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Abstract

Metric-based meta-learning is one of the de001
facto standards in few-shot learning. It com-002
poses of representation learning and metrics003
calculation designs. Previous works construct004
class representations in different ways, varying005
from mean output embedding to covariance006
and distributions. However, using embeddings007
in space lacks expressivity and cannot capture008
class information robustly, while statistical009
complex modeling poses difficulty to metric010
designs. In this work, we use tensor fields011
(“areas”) to model classes from the geometrical012
perspective for few-shot learning. Specifically,013
we present big prototypes, where class infor-014
mation is represented by hyperspheres with015
dynamic sizes with two sets of learnable param-016
eters: the hypersphere’s center and the radius.017
Extending from points to areas, hyperspheres018
are much more expressive than embeddings.019
Moreover, it is more convenient to perform020
metric-based classification with big prototypes021
than statistical modeling, as we only need to022
calculate the distance from a data point to the023
surface of the hypersphere. Following this024
idea, we also develop two variants of big pro-025
totypes under other measurements. Extensive026
experiments and analysis on few-shot learning027
tasks across NLP and CV and comparison028
with 20+ competitive baselines demonstrate029
the effectiveness of big prototypes.030

1 Introduction031

Learning from a few examples, i.e., few-shot learn-032

ing, is receiving increasing amounts of attention033

in modern deep learning. Because constituting034

cognition of novel concepts with few instances is035

crucial for machines to imitate human intelligence,036

and meanwhile, annotating large-scale supervised037

datasets is expensive and time-consuming (Lu038

et al., 2020). Although traditional deep neural039

models have achieved tremendous success under040

sufficient supervision, it is still challenging to041

produce comparable performance when training042

examples are limited. Hence, a series of studies 043

are proposed to generalize deep neural networks 044

to low-data scenarios. One crucial branch of 045

them is metric-based meta-learning (Reed, 1972; 046

Nosofsky, 1986; Snell et al., 2017), where models 047

are trained to generate expressive representations 048

and carry out classification via defined metrics. 049

The success of metric-based learning depends 050

on both representation learning and the metrics 051

chosen. One straightforward approach relies on 052

training feature representation and adopts a nearest- 053

neighbor classifier (Vinyals et al., 2016; Yang and 054

Katiyar, 2020; Wang et al., 2019). Other works 055

introduce additional parameters as class representa- 056

tion to achieve better generalization ability. A naive 057

way to estimate class representation is to use the 058

mean embedding of feature representation (Snell 059

et al., 2017; Allen et al., 2019), while some also use 060

second-order moments (Li et al., 2019a) or repa- 061

rameterize the learning process to generate class 062

representation in a richer semantic space (Ravichan- 063

dran et al., 2019) or in the form of probability distri- 064

bution (Zhang et al., 2019). Apart from traditional 065

Euclidean and cosine distance, a variety of met- 066

ric functions are also proposed (Sung et al., 2018; 067

Zhang et al., 2020a; Xie et al., 2022). Most existing 068

works learn class representation from the statistical 069

perspective, making designing and implementing 070

the metrics more difficult. For example, the pro- 071

posed covariance metric in CovaMNet (Li et al., 072

2019a) theoretically requires a non-singular covari- 073

ance matrix, which is awkward for neural-based 074

feature extraction methods. 075

This paper revisits metric-based learning and 076

finds that geometrical modeling can simultaneously 077

enhance the expressive ability of representations 078

and reduce the difficulty of calculation, meanwhile 079

yielding surprisingly effective performance in 080

few-shot learning. Specifically, we propose big 081

prototypes, a simple and effective approach to 082

model class representation with hyperspheres. It 083
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is equipped with two advantages: the modeling is084

straightforward, and the corresponding metrics are085

easier to define and calculate compared to statisti-086

cal methods. (1) For one thing, even if we attempt087

to use geometrical “areas” instead of “points” to088

represent class-level information, it is still difficult089

to explicitly characterize manifolds with complex090

boundaries in deep learning. But via hyperspheres091

modeling, we can obtain a big prototype with092

only two sets of parameters: the center and the093

radius of hyperspheres. (2) Besides, hyperspheres094

are suitable for constructing measurements in095

Euclidean space. We can calculate the Euclidean096

distance from one feature point to the surface of097

the hypersphere in order to perform metric-based098

classification, which is difficult for other manifolds.099

We set the radii of the hyperspheres as learn-100

able parameters, which makes it easy to combine101

the two advantages in few-shot learning. The dis-102

tance from one feature point to the surface of a big103

prototype can be formalized as the distance from104

the point to the center of the hypersphere minus105

the radius. Thus, both the radius and the center106

of the hypersphere can appear in the loss function107

and participate in the backward propagation dur-108

ing optimization. Intuitively, for the classes with109

sparse feature distributions, the corresponding radii110

of their prototypes are large, and the radii are small111

otherwise. Beyond the Euclidean space, we also de-112

velop two variants of big prototypes – cone-like big113

prototypes with cosine similarities and Gaussian114

big prototypes from the probability perspective.115

We conduct extensive experiments to evaluate116

the effectiveness of big prototypes. In addition117

to two classical tasks, few-shot named entity118

recognition (NER) (Ding et al., 2021b) and relation119

extraction (RE) (Han et al., 2018; Gao et al., 2019b)120

in NLP, we also assess our approach on few-shot121

image classification (Vinyals et al., 2016; Welinder122

et al., 2010), proving that it is a general method that123

could be applied to diverse scenarios. Despite the124

simplicity, we find that our approach is exceedingly125

effective, which outperforms the vanilla prototypes126

by 8.33 % absolute in average F1 on FEW-NERD127

(INTRA), 6.55% absolute in average F1 on128

FEW-NERD (INTER), 4.77% absolute in average129

accuracy on FewRel, 21.63% absolute in average130

accuracy on FewRel 2.0, and 3.45% absolute in131

average accuracy on miniImageNet, respectively.132

Our method also yields better performance with133

20+ competitive approaches across three tasks.134

Surprisingly, big prototypes perform more than 135

satisfactorily in cross-domain few-shot relation 136

extraction and cross-dataset image classification, 137

indicating the promising ability in domain adap- 138

tation. Given that such small changes can bring 139

considerable benefits, we believe our approach 140

could serve as a strong baseline for few-shot 141

learning and inspire new ideas from the research 142

community for representation learning. 143

2 Problem Setup 144

We consider the episodic N -way K-shot few-shot 145

classification paradigm1. Given a large-scale 146

annotated training set Dtrain, our goal is to learn a 147

model that can make accurate predictions for a set 148

of new classes Dtest, containing only a few labeled 149

examples for training. The model will be trained 150

on episodes constructed using Dtrain and tested on 151

episodes based on Dtest. Each episode contains a 152

support set S = {xi, yi}N×K
i=1 for learning, with 153

N classes and K examples for each class, and 154

a query set for inference Q = {x∗
j , y

∗
j }

N×K′

j=1 of 155

examples in the same N classes. Each input data 156

is a vector xi ∈ RL with the dimension of L and 157

yi is an index of the class label. For each input xi, 158

let fϕ(xi) ∈ RD denote the D-dimensional output 159

embedding of a neural network fϕ : RL → RD 160

parameterized by ϕ. 161

3 Methodology 162

This section introduces the mechanisms of big 163

prototypes. One big prototype is represented 164

by two parameters: the center and the radius of 165

the hypersphere, which is firstly initialized via 166

estimation and then optimized by gradient descent 167

along with the encoder parameters. 168

3.1 Overview 169

We now introduce big prototypes, which are a set 170

of hyperspheres in the embedding space D to ab- 171

stractly represent the intrinsic features of classes. 172

Formally, one big prototype is defined by 173

Bd(fϕ, z, ϵ) := {fϕ(x) ∈ RD : d(fϕ(x), z) ≤ ϵ},
(1) 174

where d : RD × RD → [0,+∞) is the distance 175

function in the metric space. fϕ is a neural encoder 176

parameterized by ϕ, while z and ϵ denote the center 177

and the radius of the hypersphere. We useM(·) to 178

1For the few-shot named entity recognition task (sequence
labeling), the sampling strategy is slightly different (details in
Appendix D).
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Figure 1: The illustration of our proposed big prototypes, where the data is sampled in 5-shot. The star symbol
denotes the center of the hypersphere, the solid triangle denotes the sampled examples, and the dotted triangle
denotes other examples in the whole dataset. The solid green line denotes the distance from a data embedding to the
hypersphere’s surface. The left part illustrates the initialization stage, where the sampled data estimate the center
and radius, and the right part illustrates the learning stage, where the center and radius are simultaneously optimized.

