be needed for large input spaces. Our n-gram studies focused on bi- and tri-grams;
longer-context expansions are left to future work.

Implications and future work. We envision a Fourier-transform style decomposition for LLMs
and JET EXPANSIONS is perhaps only one way of choosing the basis. Theoretically, we aim to
connect with attribution (e.g., Shapley values), and formalize model equivalence via jet spaces to
ground model diffing. We see fruitful links to linear algebraic decompositions and to Markov/HMM
viewpoints (e.g., structured decoding (Zhang et al., 2023)). We will also study the implications of
the super-exponential path growth with depth. Practically, beyond longer n-grams, we will develop
safety tools (e.g., search features for unwanted associations or PII leakage). Finally, although our
experiments are mainly observational, jet expand may help guide interventions, complementing
causal tracing (Meng et al., 2022) and path patching (Goldowsky-Dill et al., 2023).
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ETHICS STATEMENT

This work focuses on developing a mathematical framework (JET EXPANSIONS) for analyzing large
language models. Our study does not involve human subjects, proprietary or sensitive data, or ex-
periments that raise privacy, security, or legal concerns. We acknowledge that interpretability tools
may potentially be misused to extract or expose harmful content (e.g., toxic or private knowledge)
embedded in pretrained models. We use the public datasets for LLM toxicity research. We empha-
size that our intent is to promote transparency, safety, and responsible analysis of LLMs, and we
recommend future work carefully consider these implications in line with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our results. All definitions, assumptions, and
theoretical proofs are included in the main text and appendix. Detailed algorithms (Algorithm 1,
Algorithm 2) and mathematical derivations are provided for clarity. Experimental procedures, model
families used (GPT-2, GPT-Neo, LLaMA, OLMo), and metrics are described in Section 5.2 and
Appendix F. We will open-source the code implementing JET EXPANSIONS, extracting jet n-grams,
and reproducing jet lenses, ensuring that all empirical results reported can be replicated.

LLM USAGE ACKNOWLEDGMENTS

We used LLMs to assist with grammar and writing polishing. All equations, analysis, and research
contributions are entirely our own.
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Alonso. Towards automated circuit discovery for mechanistic interpretability. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 16318–16352. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf.

Charles Ehresmann. Les prolongements d’une variété différentiable: l’espace des jets d’ordre r de
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A JETS AND EXPANSIONS

A jet of a function represents an equivalence class. We thus can perform algebraic operations among
functional equivalence classes using jet algebra stated below.
Proposition 1 (Jet algebra). Let f, g ∈ C∞(Rd,Rd) and k ∈ N+. Then,

(i) Jk(af + bg)(x0) = a Jk(f)(x0) + b Jk(g)(x0), for a, b ∈ R (linearity);

(ii) Jkf(x0) ◦ g ∈ Jkf(x0) and Jkf(x0) ◦ g(y) = Jkf(x0)(g(y)) (jet after endomorphisms);

(iii) g ◦ Jkf(x0) = {g ◦ u : u ∈ Jkf(x)} (endomorphism after jet);

(iv) Jk(f ◦ g)(x0) = Jkf(g(x)) ◦ Jkg(x0) (composition of jets);

Properties (i)-(iii) follow directly from the definition; (iv) is a consequence of the chain rule and trun-
cation. To reorganize residual computations typically used in LLMs, we rely on the disentangling
property of jets, restated below.
Lemma 1 (Disentanglement of Jets). Let f ∈ C∞(Rd,Rd), k ∈ N, N ∈ N+, {x}Ni=1 be a set of
jet base points, and w ∈ △N−1 ⊂ RN be a set of jet weights (i.e., wi ≥ 0,

∑
i wi = 1). Define the

sum x̄ =
∑N

i=1 xi and r = maxi wi∥xi − x̄∥. Then the k-jet of f at the sum x̄ satisfies

Jkf
(∑N

i=1 xi

)
=
∑N

i=1 wi J
kf(xi) + O(rk+1).

Proof of Lemma 1 Take y ∈ Rd, N ≥ 1, the set of jet base points xi ∈ Rd for i ∈ [N ], jet weights
w ∈ △N−1 and an order k ≥ 0. Since w belongs to the simplex △N−1, we have

∑N
i=1 wi = 1.

Multiplying f(y) on both hands, we obtain∑N
i=1 wif(y) = f(y).

Applying eq. (3) (Taylor expansion) and the definition of jet with each xi as the center, the left hand
side (LHS) becomes

N∑
i=1

wif(y) =

N∑
i=1

wi

[
f(xi) +

k∑
s=1

Dsf(xi)(y − xi)
⊗s +O(∥y − xi∥k+1)

]
(7)

=

N∑
i=1

wiJ
kf(xi)(y) +O(wi∥y − xi∥k+1), (8)

At the same time, we can expand f(y) at the right hand side (RHS) with
∑N

i=1 xi as the center

f(y) = Jkf(

N∑
i=1

xi)(y) +O(∥y −
∑

xi∥k+1).

Now let us take y =
∑N

i=1 xi and observe that theremainder at RHS vanishes O(∥y−
∑

xi∥k+1) =
0 and the remainder at LHS O(wi∥y − xi∥k+1) = O(wi∥xi −

∑
j xj∥k+1). Finally we observe

that the class of functions in the last O are dominated by the class of function in O(rk+1) where
r = maxi{wi∥xi −

∑
j xj∥} is the maximum remainder. This concludes the proof.

As a side note, jet weights would not need to form convex combinations, but rather linear combina-
tions

∑
i wi = 1. However, restricting to convex combinations has two major advantages:

• optimizing over a convex set guarantees the existence of maxima and minima (Weierstrass
theorem) and uniqueness of minima if we are optimizing a strictly convex loss as in general
is the case for expansions that only affect the decoder module.

• weights within the probability simplex have a clearer interpretation for interpretability pur-
poses.
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B REMAINDER SIZE OF JET EXPANSIONS

JET EXPANSIONS does not aim to provide approximation guarantees. Instead, in the following we
clarify when small remainders are expected (input-specific cases) and when they are not (function-
level expansions), but the expansions still yield meaningful, interpretable insights.

In input-specific evaluations (where we choose specific input sentences like “new simple neural
architecture, the Transformer”), we expect reminders to be small, since we want to draw specific
conclusions about how a model is behaving on a particular input. In these cases (i.e. in the Jet
lenses experiments of §5.2.1) we do provide empirical studies, and we often find that the remainder
δ is small. In order to measure the remainder between the expansion logit and the model logit,
we compute the cosine similarity between them, since direct difference depends heavily on the input
sentences (See App. F, “Cosine similarity as a remainder metric.”). In short, we use cosine similarity
as an indicator for checking if the remainder is small. Most of our heatmaps in the submission
include this similarity measures in the parenthesis e.g. “Expan. (0.993)”. We also compute average
similarities over 100 examples and summarize the results in Figure 4 (bottom): expansion logits
are frequently close to the model outputs, with cosine similarities in the 0.85–1 range, indicating
that the extracted components capture most of the behavior for many concrete inputs i.e. smaller
remainders. In general, the remainder size will depend on three factors:

1. the type of jet expansion one performs (e.g. iterative vs joint);
2. the non-linearity on which the jet is applied to (e.g. ReLu vs ELu, vs LayerNorm)
3. how far the variate is from the base point, which in turn fully depends on the chosen input

sentence (see Equation (4)).

In function-level expansions (e.g., around the embedding function Enc for extracting jet bi-grams),
remainders can be large and this is fully expected. Here, the goal is not approximation accuracy but
to decompose the computation into interpretable paths. Concretely, let us consider bi-grams (§5.2.2):
the model performs far more than the isolated mechanism of predicting a token based solely on the
previous one. Therefore we do expect reminders between the model output and the extracted bi-
gram paths to be naturally large. Yet the extracted paths remain meaningful precisely because they
isolate a coherent part of the computation, even if they explain only a small fraction of the total
behavior. A large remainder therefore does not invalidate the interpretation; it simply reflects that
we are focusing on one specific, coherent part of the computation. This is a common situation
across interpretability research, or in general when humans try to explain things. Conceptually,
we find it useful to compare jet expansions to Fourier transform: even when the Fourier transform
captures only part of the signal’s spectrum and the resulting approximation error cannot be directly
measured, the partial frequency information it provides can still be valuable for understanding the
signal and diagnosing issues in the generating circuits.

