
Published in Transactions on Machine Learning Research (09/2025)

Balancing Utility and Privacy: Dynamically Private SGD
with Random Projection

Zhanhong Jiang# zhjiang@iastate.edu
Md Zahid Hasan** zahid@iastate.edu
Nastaran Saadati* nsaadati@iastate.edu
Aditya Balu# baditya@iastate.edu
Chao Liu*** cliu5@tsinghua.edu.cn
Soumik Sarkar*# soumiks@iastate.edu
*Department of Mechanical Engineering, #Translational AI Center, **Department of Electrical and Computer
Engineering, Iowa State University
***Department of Energy and Power Engineering, Tsinghua University

Reviewed on OpenReview: https: // openreview. net/ forum? id= u6OSRdkAwl

Abstract

Stochastic optimization is a pivotal enabler in modern machine learning, producing effective
models for various tasks. However, several existing works have shown that model param-
eters and gradient information are susceptible to privacy leakage. Although Differentially
Private SGD (DPSGD) addresses privacy concerns, its static noise mechanism impacts the
error bounds for model performance. Additionally, with the exponential increase in model
parameters, efficient learning of these models using stochastic optimizers has become more
challenging. To address these concerns, we introduce the Dynamically Differentially Private
Projected SGD (D2P2-SGD) optimizer. In D2P2-SGD, we combine two important ideas: (i)
dynamic differential privacy (DDP) with automatic gradient clipping and (ii) random pro-
jection with SGD, allowing dynamic adjustment of the tradeoff between utility and privacy
of the model. It exhibits provably sub-linear convergence rates across different objective
functions, matching the best available rate. The theoretical analysis further suggests that
DDP leads to better utility at the cost of privacy, while random projection enables more ef-
ficient model learning. Extensive experiments across diverse datasets show that D2P2-SGD
remarkably enhances accuracy while maintaining privacy. Our code is available here.

1 Introduction

Deep learning models Thirunavukarasu et al. (2023); Menghani (2023), enabled by stochastic optimization
techniques, have achieved remarkable success in many fundamental machine learning tasks. Though these
models empirically show incredibly appealing capabilities, there are critical concerns regarding the privacy
of these models. In numerous applications, such as healthcare Chen et al. (2021) and finance Goodell et al.
(2021), training datasets often contain highly sensitive information that must remain confidential. However,
due to the widespread use of deep learning models, their rich representations can possibly disclose private
information under privacy attacks, as demonstrated in the prior works Zhao et al. (2020); Wang et al.
(2022a). Additionally, as the number of model parameters increases exponentially, it is unclear to us how
privacy and model performance affect each other as the learning becomes more computationally complex.

Related Works. To mitigate these privacy concerns, differential privacy (DP) Dwork (2006; 2008) was
introduced, and it has gained considerable attention Ji et al. (2014); Blanco-Justicia et al. (2022) to pro-
vide principled and rigorous privacy guarantees. Intuitively speaking, DP is a mechanism to ensure that
all data samples have no significant impact on the ultimate trained model. Differentially private SGD
(DPSGD) Abadi et al. (2016); Bassily et al. (2014) is one of the most acknowledged methods to solve the
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Figure 1: D2P2-SGD method involves five steps. For more technical details, please see Algorithm 1.

private empirical risk minimization (ERM) problems. Specifically, it perturbs each gradient update with a
static random noise vector (with the same dimension as that of the gradient) sampled from a distribution.
The dimension of the noise vector is typically the same as that of the gradient, which could be extremely
large and problematic. More advanced variants on top of DPSGD have also been developed to consider
other key issues, such as communication-efficient distributed setting Agarwal et al. (2018); Li & Chi (2025),
non-smooth losses Wang et al. (2022b), uniform Lipschitz condition Das et al. (2023), and compilation and
vectorization Subramani et al. (2021). Using the perturbed gradient updates, we can compute the tradeoff
between the utility and privacy of the model. This tradeoff can be adjusted via a noise mechanism, typically
sampled from a static distribution with properly chosen yet fixed variance. While this approach is technically
simple and provably effective, the noise variance significantly impacts the ultimate error bound. A challeng-
ing issue that remains in various private machine learning tasks is how to achieve a desirable tradeoff between
privacy and utility, which becomes particularly important in large-scale deep learning models Flemings et al.
(2024); Mattern et al. (2022). Recent work Du et al. (2021) proposed a dynamic DP mechanism to adjust the
tradeoff on the fly, reducing the model performance loss gap at the cost of increased privacy loss. Further,
the dimension of the noise vector is typically the same as that of the gradient, which could be extremely
large to cause intensive computational complexity. This issue motivates us to seek out an approach that
assists in reducing the complexity while maintaining privacy. Inspired by the work Blocki et al. (2012), we
pay attention to model compression techniques as follows. Though numerous prior works have extensively
studied the tradeoff, most attempts rarely investigated how to dynamically adjust it along the optimization
using a dynamic DP mechanism.

Model compression Buciluǎ et al. (2006); Choudhary et al. (2020) has been utilized to reduce the computa-
tional complexity, including quantization Chmiel et al. (2020), regularization Moradi et al. (2020); Orvieto
et al. (2023), and projection Gu et al. (2023); Tsfadia (2024). Though these methods aim to reduce com-
putational complexity, their technical details can differ significantly depending on the specific focus. For
example, in Gu et al. (2023), the authors used projection to identify the dominating gradient subspace,
which facilitated improving model accuracy without changing the dimension of model parameters. This is
akin to L1-norm regularization Xu et al. (2008), which forces certain model parameters to become exactly
zero. Although model compression offers promising performance, it comes at the expense of possible accuracy
reduction and sophisticated compression techniques, necessitating an effective optimizer that can balance the
dynamic trade-off between privacy and utility. Additionally, the dimension of the noise vector is typically
the same as that of the gradient, which could be extremely large and problematic. Consequently, effective
approaches should be studied further to look into the tradeoff between privacy and utility while lowering the
dimension of the additive noise. Additional related works are provided in Appendix A.1.
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In this work, we highlight the need for an effective optimizer to balance among complexity, privacy and
utility; answering the critical question:

Can we design an adaptive differentially private optimizer to allow a small model performance reduction
gap and maintain privacy?

Contributions. In this work, we answer the above question affirmatively. Specifically, we propose a
novel stochastic optimizer termed Dynamically Differentially Private Projected SGD (D2P2-SGD) (as shown
in Figure 1), which, for the first time, integrates the dynamic DP mechanism with automatic gradient
clipping and random projection for optimization. The dynamic DP mechanism involves an isotropic Gaussian
distribution with a properly chosen time-varying variance that decreases along with the iterations, reducing
noise effects as privacy loss increases. To further warrant differential privacy and bound the influence of each
individual example on the stochastic gradient, we resort to a recently developed automatic gradient clipping
mechanism Bu et al. (2024). This is different from the traditional clipping method Abadi et al. (2016),
where an upper bound is imposed for gradients. Additionally, the stochastic gradient is projected into a
lower-dimensional space, reducing the dimension of additive noise and mitigating the increase in privacy
loss. Concretely, the main contributions are as follows:

1. We introduce a novel DP optimizer, D2P2-SGD, that employs a dynamic DP mechanism with a time-
varying noise variance and random projection. This approach minimizes model performance loss and
reduces the dimensionality of noise vectors added to the stochastic gradients. Additionally, the per-
sample gradient normalization serves as an automatic gradient clipping mechanism to regulate the
influence of individual examples on the stochastic gradient.

2. Theoretically, we prove that D2P2-SGD achieves sub-linear convergence rates for both generally
convex and non-convex functions, matching the best available convergence rate of regular SGD. The
results for the dynamic DP mechanism can immediately degenerate to those for static scenarios,
revealing the consolidation among complexity, utility, and privacy.

3. Extensive evaluations on a wide spectrum of datasets confirm that D2P2-SGD significantly improves
model accuracy compared to baseline methods.

While building on prior work Du et al. (2021); Kasiviswanathan (2021), our framework introduces funda-
mental innovations: (1) The first unified integration of dynamic DP with random projection, where time-
varying noise (which is different from the one used in Du et al. (2021)) is explicitly optimized for dimension-
reduced gradients, which enables synergistic privacy amplification unaddressed in isolated approaches; (2)
Novel theoretical insights into the dimension-privacy-utility trilemma under convex (Theorem 2) and non-
convex (Theorem 3) objectives, revealing how projection reshapes dynamic DP trade-offs; (3) A flexible
mechanism-agnostic design supporting arbitrary noise/projection variants. Extensive validation confirms
these co-adaptations consistently outperform conventional combinations, offering new pathways for efficient
privacy-utility balancing. We believe this represents a meaningful conceptual and practical advance in scal-
able private learning. In this paper, our approach prioritizes theoretical exploration over scalability to larger
datasets and models, including transformers and large language models Kasneci et al. (2023). While progress
has been made in this domain Yu et al. (2021), designing a differentially private optimizer for such models
remains a significant challenge and is deferred to future work.

2 Problem Formulation and Preliminaries

Given a private dataset D = {s1, s2, ..., sn} sampled in an i.i.d. manner from a distribution P such that we
want to solve the empirical risk minimization (ERM) problem subject to differential privacy:

minxf(x) = 1
n

∑
s∈D

f(x, s), (1)

where x ∈ Rd and f(·, ·) is the loss for a single sample. We aim to optimize Eq. 1 with a gradient-based
algorithm in a differentially private manner. We denote by xk the model parameters’ iterate and gk the
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Table 1: Comparison among different methods.

