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Abstract

Gaussian processes (GPs) are a widely-used model class for approximating unknown func-
tions, especially useful in tasks such as Bayesian optimisation, where accurate uncertainty
estimates are key. Deep Gaussian processes (DGPs) are a multi-layered generalisation of
GPs, which promises improved performance at modelling complex functions. Some of the
problems where GPs and DGPs may be utilised involve data on manifolds like hyperspheres.
Recent work has recognised this, generalising scalar-valued and vector-valued Matérn GPs
to a broad class of Riemannian manifolds. Despite that, an appropriate analogue of DGP
for Riemannian manifolds is missing. We introduce a new model, residual manifold DGP,
and a suitable doubly stochastic variational inference technique that helps train and deploy
it on hyperspheres. Through examination on stylised examples, we highlight the usefulness
of residual deep manifold GPs on regression tasks and in Bayesian optimisation.
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1. Introduction

Gaussian processes (GPs) are a powerful probabilistic approach for modelling unknown
functions. Owing to their accurate uncertainty estimates, GPs have found wide-spread suc-
cess in tasks such as Bayesian optimisation (Shahriari et al., 2016), active learning (Krause
et al., 2008), and reinforcement learning (Rasmussen and Kuss, 2004). Inevitably, in some
practical problems the unknown function is complex and non-smooth. Single-layer GPs
can struggle to model such functions due to the simplicity bias of the commonly used ker-
nels. One way to tackle this limitation is to sequentially compose multiple GPs forming a
deep GP. This layered structure has been shown to improve performance on a variety of
tasks (Damianou and Lawrence, 2013; Salimbeni and Deisenroth, 2017).

Recent work has introduced an exciting frontier to Gaussian process research, namely
Gaussian processes on Riemannian manifolds. This is especially important because in many
areas of interest, such as robotics and climate science, data is inherent to non-Euclidean
manifolds. The Matérn kernel has been generalised to a wide class of manifolds (Borovitskiy
et al., 2020; Azangulov et al., 2023a,b), allowing for construction of scalar-valued and vector-
valued manifold GPs (Hutchinson et al., 2021). However, an appropriate analogue of deep
GPs in the manifold setting is missing.

. Code available at: https://github.com/KacperWyrwal/residual-manifold-deep-gp
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In this paper we introduce a generalisation of deep GPs to Riemannian manifolds. In
our construction, each hidden layer is a manifold-to-manifold map that models a difference
from the identity map, a residual. Because each layer only learns a residual function with
respect to the inputs, we call our model the residual manifold deep GP. We implement
residual manifold deep GPs on hyperspheres and evaluate them on synthetic experiments
including Bayesian optimisation. Although we focus on hyperspheres, it should be possible
to extend these models to any manifold where a Gaussian vector field—see Section 3—
is implemented. We find that our model can improve over the shallow manifold GPs for
modelling complex functions in the larger data regime.

2. Background

In this section, we detail the necessary background on DGPs and manifold Matérn Gaus-
sian processes. We also revise the doubly stochastic variational inference technique for
DGPs (Salimbeni and Deisenroth, 2017).

Deep Gaussian process Deep GPs are a multi-layered generalisation of GPs. In con-
trast to single-layer GPs, inference in deep GPs is intractable and requires approximations.
A widely-used and successful framework for such approximations is doubly stochastic vari-
ational inference. In this framework, the intractable posterior is approximated by a deep
GP whose layers are vector-valued GPs with independent sparse GP components.

A sparse GP f is a Gaussian process posterior conditioned by the inducing distribution
q at a small set of inducing locations Z. A posterior under a DGP prior is approximated
by a composition of sparse Gaussian processes

fL ◦ · · · ◦ f1 (1)

each with its own qi ∼ N(µi,Ki) and Zi. Variational inference finds µi, Ki and Zi by
minimising the KL divergence between the process in Equation (1) and the true posterior.