denote the measurement between a data point and179

a big prototype based on d(·).180

The central idea is to learn a big prototype181

for each class with limited episodic supervision,182

and each example in the query set (x∗, y∗) is pre-183

dicted by the measurement to the big prototypes184

M(x∗
j ,Bd), which is the Euclidean distance from185

the embedding to the surface of the hyperspheres,186

M(x,B) = d(fϕ(x), z)−ϵ = ∥fϕ(x)− z∥22−ϵ.
(2)187

Note that in this case, the value ofM(·) may be188

negative. That is, geometrically speaking, the point189

is contained inside the hypersphere, which does190

not affect the calculation of the loss function and191

the prediction. Generally, the idea is to use areas192

instead of points in the embedding space to model193

prototypes, and hyperspheres naturally have two194

advantages. First, as stated in § 1, one big prototype195

could be uniquely modeled by the center z and the196

radius ϵ, while characterizing manifolds with com-197

plex boundaries in the embedding space is intricate.198

Second, it is easy to optimize the parameters by199

conducting metric-based classification since they200

are naturally involved in measurement calculation.201

In this geometric interpretation, sparse classes will202

have larger learned radii, while compact classes203

will have smaller learned radii.204

3.2 Big Prototypes205

To construct big prototypes, the first step is the ini-206

tialization of the center z and the radius ϵ of the207

hypersphere. To start with a reasonable approxima-208

tion of the data distribution, we randomly select K209

instances from each class for initialization. Specifi-210

cally for one class, the center of the big prototype is211

the mean output of the K embeddings as the estima-212

tion in Snell et al. (2017), and the radius is the mean 213

of the distance of each sample to the center. Sn is 214

the set of sampled instances from the n-th class, 215

Bn :=


zn =

1

K

∑
x∈Sn

fϕ(x),

ϵn =
1

K

∑
x∈Sn

d(fϕ(x), zn).

(3) 216

Once initialized, a big prototype will participate 217

in the training process, where its center and radius 218

are simultaneously optimized. During training, 219

for each episode, assume the sampled classes 220

are N = {n1, n2, ..., nN}, the probability of 221

one query point x ∈ Q belonging to class n is 222

calculated by softmax over the metrics to the 223

corresponding N big prototypes. 224

p(y = n|x;ϕ) = exp(−M(x,Bn))∑
n′∈N exp(−M(x,Bn′))

.

(4)
225

And the parameters of f and big prototypes 226

are optimized by minimizing the metric-based 227

cross-entropy objective: 228

Lcls = − log p(y|x, ϕ,z, ϵ). (5) 229

Equation 4 explains the combination of the 230

advantages of big prototypes, where M is 231

calculated by r and z, which will participate in 232

the optimization. The parameters of the neural 233

network ϕ are optimized along with the centers and 234

radii of big prototypes through gradient descent. 235

To sum up, in the initialization stage, the big 236

prototypes of all classes in the training set, which 237

are parameterized by z and ϵ, are estimated by the 238
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embeddings of randomly selected instances and239

stored for subsequent training and optimization. In240

the learning stage, the stored ϵ is optimized by an241

independent optimizer, because, empirically, the242

parameter could benefit from large learning rates.243

The optimization will yield a final location and244

size of the hyperspheres to serve the classification245

performance. More importantly, the involvement246

of big prototype centers and radii in the training247

process will in turn affect the optimization of248

encoder parameters, stimulating more expressive249

and distinguishable representations.250

Algorithm 1 expresses the initialization and251

learning stages of big prototypes. Although the252

centers and radii are stored and optimized continu-253

ously in training (in contrast with vanilla prototypes254

where centers are re-estimated at each episode), the255

whole process is still largely episodic, as in each256

episode, the samples in the query set are only eval-257

uated against the classes in that single episode in258

stead of the global training class set.259

Meanwhile, a standard episodic evaluation260

process is adopted to handle the unseen classes,261

where we estimate prototype centers and radii in262

closed forms. In the episodic evaluation procedure,263

BigProto directly takes the mean of instance264

embeddings as the centers and the mean distance265

of each instance to the center as the radius (as in266

Equation 3), following previous standard (Vinyals267

et al., 2016; Snell et al., 2017; Zhang et al., 2020a).268

3.3 Generalized Big Prototypes269

We have introduced the mechanisms of big proto-270

types in Euclidean space. In this section, we gen-271

eralize this idea to construct big prototypes with272

other measurements.273

Cone-like Big Prototypes. Cosine similarity is a274

commonly used measurement in machine learning.275

Assume all the data points are distributed on a unit276

ball, and we use the cosine of the angle to measure277

the similarity of the two embeddings. While keep-278

ing the intuition of big prototypes in mind, we intro-279

duce an additional angle parameter ϵ. We use θa,b280

to denote the angle of the two embeddings a and b.281

In this way, the center point z and the angle ϵ could282

conjointly construct a cone-like big prototype,283

Bd(z, fϕ, ϵ):={fϕ(x) ∈ RD :d(fϕ(x), z) ≥ cos ϵ},
(6)284

where d(fϕ(x), z) = cos(θfϕ(x),z). The measure-285

ment M(·) is defined as the cosine of the angle286

between the instance embedding and the nearest287

ϵ

center z

angle fϕ(x)

fϕ(x)μ1 μ2

Figure 2: Variants of big prototypes. The left is the cone-
like modeling with cosine similarities, and the right is
the Gaussian modeling from the probability perspective.

point on the border of the prototype, 288

M(x,B) =

{
− cos(θfϕ(x),z − ϵ), θfϕ(x),z ≥ |ϵ|,
− 1, θfϕ(x),z < |ϵ|.