Method Noise Compression Rate
DPSGD1 Static N O( 1√

K
)

PDP-SGD2 Static Y O( 1√
K

)
DPKD3 Static N N/A

Anti-PGD4 Static N O( 1√
K

)
Dynamic DPSGD5 Dynamic N O( 1√

K
)

PrivSGD6 Static Y O( 1√
K

)
RQP-SGD7 Static Y O( 1√

K
)

ADP-SGD8 Static N O( 1√
K

)
PORTER9 Static Y O( 1√

K
)

D2P2-SGD (Convex) Dynamic Y O( 1√
K

+ lnK
K1.5 )

D2P2-SGD (Non-convex) Dynamic Y O( 1√
K

+ lnK
K1.5 )

1: Bassily et al. (2014); 2: Zhou et al. (2020); 3: Mireshghallah et al. (2022);
4: Koloskova et al. (2023b); 5: Du et al. (2021); 6: Kasiviswanathan (2021); 7: Feng
& Venkitasubramaniam (2024); 8: Bu et al. (2024); 9: Li & Chi (2025); N: no; Y:
yes; K: the number of iterations.

mini-batch gradient at each time step k. Throughout the analysis, we assume that gk is the unbiased
estimate of ∇f(xk), i.e., ∇f(xk) = E(gk). In this context, we resort to gradient clipping mechanism to
constrain the magnitude of the stochastic gradient gk. To provide the guarantee of differential privacy, it
requires bounding the influence of each individual example on gk. A fairly popular clipping operation Abadi
et al. (2016) applied to vector v ∈ Rd is as: clip(v, G) = min{1, G

∥v∥} · v, where G > 0, ∥ · ∥ is the l2
norm. However, when applying this to the stochastic gradient, such an operation will inevitably result in a
“lazy region" issue, particularly if ∥v∥ > G. This means the parameters will not be updated even if the true
gradients are non-zero. Therefore, to mitigate this issue, we leverage a recently developed per-sample gradient
normalization Bu et al. (2024) as an automatic clipping mechanism described as: clip(v, G, γ) = G

∥v∥+γ · v,

where γ is a positive stability constant, which is practically small. Additionally, the authors even showed
that any constant choice G is equivalent to choosing G = 1. In this work, for the algorithmic framework,
we follow their setup to directly set G = 1, while still keeping G in the theoretical analysis, particularly for
the generally convex objective, which is missing in Bu et al. (2024). Additionally, we will reveal that for any
γ > 0, when the objective is non-convex, the gradient norm will converge to a neighborhood of the optimal
solution affected by γ. To characterize the analysis for the proposed scheme, we introduce the necessary
background and preliminary knowledge in the sequel, starting with the standard definition of differential
privacy.
Definition 1. ((ε, δ)-differential privacy Dwork (2006)) A randomized algorithm M is (ε, δ)-differentially
private if for any two neighboring datasets D,D′ and for all events Y ⊆ Range(M) in the output range ofM,
we have Pr{M(D ∈ Y)} ≤ exp(ε)Pr{M(D′ ∈ Y)} + δ, where the probability is taken over the randomness
of M.

Range(M) refers to the set of all possible outcomes of M. Technically speaking, the set Y in Definition 1
must be measurable. This definition implies that the probability of observing a specific output on any two
neighboring datasets can differ by at most a multiplicative factor of exp(ε). Intuitively, a sufficiently small
ε value suggests that either including or excluding a single data point from the dataset does not likely affect
the output. Hence, an adversary only accessing the output of M makes it difficult to infer whether any
data point is present in the dataset. The parameter ε is called privacy budget and its practical selection
varies significantly, depending on different scenarios Ponomareva et al. (2023). Additionally, δ represents the
probability that the privacy guarantee of a differentially private mechanism might be violated and controls
the strength of the relaxation, with smaller values leading to stronger privacy guarantees. A generally
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recommended δ value in the literature is to choose δ ≪ 1
n Ponomareva et al. (2023). In our analysis, we will

establish the privacy guarantee for the proposed algorithm presented in the next section. Before that, we
present preliminaries on random projection and formally define the projection matrix. Random projection
(RP) Achlioptas (2001) is an effectively fundamental tool that has been used in numerous applications to
analyze datasets and then characterize their major features. It projects data points to random directions
that are independent of the dataset, which renders simpler and computationally faster trends than classical
methods such as singular value decomposition (SVD). RP is based upon the Johnson-Lindenstrauss (JL)
lemma Larsen & Nelson (2017) as follows.
Lemma 1. (Johnson-Lindenstrauss Lemma Larsen & Nelson (2017)) For any 0 < ζ < 1, a set S of m points
in Rd, and an integer p > 8(lnm)/ζ2, there exists a linear map h : Rd → Rp, such that (1 − ζ)∥u − v∥2 ≤
∥h(u)− h(v)∥2 ≤ (1 + ζ)∥u− v∥2, for all u, v ∈ S.

JL lemma states that a set of points in a high-dimensional space can be projected into a lower-dimensional
subspace such that their relative distances are nearly preserved.

While we do not directly apply the above definition in our algorithm design, it motivates and underpins
our use of RP for model parameters or gradients Kasiviswanathan (2021). Crucially, RP’s foundation in
the JL lemma originally conceived for data rests on its guarantee of distance preservation. Without this
guarantee, RP would degrade into a lossy and unreliable heuristic. The JL lemma mathematically ensures
that geometric fidelity survives dimensionality reduction, enabling scalable and accurate computation. When
applying RP to parameters or gradients, our goal remains the same: to find an effective linear map that
minimizes information loss. Lemma 1 thus justifies extending RP’s application from data to gradients, while
highlighting the critical importance of the linear map defined subsequently.
Lemma 2. Let A be a Gaussian random matrix of order d× p, i.e., Aij ∼ N (0, 1) and o be any fixed vector
in Rd. Define the linear mapping h(·) such that r = h(o) = 1√

p A⊤o. Thus, r ∈ Rp and ri = 1√
p

∑
j Aijoj.

We notice that each element of A is sampled from the same normal distribution N (0, 1), while we use a
slightly different variance, σ2

A instead of 1, in our theoretical analysis for a more generic purpose. Combining
Lemma 1 and Lemma 2, with a high probability (at least 1− 1

n ) Johnson et al. (1984), we can maintain the
precise model expressivity even if applying RP to project parameters or gradients to a low-dimensional space
during updates. This allows us to use RP in our proposed algorithm. We will have a detailed discussion in
the following section regarding how RP contributes to our method.

3 Algorithm and Main Results

3.1 Algorithmic Frameworks

D2P2-SGD is shown in Algorithm 1. Line 4 states the key gradient clipping operation to control the influence
of the gradient magnitude. Compared to the clipping mechanism applied in Abadi et al. (2016), we do not
need to tune the clipping threshold. In Line 5, a mini-batch stochastic gradient is calculated after the per-
sample gradient clipping. In Line 6, the stochastic gradient gk is projected to the lower-dimensional space
Rp by using the random projector from Lemma 2 such that we have 1√

p A⊤
k gk, which is followed by adding

the noise sampled from a Gaussian distribution with time-varying distribution σ2
ϵ,kIp, where σϵ,k = σϵ√

k
.

With this, ϵk is independent of a high dimension d, but dependent on a lower dimension p ≪ d, which
fundamentally reduces the noise. The fact that we resort to the decay of 1√

k
for the variance is motivated

by the same setup as the learning rate in stochastic optimizers Bottou et al. (2018), which manipulates the
tradeoff between the convergence speed and optimality. Analogously, σ2

ϵ,k controls the impact of the noise
mechanism on the tradeoff between privacy and utility in different phases of the optimization. Since the
update for xk is operated in the original dimension Rd, we multiply the projected stochastic gradient by
Ak to project it back to the original one. It is noted that such an implementation will cause projection
errors that impact the error bound (which will be observed in the theoretical analysis). However, similar
to Wang et al. (2019b), D2P2-SGD implies more efficient model learning as it has now focused primarily on
the subspace in Rd instead of the whole space. Note that the temporal evolution of Ak is due to its elements
being sampled from a constant distribution per iteration. We give a geometric intuition here to facilitate
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the understanding of why RP is critical in D2P2-SGD. If we regard gradients as vectors in high-dimensional
space, the isotropic noise in Rd corrupts all directions equally. However, RP projects gradients onto a random
low-dimensional subspace where based on Lemma 1, "important" directions of gradients are preserved. This
ensures that the noise only corrupts the p compressed dimensions such that the gradient signal still remains
strong as the original noise has been defused. To summarize, RP induced by JL Lemma acts as an efficient
dimensionality compressor in SGD updates to shrink the injected noise but with gradient preservation.

We claim that D2P2-SGD represents a unified framework over existing methods. When p = 1 and A1 =
A2 = ... = AK = I, D2P2-SGD degenerates to dynamically differentially private SGD (D2P-SGD) Du et al.
(2021), though the original approach has another gradient clipping mechanism to prevent dynamic DPSGD
from diverging and a different formula for σ2

ϵ,k. On top of D2P-SGD, if we set fixed variance for ϵk, it
becomes DPSGD without any random projection. On the other hand, PrivSGD Kasiviswanathan (2021)
can also be obtained if D2P2-SGD has a fixed variance with the random projection. However, compared
to PrivSGD, which involves an extra optimization to convert from the low-dimensional to high-dimensional
spaces, our scheme simply uses Ak to replace the optimization, which significantly attenuates the practical
implementation complexity. We also use DP2-SGD (differentially private projected SGD) to represent this
case. Please see these two variants in Appendix A.2. We also remark on the additional computational
overhead due to RP. Ak is regenerated per iteration by sampling from the same distribution. The total
computational overhead incurred is O(dp). In practice, the implementation is layer-wise so the matrix
multiplication is not one-shot with all parameters, mitigating the memory issue.