C EXPONENTIAL EXPANSION AND ENSEMBLING PERSPECTIVE ON LLM
COMPUTATION

Algorithm 2 recursively expands at all residual blocks. We see it as the maximal expansion (the
upper limit of expansion) of JET EXPANSIONS. It aims to demonstrate that JET EXPANSIONS also
provides theoretical grounds for Veit et al. (2016), whose analysis at the time lacked theoretical
foundations and was presented heuristically and empirically, by manually selecting paths (i.e., 2L
gradient paths) for analyzing model behavior, where the exponentially many ensemble structures
were syntactically noted rather than analytically derived.

With a closer look, we were surprised to find that several empirical procedures used in Veit et al.
(2016) are exactly recoverable as specific instances of jet expansions. For example, the deletion of
a module (Sec. 4.1 in Veit et al. (2016)) corresponds precisely to

jet expand(f, l, hl−2, 0),

i.e., a JET EXPANSIONS with the skip-layer upstream stream as the base point and with jet order 0.

Another example is their gradient analysis. In the original exposition, the procedure is described
operationally as: “To sample a path of length k, we first feed a batch forward through the whole
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network. During the backward pass, we randomly sample k residual blocks. For those k blocks,
we only propagate through the residual module; for the remaining n − k blocks, we only propa-
gate through the skip connection.” The outcome of these operational steps is equal to taking the
derivative component of a first-order jet expansion over each block and evaluate it over a batch of
inputs, as shown below. Note that the following reinterpretation focus on the gradients with respect
to intermediate representations while empirically collecting gradients with respect to parametes is
much easier.

Path selection in backpropagation as first-order JET EXPANSIONS. For a residual block,

βl(hl−1) = (id + γl) ◦ hl−1 = hl−1 + γl(hl−1),

the derivative satisfies Dβl[hl−1] = I + Dγl[hl−1]. Thus, propagating gradients through the full
network f = βL ◦ βL−1 ◦ · · · ◦ β1 yields the Jacobian using the chain rule

Df(x0) =
∏L

l=1

(
I +Dγl[xh−1]

)
.

On the other hand, the first-order jet of a residual block at hl−1 is

J1(βl)(hl−1) =
(
βl(hl−1), I +Dγl[hl−1]

)
,

where we use the pair notation for the jet, the first entry being the zero-th order term and the second
entry being the first order term. Since jets compose according to

J1(f ◦ g)(x) = J1f
(
g(x)

)
◦ J1g(x) (Proposition 1(iv)),

we have the full first-order jet of f as

J1(f)(x0) = J1(βL)(hL−1) ◦ · · · ◦ J1(β1)(x0),

Extracting the derivative component of this composite jet therefore yields the ordered product of the
derivative factors from each block:

Df(x0) =
(
I +DγL[hL−1]

)
◦
(
I +DγL−1[hL−2]

)
◦ · · · ◦

(
I +Dγ1[x0]

)
.

Composition of first-order jets multiplies the linear parts in this precise order:

Df(x0) =
(
I +DγL[hL−1]

)
· · ·
(
I +Dγ1[x0]

)
.

Expanding this product produces 2L additive terms:

Df(x0) =
∑

S⊆{1,...,L}

(∏
l∈S

Dγl[hl−1]

)
,

each corresponding to a distinct choice of either I or Dγl at every block. These terms match exactly,
one-for-one, the “gradient paths” enumerated by Veit et al. (2016). Their operational procedure
(“selecting” residual or skip gradients per block) amounts to selecting individual terms from this
expansion. Consequently, their “gradient paths” are not independent computational input-output
paths through the nonlinear network, but the combinatorial derivative components of the first-order
jet (i.e., the first order term) of the residual network.

D RUNTIME OF JET EXPANSIONS

We report in fig. 5 a plot of the runtime for evaluating expansions originating from the joint jet lenses
of section 5.2.1 as a ratio of the input model evaluation (forward pass), for both the uniform and the
optimized jet weights w setup, for different jet orders k.

E JET n-GRAMS AND THEIR ALGORITHMS

General concept of n-gram models The general concept of n-gram models linked to
(transformer-based) language models involves defining or constructing mappings that functionally
depend only on n − 1 input tokens (with the n-th token being the output token) to capture and de-
scribe the behaviour of the original language models. We are not the first to explore this idea; for
instance Nguyen (2024) fits n-grams on the same dataset used to train the language models.
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Figure 5: Empirical runtime of evaluations of JET EXPANSIONS originating form the joint jet lenses as a ratio
of the evaluation of the input model.

JET EXPANSIONS for in-model n-grams JET EXPANSIONS allow us to define n-grams statistics
that are derived solely and directly from the model itself – producing in-model n-grams rather than
in-data n-grams. This approach offers at least two significant advantages:

• No repeated inference runs over prepared datasets: It removes the need to prepare
datasets for prompting LLMs, thereby avoiding repeated inference runs to collect activation
patterns for interpretability analysis and reducing computational overhead. With a small n,
direct expansion of LLMs into n-grams can be performed on CPUs, which are roughly an
order of magnitude less expensive than GPUs.

• Avoidance of fitting artifacts: It avoids potential artifacts that could arise from the selec-
tion of external n-gram fitting methods.

We describe the detailed relationship between JET EXPANSIONS and bi-grams/tri-grams, which we
used in our case studies. We will release code for these procedures and also provide equivalent
algorithms that directly use transformer modules.

Jet bi-grams Jet bi-grams are paths that do not pass through self-attention layers. In experiments,
we focus on two types of bi-gram paths. a) the embedding-unembedding path that can be obtained
as jet expand(f, L, {Enc}, 0). b) paths that pass through one MLP module, assuming MLPs are at
odd block indices in the residual network architecture, the procedure to extract the path is described
from line 3 to line 7 in Algorithm 3. This procedure results in a series of functions in ξ, one for each
MLP layer, that depend only on the last input token. Applying softmax normalization to their logit
output allows these functions to define (conditional) bi-grams.

Jet tri-grams Jet tri-grams involve paths that pass through at least one self-attention layer, with a
need to isolate the contribution from the first token of the tri-gram. The procedure for extracting a
0-th order jet trigram path that passes through the ith self-attention layer (assuming it has one head)
is described from line 1 to line 5 in Algorithm 4. This procedure yields a map that depends only on
two input tokens, isolating the contribution of the ith self-attention layer on pairs of tokens. Once
softmax normalization is applied, this defines a tri-gram. The tri-gram could represent either a skip
trigram or a contiguous trigram, depending on how positional information is encoded (e.g., absolute
positional embeddings versus rotary embeddings).
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Algorithm 3 Dataset-free extraction of jet bi-grams (MLP paths).

Require: Model f , total blocks L, vocabulary V

1: // Initialize with encoder path
2: C ← {Enc}

3: // Iterate over MLP blocks (odd indices)
4: for l = 1, 3, . . . , L do
5: (ξl, δl)← jet expand(f, l, {Enc}, 0)

6: // Collect each expanded MLP term
7: C ← C ∪ {e(·, 1) | e ∈ ξl, e ̸= Enc}

8: // Expand over the decoder
9: (ξ, δ)← jet expand(f, L+ 1, C, 0)

10: // Evaluate over the input space
11: for all e ∈ ξ do
12: for all x ∈ V do
13: for all i ∈ V do
14: Record (x, i, e(x)[i]) as the bi-gram score

15: return Symbolic bi-gram table {(x, i, e(x)[i])}

Algorithm 4 Dataset-free extraction of jet tri-grams (Attention paths).