(7) 289Similar to the vanilla big prototypes, z and 290

ϵ need to participate in the learning process for 291

optimization, and the angle θx,z is computed by 292

the inverse trigonometric function, 293

θfϕ(x),z = arccos
fϕ(x)

Tz

||fϕ(x)|| · ||z||
. (8) 294

The prediction for a training example is also 295

based on the softmax over the measurements to the 296

big prototypes like Eq. 5. Note that as shown in 297

Eq. 7, the measurement becomes −1 when a data 298

point is “inside” the cone-like big prototype. Then 299

it is hard to make a prediction when an embedding 300

is inside two prototypes. It thus requires that the 301

prototypes do not intersect with each other, that is, 302

to guarantee the angle between two center points is 303

larger than the sum of their own parameter angles, 304

Ldis =
1

N

∑
i,j

max((|ϵi|+ |ϵj |)− θzi,zj , 0). (9) 305

Therefore, the final loss function is L = Lcls+Ldis. 306

Gaussian Big Prototypes. From the probability 307

perspective, each class can be characterized by a 308

distribution in a multi-dimensional feature space. 309

The measurement of a query sample to the n-th 310

class can thus be represented by the negative log 311

likelihood of fϕ(x) belonging to Bn. In line with 312

other works (Zhang et al., 2019; Li et al., 2020d), 313

we can simply assume each class subjects to a Gaus- 314

sian distribution Bn ∼ N (µn,Σn). To reduce the 315

number of parameters and better guarantee the pos- 316

itive semi-definite feature, we can further restrict 317

the covariance matrix to be a diagonal matrix such 318
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Algorithm 1: Training process. fϕ is the feature encoder, Ntotal is the total number of classes
in the training set, N is the number of classes for support and query set, K is the number of
examples per class in the support set, K ′ is the number of examples per class in the query set, M
is a hyper-parameter. RANDOMSAMPLE(S,K) denotes a set of K elements chosen uniformly at
random from set S, without replacement. λf and λϵ are separate learning rates.
Input: Training data Dtrain = {(x1, y1), ..., (xT , yT )}, yi ∈ {1, ..., Ntotal}. Dk denotes the subset

of D containing all elements (xi, yi) such that yi = k
Output: The updated encoder fϕ
// Initialization phase
for n = 1 to Ntotal do
Sn ← RANDOMSAMPLE(Dn,K)
zn ← 1

|Sn|
∑

(xi,yi)∈Sn

fϕ(xi),

ϵn ← 1
|Sn|

∑
(xi,yi)∈Sn

d(fϕ(xi), zn),

// Learning phase
for i = 1 to M do

V ← RANDOMSAMPLE({1, ..., Ntotal}, N), Lcls ← 0
for n in {1, ..., N} do
Qn ← RANDOMSAMPLE(DVn ,K

′)
Lcls ← Lcls +

1
NK′

∑
(xi,yi)∈Qn

[d(fϕ(xi), zn)− ϵn + log
∑
n′

exp(ϵn′ − d(fϕ(xi), zn′))]

UPDATE z, ϵ, fϕ w.r.t Lcls, λf , λϵ

that Σn = σ2
nI . Then the measurement becomes319

M(x,Bn)=− log p(fϕ(x);Bn)

=
||fϕ(x)− µn||22

2σ2
n

+ log((2π)
d
2 |σn|d)

=
||fϕ(x)− µn||22

2σ2
n

+ d log |σn|+ δ,

(10)320

where δ = d
2 log 2π. The probability of target class321

given a query sample can be calculated by Eq. 4 in322

the same fashion: p(y = n|x) = p(fϕ(x);Bn)∑
n′ p(fϕ(x);Bn′ )

.323

Note that the derived form of the equation is the324

same as directly calculating the probability of325

p(y = n|x) under a uniform prior distribution326

of p(y). Comparing with pure probabilistic327

approaches, such as variational inference that treats328

B as hidden variables and models p(B|S) and329

p(B|S,x) with neural network (Zhang et al., 2019),330

under the big prototypes framework, θ is explicitly331

parameterized and optimized for each class during332

training. Moreover, comparing Eq. 10 with Eq. 2,333

it can be observed that when formalizing B as a334

distribution, instead of as a bias term, the original335

radius parameter (now the variance) functions as336

a scaling factor on Euclidean distance.337

4 Experiments 338

To evaluate the effectiveness of the proposed 339

method, we conduct experiments on three few-shot 340

learning tasks in NLP and CV, including few-shot 341

named entity recognition (NER), few-shot relation 342

extraction (RE), and few-shot image classification. 343

We chose these three tasks because they all 344

have well-established datasets and baselines to 345

facilitate comprehensive comparisons, while 346

they are still challenging under the few-shot 347

setting as fundamental tasks in NLP and CV. 348

Apart from the experimental study in this section, 349

additional experiments and analyses are reported in 350

Appendix A. The task descriptions, datasets, and 351

implementation details are reported in Appendix B. 352

Techniques like the structures of neural models, 353

task-specific pre-training, and distillation are 354

orthogonal to our contributions. 355

4.1 Experimantal Results 356

Few-shot Named Entity Recognition. Table 357

1 shows the performance of current state-of-art 358

models on FEW-NERD. Overall, BigProto has 359

a considerable advantage over vanilla ProtoNet, 360

with an increase of at least 5% in f1-score across all 361

settings. The success on both datasets demonstrates 362
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Setting Eva.
FEW-NERD (INTRA) FEW-NERD (INTER)

NNShot ProtoNet BigProto NNShot ProtoNet BigProto

5 way
1∼2 shot

P 28.95 ± 1.02 18.58 ± 1.02 40.18 ± 1.71 50.40 ± 0.60 38.70 ± 0.50 53.36 ± 2.74
R 33.40 ± 1.44 31.83 ± 1.03 26.96 ± 2.07 58.84 ± 0.13 52.60 ± 1.65 51.12 ± 4.94
F 31.01 ± 1.21 23.45 ± 0.92 32.26 ± 1.94 54.29 ± 0.40 44.58 ± 0.26 52.09 ± 2.49

5 way
5∼10 shot

P 32.87 ± 2.45 35.87 ± 0.69 48.77 ± 0.79 45.80 ± 3.53 53.73 ± 1.77 62.26 ± 0.89
R 39.17 ± 2.17 50.50 ± 1.88 53.26 ± 2.60 56.45 ± 2.93 64.99 ± 2.24 69.32 ± 1.66
F 35.74 ± 2.36 41.93 ± 0.55 50.88 ± 1.01 50.56 ± 3.33 58.80 ± 1.42 65.59 ± 0.50

10 way
1∼2 shot

P 20.38 ± 0.22 16.52 ± 0.52 26.06 ± 2.40 42.74 ± 2.05 32.59 ± 0.22 45.38 ± 0.49
R 23.63 ± 0.53 24.60 ± 0.72 22.32 ± 0.54 52.16 ± 1.76 48.91 ± 2.94 43.22 ± 1.33
F 21.88 ± 0.23 19.76 ± 0.59 24.02 ± 1.06 46.98 ± 1.96 39.09 ± 0.87 44.26 ± 0.53

10 way
5∼10 shot

P 25.46 ± 0.63 28.93 ± 0.82 38.94 ± 3.39 45.15 ± 0.81 47.93 ± 0.45 56.38 ± 1.79
R 30.32 ± 1.71 43.08 ± 0.84 46.71 ± 2.48 56.05 ± 0.37 61.79 ± 1.73 65.84 ± 1.61
F 27.67 ± 1.06 34.61 ± 0.59 42.46 ± 3.04 50.00 ± 0.36 53.97 ± 0.38 60.73 ± 1.47

Average F 29.08 29.94 37.41 50.46 49.11 55.66

Table 1: Performance on the FEW-NERD dataset. P is precision, R is recall, and F refers to the F1 score. The
standard deviation is reported with 3 runs with different random seeds for each model.