Algorithm 1 D2P2-SGD
1: Initialize: Model parameters x1, step size α, number of epochs K, lower dimension p, random matri-

ces A1, A2, . . . , AK , mini-batch size B, training dataset D, noise sequence σ2
ϵ,1, σ2

ϵ,2, . . . , σ2
ϵ,K , gradient

clipping parameter γ
2: for k = 1, . . . , K do
3: Split the dataset D into mini-batches of size B and randomly sample one mini-batch B
4: Compute per-sample clipped gradients: ĝs

k = ∇f(xk;s)
∥∇f(xk;s)∥+γ , s ∈ B

5: Calculate the mini-batch stochastic gradient: gk = 1
B

∑
s∼B ĝs

k

6: Project noisy gradient using Ak: g̃k = Ak

(
1√
p A⊤

k gk + ϵk

)
, ϵk ∼ N (0, σ2

ϵ,kIp)
7: Update model parameters: xk+1 = xk − αg̃k

8: end for
9: return xK

3.2 Main Results

We next show the convergence behavior for our proposed D2P2-SGD, with generally convex and non-convex
objective functions, and start with assumptions. All proof is deferred to the appendix.
Assumption 1. (a): f(x) is smooth with modulus L for all x ∈ Rd, i.e., for any x1, x2 ∈ Rd, we have
∥∇f(x1)−∇f(x2)∥ ≤ L∥x1 − x2∥; (b) throughout the analysis, the minimum value of the objective f exists
and is bounded below, i.e., f∗ := f(x∗), x∗ = minx∈Rdf(x) and f∗ > −∞.

Assumption 1 (a) is generic in many previous works Wang et al. (2019b); Du et al. (2021); Kasiviswanathan
(2021) to imply that the variations of gradients along with optimization are bounded above by L. Many
models, even including deep neural networks, can at least be approximately smooth for the corresponding
losses.
Assumption 2. The variance of stochastic gradient ∇f(x, s) is bounded above by a constant σ > 0, i.e.,
E[∥∇f(x, s)−∇f(x)∥2] ≤ σ2,∀s ∈ D.

Assumption 2 is popular when analyzing the convergence behavior of SGD-type algorithms due to the mini-
batch sampling (Line 5 in Algorithm 1). In some recent works, the bounded gradient assumption is also
leveraged Zhou et al. (2020); Zhang et al. (2023), remaining a strong condition for the analysis. For example,
if the objective is in a quadratic form, f(x) = x⊤Mx, where M is a real symmetric matrix, then ∇f(x)
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is in a linear form, which violates such an assumption. The author in Kasiviswanathan (2021) used an
extra bounded second moment assumption for gradients besides the bounded variance assumption, though
it is weaker than the bounded gradient assumption. We would like to clarify that in D2P2-SGD, the full
noise distribution (Line 6 in Algorithm 1) we have added in the update is specifically for differential privacy.
Besides, we also quantify the dimension distortion error due to random projection with the variance of the
sampling distribution. In the sequel, we start the main result with the privacy guarantee.
Theorem 1. (Privacy) Let Assumption 2 hold. There exist constants C1, C2 > 0 such that for any ε ≤
C1B2K

n2 , D2P2-SGD is (ε, δ)-differentially private for any δ > 0, if σ2
ϵ ≥

C2B2K2ln(1/δ)
n2ε2 .

The detailed proof is deferred to Appendix A.3. The core idea of the proof is that at each iteration, Line
6 in Algorithm 1 post-processes the Gaussian noise mechanism that perturbs the stochastic gradient gk by
adding noise ϵk. Subsequently, the sequence of { 1√

p A⊤
k gk + ϵk}K

k=1 is released to have a privacy guarantee by
following the same privacy proof of Theorem 1 in Abadi et al. (2016). However, the significant difference in
our work is that the noise variance is time-varying, i.e., σ2

ϵ,k. With the explicit form of noise variance we have
defined in this work, i.e., σ2

ϵ,k = σ2
ϵ

k , it is immediately obtained that σ2
ϵ,1 > σ2

ϵ,2 > ... > σ2
ϵ,K . In Wang et al.

(2019b) and Abadi et al. (2016), the static variance has the lower bound with respect to some key constants
such as K and G. Thus, as long as σ2

ϵ,K ≥
C2KB2ln(1/δ)

n2ϵ2 , the privacy guarantee is attained. Equivalently,
σ2

ϵ ≥
C2K2B2ln(1/δ)

n2ε2 in this context. A constant noise variance throughout optimization risks diminishing
the final model’s utility. To mitigate this, we employ a decreasing noise variance schedule. This dynamic
approach provides essential flexibility, enabling adaptive privacy budgeting that more effectively balances the
privacy-utility trade-off compared to static mechanisms. A natural question arises regarding RP’s impact on
DP guarantees. Critically, the stochasticity inherent in RP does not compromise the DP analysis. This is a
direct consequence of DP’s fundamental post-processing immunity: any computation applied to the output
of a DP mechanism retains the original privacy guarantee. This well-established property that has been
validated in prior works Zhou et al. (2020); Kasiviswanathan (2021); Feng & Venkitasubramaniam (2024)
ensures our use of RP maintains the rigorous privacy bounds for the core mechanism.

Another observation from Theorem 1 is that the size of mini-batch B has an impact on ε. When B enlarges,
ε has a larger upper bound such that the model performance improves with the cost of privacy, which will be
evidently validated in the results section. This also intuitively validates the fact that a larger batch typically
improves deep learning model performance. Though the authors in Du et al. (2021) for the first time proposed
to leverage dynamic DP mechanism to reduce the model performance loss gap, privacy guarantee has been
ensured by the dynamic power following an exponential mechanism σϵ,k ∝ O(ρ− k

K ), where ρ is a positive
constant. As they still utilized the clipping mechanism from Abadi et al. (2016), they also had to establish
a similar exponential mechanism for the clipping threshold, which makes their algorithm framework more
complex. While in our work, thanks to the automatic clipping mechanism, there is no such requirement. We
are now ready to state the results for the utility with different functions.
Theorem 2. (Utility for convex functions) Let Assumptions 1 and 2 hold. Suppose that f is a convex function
and that A is a random matrix with each element being sampled from a normal distribution N (0, σ2

A). Also,
let the additive noise of DP mechanism have the variance σ2

ϵ,k. If the step size α ≤ 1
2L , then for the iterates

{xk}K
k=1, K ≥ 1 generated by D2P2-SGD, the following relationship holds true

E[f(x̄K)− f∗] ≤ ∥x1 − x∗∥2(1 + γ)
2αKσ2

A

√
p

+ αp1.5(1 + γ)(lnK + 1)σ2
ϵ

2K
+ αpd2σ2

A(1 + γ)
2 , (2)

where x̄K = 1
K

∑K
k=1 xk.

Theorem 2 suggests that the error bound involves three terms: the initialization error, the error of additive
noise due to the DP mechanism, and the random projection approximation error. We first turn to the second
term and see how it impacts the error bound. If σ2

ϵ,k = σ2
ϵ , this term becomes (αp1.5(1 + γ)σ2

ϵ )/2, which
is a constant. Instead, if σ2

ϵ,k = σ2
ϵ

k , it can be bounded by O( lnK
K ), which also relaxes the dependence on α

to decay the magnitude. Though the model performance loss gap is reduced, dynamic variance can breach
privacy. To maintain the (ε, δ)-differential privacy for D2P2-SGD, as implied in Theorem 1, the additive
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noise should be sampled with a larger σ2
ϵ to offset the privacy loss, particularly in the early phase during the

optimization, compared to DPSGD. When σϵ ∝ ( 1
ε ), we can immediately know that with a higher privacy

(which corresponds to a smaller ε), the utility decreases. In this scenario, RP becomes more advantageous
because noise reduction with a small p counters strict privacy. Conversely, with a lower privacy (which
corresponds to a larger ε), the utility increases. However, RP may hurt utility as the dimension distortion
error dominates if the noise is already small. Thus, prioritizing one forces tradeoffs in the others, making
dimension p the pivotal lever in this trilemma. We include the details of how privacy budget ε and dimensions
(d, p) impact the error bound and the comparison to DPSGD in Appendix A.5. The last term is associated
with RP approximation error, while the term σ2

Ad2 due to model compression can cause significant error.
One empirical remedy is to leverage a small α, but this leads to slow convergence. Eq. 2 implies that when
K →∞, D2P2-SGD converges to the neighborhood of x∗ asymptotically with the rate of O(1/K + lnK/K),
up to a constant αpd2σ2

A(1 + γ)/2. Additionally, a small initialization error ∥x1 − x∗∥ and a larger batch
size lead to better performance, which stresses the implication from Theorem 1. Overall, the consolidation
among complexity, utility, and privacy in D2P2-SGD is reflected explicitly in Theorem 2. The following
corollary summarizes the explicit convergence rate when α = O( 1√

K
).

Corollary 1. With conditions defined in Theorem 2, when α = O( 1√
K

), the following relationship holds
true, i.e., E[f(x̄K)− f∗] ≤ O( 1√

K
+ lnK

K1.5 ).