Require: Model f , total blocks L, target self-attention block index l, vocabulary V
1: C ← {Enc ◦ (xt−1, xt)}

2: // Expand over the attention
3: (ξ, δ)← jet expand(f, l, C, 0)
4: C ← {e(·, 1) | e ∈ ξl, e ̸= Enc}

5: // Expand over the decoder
6: (ξ, δ)← jet expand(f, L+ 1, C, 0)

7: // Evaluate over the input space
8: for all e ∈ ξ do
9: for all (xt−1, xt) ∈ V 2 do

10: for all i ∈ V do
11: Record (xt−1, xt, i, e(xt−1, xt)[i]) as the tri-gram score

12: return Symbolic tri-gram table {(xt−1, xt, i, e(xt−1, xt)[i])}

Practical computation vs. formal jet n-grams. Algorithms 3 and 4 express bi-gram and tri-
gram extraction in the jet-expansion formalism: we expand intermediate paths using jet expand,
collect the resulting functions into C, and finally obtain a family of zeroth-order jet paths

e ∈ ξ, e : V n−1 → RV ,

where the arity of e (one token for MLP paths, two tokens for single-attention paths) determines
whether the path represents a bi-gram (n = 2) or a tri-gram (n = 3). Formally, an n-gram table
is obtained by exhaustive evaluation of e on its domain: recording e(x)[i] for x ∈ V in the bi-
gram case, or e(xt−1, xt)[i] for (xt−1, xt) ∈ V 2 in the tri-gram case. In practical implementations,
these evaluations correspond to batched matrix computations over the entire vocabulary. For bi-
grams, the embedding matrix E ∈ R|V |×d serves as the batch of all input tokens, and each MLP
component represented in C acts on E via matrix multiplications; after layer normalization and
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projection through the unembedding matrix U , the resulting matrix has (x, i) entry equal to e(x)[i].
For tri-grams, an analogous “pairwise embedding” tensor encodes all (xt−1, xt) pairs at once, and
the attention and subsequent linear operators act on this tensor in batch; projection through U yields
a three-dimensional array whose (xt−1, xt, i) entry is exactly e(xt−1, xt)[i]. Thus, the formal jet
description and the practical batched-matrix implementation are two views of the same operation: a
jet path defines the atomic paths {e, e ∈ ξ} which simplifies the large model, and the bi-gram table
is obtained by evaluating e simultaneously on all vocabulary elements using matrix multiplications.

F EXPERIMENTAL METRICS

In this section, we detail the measured quantities in each empirical case study.

Cosine similarity as a remainder metric. In Section 5.2.1 (the lens experiments), we need a
comparable metric for quantifying the size of the remainder term δ in the JET EXPANSIONS for a
given input sentence. Let m ∈ RV denote the model output logits over the vocabulary V , produced
by a full forward pass, and let e ∈ RV denote the logits predicted by the truncated jet expansion. A
naı̈ve approach would define the remainder as the difference vector r = m−e and measure its mag-
nitude using ∥r∥. However, this direct norm-based measurement is highly sensitive to input-specific
variation, such as sequence length, and the internal activation scaling of the model. As a result, the
magnitude ∥m− e∥ can be dominated by variations in logit norm rather than reflecting the intrinsic
approximation error introduced by JET EXPANSIONS. To address this, we adopt cosine similarity
as a scale-invariant measure of alignment between the model logits and their JET EXPANSIONS
approximation. Formally, we compute

cos(e,m) =
e ·m
∥e∥∥m∥

,

where · denotes the standard dot product. A cosine similarity of 1 means that JET EXPANSIONS
preserves the model logits structurally. Conversely, lower cosine similarity values correspond to a
larger remainder term in the expansion. Practically, cosine similarity enables us to disentangle re-
mainder size from input-dependent logit scaling, offering a more interpretable and stable measure of
the fidelity of JET EXPANSIONS. We therefore report cosine similarity throughout our experiments
as our primary metric for assessing remainder size.

∆ Logit after intervention. In Section 5.2.1, to compute ∆ logits, we calculate the logits for the
given n-gram both before and after applying the intervention, then determine the change in the logits.
For example, consider the trigram (Lemma, let, s). We compute the logit of “s” conditioned on the
input “Lemma let”. The intervention involves removing the corresponding attention head (e.g., head
2). We then measure and report the change in the logit for “s” as a result of this intervention.

Jet bi-gram comparison for code fine-tuning. In Section 5.2.2, we derive the top 1000 bigrams
using Algorithm 3. These bigrams are then saved, for example, as CSV files, enabling the inspec-
tion and comparison of models via their respective bi-grams. This approach allows us to bypass
the challenges of comparing models in the high-dimensional parameter space, where measuring
behavioral-level differences can be difficult. We have developed a web UI demonstration where
users can perform “model diffs” using the respective jet bi-grams. For example, Figure 6 demon-
strates how this UI can be used to compare the base Llama-2-7B model with its coding fine-tuned
versions.

Jet bi-gram toxic mass. In Section 5.2.2, we introduce a method to quantify the possession of
toxic knowledge. We compute jet bigram probability scores and calculate the cumulative conditional
probability mass over a curated set of toxic bigrams, pairs of tokens specifically linked to toxic
meanings in a predefined word list. The toxic mass (M ) is formally defined as the sum of these
conditional probabilities across the query set (Q):

M =
∑
z∈Q

P (z2|z1)

Here, Q represents the query set comprising the toxic bigrams derived from the word list. In this
way, we can measure model toxicity using simple query words instead of relying on extensive,
curated prompting datasets.
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Figure 6: A web UI for running LLM Diff with jet n-grams.
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One-to-one bi-grams like and many-to-many bi-grams. In Section H, we analyze the pretrain-
ing dynamics by checking the learning speed of bi-grams from different categories. One-to-one
bi-grams are (approximately) unimodal bi-grams that concentrate all mass on a single token: i.e.
given z1, P D(z2|z1) ≈ 1 and given z2, PD(z1|z2) ≈ 1 for a specific pair of token and close to 0 for
all others. In the example in the paper, z1 = “&”, and z2 = “amp”. PD is the probability distribution
induced by the pre-training data. Many-to-many bi-grams we refer to the opposite scenario where
both the conditional probabilities are highly multi-modal. In the example z1 = “make” and z2 =
“sure” we have that many other tokens can succeed z1 =”make” or precede z2 =”sure”.

Hit ratios of bi-grams. The Hit Ratio (HR@n), often referred to as hit rate, is a metric commonly
used in ranking tasks. In our context of Section H, we treat each checkpoint of the language model
as a ”ranker” of bi-grams. The Hit Ratio measures how effectively the current model checkpoint re-
trieves high-quality bi-grams from the set of all possible bi-grams. To quantify the model’s progress,
we define the bi-grams at the final step as the “good” bi-grams and measure how quickly the model
approaches these high-quality bi-grams. Specifically, we compute the HR@n to evaluate how often
the model’s output bi-grams match those in the “true” top n ranked bi-grams given by the final step.
Formally, the Hit Ratio@n is given by

HR@n =
1

n

n∑
i=1

I(the i-th bi-gram output by the current model ∈ True Top n)

where n is the number of top predictions being considered and

• I is the indicator function that returns 1 if the i-th bi-gram output by the model is present
in the True Top n bi-grams, and 0 otherwise,

• True Top n represents the set of “good” bi-grams, which in our case is the set of the top n
scoring bi-grams from the final model step.

Total mass of bi-grams. In Section H, we use the total mass as a metric to measure the cumulative
probabilities of bi-grams from the top 1K bi-grams, weighted by an empirical uni-gram distribution
derived from real data. Formally, it is given by: Total Mass =

∑
(z1,z2)∈Top-1K Pet(z2|z1)PD(z1)

where:

• et is the embedding-unembedding path at the t-th pre-training step,

• (z1, z2) are the bi-grams being considered,

• Pet(z2|z1) is the probability assigned by the model et (the embedding-unembedding path)
for the token z2 given token z1,

• PD(z1) is the probability of z1 under the empirical distribution D, which is the uni-gram
probability given by the Infini-gram API (Liu et al., 2024) on the Dolma dataset (Soldaini
et al., 2024) (the dataset used to pretrain the model checkpoints).

