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Abstract

Heating, ventilation, and air conditioning (HVAC)
systems experience reduced energy efficiency due
to fouling on heat exchangers, a problem tra-
ditional maintenance struggles to address cost-
effectively. While computer vision offers a scal-
able solution, its effectiveness is limited by the
scarcity of labeled data for such rare anomalies.
This paper introduces the Root-Expansion Tiling-
based Image Augmentation for Predictive Main-
tenance (RETINA-PdM) algorithm, a method for
generating realistic and physics-inspired synthetic
data that simulates natural fouling growth. By
training convolutional neural networks on data
produced by RETINA-PdM, we achieved a pre-
dictive F1 score of 0.9642, a significant improve-
ment over previous methods that relied on geo-
metrically simple patterns. This work provides
building operators with a highly accurate and cost-
efficient tool for predictive maintenance, paving
the way for substantial energy savings and opti-
mized building operations.

1. Introduction

The energy efficiency of buildings is heavily impacted by
heating, ventilation, and air conditioning (HVAC) systems.
A primary cause of inefficiency is fouling, where material
accumulates on heat exchanges, which impedes thermal
transfer and forces the system to consume more energy.
Predictive maintenance (PdM) techniques using computer
vision can be used to determine when cleaning is required,
but the effectiveness of these techniques depends on large
and labeled datasets which are difficult to acquire for rare
anomalies like fouling.

Current solutions to reduce fouling on heat exchanges in-
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clude preventative maintenance (El Marazgioui & El Fadar,
2022), where regular cleaning is done even when it may not
be required, and sensor-based PAM which relies on mon-
itoring the symptoms of fouling on HVAC systems using
various sensor data. These symptoms include, but are not
limited to, a decline in overall heat transfer efficiency (Og-
bonnaya & Ajayi, 2017), reductions in fluid mass flow
rates (Ogbonnaya & Ajayi, 2017), anomalies in commonly
logged process variables (Sundar et al., 2020), and shifts
in terminal temperature differences (Bobde et al., 2022).
While preventative maintenance is effective at preventing
large amount of fouling, it is inefficient as the maintenance
may be done even when it is not strictly necessary. The
sensor-based PdM is more efficient than preventative main-
tenance, but relies on expensive sensors to be installed and
faces training data scarcity issues because fouling is rare.

A more robust solution to PdM is to use computer vision
models, as they can operate on more common and easy-
to-install hardware like cameras. While computer vision
techniques do not require expensive sensors to operate, they
still struggle with the data scarcity issue, necessitating the
need for synthetic training data to represent the rare fouling
patterns. The work of Strzelczyk et al. (Strzelczyk et al.,
2024) demonstrated that a convolutional neural network
(CNN) trained on synthetic data could effectively detect
fouling, but this work was limited by its reliance on gen-
erating geometrically simple fouling spots. The uniform
patterns used in this work did not capture the irregular and
complex nature of real-world fouling, which limited the
model’s predictive accuracy. This work achieved a moder-
ately high predictive F1 score of 0.8595, demonstrating the
effectiveness of the approach despite the relatively simple
synthetic data generation process.

This paper presents a new synthetic data generation algo-
rithm called Root-Expansion Tiling-based Image Augmen-
tation for Predictive Maintenance (RETINA-PdM) as its
central contribution. It does this by simulating a more natu-
ralistic foul-growth pattern within the synthetic data. This
result represents a significant advancement in developing
robust, data-driven PdM solutions for HVAC efficiency. By
providing building operators a robust, highly accurate, and
cost-efficient way to monitor fouling in their HVAC units,
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this work has substantial and practical implications for the
computational optimization of buildings.

The remainder of this paper is organized as follows: Sec-
tion 2 examines the existing literature. Section 3 describes
how RETINA-PdM operates. Section 4 presents the re-
sults, discusses the findings, and highlights the approach’s
limitations. Finally, Section 5 concludes the paper.

2. Related Works

Collecting and annotating real-world data is both costly
and labor-intensive, which has encouraged a shift toward
synthetic datasets. Existing research (Man & Chahl, 2022)
highlights the advantage of data synthesis for automating
data collection and labeling as it significantly reduces as-
sociated costs. They also warn about biases which may be
induced by synthetic data due to limited variability. Previ-
ous research (Dankar & Ibrahim, 2021) reviews synthetic
data generators primarily aimed at numerical and tabular
data, while other work (Tian et al., 2023) extended these
concepts specifically to predictive maintenance scenarios
involving time-series data.