The conclusion in Corollary 1 requires the constant learning rate α to have a format α ∝ O( 1√
K

), which is
a quite popular choice in stochastic optimization Garrigos & Gower (2023). After carefully reviewing some
recent works Koloskova et al. (2023a); Bu et al. (2024); Xiao et al. (2023); Chen et al. (2020), though they
have also focused on the investigation of convergence guarantee for differentially private SGD with gradient
clipping, all of them paid only attention to nonconvex cases. Our result explicitly and rigorously establishes
the convergence rate of D2P2-SGD for convex functions. Without dynamic differential privacy and model
compression, our result resembles exactly the same convergence rate of regular SGD in O( 1√

K
). Particularly,

if a desired accuracy ζ > 0 is defined specifically for E[f(x̄K) − f∗] ≤ ζ, the complexity bound for K is
O( 1

ζ2 + (ln( 1
ζ ))2/3

ζ2/3 ). In comparison, our rate improves the one reported in Kasiviswanathan (2021), which
is O( lnK√

K
). Note that in their case, they use a decaying step size αk ∝ 1√

k
and there is no smoothness

assumption. We will now present the main result for non-convex functions.
Theorem 3. (Utility for non-convex functions) Let Assumptions 1 and 2 hold. Suppose that A is a random
matrix with each element being sampled from a normal distribution N (0, σ2

A). Also, let the additive noise
of the DP mechanism have the variance σ2

ϵ,k. If the step size α ≤ 1
2L , then for the iterates {xk}K

k=1, K ≥ 1
generated by D2P2-SGD, the following relationship holds true

mink∈[1,K]E[∥∇f(xk)∥] ≤ f(x1)− f∗

Kσ2
A

√
pα

+ αLp1.5σ2
ϵ (lnK + 1)
K

+ Lα
√

pd2σ2
A + 2σ√

B
+ γ. (3)

We immediately have the following result when the step size satisfies a certain condition.
Corollary 2. With conditions defined in Theorem 3, when α = O( 1√

K
), the following relationship hold true,

mink∈[1,K]E[∥∇f(xk)∥] ≤ O( 1√
K

+ lnK
K1.5 + σ + γ).

Similarly, the error bound from Theorem 3 is dictated by the initialization error, the error of addictive noise,
the random projection approximation error and the clipping bias. Especially, the clipping bias 2σ√

B
+ γ

is determined by the variance, the batch size and the stability constant. To mitigate the clipping bias,
one immediate solution is to properly increase the batch size. Due to γ, in practical implementation,
one can choose a small value for γ. When γ is O( 1√

K
) in Corollary 2, the clipping bias resembles the

result in Koloskova et al. (2023a), up to some absolute constants. Also, the convergence rate of non-convex
functions remains similar to that of generally convex functions. However, comparing results from Corollary 1
and Corollary 2, the error of non-convex functions is larger due to the clipping bias, which illustrates that
the convergence for non-convex functions is more challenging. We summarize the clipping bias for different
methods in Table 4 in Appendix A.7 for comparison (we only compare for non-convex functions as most
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of the existing methods only discussed non-convex objectives). Practically, non-asymptotic convergence is
preferred such that we can resort to a pre-defined small constant ξ > 0 to define metric, i.e., the norm
of gradient ∥∇f(x)∥ ≤ ξ for non-convex functions. Suppose that B = σ2/ξ2 and γ = O( 1√

K
). If the

computational complexity is defined as the total number of gradient computations, it can be observed that
the computational complexity is KB = O(1/ξ4), which retains the same complexity as in Ghadimi & Lan
(2013). The tradeoff between privacy and utility is analogous to that for convex functions, only differing in
some absolute constants. Thus, we do not repeat the same remarks in this context, but provide the impact
of privacy budget ε and dimensions (d, p) on the error bound in Appendix A.8.

4 Numerical Experiments

We present extensive empirical results to thoroughly validate our proposed approaches with a comparison
to baselines. The baselines we use in this study consist of SGD, vanilla DPSGD, D2P-SGD, and DP2-SGD.
D2P-SGD is an equivalent alternative to Dynamic DPSGD in Du et al. (2021). DP2-SGD can also be re-
garded as an equivalence of PrivSGD Kasiviswanathan (2021) since the compression technique they adopted
is also random projection, with a static DP. We leverage the Opacus library Yousefpour et al. (2021) and
build the framework on top of it. We use a 4-layer Convolutional Neural Network (CNN) as the model,
which has been widely used in testing optimizers. A more detailed explanation of the architecture is pro-
vided in Appendix A.9. Additionally, the datasets for testing our algorithms include FashionMNIST and
SVHN Figueroa (2019). As we have particularly identified the critical relationship between the privacy loss
ε and other parameters, an ablation study on this is shown to reveal their impacts on the performance.
Hyperparameters have a significant impact on deep learning models’ performance. In the interest of brevity,
we have chosen most hyperparameters used in the model via manual tuning, although we note that an auto-
mated hyperparameter-tuning framework would likely be beneficial for these models. Additional information,
including network architecture and specific hyperparameter setup, and results on other larger models and
datasets are in Appendix A.9.
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Figure 2: Comparison among methods for SVHN data: on the right side, the privacy loss is shown for static
and dynamic scenarios.

Comparative Evaluation. Figure 2 shows the model performance and privacy loss for different methods.
We train five different instances of each algorithm with different random seeds. The solid curves correspond
to the mean and the shaded region to the minimum and maximum values over the five runs. For the privacy
loss, the standard deviation is fairly small. Also, the dynamic mechanism for D2P-SGD and D2P2-SGD
is the same. Similarly, DPSGD and DP2-SGD have the same static mechanism. According to Figure 2,
D2P2-SGD significantly improves the model accuracy compared to DPSGD, D2P-SGD, and DP2-SGD.
While this comes at the expense of a larger privacy loss, which is expected. This is attributed to the
decreasing variance σ2

ϵ,k/k along with iterations. However, the testing accuracy of D2P2-SGD is much closer
to SGD, while having a gap due to projection error and clipping bias. Notably, D2P2-SGD spends a lesser
number of epochs, reaching a higher accuracy at the early phase, even earlier than SGD, which implies that
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Figure 3: Comparison among methods for FashionMNIST data: on the right side, the privacy loss is shown
for static and dynamic scenarios.
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Figure 4: Accuracy vs. standard deviation
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Figure 5: Privacy loss vs. standard deviation

random projection enables more efficient model learning. Similar conclusions can be made from Figure 3.
Comparing DP2-SGD and D2P2-SGD, we see that with random projection, if the noise variance from the
DP mechanism is static, the performance deteriorates accordingly. However, with a dynamic mechanism,
it performs robustly throughout training. This validates the conclusion from Theorem 3, where the second
term decays faster when the number of iterations increases. However, DP2-SGD remains with the rate of
O(1/

√
K) (If α is not in O(1/

√
K), this term in D2P2-SGD is in O(ln(K/K)), while DP2-SGD O(1)).

Figures 2 and 3 reveal comparable performance between DPSGD and D2P-SGD. This alignment stems from
our privacy configuration. In DPSGD, the fixed noise variance σ2

ϵ = C2K ln(1/δ)B2

n2ε2 yields a static privacy-
utility tradeoff. Conversely, D2P-SGD employs dynamic noise variance σ2

ϵ,k = C2K2 ln(1/δ)B2

n2ε2k . During early
optimization (k ≪ K), initialization error dominates, masking performance differences despite divergent
noise mechanisms. As k → K, privacy error dominates, but the noise variances converge, explaining the
sustained similarity in performance. Turning to the privacy loss (ε) in both figures, we can observe that the
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Figure 6: Impacts of parameters in D2P2-SGD

maximum privacy losses of the dynamic mechanism end up with respectively 2.45 (for SVHN) and 2.75 (for
FashionMNIST). Compared to values with the static DP mechanism (1.06 and 0.95, respectively), the privacy
loss of D2P2-SGD grows sharply. However, given the bound for ε in Theorem 1, as long as the constant C1
(≥ 314, see Appendix A.9) is selected properly, D2P2-SGD still remains (ε, δ)-differentially private. While
the value of 2.45 or 2.75 offers a reasonable, rather than exceptionally strong privacy guarantee, it reflects
our focus on balancing privacy and utility. However, in highly private domains such as medical applications,
D2P2-SGD can still be adopted to bias towards privacy by setting large dynamic noise. These two values
are the only resulting values based on the data we have applied in this work. Thus, our proposed scheme
improves the accuracy over baselines while successfully maintaining differential privacy. Table 2 summarizes
the performance for different optimizers at the same privacy loss ε values (σϵ = 3.0), showing that D2P2-SGD
outperforms other differentially private optimizers and validates our theoretical finding.

Table 2: Testing accuracy (averaged through 4 random seeds) at different ε values (FashionMNIST dataset)

Optimizers Test acc. Test acc. Test acc. Test acc. Test acc.
at ε = 1.0 at ε = 2.0 at ε = 4.0 at ε = 6.0 at ε = 8.0

DPSGD 0.6910 0.5291 0.5331 0.5704 0.5849
D2P-SGD 0.6549 0.7063 0.5242 0.5656 0.5573
DP2-SGD 0.6042 0.6736 0.5884 0.5461 0.6297
D2P2-SGD 0.7132 0.7322 0.7417 0.7851 0.7566

Impact of σϵ. From Figure 4, it shows that as σϵ value increases, the final model accuracy drops for DP2-
SGD and D2P2-SGD. This first validates the coupling between projection error σ2

A and the noise variance
σ2

ϵ,k in Theorem 3 and shows the trade-off between the utility and privacy. When σϵ < 6, which can be
treated as a low privacy regime, D2P2-SGD maintains better performance than DPSGD and D2P-SGD,
while underperforming in the high privacy regime after σϵ > 6. This intuitively shows us a careful selection
of σϵ is required to balance the trade-off. Figure 5 delivers a similar conclusion in terms of privacy loss.

Impact of B. As suggested by Theorem 1, we can adjust the privacy loss by setting the batch size B. In
Figure 6a, we can observe that when batch size increases from 256 to 1024, it increases the upper bound for
ε ≤ C1B2K

n2 such that the privacy loss is relatively higher through all σϵ for D2P2-SGD, leading to the better
performance. This essentially validates the condition B = σ2/ξ2, where σ2 decreases in the error bounds,
leading to better convergence due to the smaller ξ.