Model FewRel 1.0

5 way 1 shot 5 way 5 shot 10 way 1 shot 10 way 5 shot

Meta Net (Munkhdalai and Yu, 2017) 64.46 ± 0.54 80.57 ± 0.48 53.96 ± 0.56 69.23 ± 0.52
SNAIL (Mishra et al., 2017) 67.29 ± 0.26 79.40 ± 0.22 53.28 ± 0.27 68.33 ± 0.26
GNN CNN (Satorras and Estrach, 2018) 66.23 ± 0.75 81.28 ± 0.62 46.27 ± 0.80 64.02 ± 0.77
GNN BERT (Satorras and Estrach, 2018) 75.66 ± 0.00 89.06 ± 0.00 70.08 ± 0.00 76.93± 0.00
Proto-HATT (Gao et al., 2019a) 76.30 ± 0.06 90.12 ± 0.04 64.13 ± 0.03 83.05 ± 0.05
MLMAN (Ye and Ling, 2019) 82.98 ± 0.20 92.66 ± 0.09 73.59 ± 0.26 87.29 ± 0.15

Proto CNN 69.20 ± 0.20 84.79 ± 0.16 56.44 ± 0.22 75.55 ± 0.19
BigProto CNN (Ours) 66.05 ± 3.44 87.31 ± 0.93 56.74 ± 1.06 77.87 ± 2.60

ProtoNet BERT 80.68 ± 0.28 89.60 ± 0.09 71.48 ± 0.15 82.89 ± 0.11
BigProto BERT (Ours) 84.34 ± 1.23 93.42 ± 0.50 77.24 ± 6.05 88.71 ± 0.31

FewRel 2.0 Domain Adaptation

Proto-ADV CNN (Wang et al., 2018) 42.21 ± 0.09 58.71 ± 0.06 28.91 ± 0.10 44.35 ± 0.09
Proto-ADV BERT (Gao et al., 2019b) 41.90 ± 0.44 54.74 ± 0.22 27.36 ± 0.50 37.40 ± 0.36
BERT-pair (Gao et al., 2019b) 56.25 ± 0.40 67.44 ± 0.54 43.64 ± 0.46 53.17 ± 0.09

ProtoNet CNN 35.09 ± 0.10 49.37 ± 0.10 22.98 ± 0.05 35.22 ± 0.06
BigProto CNN (Ours) 36.41 ± 1.43 55.50 ± 1.42 22.11 ± 0.58 40.82 ± 2.50

ProtoNet BERT 40.12 ± 0.19 51.50 ± 0.29 26.45 ± 0.10 36.93 ± 0.01
BigProto BERT (Ours) 59.03 ± 3.68 74.85 ± 4.59 45.88 ± 7.43 61.61 ± 4.69

Table 2: Accuracies on FewRel 1.0 and FewRel 2.0 under 4 different settings. The standard deviation is reported
with 3 runs with different random seeds for each model.

that BigProto can learn the general distribution363

pattern of entities across different classes and thus364

can greatly improve the performance when little365

information is shared between training and test set.366

It can also be observed that a large portion of the367

improvement comes from the increase in precision,368

indicating the ability of BigProto to distinguish369

entities from context. It is possibly because context370

words are very diverse, and modeling them with371

a hypersphere as big prototypes is more fitting372

than a single point as in ProtoNet. With respect to 373

the number of shots, BigProto is more advanta- 374

geous when larger shots are provided and becomes 375

the new state-of-art in the 5∼10 shot setting. 376

For the comparison with NNShot, BigProto 377

remains superior under the settings of high-shot 378

(5∼10), outperforming it by at least 10% of the F1 379

score. Interestingly, the performances of NNShot 380

and BigProto are comparable when it comes 381

to low-shot. This is probably because, in the se- 382
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Model Backbone miniImageNet

5 way 1 shot 5 way 5 shot

Infinite Mixture Prototypes (Allen et al., 2019) ConvNet 33.30 ± 0.71 65.88 ± 0.71
ProtoNet (Snell et al., 2017) ConvNet 46.44 ± 0.60 63.72 ± 0.55
CovaMNet (Li et al., 2019a) ConvNet 51.83 ± 0.64 65.65 ± 0.77
BigProto (Ours) ConvNet 50.21 ± 0.31 66.48 ± 0.71

SNAIL (Mishra et al., 2017) ResNet-12 55.71 ± 0.99 68.88 ± 0.92
ProtoNet (Snell et al., 2017) ResNet-12 53.81 ± 0.23 75.68 ± 0.17
Variational FSL (Zhang et al., 2019) ResNet-12 61.23 ± 0.26 77.69 ± 0.17
Prototypes + TRAML (Li et al., 2020a) ResNet-12 60.31 ± 0.48 77.94 ± 0.57
BigProto (Ours) ResNet-12 59.65 ± 0.62 78.24 ± 0.47

ProtoNet (Snell et al., 2017) WideResNet-28-10 59.09 ± 0.64 79.09 ± 0.46
Activation to Parameter (Qiao et al., 2018) WideResNet-28-10 59.60 ± 0.41 73.74 ± 0.19
LEO (Rusu et al., 2018) WideResNet-28-10 61.76 ± 0.08 77.59 ± 0.12
SimpleShot (Wang et al., 2019) WideResNet-28-10 63.50 ± 0.20 80.33 ± 0.14
AWGIM (Guo and Cheung, 2020) WideResNet-28-10 63.12 ± 0.08 78.40 ± 0.11
BigProto (Ours) WideResNet-28-10 63.78 ± 0.63 81.29 ± 0.46

Table 3: Accuracies with 95% confidence interval on 1000 test episodes of BigProto and baselines on
miniImageNet. † means model parameters are updated at the test stage.

quence labeling task, it is more difficult to infer the383

class-level information from very limited tokens.384

In this case, the modeling ability of big prototypes385

degenerates towards the nearest-neighbors strategy386

in NNShot. As the shot number increases, the mem-387

ory cost of NNShot grows quadratically and be-388

comes unaffordable, while BigProto keeps it in389

reasonable magnitude. In this sense, BigProto is390

more efficient. We also believe a carefully designed391

initialization strategy is vital for the performance392

of our model in low-shot settings. The impact of393

the number of shots is reported in Appendix A.4.394

Few-shot Relation Extraction. Table 2 presents395

the results on two FewRel tasks. Methods that396

use additional data or conduct task-specific397

encoder pre-training are not included. BigProto398

generally performs better than ProtoNet across399

all settings. In terms of backbone models, when400

combined with pre-trained models like BERT, big401

prototypes can yield a larger advantage against402

prototypes. It shows that the modeling of big403

prototypes can better approximate the real data404

distribution and boosts the finetuning of BERT.405

Meanwhile, it sheds light on the untapped ability of406

large pre-trained language models and stresses that407

a proper assumption about data distribution may408

help us unlock the potential. BigProto’s out-409

standing performance on the Domain Adaptation410

task further validates the importance of a better411

abstraction of data in transfer learning. Meanwhile,412

the large performance variation in the domain adap-413

tation task suggests that when the domain shifts, the414

estimation of big prototypes becomes less stable. 415

Few-shot Image Classification. Table 3 shows 416

the result on miniImageNet few-shot classification 417

under 2 settings. BigProto substantially 418

outperforms the primary baseline ProtoNet in 419

most settings, displaying their ability to model 420

the class distribution of images. We observe that 421

compared to NLP, image classification results 422

are more stable both for vanilla prototypes and 423

big prototypes. This observation may indicate 424

the difference in encoding between the two 425

technologies. Token representations in BERT are 426

contextualized and changeable around different 427

contexts, yet the image representation produced 428

by deep CNNs aims to capture the global and 429

local features thoroughly. Under the 5-way 5-shot 430

setting, the improvements of BigProto are 431

significant. The effectiveness of our method is 432

also demonstrated by the comparisons with other 433

previous few-shot learning methods with same 434

backbones. In particular, BigProto yields the 435

best results of all the compared methods with the 436

WideResNet (Zagoruyko and Komodakis, 2016) 437

backbone, suggesting that the expressive capability 438

of big prototypes can be enhanced with a more 439

powerful encoder. Compared to the 5-shot setting, 440

our model improves mediocrely in the 1-shot 441

setting of ConvNet and ResNet-12 (He et al., 2015). 442

The phenomenon is consistent with the intuition 443

that more examples would be more favorable to 444

the learning of radius. We further analyze the 445

dynamics of radius of our method in Appendix A.2. 446
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Methods miniImageNet

5 way 1 shot 5 way 5 shot

Cone BigProto 62.43 ± 0.63 76.03 ± 0.50
Gaussian BigProto 60.34 ± 0.64 80.43 ± 0.45
BigProto 63.78 ± 0.63 81.29 ± 0.46

Table 4: Accuracies with 95% confidence interval of
generalized BigProto on miniImageNet.