To support early fouling detection and preventative main-
tenance in industrial systems, recent work has leveraged
synthetic data generation to overcome the chronic scarcity
of labeled fault imagery. A GAN-based augmentation frame-
work blends GAN-generated defect patches onto pristine im-
ages to dramatically expand training sets for visual fault clas-
sifiers (Jain et al., 2022). A digital-twin finite-element model
simulates sub-surface defect heat signatures, interpolating
them onto a pixel grid to generate synthetic thermograms
for U-Net segmentation pre-training (Pareek et al., 2025). A
deep convolutional GAN trained on limited borescope blade
images fuses generated defects onto clean backgrounds to
fine-tune object detection models for aircraft engine inspec-
tions (Schaller et al., 2025). Finally, a self-attention DC-
GAN with a spatial-content attention discriminator synthe-
sizes X-ray weld defect images, which, when combined
with real data, enable semantic segmentation models to ex-
cel at pressure-vessel weld defect detection (Wang et al.,
2024).

Physics-informed synthetic data generation approaches have

also been developed to further enhance realism by integrat-
ing domain-specific physical models. Computational fluid
dynamics simulations have generated datasets for defect
detection and improved predictive maintenance pipelines
(Lakshmanan et al., 2023). Integrating physics-driven mod-
els with generative adversarial networks has also shown po-
tential for structural health monitoring applications (Luleci
et al., 2022). Despite these advancements, a notable gap
remains in applying these approaches to fouling detection in
heat exchangers using image-based synthetic datasets. Un-
like defect detection in industrial pipelines, fouling accumu-
lation presents a dynamic challenge that requires specialized
data generation techniques to reflect real-world conditions.

To the best of our knowledge, no other datasets based on
images for heat exchangers exist. To address this gap, our
work proposes a synthetic data generation algorithm tailored
specifically for predictive maintenance in heat exchangers.
Our approach uniquely integrates a random event-driven
time-series simulation, realistic image synthesis based on
physical models and real-world data, and automated anno-
tation, which directly confronts the distinct complexities in
fouling detection tasks.

3. Methodology

Figure 1 illustrates the RETINA-PdM methodology, com-
prising four core components: data collection, data genera-
tion, model training, and model evaluation.

3.1. Data Collection

Image data of the heat exchanger grid is collected using a
5G RTSP-enabled camera mounted at a fixed angle facing
the cooling tower. The camera operates from 08:00 to 20:00,
capturing one image per hour for 13 hours per day, seven
days a week. The data collection period spans from July
through August. Data from non-operational months and
nighttime hours are excluded due to limited visibility and
inactivity of the system. A Python service on an Ubuntu
server manages image capture, naming, and storage. This
structured raw dataset forms the foundation for the synthetic
data generation process.

b) Data Generation
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Figure 1. RETINA-PdM methodology for predictive maintenance.



Root-Expansion Tiling-based Image Augmentation for Predictive Maintenance (RETINA-PdM)

3.2. Data Generation

We use root-expansion tiling (RET) to control fouling
growth. The RET algorithm is shown in Algorithm 1. Start-
ing from a small 20x36 pixel fouling centroid point, the
generator expands the pattern outward in random directions,
ensuring natural-looking spread and variation. Multiple foul-
ing regions may overlap and grow into one another. Fouling
intensity is modeled using a decreased intensity proportional
to a tile’s distance from the centroid, simulating higher cen-
tral density and gradual fade. The generator pastes these
fouling textures onto a black canvas of the same size as the
target image (1920x1080), respecting the specified coor-
dinates. To create the synthetic data, the generator blends
these fouling textures into the real heat exchanger images so
that the fouling realistically presents itself behind the metal
mesh of the heat exchanger as shown in Figure 2.

To produce the label mask, all pixels representing tiles con-
taining fouling are overwritten with the integer representing
their class. Both binary and multiclass labels are produced
separately. The multiclass labels take into account the var-
ious fouling intensities while binary labels simply label
all fouling tiles as 1, else 0. To create the sample images,
the generator blends the fouling textures into the real heat
exchanger images using OTSU thresholding (Otsu, 1979).
This results in the synthetic fouling realistically presenting
itself behind the metal mesh of the heat exchanger. Each
resulting (image, mask) pair represents a training sample.
This process generates hundreds of labeled images per sce-
nario while maintaining consistency with real-world texture
and lighting.