This metric is designed to evaluate how much “correc” probability mass the model checkpoints
assign to bi-grams (z1, z2), taking into account the empirical uni-gram probability of z1. It provides
insight into how well the model aligns with the empirical distribution of real-world data during the
pretraining process.

G CASE STUDY 1: ANALYZING LLM INTERNALS WITH JET LENS AND JET
PATHS (ADDITIONAL RESULTS)

G.1 ADDITIONAL PLOTS OF JET LENSES

See plots Figures 7 to 17. The details for obtaining the jet lens plots can be found in . Note that
for iterative lenses the last block coincides with the model logits for all k by design. We omit the
iterative lens for GPT2-large for k = 2 due to low cosine similarity.
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Figure 7: Iterative jet lens (k = 0), equivalent to logit lens (nostalgebraist, 2021b), applied over GPT-Neo-2.7B
with the input sentence “new simple neural architecture, the Transformer”.
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Figure 8: Iterative jet lens (k = 1), applied over GPT-Neo-2.7B with the input sentence “new simple neural
architecture, the Transformer”.
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Figure 9: Iterative jet lens (k = 2), applied over GPT-Neo-2.7B with the input sentence “new simple neural
architecture, the Transformer”
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Figure 10: Iterative jet lens (k = 0), equivalent to Logit Lens (nostalgebraist, 2021b), applied over GPT-2-large
with the input sentence “new simple neural architecture, the Transformer”.
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Figure 11: Iterative jet lens (k = 1), applied over GPT-2-large with the input sentence “new simple neural
architecture, the Transformer”
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Block 8 (4.06%) , (6.42%) key (3.83%) _model (4.18%) _based (3.53%) _requiring (3.49%) _algorithm (4.14%) ient (3.62%) _II (3.25%)
Block 9 (4.09%) , (7.45%) _clutter (4.08%) _model (3.69%) _test (3.40%) _which (3.11%) _neural (3.55%) verse (3.82%) _Cube (3.66%)

Block 10 (10.50%) . (16.50%) lists (9.61%) g (4.99%) _of (16.60%) _which (11.47%) _neural (5.79%) _neural (3.50%) _is (15.56%)
Block 11 (25.30%) , (16.96%) " (27.59%) _networks (28.89%) " (24.52%) _the (26.92%) _new (29.14%) m (22.95%) _neural (25.40%)
Block 12 (25.13%) , (6.56%) . (28.62%) _net (29.35%) , (26.40%) _the (27.77%) _the (29.85%) c (25.27%) . (27.23%)

Logits , - _network _that _which _neural ient _is
Expan. (1.000) , - _network _of _which _" - _is

Figure 12: Joint jet lens with learnable weightings (k = 0), applied over GPT2 with the input sentence “new
simple neural architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 (15.30%) . (7.49%) " (16.78%) _networks (16.96%) ", (18.37%) _neural (14.61%) _neural (14.05%) verse (16.45%) _Neural (17.73%)

Block 2 (4.57%) , (13.81%) json (3.21%) _networks (3.29%) _model (3.46%) _which (3.11%) _neural (3.02%) cend (3.23%) _Neural (3.45%)
Block 3 (4.49%) , (14.25%) tons (3.25%) _networks (2.82%) _architecture (3.32%) _neural (3.10%) _neural (3.00%) porter (3.03%) _Neural (3.17%)
Block 4 (4.10%) . (11.55%) tons (3.28%) _networks (3.27%) _leveraging (3.19%) _synt (3.04%) _neural (2.98%) verse (2.90%) _Neural (2.57%)
Block 5 (4.02%) . (9.58%) tons (3.05%) _networks (3.25%) _algorithm (3.45%) _which (3.14%) _neural (2.99%) mitter (3.24%) _Neural (3.47%)
Block 6 (3.02%) . (2.75%) _linkage (2.65%) _net (3.04%) _algorithms (3.26%) _detecting (2.94%) _neural (2.80%) cend (3.30%) _Neural (3.45%)
Block 7 (2.91%) . (2.98%) _teleportation (2.78%) _nets (3.19%) _approach (3.24%) _specifically (2.49%) _cortex (2.58%) genic (3.07%) _Cortex (2.95%)
Block 8 (4.60%) bid (3.10%) nex (7.64%) _network (2.63%) _platform (2.62%) _neural (4.81%) _participant (9.06%) cription (3.50%) _Neural (3.45%)
Block 9 (7.44%) iaries (3.10%) url (5.60%) _networks (7.77%) _intelligence (4.86%) _Torch (14.64%) _welcoming (13.48%) Secure (7.21%) _conv (2.83%)

Block 10 (15.04%) akings (13.99%) widget (14.80%) _network (16.20%) _None (13.05%) _Bund (15.37%) _safest (14.72%) cend (16.11%) _disabling (16.06%)
Block 11 (16.50%) ity (3.19%) ton (18.47%) _network (18.79%) _architecture (20.49%) _which (16.34%) _neural (15.62%) istor (18.84%) â ¢ (20.28%)
Block 12 (18.00%) , (14.21%) - (18.49%) _network (18.78%) _that (20.68%) _which (16.41%) _neural (15.70%) ient (19.11%) _is (20.60%)

Logits , - _network _that _which _neural ient _is
Expan. (1.000) akings json _networks _framework _neural _neural cend _Neural

Figure 13: Joint jet lens with learnable weightings (k = 1), applied over GPT2 with the input sentence “new
simple neural architecture, the Transformer”
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Block 1 (3.58%) Supporters (1.55%) Supporters (3.24%) Supporters (3.46%) Supporters (5.37%) Supporters (5.08%) Supporters (3.52%) Supporters (3.88%) Supporters (2.56%)
Block 2 (2.13%) foreseen (1.61%) foreseen (2.97%) foreseen (1.15%) Introduced (3.96%) foreseen (1.09%) foreseen (1.54%) Supporters (3.67%) Supporters (1.03%)
Block 3 (2.07%) Amid (1.65%) Supporters (2.01%) Across (1.32%) gewater (1.14%) Supporters (3.66%) Supporters (2.93%) Supporters (2.58%) leground (1.28%)
Block 4 (1.57%) _impover (1.97%) _unpop (2.18%) _unpop (1.46%) _impover (1.33%) _impover (1.39%) _impover (1.71%) _uphe (1.27%) _impover (1.27%)
Block 5 (1.47%) Attempts (1.76%) _municip (2.15%) _airst (1.45%) _linem (1.29%) amiliar (1.32%) pelling (1.38%) rieving (1.26%) _linem (1.13%)
Block 6 (1.45%) Residents (1.76%) _athlet (2.17%) rha (1.44%) _twent (1.34%) _way (1.05%) ters (1.40%) rha (1.23%) _Xuan (1.25%)
Block 7 (3.57%) Ironically (1.63%) celona (2.74%) wrap (3.78%) _look (5.71%) _airstrike (1.22%) _equivalent (2.63%) _different (6.30%) _hollow (4.58%)
Block 8 (4.63%) Supporters (1.61%) imura (3.91%) vantage (3.03%) anoia (5.48%) foreseen (6.13%) ileen (4.55%) Enlarge (5.70%) assador (6.59%)
Block 9 (3.14%) Ironically (1.65%) erguson (2.00%) certain (2.53%) OUR (1.28%) _local (3.54%) erguson (1.80%) enter (5.43%) bec (6.89%)