4.2 Experimental Analysis447

Generalized Big Prototypes. To further show448

the effectiveness and generalizability of big pro-449

totypes, we conduct experiments for cone-like and450

gaussian big prototypes with WideResNet-28-10451

on miniImageNet as well. Table 4 presents results452

across three measurement settings. Although the453

two variants do not perform better than our main454

method, they still considerably outperform many455

baselines in Table 3. While the three models’456

performance is close under the 1-shot setting,457

cone-like BigProto performs worse in the458

5-shot setting. It could be attributed to unsatisfying459

radius learning. It is found that the cone-like big460

prototypes model is susceptible to radius learning461

rate and is prone to overfitting.462

Methods Backbone 5 way 5 shot

miniImageNet→ CUB

MatchingNet ResNet-12 53.07 ± 0.74
ProtoNet ResNet-12 62.02 ± 0.70
MAML ResNet-18 52.34 ± 0.72
RelationNet ResNet-18 57.71 ± 0.73
Baseline++ ResNet-18 62.04 ± 0.76

BigProto (Ours) ResNet-12 63.22 ± 0.77

Table 5: Results on cross-dataset classification.

Cross-dataset Few-shot Learning. We also463

conduct experiments on the more difficult cross-464

dataset setting. Specifically, the model trained on465

miniImagenet is tested on the CUB dataset (Welin-466

der et al., 2010) under the 5-way 5-shot setting.467

We use ResNet-12 (RN-12) (He et al., 2015) as468

the backbone in our experiment. Table 5 shows469

the results compared with several baselines. It can470

be seen that BigProto outperforms the baselines471

by a large margin even with less powerful encoder472

(RN-12), indicating the ability to learn representa-473

tions that are transferrable to new domains. The474

results also echo the performance of BigProto475

for the cross-domain relation extraction in Table 2.476

Representation Analysis. To study if the learned477
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Figure 3: Normalized distances from instances to big
prototypes. Horizontal axis: big prototypes of 5 classes.
Vertical axis: 5 instances per class.

representations are discriminative, we illustrate 478

the normalized distances between the learned 479

representations and the big prototypes in Figure 3. 480

Specifically, we randomly sample 5 classes and 481

25 instances (5 per class) for each dataset and 482

produce representations for the instances and big 483

prototypes for the classes. Then, we calculate 484

the distance between each instance to each big 485

prototype (i.e., distance from the point to the 486

hypersphere surface) to produce the matrix. All 487

the values in the illustration are normalized since 488

the absolute values may vary with the datasets. 489

Warmer colors denote fewer distances in the 490

illustration. The illustration shows that in all 491

three datasets, our model could effectively learn 492

discriminative representations and achieve stable 493

metric-based classification. Appendix A.3 further 494

conducts analysis of instance-level representations. 495

5 Conclusion 496

This paper proposes a novel metric-based few-shot 497

learning method, big prototypes. Unlike previous 498

metric-based methods that use dense vectors 499

to represent the class-level semantics, we use 500

hyperspheres to enhance the capabilities of 501

prototypes to express the intrinsic information of 502

the data. It is simple to model a hypersphere in 503

the embedding space and conduct metric-based 504

classification in few-shot learning. Our approach 505

is easy to implement and also empirically effective, 506

we observe significant improvements to baselines 507

on three tasks across NLP and CV. We also 508

develope two variants of big prototypes in other 509

embedding spaces. For potential future work, big 510

prototypes could be extended to more generalized 511

representation learning like word embeddings. 512
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A Additional Experiments and Analysis793

This section provides additional experiments and794

analysis, we first visualize and quantify the rep-795

resentations learned by our approach. Then we796

analyze the dynamics of the radius parameter dur-797

ing training. At last, we conduct representation798

analysis at the instance level.799

A.1 Visualization.800

We also use t-SNE (van der Maaten and Hinton,801

2008) to visualize the embedding before and after802

training, by ProtoNet and BigProto, respectively.803

5 classes are sampled from the training set and test804

set of the Few-NERD dataset, and for each class,805

500 samples are randomly chosen to be embed-806

ded by BERT trained on the 5-way-5-shot NER807

task. Figure 4 shows the result of embeddings in808

a 2-dimensional space, where different colors rep-809

resent classes. Note that for the token-level NER810

task, the interaction between the target token and811

its context may result in a more mixed-up distri-812

bution compared to instance-level embedding. For813

both models, the representations of the same class814

in the training set become more compressed and815

easier to classify compared to their initial embed-816

dings. While BigProto can produce even more817

compact clusters. The clustering effect is also ob-818

served for novel classes. We also calculate the819

difference between the mean euclidean distances820

from each class sample to the (big) prototype of821

the target class and to other classes. The larger the822

difference, the better the samples are distinguished.823

For ProtoNet, the difference is 2.33 and 1.55 on824

the train and test set, while for BigProto the re-825

sults are 5.09 and 4.56, respectively. This can also826

be inferred from the t-sne result. Since samples827

from different classes are distributed at different828

densities, an extra radius parameter will help bet-829

ter distinguish between classes. The visualization830

and statistical results demonstrate the effectiveness831

of BigProto in learning discriminative features,832

especially in learning novel class representation833

that considerably boosts model performance under834

few-shot settings.835

A.2 Analysis of the Radius Dynamics836

In this section, the mechanism of big prototypes837

will be empirically analyzed. We demonstrate the838

mechanism of big prototypes by illustrating the839

change of radius for one specific hypersphere. In840

the learning phase, the radius of a big prototype is841

Figure 4: t-sne visualization of feature distributions.
The six subfigures, from left to right, are the represen-
tations of seen data (in training set) before training,
produced by ProtoNet, and produced by BigProto;
novel data (in test set) before training, produced by Pro-
toNet, and produced by BigProto. Note that even
after training, the neural network has never seen the
novel data and their classes.

changing according to the “density” of the sampled 842

episode, which could be characterized by the mean 843

distance of samples to the corresponding prototype 844

center. Practically, due to randomness in sampling, 845

the value of the mean distance may oscillate at 846

a high frequency in this process, and the radius 847

changes accordingly. To better visualize the chang- 848

ing of radius along with the mean distance at each 849

update, for each round of training we fix one spe- 850

cific class as the anchor class for mean distance and 851

radius recording and apply a special sampling strat- 852

egy at each episode. Specifically, we take FewRel 853

training data and train on the 5 way 5 shot setting 854

with CNN encoder. While training, each episode 855

contains the anchor class and 4 other randomly 856

sampled classes. Training accuracy is logged every 857

50 steps. After a warmup training of 500 steps, we 858

sample “good” or “bad” episodes for every 50 steps 859

alternatively. A “good” episode has higher accu- 860

racy on the anchor class than the previously logged 861

accuracy, while conversely, a “bad” episode has an 862

accuracy lower than before. The mean distance to 863

the prototype center and radius at each episode are 864

logged every 50 steps after the warmup. Figure 5 865

shows the changing of mean distance and radius 866

for 8 classes during 600∼2000 training steps. Al- 867

though the numeric values of distance and radius 868

differ greatly and oscillate at different scales, they 869

have similar changing patterns. Besides, it could 870

12



70

75

80

di
st

an
ce

Position held Publisher Owned by Has territorial Origin country Has part Characters Participating

36

37

ra
di

us

distance radius

Figure 5: The illustration depicts the radius change according to the degree of sparsity of the sampled episode. Each
subfigure represents a selected anchor class in the FewRel dataset. The horizontal axis represents the increase of
training steps.