Computing expectations and variances of the approximation in Equation (1) is still
intractable; however, it can be approximated with Monte Carlo sampling. Because deep
GPs are a simple composition of sparse GPs, this can be done by layer-wise sampling.

Salimbeni and Deisenroth (2017) modify DGPs taking inspiration from the skip connec-
tion of the ResNet model. Specifically, when the input and output dimensions of a hidden
layer are equal, the inputs are added to the output mean. We will show in Section 3 that
our model is a strict manifold generalisation of this construction.

Efficient sampling for variational deep GP posteriors To approximate expectations
and variances of the variational deep GP posterior we need to draw samples from it. Doing
this naively for n sampling locations would take O(n3) time. However, pathwise conditioning
Wilson et al. (2020, 2021) allows us to sample approximately in O(n) time. This method
applies if a weight-space approximation of the kernel exists. We will see in the following
paragraph that this is true for Matérn kernels on compact manifolds1.

1. For non-compact symmetric spaces, like hyperbolic spaces or manifolds of positive definite matrices, an
appropriate approximation exists as well Azangulov et al. (2023b). It is akin to random Fourier features.
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Manifold Matérn kernel Borovitskiy et al. (2020) show that on a compact Riemannian
manifold X a Matérn kernel k : X × X → R with length scale κ and smoothness ν and
average variance2 σ2 may be expressed as

kν(x,x
′) =

σ2

Cν

∞∑
n=0

aν,κ(λn)fn(x)fn(x
′), aν,κ(λn) =


(
2ν
κ2 + λn

)−ν− d
2 , for ν ∈ (0,∞),

e−
κ2

2
λn , for ν = ∞.

(2)
Here λn, fn are the eigenpairs of the Laplace–Beltrami operator on X and Cν is a constant.
One can sensibly approximate k by truncating the infinite sum in Equation 2 to the first N
terms (Rosa et al., 2023). This can be expressed as a weight-space approximation

k(x,x′) ≈
N∑

n=1

aν,κ(λn)fn(x)fn(x
′) = Φ(x)Φ(x)T. (3)

with Φ(x) =
[√

aν,κ(λ1)f1(x), · · · ,
√

aν,κ(λN )fN (x)
]
. Thus, pathwise conditioning applies.

3. Model Construction

In this section we present the residual manifold deep GP. The key challenge we address is
constructing manifold-to-manifold GPs for the hidden layers. This problem in general is far
from trivial. On one hand, designing manifold-input GPs is a whole research direction. On
the other hand, manifold-output GPs cannot be Gaussian in the usual sense, since Gaussian
distributions are vector-valued Mallasto and Feragen (2018). We work around this difficulty
by modelling displacement vectors (the residuals) which give the manifold-to-manifold maps
when composed with the exponential map on the manifold. The problem is thus shifted
towards modelling Gaussian vector fields on manifolds.

Gaussian vector fields We discuss two practical methods for constructing Gaussian
vector fields on a d-dimensional Riemannian manifold X. First, Hutchinson et al. (2021)
embed X in Rn with an embedding emb and defines a Euclidean vector-valued GP f on
emb(X). The output of f is then projected into the tangent bundle T X with a position-
dependent linear projection Px. A Gaussian vector field f ′ on X is thus given by

f ′(x) = Pemb(x)f(emb(x)). (4)

Second, a natural method is to define vector fields in terms of a coordinate frame on X—
that is, a set of functions {ei}di=1 : X → T X such that {ei(x)}di=1 spans TxX for every
x ∈ X. Taking d independent scalar-valued GPs {fi}di=1 that act as coefficients for the
coordinate frame, a Gaussian vector field f ′ on X is given by

f(x) = f1(x)e1(x) + ...+ fd(x)ed(x). (5)

All Gaussian vector fields can be obtained by either construction; however, the choice of a
coordinate frame is not obvious a priori and, as seen in Section 4, has significant influence
on model performance.