Impact of p. Figure 6b shows the impact of different lower dimensions on the testing accuracy and
privacy loss. It immediately suggests that the performance of random projection varies with different p
values. The optimal one is a 30% reduction rate, which implies that random projection can assist in model
learning efficiency if the p value is chosen properly. Instead, the privacy loss is independent of the dimension
change based on Figure 6b. Thus, D2P2-SGD allows us to reduce the computational complexity by random
projection while maintaining privacy. The dimension can be chosen in a wide range and will not affect model
performance significantly, including accuracy and privacy.
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Limitation. Though D2P2-SGD has shown good performance compared to the existing baselines, some
potential limitations exist, which can also help us close such gaps in future work. First, D2P2-SGD may not
work well in scenarios with high privacy restrictions. As we have the decaying noise variance that ensures
decent model performance, privacy loss will inevitably be the resulting outcome. One can carefully tune
these parameters to obtain acceptable values, but it is still fairly challenging to scale. One way to get rid of
this is to develop more effective dynamic DP mechanisms such that the tradeoff between utility and privacy
can be handled better. Second, getting an optimal p value for random projection may be difficult as well.
Though based on Johnson-Lindenstrauss Lemma, p can be analytically obtained, its practical values for
different scenarios have not yet been accessible in a principled manner.

5 Conclusions and Broader Impacts

This work presents a novel differentially private optimizer termed D2P2-SGD with a dynamic DP mechanism,
automatic gradient clipping, and model compression, which reveals the synthesis among privacy, utility, and
complexity. Specifically, we establish the dynamic privacy guarantee such that a relatively larger variance is
required in the early phase of optimization to compensate for the privacy loss in the latter phase. Given a
pre-defined dynamic variance, D2P2-SGD enables a slightly tighter error bound compared to vanilla DPSGD
with a static DP mechanism. Empirical results are shown to validate the theory first and then compared
with baselines using popular models and benchmark datasets. Compared to vanilla DPSGD, our D2P2-SGD
is more robust against larger noise variance but with a slightly larger privacy loss. However, the accuracy
is significantly improved without dependence on the large dimension. The broader vision of this work is to
advance the field of differentially private machine learning with the potential impact of building privacy-
aware deep learning models with highly sensitive information for critical sectors such as healthcare and
national security.
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A Appendix

A.1 Additional Related Works

Beyond the works presented in the main content, differential privacy with dimension reduction has received
considerable attention recently due to the emerging data-centric deep learning techniques, which require
privacy-preserving yet efficient learning. Inspired by DPSGD Bassily et al. (2014), Zhou et al. Zhou et al.
(2020) proposed projected DPSGD performing noise reduction by projecting the noisy gradients to a low-
dimensional subspace, which is induced by the top gradient eigenspace on a small public dataset. Though
PDP-SGD is theoretically and empirically validated well, the adoption of a public dataset may not be
feasible in some scenarios, particularly those being data privacy-critical. Another work Mireshghallah et al.
(2022) developed a technique called differentially private model compression specifically for pre-trained large
language models such as GPT-2, leveraging a knowledge distillation algorithm. However, the lightweight
model comes at the cost of accuracy loss. To mitigate this issue, the authors developed the differentially
private iterative magnitude pruning, which produces compressed models whose performance is comparable to
the original models. Similarly, the author from Kasiviswanathan (2021) found that with a constraint set, SGD
can be operated with the lower-dimensional (compressed) stochastic gradients, and applied it to differentially
private learning with nonconvex functions to improve error bounds. However, the additive noise mechanism
is still static such that the model performance gap cannot be shrunk along with iterations. In terms of
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differential privacy, the authors in Koloskova et al. (2023b) proposed a new stochastic optimization method
that is coupled with linearly correlated noise and showed explicit convergence rates in both convex and non-
convex objective functions. They also devised a new objective for the offline matrix factorization, improving
the convergence property. Du et al. Du et al. (2021) presented for the first time a dynamic differentially
private mechanism for SGD that can adaptively trade off between the utility and the privacy. However,
their additive noise mechanism involving an exponential function could be sophisticated to implement. A
more recent work Feng & Venkitasubramaniam (2024) proposed a novel differentially private optimizer by
combining noisy SGD and randomized quantization, which is close to our work. They theoretically analyzed
the utility-privacy tradeoff of the proposed scheme on specifically convex losses and empirically showed results
regarding the impact of different randomized quantization parameters. Unfortunately, there is no reported
result on the nonconvex objectives using the developed method.

A.2 Additional Algorithms

In this section, we present additional algorithm frameworks degenerated from D2P2-SGD, including D2P-
SGD (in Algorithm 2) and DP2-SGD (in Algorithm 3). We also list out the differences among these three
algorithms in Table 3.

Algorithm 2 D2P-SGD
1: Input: Model initializationx1, step size α, the number of epochs K, size of mini-batch B, training set
D, noise sequence σ2

ϵ,1, σ2
ϵ,2, ..., σ2

ϵ,K , γ
2: for each k in 1 to K do
3: Split the dataset D into multiple mini-batches with size B and randomly sample one B
4: Clip the per-sample gradient ĝs

k = ∇f(xk; s)/(∥∇f(xk; s)∥+ γ), s ∈ B
5: Calculate the mini-batch stochastic gradient gk = 1

B

∑
s∼B ĝs

k

6: Perturb the gradient gk using dynamic noise: g̃k = gk + ϵk, where ϵk ∼ N (0, σ2
ϵ,kIp)

7: Update parameter using projected noisy gradient: xk+1 = xk − αg̃k

8: end for
9: Output: xK

Algorithm 3 DP2-SGD
1: Input: Model initializationx1, step size α, the number of epochs K,lower dimension p, random matrices

A1, A2, ..., AK , size of mini-batch B, training set D, noise variance σ2
ϵ , γ

2: for each k in 1 to K do
3: Split the dataset D into multiple mini-batches with size B and randomly sample one B
4: Clip the per-sample gradient ĝs

k = ∇f(xk; s)/(∥∇f(xk; s)∥+ γ), s ∈ B
5: Calculate the mini-batch stochastic gradient gk = 1

B

∑
s∼B ĝs

k

6: Project noisy gradient using A⊤
k : g̃k = Ak( 1√

p A⊤
k gk + ϵk), where ϵk ∼ N (0, σ2

ϵ Ip)
7: Update parameter using projected noisy gradient: xk+1 = xk − αg̃k

8: end for
9: Output: xK

Table 3: D2P2-SGD and its different variants.

Method p σ2
ϵ,k Ak

D2P2-SGD ≥ 1 σ2
ϵ√
k

Rd×p

D2P-SGD N/A σ2
ϵ√
k

I ∈ Rd×d

DP2-SGD ≥ 1 σ2
ϵ Rd×p
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A.3 Proof for privacy guarantee

In this subsection, we provide proof of the privacy guarantee. Before that, we present some existing results
to characterize the proof. We begin with a function defined in the following.
Definition 2. Denote by M a randomized mechanism and by D and D′ two adjacent inputs. The parame-
terized Rényi divergence between two distributions is defined as:

eM(η) = supD,D′Dη(M(D)||M(D′))

= supD,D′
1

η − 1 logEθ∼M(D′)

[(
M(D)(θ)
M(D′)(θ)

)η]
,

(4)

where M(D)(θ) refers to the density at θ of this distribution.

With the above definition, the first result as follows is from Theorem 2.1 in Abadi et al. (2016).
Lemma 3. Let M =MK ◦MK−1 ◦ · · · ◦M1 be defined in an interactively compositional way, then for any
fixed η ≥ 1,

eM(η) ≤
K∑

k=1
eMi(η). (5)

eM(η) is defined as in Definition 2.

Proof. The proof directly follows from the proof of Theorem 2.1 (Composability) in Abadi et al. (2016).

The K iterations of D2P2-SGD can be decomposed into K compositions of sub-sampled Gaussian mech-
anisms with uniform sampling without replacement. We denote by G(σϵ) ◦ S(n, B). With the abuse of
notations, we denote by ẽ(η) the privacy-accountant functional of Eq. 4 in Definition 2. Another lemma
in the following introduces a sufficient and necessary condition for a mechanism to be (ε, δ)− differentially
private.
Lemma 4. Let M be a randomized mechanism. M is (ε, δ)−DP if and only if δ ≥ exp[(η− 1)(eM(η)− ε)],
for some η > 1.

Proof. Let P =M(x) and Q =M(x′) for adjacent datasets x, x′ and define the privacy loss random variable
L(ζ) = log P r[P =ζ]

P r[Q=ζ] . We first show the sufficiency, i.e., if the condition holds, then M is (ε, δ)-DP. Based on
Definition 2, we know that

exp[(η − 1)eM(η)] = Eζ∼Q

[
e(η−1)L(ζ)

]
. (6)

We then apply Markov’s inequality to the privacy loss under P such that

Prζ∼P

[
L(ζ) > ε

]
= Prζ∼P

[
e(η−1)L(ζ) > e(η−1)ε

]
≤

Eζ∼P

[
e(η−1)L(ζ)

]
e(η−1)ε

. (7)

Transforming the expectation under P to one under Q yields

Eζ∼P

[
e(η−1)L(ζ)

]
= Eζ∼Q

[
eηL(ζ)

]
= exp[(η − 1)eM(η)]. (8)

Substituting Eq. 8 to Eq. 7 and simplifying it grants us the following

Prζ∼P

[
L(ζ) > ε

]
≤ exp[(η − 1)eM(η)] ≤ δ. (9)

The second inequality is based on the condition δ ≥ exp[(η−1)(eM(η)−ε)]. Thus, this implies Pr[L > ε] ≤ δ,
which is equivalent to (ε, δ)-DP. We now show the necessity, i.e., IfM is (ε, δ)-DP, then the condition holds
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for some η > 1. By the definition of (ε, δ)-DP, the privacy loss L satisfies Prζ∼P [L(ζ) > ε] ≤ δ. Then, we
have for any c > 1

exp[(c− 1)eM(c)] = Eζ∼Q

[
e(c−1)L(ζ)

]
=

∫
L≤ε

e(c−1)LdQ +
∫

L>ε

e(c−1)LdQ. (10)

We next bound the integrals. For the first term, we have∫
L≤ε

e(c−1)LdQ ≤ e(c−1)ε.