Block 10 (1.73%) foreseen (1.65%) foreseen (2.01%) Engineers (1.20%) Engineers (2.88%) asury (1.19%) thinkable (1.40%) Attempts (2.53%) uddenly (0.96%)
Block 11 (1.71%) likely (1.57%) extremely (1.88%) aples (1.18%) _screenplay (1.29%) earances (1.30%) earances (4.13%) oother (1.20%) _resurg (1.12%)
Block 12 (4.53%) Ironically (1.73%) Phones (3.91%) ADVERTISEMENT (4.39%) ADVERTISEMENT (6.03%) isively (4.65%) _Blvd (4.46%) ADVERTISEMENT (6.08%) ADVERTISEMENT (4.99%)
Block 13 (2.80%) _a (1.68%) aji (2.83%) imbabwe (1.33%) rone (1.28%) OTOS (5.38%) ppard (3.08%) ppard (1.07%) aji (5.76%)
Block 14 (2.91%) foreseen (1.66%) ADVERTISEMENT (1.83%) Marginal (3.82%) chell (1.32%) _Appalach (1.33%) _Caucasus (4.66%) _still (5.47%) , (3.23%)
Block 15 (1.47%) ormons (1.78%) _confir (1.89%) uring (1.34%) ured (1.25%) _AoE (1.38%) _Caucas (1.68%) _lineman (1.25%) _topple (1.22%)
Block 16 (3.98%) Against (1.82%) folios (1.93%) @ (6.49%) thinkable (3.49%) _tsun (1.26%) _D (4.65%) l (5.84%) arsh (6.38%)
Block 17 (2.89%) urses (1.38%) untled (4.46%) ortunate (3.72%) ithub (1.21%) _our (4.69%) ortment (1.51%) erenn (4.91%) ombies (1.21%)
Block 18 (5.12%) foreseen (1.63%) Supporters (4.53%) Nonetheless (6.62%) Ironically (5.07%) Thankfully (5.66%) Shortly (4.52%) af (5.80%) _is (7.12%)
Block 19 (2.96%) pherd (1.47%) _enough (4.91%) ag (3.58%) _for (5.69%) incerity (1.08%) incerity (2.75%) extreme (3.01%) phabet (1.21%)
Block 20 (5.68%)  (2.06%)  (5.07%) _just (7.05%)  (6.91%) Attempts (6.51%) paralleled (4.49%) - (6.53%) , (6.87%)
Block 21 (1.46%) ription (1.60%) ription (2.15%) _Playoffs (1.48%) isdom (1.06%) _frontrunner (1.36%) _frontrunner (1.69%) _TBD (1.24%) pered (1.06%)
Block 22 (4.55%) _in (3.36%) _first (5.29%) _two (7.06%) _one (6.98%) _which (6.97%) _one (4.56%) _isEnabled (1.03%) elligence (1.15%)
Block 23 (5.21%) , (4.80%) )] (5.23%) _" (7.13%) ) (6.26%) _while (6.31%) _point (4.57%) albeit (1.15%) B (6.21%)
Block 24 (6.13%) _a (5.62%) _m (5.26%) _first (7.18%) _for (7.33%) _the (7.33%) _so (4.70%) _trans (5.70%) rieving (5.90%)
Block 25 (1.55%) foreseen (1.67%) acly (2.14%) _enthus (1.49%) _anecd (1.35%) _trainers (1.43%) _subreddits (1.74%) ithub (1.28%) _Trainer (1.27%)
Block 26 (2.61%) - (6.25%) _simple (2.08%) _simple (5.95%) ername (1.30%) haar (1.34%) _satell (1.74%) igsaw (1.02%) _headphone (1.17%)
Block 27 (2.65%) _â  (7.40%) _â  (5.48%) _DSM (1.35%) heid (1.30%) dayName (1.38%) _artif (1.75%) --+ (1.27%) _nostalg (1.30%)
Block 28 (2.39%) _fps (8.56%) >>\ (2.30%) _Oo (1.42%) _tacos (1.30%) _msec (1.41%) _unbeliev (1.75%) _hrs (1.12%) _reminis (1.28%)
Block 29 (1.97%) _â ¦" (5.17%) _convol (2.18%) ricanes (1.47%) _Gujar (1.25%) acerb (1.38%) cffff (1.74%) _negoti (1.28%) _automakers (1.27%)
Block 30 (1.84%) _â ¦" (4.01%) _anecd (2.24%) _unve (1.49%) _overwhel (1.37%) !?" (1.43%) 20439 (1.78%) _negoti (1.29%) _calculates (1.12%)
Block 31 (4.61%) !!" (8.40%) _â ¦" (2.57%) _greets (1.35%) _entert (1.80%) \\\\ (4.44%) \\\\ (6.14%) "! (5.27%) '/ (6.88%)
Block 32 (5.64%) â ¦." (9.55%) !?" (4.42%) â ¦." (2.29%) â ¦." (5.37%) _â ¦" (6.35%) _\' (9.03%) ©¶æ¥µ (3.34%) â ¦." (4.75%)

Logits _ _ _network _for _which _neural former ,
Expan. (0.977) _the _and - _for _the _first - ,

Figure 14: Joint jet lens with learnable weightings (k = 0), applied over GPT-Neo-2.7B with the input sentence
“new simple neural architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 (7.36%) , (3.40%) ton (8.06%) _network (8.57%) _for (8.22%) _which (7.51%) _first (7.30%) former (7.43%) , (8.36%)
Block 2 (4.83%) - (2.39%) _ (5.23%) _network (6.91%) _for (4.98%) _which (4.60%) _neural (4.77%) former (5.09%) , (4.68%)
Block 3 (1.31%) _File (1.62%) _ (1.29%) _network (1.31%) _for (1.28%) _which (1.25%) _CNN (1.22%) former (1.20%) , (1.32%)
Block 4 (7.81%) _impover (5.74%) _unpop (8.48%) _impover (8.76%) _impover (8.45%) _impover (7.67%) _Neural (7.51%) former (7.39%) _Networks (8.45%)
Block 5 (1.79%) User (5.29%) _ (1.31%) _network (1.30%) _for (1.29%) _which (1.29%) _neural (1.26%) former (1.25%) , (1.31%)
Block 6 (1.79%) Instance (5.33%) _ (1.33%) _network (1.31%) _for (1.29%) _which (1.26%) _neural (1.23%) former (1.23%) , (1.32%)
Block 7 (1.59%) File (3.56%) _ (1.37%) _network (1.36%) _for (1.33%) _which (1.28%) _neural (1.24%) former (1.25%) , (1.32%)
Block 8 (1.70%) Supporters (5.02%) _ (1.29%) _network (1.28%) _for (1.25%) _which (1.24%) _Neural (1.17%) former (1.12%) , (1.21%)
Block 9 (1.77%) Enlarge (5.04%) _ (1.37%) _network (1.37%) _for (1.32%) _which (1.26%) _neural (1.23%) former (1.25%) , (1.31%)