be observed that there is often a small time lag in871

the change of radius, indicating that the change of872

radius is brought by the change in mean distance.873

This is in line with our expectations and perfectly874

demonstrates the learning mechanism of big proto-875

types. The experiment provides a promising idea,876

if we can control the sampling strategy through877

knowledge a priori, we may find a way to learn878

ideal big prototypes.879

A.3 Representation Similarities880

In order to further analyze the representations pro-881

duced by BigProto, we study the similarities882

of randomly sampled instance embeddings. We883

randomly select 4 × 5 classes and 5 instances per884

class in FEW-NERD, FewRel and miniImageNet,885

respectively. As illustrated in Figure 7, each sub-886

figure is a 25 × 25 matrix based on 5 classes. We887

calculate the cosine similarities of these embed-888

dings and observe clear intra-class similarity and889

inter-class distinctiveness. This result confirms the890

robustness of our model since all the classes and891

instances are sampled randomly.892

A.4 Impact of Number of Shots893

We conduct additional experiments on FEW-894

NERD (INTRA) 5-way setting with 10, 15,895

20 shots. Since NNShot becomes too memory-896

intensive to run when shot reaches 15, we provide897

results on Proto and BigProto. Figure 6 shows898

both models perform better when more data are899

available, while BigProto performs consistently900

better than vanilla prototypes.901

B Experimental Details902

This section reports the experimental details of all903

three tasks in our evaluation. All the experiments904

are conducted on NVIDIA A100 and V100 GPUs905

with CUDA. The main experiments are conducted906

on three representative tasks in NLP and CV, which907

are few-shot named entity recognition (NER), rela-908

tion extraction (RE), and image classification. The909

1 5 10 15 20
Shot

25
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35
40
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50
55

F1
 s
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Figure 6: Impact of shot number on model performance
for FEW-NERD (INTRA) 5-way setting.

experimental details will be presented in the fol- 910

lowing sections. 911

B.1 Experimental Details for Few-shot Named 912

Entity Recognition 913

We assess the effectiveness of big prototypes on 914

NLP, specifically, the first task is few-shot named 915

entity recognition (NER) and the dataset is FEW- 916

NERD (Ding et al., 2021b)2. NER aims at locating 917

and classifying named entities ( real-world objects 918

that can be denoted with proper names) given an 919

input sentence, which is typically regarded as a 920

sequence labeling task. Given an input sentence 921

"“Bill Gates is a co-founder of the American 922

multinational technology corporation Microsoft”, 923

an named entity recognition system aims to locate 924

the named entities (Bill Gates, Microsoft) and 925

classify them into specific types. Conventional 926

schema uses coarse-grained labels such that Person 927

for Bill Gates and Organization for Microsoft. In 928

more advanced schema like Few-NERD, models 929

are asked to give more specific entity types, for 930

example, Person-Entrepreneur for Bill Gates and 931

Organization-Company for Microsoft. Different 932

from typical instance-level classification, few-shot 933

NER is a sequence labeling task, where labels 934

may share structural correlations. NER is the 935

first step in automatic information extraction and 936

the construction of large-scale knowledge graphs. 937

2FEW-NERD is distributed under CC BY-SA 4.0 license
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Figure 7: Representation similarity matrix produced by BigProto on FEW-NERD, FewRel and miniImageNet.
Each row illustrates 20 classes and 100 instances in one dataset. Each subfigure contains 5 classes and 25 instances.
Each unit denotes the cosine similarity of two embeddings, and each 5×5 cell indicates the comparison of two
classes. The units on the diagonal represent the same instance, and the 5×5 cells on the diagonal represent the same
class. Warmer color means higher similarity in this illustration.

Quickly detecting fine-grained unseen entity types938

is of significant importance in NLP. To capture the939

latent correlation, many recent efforts in this field940

use large pre-trained language models (Han et al.,941

2021) like BERT (Devlin et al., 2019) as backbone942

model and have achieved remarkable performance.943

The original prototypical network has also been944

applied to this task (Li et al., 2020b; Huang et al.,945

2020; de Lichy et al., 2021).946

Dataset. The experiment is run on FEW-NERD947

dataset (Ding et al., 2021b). It is a large-scale NER948

dataset containing over 400,000 entity mentions,949

across 8 coarse-grained types and 66 fine-grained950

types, which makes it an ideal dataset for few-shot951

learning. It has been shown that existing methods952

including prototypes are not effective enough on953

this dataset.954

Baselines. NNShot (Yang and Katiyar, 2020) is a955

token-level metric-based method that is specifically956

designed for few-shot labeling. Note that the main957

baseline here is the Proto method, which adapts 958

the prototypical network on few-shot named entity 959

recognition. 960

Implementation Details. We run experiments 961

under four settings on the two released bench- 962

marks, FEW-NERD (INTRA) and FEW-NERD 963

(INTER). Specifically, we use uncased BERT as 964

the backbone encoder and 1e-4 as the encoder learn- 965

ing rate. We manually tune the learning rate for 966

the radius parameter, and the best result is obtained 967

with 10. AdamW is used as the BERT optimizer, 968

and Adam (Kingma and Ba, 2017) is used to op- 969

timize prototype radius. The batch size is set to 2 970

across all settings. All models are trained for 10000 971

steps and validated every 1000 steps. The results 972

are reported on 5000 steps of the test episode. For 973

each setting, we run the experiment with 3 different 974

random seeds and report the average results includ- 975

ing precision, recall, f1-score, and the standard er- 976

ror for each. We use PyTorch (Paszke et al., 2019) 977
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and huggingface transformers (Wolf et al., 2020)978