While for the second integral, with the fact that dP = eLdQ and Pr[L > ε] ≤ δ, we can obtain∫
L>ε

e(c−1)LdQ =
∫

L>ε

e(c−2)LdP ≤ supζ:L(ζ)>εe(c−2)L(ζ) · δ.

We will now optimize c in the following to conclude the proof. The supζ:L(ζ)>εe(c−2)L(ζ) · δ may be large,
but for a fixed δ > 0, there exists a c > 1 (sufficiently close to 1) such that

exp[(c− 1)eM(c)] ≤ e(c−1)ε + δ ·H(c),

where H(c) is a constant depending on c and δ. Therefore, we can rearrange the above relationship to obtain
the following:

eM(c) ≤ ε + log(1 + δ ·H(c))
c− 1 .

Hence, for a sufficiently large c, i.e., c = 1 +
√

2log(1/δ)/ε, this implies that δ > exp[(c − 1)(eM(c) − ε),
which completes the proof.

Before the formal proof for the privacy guarantee in Theorem 1, we present another auxiliary technical
lemma, which dictates the privacy amplification by uniformly sub-sampling without replacement.
Lemma 5. For the mechanism induced by D2P2-SGD, G(σϵ) ◦ S(n, B), with B

n < 1
10 , the following privacy

accountant holds:

ẽ(η) ≤ 7B2η

σ2
ϵ n2 , ∀η ≤ σ2

ϵ

2 log
(

n

B

)
. (11)

Proof. As per-sample gradients are clipped to l2 norm 1 in D2P2-SGD, this ensures the sensitivity ∆ = 1
for the mini-batch sum. Let q = B/n. Based on Lemma 3 from Abadi et al. (2016), we can obtain that

ẽ(η) ≤ q2η

σ2
ϵ

+ 3.5q2η2

σ4
ϵ

= q2η

σ2
ϵ

(
1 + 3.5qη

σ2
ϵ

)
.

The condition η ≤ σ2
ϵ

2 log(n/B) implies η ≤ σ2
ϵ

2 log(1/q). As 1/q ≤ 1/10, then we have:

3.5qη

σ2
ϵ

= 3.5q

σ2
ϵ

σ2
ϵ

2 log(1/q) = 1.75qlog(1/q) ≤ 1.75 · 0.24 ≈ 0.42.

Hence, ẽ(η) ≤ 7q2η
σ2

ϵ
, which completes the proof.

With this in hand, we are now ready to prove Theorem 1. We restate it in the following for completeness.

Theorem 1: (Privacy) Let Assumption 2 hold. There exist constants C1, C2 > 0 such that for any ε ≤
C1B2K

n2 , D2P2-SGD is (ε, δ)-differentially private for any δ > 0, if σ2
ϵ ≥

C2B2K2ln(1/δ)
n2ε2 .
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Proof. With the explicit form of noise variance we have defined in this work, i.e., σ2
ϵ,k = σ2

ϵ

k , it is immediately
obtained that σ2

ϵ,1 > σ2
ϵ,2 > ... > σ2

ϵ,K . If σ2
ϵ,K ≥

C2B2Kln(1/δ)
n2ε2 , then σ2

ϵ,k ≥
C2B2Kln(1/δ)

n2ε2 for all k. Thus, the
core of the proof has now turned to σ2

ϵ . As discussed before, D2P2-SGD can be treated as a composition,
denoted by M. In light of Lemma 3 and Lemma 5, it is easily obtained that

eM(η) ≤ 7K2B2η

σ2
ϵ n2 , ∀η ≤ σ2

ϵ

2 log
(

n

B

)
. (12)

K is due to the K iterations in D2P2-SGD and K ≤ K2. Additionally, based on Lemma 4, we can know
that D2P2-SGD is (ε, δ)-DP if there exists η ≤ σ2

ϵ

2 log
(

n
B

)
such that

7K2B2η

σ2
ϵ n2 ≤ ε/2, exp

(
−(η − 1)ε

2

)
≤ δ. (13)

It is now easy to verify that if ε = C1B2K2/n2, all these conditions can be satisfied by setting σϵ =
C2BK

√
log(1/δ)

nε , for some explicit constants C1 and C2.

A.4 Proof for convex objectives

In this section, we will present the convergence proof for convex functions. Different from the traditional
analysis to DPSGD, in D2P2-SGD, the difficulties and complexities of the proof arise from the matrix
projection caused by Ak and the inner product between xk − x∗ and gk

∥gk∥+γ . The matrix product requires
random projection properties and the relationship with the outer product of vectors. While for the inner
product between xk −x∗ and gk

∥gk∥+γ , we need to decompose gk to gk −∇f(xk) and ∇f(xk). Also, we have
to handle the denominator ∥gk∥+ γ, which is a varying constant with ∥gk∥.

We start with a well-known result regarding the convexity is presented in the following to characterize the
analysis.

Lemma 6. (convexity Garrigos & Gower (2023)) If f : Rd → R is convex and differentiable, then for
x, y ∈ Rd,

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩ (14)

Theorem 2: (Utility for convex functions) Let Assumptions 1 and 2 hold. Suppose that f is a convex
function and that A is a random matrix with each element being sampled from a normal distribution
N (0, σ2

A). Also, let the additive noise of DP mechanism have the variance σ2
ϵ,k. If the step size α ≤ 1

2L , then
for the iterates {xk}K

k=1, K ≥ 1 generated by D2P2-SGD, the following relationship holds true

E[f(x̄K)− f∗] ≤ ∥x1 − x∗∥2(1 + γ)
2αKσ2

A

√
p

+ αp1.5(1 + γ)(lnK + 1)σ2
ϵ

2K
+ αpd2σ2

A(1 + γ)
2 , (15)

where x̄K = 1
K

∑K
k=1 xk.
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Proof. Let gs
k = ∇f(xk; s) and define Cs = 1

∥gs
k

∥+γ . Using the update law we have:

E[∥xk+1 − x∗∥2] = E[∥xk − αAk( 1
√

p
A⊤

k

1
B

∑
s

Csgs
k + ϵk)− x∗∥2]

= E[∥xk − x∗∥2] + E[∥αAk( 1
√

p
A⊤

k

1
B

∑
s

Csgs
k + ϵk)∥2]− 2αE[⟨ 1

√
p

AkA⊤
k

1
B

∑
s

Csgs
k + Akϵk, xk − x∗⟩]

= E[∥xk − x∗∥2] + E[∥α( 1
√

p
AkA⊤

k

1
B

∑
s

Csgs
k + Akϵk)∥2]− 2αE[⟨ 1

√
p
E[AkA⊤

k ] gk

∥gk∥+ γ
, xk − x∗⟩]

= E[∥xk − x∗∥2] + E[∥α( 1
√

p
AkA⊤

k

1
B

∑
s

Csgs
k + Akϵk)∥2]− 2αE[⟨ 1

√
p

pσ2
AI

gk

∥gk∥+ γ
, xk − x∗⟩]

= E[∥xk − x∗∥2] + E[∥α( 1
√

p
AkA⊤

k

1
B

∑
s

Csgs
k + Akϵk)∥2]− 2α

√
pσ2

AE[⟨xk − x∗,
gk

∥gk∥+ γ
⟩]

= E[∥xk − x∗∥2] + α2E[∥ 1
√

p
AkA⊤

k

1
B

∑
s

Csgs
k∥2] + α2E[∥Akϵk∥2]− 2α

√
pσ2

AE[⟨xk − x∗,
gk

∥gk∥+ γ
⟩]

(16)

The third equality follows from that E[Akϵk] = 0 based on the Concentration Theorem for Projections Das-
gupta et al. (2012), the independence between AkA⊤

k and g(xk), and E[ 1
B

∑
s Csgs

k] = gk

∥gk∥+γ . According
to Lemma 2, we know that E[AkA⊤

k ] = pσ2
AI Nabil (2017), which yields the fourth equality. The last equal-

ity follows similarly from E[Akϵk] = 0. As E[∥AkA⊤
k ∥2] = E[

∥∥∥∑p
i=1 Ak,iA

⊤
k,i

∥∥∥2
] ≤ p

∑p
i=1 E[∥Ak,iA

⊤
k,i∥2] ≤

p
∑p

i=1 E[∥Ak,i∥2]E[∥A⊤
k,i∥2] = p2d2σ4

A. Also, E[∥Akϵk∥2] = E[ϵ⊤
k A⊤

k Akϵk] = E[ϵ⊤
k E[A⊤

k Ak]ϵk] = ϵ⊤
k pσ⊤

AIϵk =
E[pσ2

A∥ϵk∥2]. With ∥Csgs
k∥ ≤ 1, the following relationship holds:

E[∥xk+1 − x∗∥2] ≤ E[∥xk − x∗∥2] + α2p1.5d2σ4
A + α2p2σ2

Aσ2
ϵ,k − 2α

√
pσ2

AE[⟨xk − x∗,
gk −∇f(xk) +∇f(xk)