Block 10 (4.41%) foreseen (5.36%) _ (5.77%) _network (6.19%) _for (5.99%) _which (1.15%) _neural (0.93%) former (2.45%) , (7.42%)
Block 11 (1.31%) , (1.90%) _ (1.30%) _network (1.29%) _for (1.20%) _which (1.18%) _neural (1.19%) former (1.19%) , (1.24%)
Block 12 (1.21%) , (1.74%) _ (1.11%) _network (1.17%) _for (1.10%) _which (1.16%) _neural (1.15%) former (1.07%) , (1.21%)
Block 13 (1.37%) _ (1.94%) _ (1.36%) _network (1.35%) _for (1.32%) _which (1.23%) _neural (1.21%) former (1.23%) , (1.32%)
Block 14 (1.22%) , (1.82%) _ (1.18%) _network (1.22%) _for (1.12%) _which (1.15%) _neural (1.09%) former (1.04%) , (1.12%)
Block 15 (1.34%) _ (1.90%) _ (1.33%) _network (1.31%) _for (1.29%) _which (1.21%) _neural (1.20%) former (1.20%) , (1.28%)
Block 16 (1.31%) ( (1.91%) _ (1.28%) _network (1.28%) _for (1.24%) _which (1.18%) _neural (1.19%) former (1.18%) _model (1.23%)
Block 17 (1.31%) _ (1.90%) _ (1.29%) _network (1.28%) _for (1.26%) _which (1.14%) _neural (1.12%) former (1.16%) , (1.29%)
Block 18 (4.55%) , (1.65%) _ (5.16%) _network (3.55%) _for (5.49%) _which (6.28%) _neural (6.05%) former (5.05%) , (3.17%)
Block 19 (1.24%) , (1.84%) _ (1.23%) _network (1.17%) _for (1.18%) _which (1.23%) _neural (0.97%) former (1.10%) _model (1.18%)
Block 20 (3.30%)  (1.84%) _ (2.30%) _network (1.16%) _for (4.21%) _which (6.29%) _neural (5.89%) former (2.70%) _architecture (2.00%)
Block 21 (1.87%) _ (1.80%) _ (1.21%) _network (1.12%) _for (1.15%) _which (3.82%) _neural (3.71%) former (1.10%) , (1.02%)
Block 22 (4.81%) - (1.91%) _infographic (8.14%) _network (3.50%) _outper (5.92%) _which (6.89%) _neural (6.76%) former (1.57%) _[ (3.83%)
Block 23 (2.01%) , (1.91%) _ (1.14%) _network (1.40%) _learns (1.38%) _which (3.94%) _Conv (3.99%) former (1.14%) _model (1.18%)
Block 24 (6.02%) , (1.94%) _infographic (8.04%) _network (7.20%) _unve (8.00%) _unve (7.47%) _Neural (7.02%) former (3.53%) _model (4.98%)
Block 25 (1.19%) _ (1.87%) _ (1.19%) _network (1.09%) _for (1.22%) _which (0.96%) _â  (1.07%) former (1.06%) , (1.04%)
Block 26 (1.55%) _ (1.89%) _ (1.18%) _network (2.18%) _called (1.22%) _which (1.25%) _Conv (1.09%) former (2.57%) , (1.06%)
Block 27 (2.23%) _ (1.93%) ton (3.53%) _network (1.09%) _for (1.21%) _which (0.99%) _model (1.13%) former (6.67%) , (1.25%)
Block 28 (2.76%) _ (1.73%) json (1.02%) _network (3.49%) _for (1.84%) _which (0.95%) _Neural (3.31%) former (6.31%) , (3.42%)
Block 29 (3.22%) _â ¦" (6.01%) _ (1.32%) _network (1.00%) _for (1.01%) _and (1.74%) _neural (1.90%) former (7.25%) , (5.54%)
Block 30 (6.24%) _â ¦" (6.04%) _ (3.56%) _network (7.34%) _for (5.45%) _which (6.05%) _neural (6.14%) former (7.30%) Â  (8.04%)
Block 31 (7.76%) !!" (5.96%) _ (8.27%) _network (8.68%) _for (8.36%) _the (7.67%) _Conv (7.46%) former (7.35%) , (8.37%)
Block 32 (7.84%) â ¦." (5.81%) !?" (8.35%) _network (8.78%) , (8.43%) _and (7.70%) _neural (7.51%) former (7.57%) _model (8.53%)

Logits _ _ _network _for _which _neural former ,
Expan. (0.993) _ _ _network _for _which _neural former ,

Figure 15: Joint jet lens with learnable weightings (k = 1), applied over GPT-Neo-2.7B with the input sentence
“new simple neural architecture, the Transformer”
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Block 1 (3.19%) bie (4.48%) _simple (4.99%) _neural (0.98%) _architecture (1.08%) _and (5.08%) _the (5.85%) fig (2.07%) former (1.01%)
Block 2 (1.81%) _arrivals (2.43%) tons (1.22%) _rack (3.83%) _model (1.07%) _the (1.01%) _main (1.01%) ient (3.10%) _generation (0.85%)
Block 3 (2.49%) _entry (5.53%) _fitting (5.41%) _clusters (3.05%) _det (1.14%) _thanks (0.99%) _second (1.00%) cription (0.97%) _barrier (1.86%)
Block 4 (3.02%) bies (3.47%) _private (5.64%) _env (5.41%) _clusters (1.18%) _aspirin (1.09%) _hypothesis (1.08%) cript (5.55%) _Mund (0.75%)
Block 5 (1.75%) _mansion (3.47%) _Transcript (1.03%) ous (2.48%) _suit (1.15%) chuk (1.11%) _Oracle (1.17%) _Card (2.55%) cknow (1.00%)
Block 6 (1.84%) _Parables (2.46%) _Bald (1.45%) izer (0.99%) sche (1.21%) %); (1.11%) ija (1.18%) ione (5.34%) atti (1.01%)
Block 7 (2.51%) DERR (2.47%) _sp (1.62%) _wired (3.21%) inea (1.19%) )* (1.02%) _gloss (1.17%) aways (4.96%) _system (4.48%)
Block 8 (1.80%) , (2.32%) _Tall (1.04%) _experiments (0.89%) MIT (1.21%) mac (1.06%) fts (1.16%) rock (5.75%) con (0.97%)
Block 9 (1.79%) , (2.19%) onel (1.11%) _layer (5.70%) _hum (1.10%) arily (1.06%) _Hots (1.20%) iter (0.98%) _boxes (0.96%)

Block 10 (2.17%) , (2.18%) tested (1.09%) / (6.21%) _deployed (1.18%) _disrupt (3.01%) ew (1.11%) _INS (0.76%) _Drive (1.80%)
Block 11 (1.20%) , (2.18%) azon (1.10%) ã ³ã ¸ (1.00%) ea (1.20%) Ro (1.10%) _Dive (1.10%) _Revised (0.95%) _Prol (1.00%)
Block 12 (1.17%) , (2.20%) _Think (1.05%) _Dish (0.86%) _Layer (1.11%) _Sing (0.99%) uts (1.16%) _button (0.94%) _proble (1.02%)
Block 13 (1.88%) _and (2.22%) _ab (2.77%) ourt (4.71%) _Malf (1.20%) _REPL (0.99%) _naked (1.17%) oran (0.98%) _cred (1.01%)
Block 14 (1.60%) _and (2.22%) alg (1.06%) _underestimated (0.97%) _percentile (1.19%) _which (2.35%) _nonetheless (1.15%) igo (3.05%) _Hut (0.81%)
Block 15 (2.19%) _and (2.24%) - (4.45%) _Subst (1.01%) chan (1.16%) ATURES (1.09%) _hitch (1.19%) _Mini (0.99%) _Bre (5.41%)
Block 16 (2.24%) _and (2.26%) _image (5.83%) _cell (4.89%) _packs (1.05%) _marked (0.91%) _Finn (1.09%) omes (0.89%) _Cipher (0.99%)
Block 17 (1.72%) _and (2.27%) Ä  (1.11%) _formulation (0.96%) isen (1.22%) _modular (1.08%) _Space (0.99%) _Neural (0.85%) _Trainer (5.29%)
Block 18 (1.54%) _and (2.21%) _bond (1.06%) _IPM (1.01%) _( (4.36%) build (0.97%) plex (1.04%) brand (0.78%) _Quest (0.91%)
Block 19 (2.17%) _and (2.13%) _cross (3.75%) _proceeds (5.61%) _named (2.11%) _called (0.93%) _parallel (1.08%) Shares (0.96%) _lost (0.81%)
Block 20 (2.64%) , (3.62%) ": (0.98%) rons (1.15%) _Neural (2.26%) _coupled (4.39%) _omn (2.30%) fect (4.73%) _Fly (1.73%)
Block 21 (1.27%) , (3.47%) _ft (0.97%) ysis (1.03%) _template (1.09%) _with (0.83%) _latter (1.09%) adic (0.79%) â ¢ (0.87%)
Block 22 (3.88%) , (3.56%) types (0.98%) _Turing (2.15%) . (7.00%) _which (4.55%) _most (5.96%) gress (1.06%) _VT (5.74%)
Block 23 (3.17%) , (3.95%) tv (1.07%) blade (0.96%) _..." (1.16%) _i (2.87%) _model (5.98%) du (4.83%) _erg (4.52%)
Block 24 (5.36%) , (3.89%) _prayers (5.37%) _Turing (6.05%) , (6.95%) _which (5.59%) _brain (6.37%) Memory (5.62%) als (3.00%)
Block 25 (2.84%) , (3.80%) _complex (0.86%) _surgery (0.93%) " (0.97%) _Neural (1.57%) _one (5.52%) _EEG (3.47%) , (5.60%)
Block 26 (5.61%) , (3.63%) _dot (6.73%) _Turing (6.16%) _for (7.62%) _then (6.26%) _Neural (5.36%) ocy (5.16%) _robot (3.94%)
Block 27 (4.91%) , (3.64%) ?" (7.12%) _algorithm (2.21%) ". (6.61%) _where (5.86%) _so (5.87%) vier (1.80%) _or (6.21%)
Block 28 (3.91%) , (2.94%) _solution (0.91%) _simulation (4.19%) ", (5.57%) _which (5.97%) _F (6.14%) imil (0.95%) _Mega (4.63%)
Block 29 (4.07%) , (1.51%) _life (6.69%) _network (2.58%) ] (2.36%) _using (5.32%) _neural (6.09%) Washington (4.30%) _brains (3.73%)
Block 30 (5.05%) , (1.96%) Ã  (5.52%) _net (5.50%) _that (7.83%) _neural (6.24%) _neural (6.05%) _underground (4.91%) _Brain (2.39%)
Block 31 (5.02%) , (2.04%) " (6.84%) _Machine (3.46%) ," (7.99%) _neural (6.56%) _neural (6.10%) onet (0.95%) _neural (6.19%)
Block 32 (5.00%) , (2.06%) ' (5.21%) _net (0.94%) ' (7.68%) _called (6.27%) _simple (6.34%) haus (5.11%) 3 (6.41%)
Block 33 (3.65%) , (2.08%) ' (0.83%) _assembly (5.90%) ' (1.61%) _to (5.86%) _TW (1.51%) Global (5.96%) _LL (5.41%)
Block 34 (2.57%) , (2.10%) _to (1.01%) _vide (0.99%) , (2.72%) _and (1.15%) _class (1.00%) lc (5.89%) , (5.73%)
Block 35 (1.67%) , (2.12%) client (1.09%) _NET (1.00%)  (3.33%) _and (2.74%) _reservoir (1.16%) Draft (1.02%) _scripts (0.93%)
Block 36 (1.28%)  (2.69%)  (1.06%) gil (1.03%)  (1.15%)  (1.01%) _Leopard (1.22%) artist (1.05%) stals (1.02%)