2. The value of k(x,x) need not be equal for every x ∈ X. This is because k is only invariant under the
action of the manifold symmetry group which can fail to act transitively on X.
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Figure 1: Schematic illustration of the residual manifold deep Gaussian Process with L
hidden layers. Hidden layers are a composition of Gaussian vector fields with the
exponential map. Output layer is a manifold GP - in this case scalar valued.

Residual manifold deep GP construction With a way of building Gaussian vector
fields, we can build a hidden layer of the residual manifold deep GP by composing Gaussian
vector field with the exponential map which ”projects” tangent vectors onto the manifold.
The output layer is a manifold GP chosen appropriately to the given task. We illustrate the
construction of residual manifold deep GPs schematically in Figure 1. Remarkably, because
we can use sparse manifold GPs to build Gaussian vector fields, our model enjoys efficient
approximate training and inference via doubly stochastic variational inference, as well as a
linear time approximate posterior computation via Monte Carlo sampling as in Section 2.

In fact, it turns out that our model generalises the deep GP presented in the doubly
stochastic variational inference framework. Indeed, on the Euclidean manifold X = Rn

we can identity the tangent space TxRn with Rn and exponential map with vector addition
expx(x

′) = x+x′. As we saw in Section 2, this is exactly the model presented by Salimbeni
and Deisenroth (2017) when the input and output dimension of each hidden layer is equal.

4. Experiments

Our driving practical goal of developing a deep GP on manifolds was to improve upon the
performance of shallow manifold GPs on modelling complex, non-smooth functions. In this
section, we test whether the residual manifold deep GP achieves this goal.

To this end, we implement the residual manifold deep GP on hyperspheres and perform
a set of experiments on synthetic data. First, we benchmark our model on a regression
task with a complex, non-smooth target function, examining the effect of data density and
model depth on performance. Then, we focus on the coordinate frame variant of our model,
highlighting the benefits of a well-chosen coordinate frame and showcasing an example of
a learnable coordinate frame. Finally, we demonstrate the potential of residual manifold
deep GPs for Bayesian optimisation on a stylised example.

Model depth and data density We test our model on a regression task with a cus-
tom non-smooth ground truth function shown in Figure 3 (right). We use the projected
implementation of Gaussian vector fields, to avoid the choice of a coordinate frame which
can have a significant impact on performance. We examine model performance across 0-4
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Figure 2: Log predictive density of residual manifold deep GPs on a regression task with
the target function shown in Figure 3. Dotted line indicates mean log predictive
density of a sparse manifold GP. Boxes show the interquartile range.

hidden layers and 100, 200, 400, and 800 training points. For each configuration of model
depth and data regime we train the model for 1000 steps and then measure its log predictive
density on 2000 points, presenting the results in Figure 2. We repeat each train-test run
5 times. Each sparse GP in every model configuration uses 60 inducing points. Training,
testing, and inducing points are all arranged in an approximately uniform grid on S2.

We find that our model outperforms shallow sparse GPs in larger data regimes, while
the opposite is true in small data regimes. This is not surprising and aligns with the results
of Salimbeni and Deisenroth (2017) in the Euclidean case. Nevertheless, we may notice
that only the model with a single hidden layer is never worse than the shallow GP. Thus,
although, in principle, residual manifold deep GPs can always recover the shallow solution,
this may not always happen in practice.

Coordinate frames Theoretically, every Gaussian vector field can be obtained with any
coordinate frame (Hutchinson et al., 2021). Practically, however, we find that the choice
of a coordinate frame has significant impact on the performance of our model. Figure 3
showcases this on on residual manifold deep GP with 1 hidden layer. Each model in the plot
was trained for 1000 steps, yet only the well-chosen coordinate frame gives an almost perfect
fit. To avoid a poor choice of coordinate we tried a parametrised approach optimised jointly
with the model. This already yields a much better fit than the model with a poorly chosen
frame, suggesting that learnable coordinate frames may be worth further investigation.