∥gk∥+ γ
⟩]

≤ E[∥xk − x∗∥2] + α2p1.5d2σ4
A + α2p2σ2

Aσ2
ϵ,k + 2α

√
pσ2

AE[⟨x∗ − xk,
∇f(xk)
∥gk∥+ γ

⟩]

+ 2α
√

pσ2
AE[⟨x∗ − xk,

gk −∇f(xk)
∥gk∥+ γ

⟩]

(17)

As E[gk] = ∇f(xk), the last term on the right hand side of the above inequality equals 0. Using Lemma 6
and Cauchy-Schwartz inequality yields the following,

E[∥xk+1 − x∗∥2] ≤ E[∥xk − x∗∥2] + α2p1.5d2σ4
A + α2p2σ2

Aσ2
ϵ,k +

2ασ2
A

√
p

∥gk∥+ γ
E[f∗ − f(xk)] (18)

Then, we can obtain

2ασ2
A

√
p

∥gk∥+ γ
E[f(xk)− f∗] ≤ E[∥xk − x∗∥2] + α2p1.5d2σ4

A + α2p2σ2
Aσ2

ϵ,k − E[∥xk+1 − x∗∥2] (19)

Based on the definition of the clipping mechanism, we know that g ← g · 1
∥g∥+γ ensures ∥gk∥ ≤ 1 for all

k > 0. Therefore, diving both sides of the last inequality by 2ασ2
A

√
p

∥gk∥+γ and applying ∥gk∥ ≤ 1 produces the
following

E[f(xk)− f∗] ≤ E[∥xk − x∗∥2 − ∥xk+1 − x∗∥2]
2√pσ2

Aα
(1 + γ) + αpd2σ2

A(1 + γ)
2 +

αp1.5σ2
ϵ,k(1 + γ)
2

≤ E[∥xk − x∗∥2 − ∥xk+1 − x∗∥2]
2√pσ2

Aα
(1 + γ) + αpd2σ2

A(1 + γ)
2 +

αp1.5σ2
ϵ,k(1 + γ)
2

(20)
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Summing over k from 1 to K and dividing both sides by K produces the following relationship:

1
K

K∑
k=1

E[f(xk)− f∗] ≤ E[∥x1 − x∗∥2

2Kα
√

pσ2
A

(1 + γ) + αpd2σ2
A(1 + γ)
2 + αp1.5(1 + γ)

2K

K∑
k=1

σ2
ϵ,k (21)

Using Jensen’s inequality on f(xk)− f∗ (i.e., f(x̄K)− f∗ ≤ 1
K

∑K
k=1 E[f(xk)− f∗]) completes the proof.

Corollary 1. With conditions defined in Theorem 2, when α = O( 1√
K

), the following relationship holds
true, i.e., E[f(x̄K)− f∗] ≤ O( 1√

K
+ lnK

K1.5 ).

Proof. Based on the conclusion from Theorem 2, substituting α = O( 1√
K

) into it and applying the upper
bound of the partial sum leads to the desirable result.

A.5 Impact of Privacy and Dimensions for Convex Functions

In this subsection, we derive the explicit impact of the privacy budget ε and dimensions, d and p on the
error bound and compare it to that in DPSGD. Recall the conclusion from Theorem 2 in the following:

E[f(x̄K)− f∗] ≤ ∥x1 − x∗∥2(1 + γ)
2αKσ2

A

√
p

+ αp1.5(1 + γ)(lnK + 1)σ2
ϵ

2K
+ αpd2σ2

A(1 + γ)
2 (22)

Let D = ∥x1 − x∗∥2 and set γ ≈ 0 for simplicity such that the last inequality can be rewritten as

E[f(x̄K)− f∗] ≤ O
(

D

αKσ2
A

√
p

+ αp3/2lnKσ2
ϵ

K
+ αpd2σ2

A

)
. (23)

Let σ2
ϵ = C2B2K2ln(1/δ)

n2ϵ2 , C2 = nε

p5/2KlnK
√

ln(1/δ)
and B = O(1). Also, based on Corollary 1, we set step size

α = p3/2

d2
√

K
. Substituting σ2

ϵ , C2, B, α into the last inequality, we have

E[f(x̄K)− f∗] ≤ O
(

1√
K
·
(

Dd2

p2σ2
A︸ ︷︷ ︸

Initialization error

+
√

pln(1/δ)
d2nε︸ ︷︷ ︸

Privacy error

+ p5/2σ2
A︸ ︷︷ ︸

Projection error

))
. (24)

The last inequality states that the error bound is impacted by initialization error, privacy error, and pro-
jection error. Recalling from Bassily et al. (2014), we know that the vanilla DPSGD has achieved the

optimal convergence rate of O
(

LD√
K

(
1 +
√

dln(1/δ)
nε

))
. Comparing the privacy errors in both D2P2-SGD

and DPSGD yields that the former has reduced the negative impact of privacy error significantly due to the
random projection, but at the cost of additional approximation error p5/2σ2

A caused by the random projec-
tion. Additionally, the initialization error in D2P2-SGD is also impacted by the dimensions d and p. With
random projection, the tradeoff between utility and privacy in D2P2-SGD becomes more complex compared
to DPSGD. This also requires a careful selection of reduced dimension p and a proper sampling distribution
for the projection matrix A in D2P2-SGD to achieve better performance.

A.6 Proof for non-convex objectives

In this subsection, we present the missing proof for the non-convex objectives. Unlike the convex setting,
our non-convex analysis faces distinct challenges arising from the interaction between the inner product of
batch gradient and stochastic gradient, ⟨∇f(xk), gk⟩ and the random projection matrix product. To resolve
these, we must simultaneously leverage: (i) the independence between random projections and mini-batch
sampling, and (ii) triangle inequality decomposition of the gradient norms ∥∇f(xk)∥ and ∥gk∥.

Theorem 3: (Utility for non-convex functions) Let Assumptions 1 and 2 hold. Suppose that A is a random
matrix with each element being sampled from a normal distribution N (0, σ2

A). Also, let the additive noise of
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the DP mechanism have the variance σ2
ϵ,k. If the step size α ≤ 1

2L , and, then for the iterates {xk}K
k=1, K ≥ 1

generated by D2P2-SGD, the following relationship holds true

mink∈[1,K]E[∥∇f(xk)∥] ≤ f(x1)− f∗

Kσ2
A

√
pα

+ αLp1.5σ2
ϵ (lnK + 1)
K

+ Lα
√

pd2σ2
A + 2σ + γ. (25)

Proof. Due to the smoothness condition, we have the following relationship:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L

2 ∥xk+1 − xk∥2 (26)

Also, we know that xk+1 − xk = −αAk( 1√
p A⊤

k
1
B

∑
s Csgs

k + ϵk).

Substituting the above equality into the smoothness equation yields the following relationship:

f(xk+1) ≤ f(xk) + ⟨∇f(xk),−αAk( 1
√

p
A⊤

k

1
B

∑
s

Csgs
k + ϵk)⟩

+ Lα2

2 ∥Ak( 1
√

p
A⊤

k

1
B

∑
s

Csgs
k + ϵk)∥2

(27)

Taking expectation on both sides, with the proof from Theorem 2, we can obtain the following relationships

E[f(xk+1)] ≤ E[f(xk)]− αE

[
⟨∇f(xk), 1

√
p

AkA⊤
k

1
B

∑
s

Csgs
k + Akϵk⟩

]

+ Lα2

2 E

[
∥ 1
√

p
AkA⊤

k

1
B

∑
s

Csgs
k + Akϵk∥2

]

≤ E[f(xk)]− αE[⟨∇f(xk), 1
√

p
AkA⊤

k

1
B

∑
s

Csgs
k⟩] + Lα2

2 E

[
∥ 1
√

p
AkA⊤

k

1
B

∑
s

Csgs
k∥2 + ∥Akϵk∥2

]

= E[f(xk)]− αE[⟨∇f(xk), 1
√

p
AkA⊤

k

1
B

∑
s

Csgs
k⟩] + Lα2

2 E

[
∥ 1
√

p
AkA⊤

k

1
B

∑
s

Csgs
k∥2

]
+ Lα2
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[
∥ Akϵk∥2]

= E[f(xk)]− αE[⟨∇f(xk), 1
√

p
E[AkA⊤

k ] gk

∥gk∥+ γ
⟩] + Lα2

2 E

[
∥ 1
√

p
AkA⊤
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1
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∑
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Csgs
k∥2

]
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2 E
[
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(28)
The second inequality is due to the expectation of Akϵk equal to 0, as shown in the generally convex case.
From random projection property we know E[AkA⊤

k ] = pσ2
AI, so we will have:

E[f(xk+1)] ≤ E[f(xk)]− α
√

pσ2
AE[⟨∇f(xk)− gk + gk,

gk

∥gk∥+ γ
⟩]

+ Lα2

2 E

[
∥ 1
√

p
AkA⊤

k

1
B

∑
s

Csgs
k∥2

]
+ Lα2

2 E
[
∥ Akϵk∥2] (29)

As −⟨a, b⟩ ≤ ∥a∥∥b∥ and g⊤
k gk = ∥gk∥2, we have:

E[f(xk+1)] ≤ E[f(xk)] + α
√

pσ2
AE[∥∇f(xk)− gk∥

∥gk∥
∥gk∥+ γ

]Lα2

2 pd2σ4
A + Lα2

2 p2σ2
Aσ2

ϵ,k − α
√

pσ2
AE[∥gk∥+ γ

∥gk∥+ γ
∥gk∥]

+ α
√

pσ2
AE[ γ

∥gk∥+ γ
∥gk∥]

(30)