Logits _ " _network ' _which _neural c ,
Expan. (0.980) , - _network _for _which _neural - ,

Figure 16: Joint jet lens with learnable weightings (k = 0), applied over GPT-2-large with the input sentence
“new simple neural architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 (3.50%) bie (3.17%) " (4.75%) _network (5.93%) " (3.61%) _which (1.15%) _neural (1.60%) c (5.06%) _is (2.74%)
Block 2 (3.14%) _ (0.84%) " (4.15%) _network (5.49%) ' (1.80%) _which (4.28%) _neural (4.04%) c (3.60%) _is (0.93%)
Block 3 (1.19%) _ (0.86%) " (0.91%) _network (0.84%) ' (1.05%) _which (1.81%) _neural (2.17%) c (0.78%) _is (1.08%)
Block 4 (1.08%) - (0.77%) ton (1.88%) _network (1.27%) ' (0.99%) _we (0.96%) _neural (0.94%) c (0.75%) _is (1.07%)
Block 5 (0.98%) _ (0.74%) " (1.03%) _network (0.98%) ' (1.06%) _where (1.01%) _brain (1.00%) c (0.88%) _is (1.13%)
Block 6 (1.29%) _ (3.29%) " (1.01%) _network (0.93%) ' (1.07%) _and (1.00%) _neural (1.00%) c (0.93%) _is (1.06%)
Block 7 (1.32%) _ (3.60%) " (1.04%) _network (0.97%) ' (1.10%) _which (1.00%) _neural (1.00%) parent (0.89%) _is (0.97%)
Block 8 (1.35%) _ (3.71%) " (1.05%) _network (0.95%) ' (1.07%) _which (0.98%) _researchers (0.99%) ient (0.97%) _is (1.10%)
Block 9 (1.44%) , (3.74%) " (1.04%) _network (0.83%) ' (1.07%) _which (0.99%) _neural (0.99%) c (0.94%) _is (1.91%)

Block 10 (1.47%) - (3.73%) " (1.04%) _network (1.44%) ' (1.07%) _which (0.97%) _neural (0.99%) former (0.93%) _AI (1.57%)
Block 11 (1.36%) - (3.71%) " (0.98%) _network (1.01%) ' (1.12%) _which (0.98%) _neural (0.98%) c (0.99%) _is (1.10%)
Block 12 (1.36%) _ (3.69%) " (1.00%) _network (1.04%) ' (1.08%) _which (0.97%) _neural (0.97%) c (1.03%) , (1.12%)
Block 13 (1.35%) _ (3.65%) " (1.01%) _network (1.04%) " (1.10%) _where (0.96%) _neural (0.96%) c (1.01%) _Cortex (1.09%)
Block 14 (1.31%) _ (3.61%) " (1.00%) _network (1.02%) ' (1.07%) _a (0.74%) _neural (0.92%) ient (1.00%) _is (1.10%)
Block 15 (1.30%) _ (3.54%) " (0.99%) _network (1.03%) ' (1.07%) _which (0.93%) _neural (0.93%) c (1.00%) _chip (0.90%)
Block 16 (1.30%) _ (3.43%) " (1.04%) _network (0.95%) ' (1.09%) _and (0.89%) _neural (0.89%) c (0.99%) , (1.13%)
Block 17 (1.28%) _ (3.36%) " (0.97%) _network (0.95%) ' (1.09%) _which (0.90%) _neural (0.86%) c (0.99%) . (1.10%)
Block 18 (1.14%) _ (2.81%) _ (0.92%) _network (1.00%) ' (0.90%) _a (0.74%) _more (0.79%) c (0.90%) _chip (1.09%)
Block 19 (0.99%) _ (0.98%) " (0.84%) _network (0.88%) ' (0.95%) _or (1.44%) _neural (0.76%) c (0.98%) _architecture (1.10%)
Block 20 (1.53%) , (0.95%) x (0.88%) _network (0.95%) ' (0.99%) _we (3.52%) _authors (3.11%) c (0.77%) _is (1.07%)
Block 21 (1.23%) , (0.96%) " (0.86%) _networks (0.90%) ' (1.04%) _neural (1.93%) _network (1.16%) c (1.93%) _is (1.07%)
Block 22 (1.92%) - (0.96%) " (2.47%) _network (0.88%) ' (1.05%) _we (4.10%) _neural (4.13%) c (0.78%) _Brain (0.98%)
Block 23 (2.10%) _ (0.90%) _stuff (0.79%) _network (1.16%) ' (0.85%) _similar (3.67%) _cu (4.65%) c (3.79%) _is (0.99%)
Block 24 (3.00%) _ (0.93%) " (2.25%) _network (4.69%) ' (2.88%) ' (4.60%) _ART (4.85%) c (2.96%) , (0.85%)
Block 25 (3.99%) "]=> (3.39%) ton (4.25%) _net (2.85%) ' (2.19%) _with (4.38%) _loc (4.88%) c (5.43%) _S (4.59%)
Block 26 (3.96%) Instance (3.52%) ' (3.67%) _network (3.98%) ' (4.45%) _Cooper (4.93%) _first (4.80%) c (4.25%) , (2.07%)
Block 27 (4.99%) _ (3.24%) tons (5.87%) _network (4.56%) _of (5.90%) _but (4.78%) _neuron (4.83%) c (4.85%) _Memory (5.85%)
Block 28 (5.13%) _ (3.08%) ton (5.20%) _network (5.48%) _for (5.93%) _NI (4.98%) _first (4.92%) ient (5.17%) _uses (6.28%)
Block 29 (5.04%) _ (3.27%) me (5.80%) _network (5.64%) ". (5.22%) _NAT (4.95%) _authors (4.94%) ient (5.52%) _3000 (5.00%)
Block 30 (4.88%) _ (3.40%) _kitchen (4.88%) _network (5.69%) " (5.41%) _prototyp (4.94%) _algorithm (4.88%) ient (5.55%) _uses (4.30%)
Block 31 (5.31%) _ (3.61%) x (6.06%) _network (3.85%) ' (6.79%) _geared (5.16%) _traditional (5.00%) c (5.28%) _XL (6.76%)
Block 32 (5.51%) - (3.70%) _white (5.66%) _network (5.56%) " (6.48%) ", (5.09%) _WS (5.03%) c (5.33%) _is (7.26%)
Block 33 (5.75%) , (3.73%) " (6.05%) _network (6.01%) " (6.91%) _which (5.15%) _neural (5.05%) c (5.66%) _Robot (7.46%)
Block 34 (5.88%) , (3.73%) ton (6.26%) _network (6.49%) ", (6.91%) _which (5.15%) _neural (5.04%) ient (5.96%) _Cortex (7.50%)
Block 35 (5.77%) - (3.74%) " (6.11%) _network (6.26%) _model (6.90%) _modeled (5.03%) _neural (4.97%) ient (6.03%) _model (7.17%)
Block 36 (5.85%) _ (3.67%) " (6.29%) _network (6.51%) ' (6.77%) _which (4.95%) _neural (5.00%) c (6.10%) _is (7.52%)