to implement the backbone encoder BERTbase.979

B.2 Experimental Details for Few-shot980

Relation Extraction981

The other common NLP task is relation extraction982

(RE), which aims at correctly classifying the983

relation between two given entities in a sentence.984

For example, given an input sentence with marked985

entities “[Bill Gates] is a co-founder of the986

American multinational technology corporation987

[Microsoft]”, the relation extraction system988

aims to give the relationship between Bill Gates989

and Microsoft. This is a fundamental task in990

information extraction. RE is an important form of991

learning structured knowledge from unstructured992

text. We use FewRel (Han et al., 2018)3 and993

FewRel 2.0 (Gao et al., 2019b) as the datasets.994

In real-world datasets, many of the relations are995

long-tailed and thus cannot be identified accurately996

under the common supervised setting. Traditional997

methods often alleviate the problem with distant998

supervision, which would result in wrong labels.999

Recent approaches have applied few-shot learning1000

models on the task to learn from a handful of1001

samples, which yield promising results (Gao et al.,1002

2019a). We report the datasets, baselines, and1003

experimental details in Appendix B.2.1004

Dataset. We adopt the FewRel dataset (Han et al.,1005

2018; Gao et al., 2019b), a relation extraction1006

dataset specifically designed for few-shot learn-1007

ing. FewRel has 100 relations with 700 labeled1008

instances each. The sentences are extracted from1009

Wikipedia and the relational entities are obtained1010

from Wikidata. FewRel 1.0 (Han et al., 2018) is re-1011

leased as a standard few-shot learning benchmark.1012

FewRel 2.0 (Gao et al., 2019b) adds domain adapta-1013

tion task and NOTA task on top of FewRel 1.0 with1014

the newly released test dataset on PubMed corpus.1015

Baselines. In addition to the main baseline,1016

prototypical network (Snell et al., 2017), we1017

also choose the following few-shot learning1018

methods as the baselines in relation extraction.1019

(1) Proto-HATT (Gao et al., 2019a) is a neural1020

model with hybrid prototypical attention. (2)1021

MLMAN (Ye and Ling, 2019) is a multi-level1022

matching and aggregation network for few-shot1023

relation classification. Note that Proto-HATT and1024

MLMAN are not model-agnostic. (3) GNN (Sator-1025

ras and Estrach, 2018) is a meta-learning model1026

3FewRel is distributed under MIT license

with a graph neural network as the prediction head. 1027

(4) SNAIL (Mishra et al., 2017) is a meta-learning 1028

model with attention mechanisms. (5) Meta 1029

Net (Munkhdalai and Yu, 2017) is a classical 1030

meta-learning model with meta information. (6) 1031

Proto-ADV (Gao et al., 2019b) is a prototype-based 1032

method enhanced by adversarial learning. (7) 1033

BERT-pair (Gao et al., 2019b) is a strong baseline 1034

that uses BERT for few-shot relation classification. 1035

We re-run all the baselines, except for MLMAN, 1036

and report the corresponding performances. 1037

Implementation Details The experiments are con- 1038

ducted on FewRel 1.0 and FewRel 2.0 domain adap- 1039

tation tasks. For FewRel 1.0, we follow the official 1040

splits in Han et al. (2018). For FewRel2.0, we fol- 1041

low Gao et al. (2019b), training the model on wiki 1042

data, validating on SemEval data, and testing on 1043

the PubMed data. We use the same CNN struc- 1044

ture and BERT as encoders. The learning rate for 1045

big prototype radius is 0.1 and 0.01 for CNN and 1046

BERT encoder, respectively. Adam (Kingma and 1047

Ba, 2017) is used as radius optimizer. We train the 1048

model for 10000 steps, validate every 1000 steps, 1049

and test for 5000 steps. The other hyperparameters 1050

are the same as in the original paper. 1051

B.3 Experimental Details for Few-shot Image 1052

Classification 1053

Image classification is one of the most classical 1054

tasks in few-shot learning research. Seeking a 1055

better solution for few-shot image classification is 1056

beneficial in two ways: (1) to alleviate the need for 1057

data augmentation, which is a standard technique to 1058

enrich the labeled data by performing transforma- 1059

tions on a given image; (2) to facilitate the applica- 1060

tion where the labeled image is expensive. We use 1061

miniImageNet (Vinyals et al., 2016) as the dataset 1062

in our experiment. The dataset, baselines and ex- 1063

perimental details are reported in Appendix B.3. 1064

Dataset. miniImageNet (Vinyals et al., 2016) is 1065

used as a common benchmark for few-shot learning. 1066

The dataset is extracted from the full ImageNet 1067

dataset (Deng et al., 2009), and consists of 100 1068

randomly chosen classes, with 600 instances each. 1069

Each image is of size 3×84×84. We follow the 1070

split in (Ravi and Larochelle, 2017) and use 64, 16, 1071

and 20 classes for training, validation, and testing. 1072

Baselines. The baselines we choose are as follows: 1073

(1) Prototypical network (Snell et al., 2017) is our 1074

main baseline; (2) IMP (Allen et al., 2019) is a 1075

prototype-enhanced method that models an infinite 1076
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mixture of prototypes for few-shot learning; (3)1077

CovaMNet (Li et al., 2019a) is a few-shot learning1078

method that uses covariance to model the distri-1079

bution information to enhance few-shot learning1080

performance. (4) SNAIL (Mishra et al., 2017) is1081

an attention-based classical meta-learning method;1082

(5) Variational FSL (Zhang et al., 2019) is a varia-1083

tional Bayesian framework for few-shot learning,1084

which contains a pre-training stage; (6) Activa-1085

tion to Parameter (Qiao et al., 2018) predicts pa-1086

rameters from activations in few-shot learning; (7)1087

LEO (Rusu et al., 2018) optimizes latent embed-1088

dings for few-shot learning. (8) TRAML (Li et al.,1089

2020a) uses adaptive margin loss to boost few-shot1090

learning, and Prototypes + TRAML is a strong1091

baseline in recent years.; (9) Meta-baseline (Chen1092

et al., 2021) is a pre-training & tuning method that1093

serves as a strong baseline in few-shot learning.1094

Implementation Details. The experiments are con-1095

ducted on 5 way 1 shot and 5 way 5 shot settings.1096

To ensure validity and fairness, we implement big1097

prototypes with various backbone models includ-1098

ing CNN, ResNet-12, and WideResNet (Zagoruyko1099

and Komodakis, 2016) to make it comparable to1100

all baseline results, and we also re-run some of1101

the baselines including prototypical network (Snell1102

et al., 2017), infinite mixture prototypes (Allen1103

et al., 2019), and CovaMNet (Li et al., 2019a) un-1104

der our settings based on their original code. Other1105

baseline results are taken from the original paper.1106

Each model is trained on 10,000 randomly sampled1107

episodes for 30∼40 epochs and tested on 10001108

episodes. The result is reported with 95% con-1109

fidence interval. Note that both ResNet-12 and1110

WideResNet (Zagoruyko and Komodakis, 2016)1111

are pretrained on the training data, where the pre-1112

trained ResNet-12 is identical to Chen et al. (2021)1113

and the pretrained WideResNet follows Mangla1114

et al. (2020). The CNN structure is the same1115

as Snell et al. (2017), which is composed of 41116

convolutional blocks each with a 64-filter 3 × 31117

convolution, a batch normalization layer (Ioffe and1118

Szegedy, 2015), a ReLU nonlinearity, and a 2 × 21119

max-pooling layer. We use SGD optimizer for the1120

encoder and Adam (Kingma and Ba, 2017) opti-1121

mizer for the prototype radius. The learning rate1122

for the backbone model is 1e-3. The learning rate1123

for radius is manually tuned and the reported result1124

in Table 3 has a learning rate of 10. For cone-like1125

and gaussian big prototypes, we use 1e-1 and 1e-1126

3. At the training stage, the prototype center is1127

re-initialized at each episode as the mean vector of 1128

the support embeddings. 1129

C Related Work and Discussion 1130

This section first gives a comprehensive literature 1131

review of related work, then we discuss related 1132

prototype-based methods in detail. We also discuss 1133

the limitations and the broader impact of the work. 1134

C.1 Related Work 1135

This work is related to studies of meta-learning, 1136

whose primary goal is to quickly adapt deep 1137

neural models to new tasks with a few training 1138

examples (Hospedales et al., 2020). To this end, 1139

two branches of studies are proposed: optimization- 1140

based methods and metric-based methods. The 1141

optimization-based studies (Finn et al., 2017; 1142

Franceschi et al., 2018; Ravi and Beatson, 2018) 1143

regard few-shot learning as a bi-level optimization 1144

process, where a global optimization is conducted 1145

to learn a good initialization across various 1146

tasks, and a local optimization quickly adapts the 1147

initialization parameters to specific tasks by a few 1148

steps of gradient descent. 1149

Compared to the mentioned studies, our work 1150

is more related to the metric-based meta-learning 1151

approaches (Vinyals et al., 2016; Snell et al., 2017; 1152

Satorras and Estrach, 2018; Sung et al., 2018), 1153

whose general idea is to learn to measure the 1154

similarity between representations and find the 1155

closest labeled example (or a derived prototype) for 1156

an unlabeled example. Typically, these methods 1157

learn a measurement function during episodic 1158

optimization. More specifically, we inherit the 1159

spirit of using prototypes to abstractly represent 1160

class-level information, which could be traced 1161

back to cognitive science (Reed, 1972; Rosch 1162

et al., 1976; Nosofsky, 1986), statistical machine 1163

learning (Graf et al., 2009) and to the Nearest Mean 1164

Classifier (Mensink et al., 2013). In the area of 1165

deep learning, Snell et al. (2017) propose the proto- 1166

typical network to exploit the average of example 1167

embeddings as a prototype to perform metric-based 1168

classification in few-shot learning. In their work, 1169

prototypes are estimated by the embeddings of 1170

instances. However, it is difficult to find a satisfy- 1171

ing location for the prototypes based on the entire 1172

dataset. Ren et al. (2018) adapt such prototype- 1173

based networks in the semi-supervised scenario 1174

where the dataset is partially annotated. Moreover, 1175

a set of prototype-based networks are proposed 1176
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concentrating on the improvements of prototype1177