Algorithm 1 Synthetic Fouling Generator
1: Input: numDays

2: image + BLANKIMAGE()
3: centroids < RANDOMTILES()
4: for d < 1 to numDays do
5. for tile € centroids do
6: for i < 1 to RANDOMINT() do
7: while tile # () do
8: tile «+— MOVERANDOMDIRECTION()
9: end while
10 image[tile] < APPLYFOULING()
11: end for
12:  end for
13:  for tile € image do
14: if tile has empty neighbor then
15: image[tile] < image[tile] - 0.25
16: else if tile has empty neighbor 1 tile away then
17: imagel[tile] < image[tile] - 0.50
18: end if
19:  end for
20: end for

a) c)
i

Figure 2. How the generated foul growth pattern (a) is combined
with the raw heat exchange image (b) to create the synthetic data
of fouling (c).

3.3. Model Training

We train two CNNs for the fouling detection task: U-Net
(Ronneberger et al., 2015) and CGNet (Wu et al., 2021),
both selected for their proven effectiveness in semantic seg-
mentation. Each model is trained on the synthetic dataset
generated by RETINA-PdM, where the input images con-
tain simulated fouling and the corresponding masks serve
as ground truth. Models are optimized using binary cross-
entropy loss, and early stopping is applied based on valida-
tion performance. This setup enables a comparative evalua-
tion of CNN architectures for pixel-wise fouling detection.
Training was completed using two techniques: regions-of-
interest (Rol) and full-image. The Rol technique splits each
image into a 4x5 grid and passes each slice individually
to the model. The full-image technique processes the en-
tire image all at once. These techniques are compared for
effectiveness.

3.4. Model Evaluation

We evaluate model performance on two test datasets not seen
during training. The first test set mirrors training scenarios,
while the second introduces scheduled maintenance patterns.
Both test sets contain 756 images. These datasets assess
both generalization and robustness to realistic variability.

Evaluation metrics include the F1 score, which balances
precision and recall, quantifying the model’s effectiveness
in segmenting fouling under practical conditions, supporting
its use in predictive maintenance systems.

4. Results

This section presents the experimental results obtained from
the RETINA-PdM framework, including the configuration
of fouling scenarios, quantitative evaluations from two ex-
periments, a discussion of model performance, and an anal-
ysis of the technique’s current limitations.
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Figure 3. F; score over time across both scenario types.

The raw images were collected from a heat exchanger used
in an HVAC system located at Western University. This
project is part of the Campus as a Living Lab initiative. The
model training was conducted using the binary cross-entropy
loss function and the AdamW optimizer (Loshchilov & Hut-
ter, 2017), with all training sessions running for 25 epochs.
For reproducibility, each experiment was conducted using
three different seeds and the results were averaged.

4.1. Scenario Configuration

To evaluate the different CNNs performance under differ-
ent conditions, two types of scenarios were configured: a
continuous growth scenario (CGS) and a scheduled main-
tenance scenario (SMS). The CGS simulates uninterrupted
fouling accumulation over a 60-day period, producing 13
synthetic images per day corresponding to hourly intervals
between 8:00 AM and 8:00 PM. Each image is paired with
a corresponding label mask, and three CGS datasets were
generated for training, validation, and testing. In contrast,
the SMS incorporates a more realistic predictive mainte-
nance (PdM) setting by introducing periodic maintenance
every 20 days, as described in (Patil et al., 2022; Strzelczyk
et al., 2024). On maintenance days, fouling growth is reset
and resumes at newly randomized locations. Three SMS
datasets were generated to form a second test set used ex-
clusively for evaluating the model’s ability to generalize to
maintenance-influenced scenarios.

4.2. Experiment 1: Binary Classification of Fouling
Presence

Experiment 1 evaluates the UNet’s and CGnet’s ability to
perform binary classification on full heat exchanger images,
determining whether any fouling is present or not. This
experiment uses both CGS and SMS scenarios, providing
insight into model performance under both idealized and

more realistic predictive maintenance conditions. Each im-
age is labeled with a binary class indicating the presence
or absence of fouling. Figure 3 shows the performance of
CNN models over both scenarios. This experiment resulted
in a mean F1 score of 0.9458 and 0.9642 for the CGS and
SMS test sets, respectively.