Logits _ " _network ' _which _neural c ,
Expan. (0.994) _ " _network ' _and _neural c _is

Figure 17: Joint jet lens with learnable weightings (k = 1), applied over GPT-2-large with the input sentence
“new simple neural architecture, the Transformer”
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Table 5: Several attention heads in the first residual block of OLMo-7B and their roles identified with jet tri-
grams extracted from corresponding jet paths. We also include an example tri-gram captured by each head.

Head Index 2 16 26 30

Role Math/LaTeX “for . . . purposes” date composition “into account/consideration . . . ”
Example 3-gram ( Lemma, let, s) ( for, use, purposes) (20, 23, -) ( into, account, possible)

∆logit after intervention −0.1570 −0.0019 −0.0093 −0.0001

G.2 ADDITIONAL TABLES OF JET PATHS OF INDIVIDUAL COMPONENTS

Table 5 reports a role identification study on attention heads in the first self-attention of OLMo-7B
using jet tri-grams. Specifically, we find heads associated with math and programming, e.g. head
1 on Math/Latex; heads promoting digits and dash composition into dates, e.g. head 25; and heads
constituting phrase templates, e.g. head 15 managing a “for x purposes”, where x is a placeholder.
To verify the roles we revealed, we further perform preliminary intervention experiments where we
ablate MLPs or attention heads and compute variations in model logits. After the interventions,
the logits drop consistently in all cases, suggesting our jet n-grams indeed can help identify certain
roles for selected components. Varying impact on logit differences is likely due to overdetermination
(Mueller, 2024) and our partial selection of jet paths (e.g. for tri-grams we only selected encoding-
attention-decoding paths, excluding any MLP).

H CASE STUDY 3: TRACING PRETRAINING DYNAMICS WITH JET BI-GRAMS

Pretraining an LLM is usually extremely resource intensive. Therefore it is crucial to monitor the
progress of a pretraining run to prevent wasting of time and compute. In this section, we show how
jet bi-grams can serve as an effective signaling tool to trace the pretraining dynamics, providing
insights about the model’s maturity. Such signals are especially useful to understand what happens
with the model when the pretraining loss shows marginal improvements and fails to reflect the
changes inside the model.

Identifying the top bi-grams. To assess the model’s progression, we extracted jet bi-grams from
OLMo-7B model checkpoints across 555K pretraining steps. Table 6 presents a summary of the
top 10 jet bi-grams at different stages of training. Due to space reason, we only show the top 10
jet bi-grams every 100K steps. Initially, the network exhibits nonsensical jet bi-grams, such as
“ICUirling”. As training advances, it gradually learns more meaningful combinations, like “at
least”. This process of acquiring sensible bi-grams stabilizes around step 200K, indicating that
the model is reaching a level of maturity where the top 10 bi-grams capture common meaning.

Learning speed. To evaluate the learning speed of jet bi-grams during pretraining, we consider the
jet bi-grams at the final training step (555K) as the ground-truth bi-grams. We then chart the hit ratios
of these ground-truth bi-grams at each pretraining step, as illustrated in Figure 19a. Interestingly,
even though the pretraining loss (the blue curve) shows only minor improvements after the initial
50K steps, the model’s acquisition of effective bi-grams continues to progress in a steady, consistent
manner. Hence bi-grams learning dynamics are active throughout the training procedure, even after
the training loss stabilizes. This indicates that there is significant behavior change in the model
which is not well captured by the training loss, an observation that is studied also in grokking and
double-descent (Zhang et al., 2021; Power et al., 2022). In other words, jet bi-grams may offer
another point of view for analyzing the learning dynamics compared to pretraining loss. In addition,
fig. 19b characterizes the total pseudo-joint probability mass of top 1K bi-grams from empirical
data (Liu et al., 2024). We derive a pseudo-joint jet bi-gram probability using statistical uni-grams
from (Liu et al., 2024). We observe that the model gradually accumulates probability mass that
aligns with the real corpus data distribution.

Learning schemes for different bi-grams. To understand if there are any differences between the
learning schemes of different bi-grams, we can trace the progression of the jet bi-gram scores for
selected bi-grams. Figure 18 provides a visual comparison of how different bi-grams are promoted
or suppressed during the pretraining process. The different slopes and levels of the lines indicate
varying rates of learning for the respective bi-grams. We observe that, the model first acquires ran-
dom bi-grams due to random parameter initialization. These random bi-grams, like “ICUirling”
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Figure 18: Visualization of OLMo-7B’s promotion and suppression dynamics of jet bi-grams scores.
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(a) Top 1K jet bi-gram hit ratios w.r.t. the final step.
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(b) Top 1K jet bi-gram mass w.r.t. empirical data.

Figure 19: Analysis of OLMo-7B’s pretraining dynamics via measuring its jet bi-gram progression.

and “VENT thanks”, are quickly suppressed in the early steps and never regain high scores. In
contrast, one-to-many bi-grams like “at least” are first promoted to very high scores but then
get suppressed perhaps due to the model seeing more of the scope of the token “at”. One-to-one
bi-grams like “&amp” (HTML code) are gradually promoted and stabilize. Many-to-many bi-grams
like “make sure” takes the most time to learn and the scores are still increasing even at the end
of pretraining. Our findings suggest that the training process effectively promotes certain “good” bi-
grams, but at different paces, where they might be suppressed later depending on their occurrences
and linguistic nature. These insights could inform future training strategies, such as targeted training
on more relevant bi-grams or adjusting the training data to improve the pretraining speed.

Table 6: Bi-gram evolution across pretraining steps for OLMo 7B. Each column represents a distinct step, while
each row corresponds to a different rank. The table entries are the bi-grams at each step for each rank. The
number of tokens seen in association with the pretraining steps is also annotated. The model gradually picks
up meaningful bi-grams after starting from senseless bi-grams (due to random initialization).

Rank 0K [#steps] 100K 200K 300K 400K 555K
0B [#tokens] 442B 885B 1327B 1769B 2455B

0 immortal ’s at least &amp &amp &amp
1 ICUirling at least ’s at least its own its own
2 ords architect its own &amp its own their own their own
3 yaml Adam okerly your own your own at least his own
4 231 next VENT thanks its own their own your own make sure
5 clonal条 iums iums more than his own your own
6 Charg@{ you’re you’re can’t 2nd 2nd
7 avoir careless Everything v 2nd his own more than at least
8 HOLD worsening erna already you guys 2nd make sure more than
9 Horse dismant ’my more than make sure can’t iums
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