Since ∥gk∥
∥gk∥+γ ≤ 1, we have α

√
pσ2

AE[∥∇f(xk) − gk∥ ∥gk∥
∥gk∥+γ ] ≤ α

√
pσ2

AE[∥∇f(xk) − gk∥]. Hence, with
∥∇f(xk)∥ ≤ ∥∇f(xk)− gk∥+ ∥gk∥ the following relationship can be obtained:

α
√

pσ2
AE[∥∇f(xk)∥] ≤ E[f(xk)− f(xk+1)] + 2α

√
pσ2

AE[∥∇f(xk)− gk∥]

+ Lα2

2 pd2σ4
A + Lα2

2 p2σ2
Aσ2

ϵ,k + α
√

pσ2
AE[ γ

∥gk∥+ γ
∥gk∥]

(31)
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Dividing both sides of the last inequality by α
√

pσ2
A yields:

E[∥∇f(xk)∥] ≤ E[f(xk)− f(xk+1)]
α
√

pσ2
A

+ 2E[∥∇f(xk)− gk∥]

+
Lα
√

pd2σ2
A

2 +
Lαp1.5σ2

ϵ,k

2 + γ

(32)

which is due to γ
∥gk∥+γ ∥gk∥ ≤ γ. Since E[∥∇f(xk)− gk∥] ≤

√
E[∥∇f(xk)− gk∥2] ≤ σ√

B
Summing the last

equation over from 1 to K and dividing both sides by K grants us the following relationship:

1
K

K∑
k=1

E[∥∇f(xk)∥] ≤ f(x1)
ασ2

A

√
pK

+ 2 σ√
B

+ γ +
Lα
√

pd2σ2
A

2 + Lαp1.5

2K

K∑
k=1

σ2
ϵ,k (33)

With the fact that
∑K

k=1 σ2
ϵ,k ≤ (lnK + 1)σ2

ϵ and that the minimum is less than the average, the desirable
result is obtained.

Corollary 2. With conditions defined in Theorem 3, when α = O( 1√
K

), the following relationship hold
true, mink∈[1,K]E[∥∇f(xk)∥] ≤ O( 1√

K
+ lnK

K1.5 + σ + γ).

Proof. Using the conclusion from Theorem 3 and substituting the step size α into the conclusion yields the
desirable result.

A.7 Comparison of the Clipping Bias

In this subsection, we show the comparison among different methods for the clipping bias in Table 4. It
suggests that our clipping bias is proportional to σ, which is the same as in existing works. However, due to
the adoption of per-sample gradient normalization, the stability constant γ also affects the clipping bias. In
practice, γ is a small positive constant similar to the one in the Adam optimizer.

Table 4: Comparison among different methods.
Method Clipping Bias

Chen et al. (2020) Wasserstein distance
Koloskova et al. (2023a) σ or σ2/a

Xiao et al. (2023) 15σ
Bu et al. (2024) σ/r

D2P2-SGD (Ours) 2σ/
√

B + γ

a > 0 is the clipping threshold; r > 0

A.8 Impact of Privacy and Dimensions for Non-convex Functions

In this subsection, we derive the explicit impact of the privacy budget ε and dimensions, d and p on the
error bound. Recall the conclusion from Theorem 3 in the following:

mink∈[1,K]E[∥∇f(xk)∥] ≤ f(x1)− f∗

Kσ2
A

√
pα

+ αLp1.5σ2
ϵ (lnK + 1)
K

+ Lα
√

pd2σ2
A + 2σ√

B
+ γ. (34)

Let D = f(x1)− f∗ such that the last inequality can be rewritten as

E[f(x̄K)− f∗] ≤ O
(

D

αKσ2
A

√
p

+ αp3/2lnKLσ2
ϵ

K
+ Lα

√
pd2σ2

A + σ√
B

+ γ

)
. (35)
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Let σ2
ϵ = C2B2K2ln(1/δ)

n2ϵ2 , C2 = nε

p5/2KlnK
√

ln(1/δ)L
and B = O(1). Also, based on Corollary 2, we set step size

α = p3/2

d2
√

K
. Substituting σ2

ϵ , C2, B, α into the last inequality, we have

E[f(x̄K)− f∗] ≤ O
(

1√
K
·
(

Dd2

p2σ2
A︸ ︷︷ ︸

Initialization error

+
√

pln(1/δ)
d2nε︸ ︷︷ ︸

Privacy error

+ p2σ2
A︸ ︷︷ ︸

Projection error

)
+ σ + γ︸ ︷︷ ︸

Clipping bias

)
. (36)

The last inequality reveals that the error bound is dictated by initialization error, privacy error, projec-
tion error, and clipping bias. Different from convex functions, the asymptotic convergence for non-convex
functions leads to the clipping bias, which worsens the utility when K is sufficiently large. When K is
small, corresponding to the early phase of optimization, the tradeoff between utility and privacy dominates.
Analogously, this requires a meticulous selection of dimension p and a proper sampling distribution for the
projection matrix in D2P2-SGD to achieve better performance if non-asymptotic convergence is favored. If
γ is set O( 1√

K
), the clipping bias is σ, which resembles the result in Koloskova et al. (2023a).

A.9 Additional Results

All the experiments were conducted on a machine equipped with an Intel Xeon Silver 4110 CPU and an
NVIDIA Titan RTX GPU.

A.9.1 Additional Datasets

Figure 7 shows the performance with ResNet20 Wang et al. (2019a) on the CIFAR-10 dataset. From the
plots, we can observe that D2P-SGD slightly performs better than D2P2-SGD due to the random projection
error in the error bound, which also deteriorates the performance of DP2-SGD. The dynamic variance
mechanism plays a central role in enhancing performance closer to SGD. However, the tradeoff between
random projection and privacy drives the performance of D2P2-SGD between those in D2P-SGD (upper)
and DP2-SGD (lower).

In Figures 8 and 9, results for the CIFAR-10 dataset are provided, showing a similar trend to the other
datasets. We also compare them to disclose the impact of the reduction rate. The reduction rate is the
number of dimensions that have been compressed in random projection. For example, if d = 10000 and the
reduction rate is 0.3, then p = 7000. The chosen hyperparameters are: batch size = 1024, σϵ = 2.0, and
dimension reduction rate = 0.3 in Figure 8. If we decrease the dimension reduction rate to 0.1 in Figure 9,
we can observe that the performance is enhanced, but the privacy loss remains the same, which aligns with
our findings in the main contents.

In Figure 10, when reducing σϵ = 1.0, we can see a significant accuracy improvement, but with a sacrifice
of privacy loss instead. However, D2P2-SGD achieves the best performance over baselines and is favorably
comparable to SGD. Similarly, for Figures 11-13 (KMNIST, EMNIST, MNIST), D2P2-SGD is favorably
comparable to or outperforms all baselines, which strengthens our claims.

A.9.2 Calculation of C1 value

From Figures 2 and 3, given the batch size equal to 1024, the number of epoch 40, and the training data
sizes 60000 and 73257, based on the upper bound for ε in Theorem 1, ε ≤ C1B2K

n2 , we can obtain that as
long as C1 ≥ 314, ε values for both datasets will remain within the bound.

A.9.3 Detail of network architecture

A.9.4 Hyperparameter Setup

In this section, we detail the key hyperparameters we have used in this work. All hyperparameters are
subject to manual tuning, though a hyperparameter optimization method is likely beneficial for potential
performance improvements.
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Figure 7: Comparison among different methods for CIFAR10 data with ResNet20: on the right side, the
privacy loss is shown for static and dynamic scenarios.
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Figure 8: Comparison among different methods for CIFAR10 data with reduction rate being 0.3, with CNN:
on the right side, the privacy loss is shown for static and dynamic scenarios.
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Figure 9: Comparison among different methods for CIFAR10 data with reduction rate being 0.1, with CNN:
on the right side, the privacy loss is shown for static and dynamic scenarios.
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Figure 10: Comparison among different methods for CIFAR10 data with CNN: training loss and testing
accuracy.
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Figure 11: Comparison among different methods for KMNIST data with CNN: training loss and testing
accuracy.
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Figure 12: Comparison among different methods for EMNIST data with CNN: training loss and testing
accuracy.
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Figure 13: Comparison among different methods for MNIST data with CNN: training loss and testing
accuracy.

Table 5: Network architecture for FashionMNIST, SVHN, and CIFAR-10 datasets.

Layer Parameters
Convolution 16 filters of 3 × 3, strides 1
Average Pooling 2 × 2
Convolution 32 filters of 3 × 3, strides 1
Average Pooling 2 × 2
Convolution 32 filters of 3 × 3, strides 1
Average Pooling 2 × 2
Convolution 64 filters of 3 × 3, strides 1
Adaptive Average Pooling 1 × 1
Fully connected 64 units
Softmax 10 units

Table 6: Hyperparameters for experiments.

Hyperparameter Value
Learning rate α 0.01
Clipping parameter γ 0.01
Batch size B (256, 512, 1024)
Number of Epoch K 40
Injected noise variance σϵ 3.0
Sampling variance 1
Percentage of dimensionality reduction 0.7
Number of random seeds 4

27


	Introduction
	Problem Formulation and Preliminaries
	Algorithm and Main Results
	Algorithmic Frameworks
	Main Results

	Numerical Experiments
	Conclusions and Broader Impacts
	Appendix
	Additional Related Works
	Additional Algorithms
	Proof for privacy guarantee
	Proof for convex objectives
	Impact of Privacy and Dimensions for Convex Functions
	Proof for non-convex objectives
	Comparison of the Clipping Bias
	Impact of Privacy and Dimensions for Non-convex Functions
	Additional Results
	Additional Datasets
	Calculation of C1 value
	Detail of network architecture
	Hyperparameter Setup