4.3. Experiment 2: Multiclass Fouling Severity
Classification

Experiment 2 focuses on evaluating the model’s ability to
detect fouling severity using the SMS scenario, which better
reflects realistic maintenance conditions. Unlike the binary
classification in Experiment 1, this experiment uses a mul-
ticlass setting with four classes: clean metal surface, and
fouling at 25%, 50%, and 100% obstruction levels. The goal
is to determine whether incorporating varying degrees of
fouling severity and explicitly modeling the metal structure
improves the model’s understanding and robustness. Fig-
ure 4 shows the F1 scores and behavior for the multi-classes
on experiment 2. The average training time for CGNet was
23.08 minutes, while UNet required 88.35 minutes, high-
lighting CGNet’s efficiency in training time and learning
multiclass fouling patterns

4.4. Discussion

The effectiveness of the proposed approach was evaluated
through two experiments. The first experiment focused on
evaluating the ability of UNet and CGNet to perform binary
classification on both CGS and SMS scenarios. Each model
was trained and tested using both the Rol technique and the
full-image approach, resulting in four total combinations.
The results plotted in Figure 3 show that UNet generally
yielded higher F1 scores across the entirety of both test sets.
CGNet struggled noticeably more following maintenance
occurrences in the SMS test set. This suggests that UNet
is more consistent at performing binary classification of
fouling, especially in more realistic contexts such as SMS.
Both architectures performed well overall, with F1 scores
that were consistently greater than 0.9.

The second experiment focused on evaluating the ability of
both architectures to perform multiclass segmentation on
the SMS test set. The four classes to be segmented were
clean metal surface, and fouling at 25%, 50%, and 100% in-
tensity. Figure 4 shows how each architectural combination
performed on this task. Contrary to the results of the first
experiment, CGNet yielded similar, and in some cases, bet-
ter performance than UNet. Both variations of CGNet also
show a clear reduction in F1 score standard deviation. Addi-
tionally, CGNet’s significantly shorter training and inference
time support the conclusion that it outperforms UNet in the
task of multiclass fouling segmentation.
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Figure 4. F; score across each level of fouling over time by model and input type for the scheduled maintenance scenario.

4.5. Limitations

While the RETINA-PAM framework provides a scalable and
controllable approach for training fouling detection models,
several limitations remain. First, the experimental validation
currently relies entirely on synthetic data. The aim is to
complement this with expert-labeled datasets and real IoT
sensor data in future work to ensure practical relevance
and reliability. Second, although RETINA-PdM performs
robustly under a range of lighting and weather conditions,
the current generator struggles to blend synthetic fouling
effectively into rainy images, as well as those captured from
oblique camera angles. Extending the framework to handle
these scenarios would improve its realism and applicability.

5. Conclusion

This paper addressed the challenge of detecting fouling in
HVAC heat exchangers, a task made more difficult due to
the scarcity of labeled data. We introduced RETINA-PdM,
a physics-inspired synthetic data generation algorithm that
simulates realistic and irregular fouling growth patterns.
By training CNNs on our synthetic data, we achieved a
predictive F1 score of 0.9642, a significant leap from the
0.8595 F1 score of previous methods that used geometrically
simple patterns. Our results demonstrate that the CGNet
model, in particular, provides a highly accurate and compu-
tationally efficient solution. The success of RETINA-PdAM
offers building operators a powerful, data-driven, and cost-
effective tool for predictive maintenance, paving the way
for substantial energy savings and optimized building oper-
ations by enabling maintenance to be performed precisely
when needed.

Future work will focus on expanding baseline comparisons
to further validate the effectiveness of RETINA-PAM. In ad-
dition to synthetic image augmentation, alternative data gen-
eration strategies such as physics-based simulations, mathe-
matical modeling, and generative adversarial networks could

be explored to enhance realism and diversity. As no publicly
available validation sets currently exist for this specific prob-
lem, establishing a shared benchmark would be a valuable
contribution to the field. Lastly, while U-Net and CGNet
provide strong baselines, both were originally designed for
different tasks. Developing a task-specific architecture tai-
lored for fouling detection could yield improvements in both
computational efficiency and segmentation quality.
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