estimations and application to various downstream1178

tasks (Allen et al., 2019; Gao et al., 2019a; Li et al.,1179

2019b; Pan et al., 2019; Seth et al., 2019; Ding1180

et al., 2021a; Li et al., 2020c; Wertheimer and Har-1181

iharan, 2019; Xie et al., 2022; Zhang et al., 2020a).1182

We discuss our method within the context of other1183

prototype-enhanced methods in Appendix C.2.1184

There has also been a growing body of work that1185

considers the new-shot problem from multiple per-1186

spectives, bringing new thinking to the field (Tian1187

et al., 2020; Yang et al., 2021; Laenen and1188

Bertinetto, 2021; Zhang et al., 2020b; Wang et al.,1189

2021; Das et al., 2021; Wertheimer et al., 2021).1190

There has also been a series of works that1191

embed prototypes into a non-Euclidean output1192

space (Mettes et al., 2019; Keller-Ressel, 2020;1193

Atigh et al., 2021). It should be noted that these1194

studies regard hyperspheres or other non-Euclidean1195

manifolds as a characterization of the embedding1196

space, while our proposed method use hyper-1197

spheres to represent big prototypes and conduct1198

metric-based classification in the Euclidean1199

space. Therefore, the focus of our proposed big1200

prototypes is different from the non-Euclidean1201

prototype-based works.1202

C.2 Other Prototype-enhanced Methods1203

Here, we discuss the difference between big1204

prototypes with four prototype-enhanced methods1205

in few-shot learning: infinite mixture proto-1206

types (Allen et al., 2019), CovaMNet (Li et al.,1207

2019a), variational few-shot learning (Zhang et al.,1208

2019), and two-stage (Das and Lee, 2020).1209

Infinite mixture prototypes (Allen et al., 2019)1210

model each class as an indefinite number of clus-1211

ters and the prediction is obtained by computing1212

and comparing the distance to the nearest clus-1213

ter in each class. This method is an intermediate1214

model between prototypes and the nearest neighbor1215

model, whereas big prototypes alleviate the over-1216

generalization problem of vanilla prototypes with1217

a single additional parameter that turns a single1218

point modeling into a hypersphere. The essential1219

prototype-based feature of big prototypes allows1220

faster computation and easier training.1221

CovaMNet (Li et al., 2019a) calculates local vari-1222

ance for each class based on support samples and1223

conducts metric-based learning via covariance met-1224

ric, which basically evaluates the cosine similarity1225

between query samples and the eigenvectors of1226

the local covariance matrix. To ensure the non-1227

singularity of the covariance matrix, the feature of 1228

each sample is represented with a matrix, gener- 1229

ated by a number of local descriptors, with each 1230

extracting a feature vector. Compared to big pro- 1231

totypes, both methods attempt to model more vari- 1232

ance based on vanilla prototypes, while the idea 1233

of big prototypes is more straightforward and re- 1234

quires fewer parameters. On the other hand, the 1235

multi-channel features adopted by CovaMNet are 1236

less natural for NLP tasks. 1237

Variational Few-Shot Learning (Zhang et al., 1238

2019) tackles the few-shot learning problem un- 1239

der a bayesian framework. In order to improve 1240

single point-based estimation, a class-specific la- 1241

tent variable representing the class distribution is 1242

introduced and is assumed to be Gaussian. The 1243

method parameterizes the mean and variance of the 1244

latent variable distribution with neural networks 1245

that take the feature of a single instance as input. 1246

The learning and inference processes are both con- 1247

ducted on the latent variable level. The method 1248

adopts variational inference and is built on mod- 1249

eling distribution as a latent variable, where the 1250

metric calculation highly relies on the Gaussian 1251

assumption. Big prototypes, on the other hand, 1252

model the distribution with a center vector and a 1253

radius parameter in the actual embedding space, 1254

which is more tangible and easier to calculate. It is 1255

worth noting that this work also points that a single 1256

embedding is insufficient to represent a class, and 1257

samples the prototype from a high-dimensional dis- 1258

tribution. This is actually similar to our starting 1259

point, the difference is that our approach turns out 1260

to consider the problem from the geometric point 1261

of view based on the original embedding space, and 1262

proves that such simple geometric modeling could 1263

be very efficient in the few-shot scenarios. 1264

Two-Stage Approach first trains feature encoder 1265

and variance estimator on training data in an 1266

episodic manner with extracted absolute and rel- 1267

ative features. Then in the second stage, training 1268

data are split into "novel" class, and base class, 1269

novel class prototypes are learned from both sam- 1270

ple mean and base class features. The classifica- 1271

tion is carried out with integrated prototypes. This 1272

method improves on vanilla prototypes by extract- 1273

ing more features and combining information from 1274

base classes, but still follows single-point-based 1275

metric learning. Big prototypes extend a single 1276

point to a hypersphere in the embedding space, and 1277

therefore better capture within-class variance. 1278
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Algorithm 2: Greedy N -way K∼2K-shot sampling algorithm for FEW-NERD
Input: Dataset X , Label set Y , N , K
Output: output result
S ← ∅; // Init the support set
// Init the count of entity types
for i = 1 to N do

Count[i] = 0 ;

repeat
Randomly sample (x,y) ∈ X ;
Compute |Count| and Counti after update ;
if |Count| > N or ∃Count[i] > 2K then

Continue ;
else
S = S

⋃
(x,y) ;

Update Counti ;

until Counti ≥ K for i = 1 to N;

C.3 Limitations1279

Under the 1-shot setting, big prototypes will face1280

challenges in estimating the radius in support sets,1281

this is because the initial radius may be biased by1282

the randomness of sampling. When the radius is1283

set to exactly 0, the model will resemble a tradi-1284

tional prototypical network. In our empirical study,1285

we find that setting radius could consistently yield1286

more robust performance than traditional ways. Al-1287

though not as large as the boost in the multi-shot1288

setting, our method in the 1-shot scenario still deliv-1289

ers non-trivial results and exceeds most baselines1290

(Table 1, Table 2, Table 3).1291

C.4 Broader Impact1292

Our method focuses on the method of few-shot1293

learning, which enables machine learning systems1294

to learn with few examples, and could be applied1295

to many downstream applications. The technique1296

itself does not have a direct negative impact, i.e.,1297

its impact stems primarily from the intent of the1298

user, and there may be potential pitfalls when the1299

method is applied to certain malicious applications.1300

D K∼2K Sampling for Few-NERD1301

In the sequence labeling task FEW-NERD, the1302

sampling strategy is slightly different from other1303

classification tasks. Because in the named entity1304

recognition, each token in a sequence is asked to1305

be labeled as if it is a part of a named entity. And1306

the context is crucial for the classification of each1307

entity, thus the examples are sampled at the se-1308

quence level. Under this circumstance, it is diffi- 1309

cult to operate accurate N way N shot sampling. 1310

Ding et al. (2021b) propose a greedy algorithm to 1311

conduct N way K ∼ 2K shot sampling for the 1312

FEW-NERD dataset. We follow the strategy of the 1313

original paper (Ding et al., 2021b) and report it in 1314

Algorithm 2. 1315

18