Figure 3: Posterior means of residual manifold deep GPs with one hidden layer across dif-
ferent coordinate frames used to construct Gaussian vector fields.
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Figure 4: Logarithm of the regret for a function with a non-smooth minimum on S2 (left)
and a smooth function with a smooth minimum on S3 (right). Dotted line indi-
cates the transition to a residual manifold deep GP. Solid lines indicate the mean
regret. Boxes and shaded regions show the interquartile range.

Bayesian optimisation We examine the potential of our model in Bayesian optimisation
on the Ackley function projected onto S3—following Jaquier et al. (2021)—and on a custom
non-smooth function on S2 in Figure 3 (right). Based on insight from the previous exper-
iments we tested a two-hidden-layer model on the Ackley function and a one-hidden-layer
coordinate frame variant of our model on the custom function.

Our previous experiments have shown that our model requires sufficiently dense data
to work well. Thus, we perform the first 180 acquisition steps with an exact GP before
switching to our deep GP. We compare the log regret of the process to the baseline obtained
from 200 iterations with an exact GP. Uncertainty estimates in Figure 4 are obtained by
repeating each optimisation process 10 times.

We find that, with the Ackley, function switching to our model offers no advantage.
This is not surprising, since the minimum of the Ackley function is located in a smooth
landscape. However, for the custom non-smooth function our model makes a significant
and often immediate improvement. One strategy springing from this intuition would be to
switch between a shallow and deep models according to some schedule.

5. Conclusion

We have utilised a range of recent advancements in manifold GP to construct the resid-
ual manifold deep GP, a deep GP composed of manifold-to-manifold maps, and provided
the computational techniques needed to use it. Its layers, manifold-to-manifold GPs, are
Gaussian vector fields composed with the exponential map. Each of them models the dis-
placement of its inputs, i.e. the residual difference from the identity.

We have implemented residual manifold deep GPs on hyperspheres and examined its per-
formance on different stylised tasks, demonstrating that it consistently outperforms sparse
manifold GPs in regression when the target function is complex and data is sufficiently
dense. Finally, we have shown that residual manifold deep GPs can benefit geometry-aware
Bayesian optimisation when the landscape around the minimum is complex. Future re-
search may explore ways of using exact manifold GPs and residual manifold deep GPs in
tandem for a best-of-both-worlds approach.
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Appendix A. Additional experimental details

Coordinate frames The well-chosen coordinate frame we use is defined at x = (x, y, z) =
(sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ)) ∈ S2 by

(e1(x), e2(x)) =

{
(∂θx, ∂ϕx) for (ϕ, θ) ∈ (0, π)× [0, 2π)

((0, 1,±1), (1, 0,±1)) for z = ±1
. (6)

It turns out to be particularly useful for modelling the ground truth function in Figure 3
because they both have singularity points at (0, 0, 1) and (0, 0,−1). We obtain the poor
choice of coordinate frame simply by rotating the well-chosen coordinate frame. Specifically,
we orient it such that its singularity points are located in a region where the target function
smooth.

For the coordinate frame parameterisation we used A ∈ R3×3 and b ∈ R3. We use A
and b to construct a coordinate frame (e1, e2) on the sphere with the following formula

e1(x) =
(Ax+ b)× x

∥(Ax+ b)× x∥
, e2(x) =

e1(x)× x

∥e1(x)× x∥
. (7)

Bayesian optimisation Drawing a connection to (Jaquier et al., 2021), we conduct a
200-step Bayesian optimisation process with 5 random initial observations. We use the
expected improvement acquisition function and find its minimum using a geometry-aware
method implemented in Pymanopt (Townsend et al., 2016). In contrast to Jaquier et al.
(2021) we use a first-order method instead of a second-order method, which seems not to
result in a visible difference in performance. We use the expected improvement acquisition
function and after each acquisition step we retrain the model from scratch for 500 iterations.
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