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Abstract

The 2013 National Infrastructure Protection Plan
(DHS, 2013) outlines the need for interconnected
infrastructure systems to coordinate more and rec-
ognize their interdependencies. We model the two
extremes of this coordination spectrum using two
different multi-agent models: (a) a model called
the “centralized model” in which the agents act
as one unit in making decisions and (b) a model
called the “individual model” in which the agents
act completely separately and have either a pes-
simistic or optimistic assumption regarding the
damages of the other infrastructure systems con-
trolled by the other agents. We then use the in-
dividual model to establish a point along the co-
ordination spectrum by providing the individual
agents with delayed information from the other
player(s). To test this framework, we use a small
but illustrative model from a Yu & Baroud paper
in which there is a power and a water network,
and we assume that there are operators for both
networks that would like to maximize flow in the
network (2020). Our results comparing partially
repaired networks using the two models find that:
(i) the centralized model acts as an upper bound
on the individual model in terms of our flow met-
ric and (ii) the delayed information individual
model leads to less variability in results compared
to the other individual model assumptions which
points to the value of some coordination in deci-
sion making.
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1. Introduction
Modeling the decisions made by those responsible for the
components of interconnected infrastructure systems in re-
sponse to disasters helps us better understand the best ways
to approach coordination between these entities. Indeed,
the first three tenets in the 2013 National Infrastructure
Protection Plan (DHS, 2013) state:

• “Risk should be identified and managed in a coordi-
nated and comprehensive way across the critical infras-
tructure community to enable the effective allocation
of security and resilience resources.”

• “Understanding and addressing risks from cross-sector
dependencies and interdependencies is essential to en-
hancing critical infrastructure security and resilience.”

• “Gaining knowledge of infrastructure risk and inter-
dependencies requires information sharing across the
critical infrastructure community.”

The first and third items point to the need for coordina-
tion between infrastructure components, and the second
item elucidates the existence of interdependencies among
infrastructure components. Our paper explores the points
brought up in this report by modeling the two ends of the
coordination spectrum, with a model in which infrastruc-
ture components are completely centralized in their decision
making and a model in which the components make their
own decisions with either very pessimistic or very optimistic
assumptions regarding the other network. We also use the
individual model to simulate the situation of delayed in-
formation sharing between agents, meaning the individual
agents still make decisions separately but have knowledge
of the previous state of the other players’ network states.
Overall, as our experiments demonstrate, the centralized
model acts as best case scenario model against which to
compare the individual models for performance.

2. Literature Review
We include literature in this review that pertains to Markov
decision process (MDP) models or reinforcement learn-
ing techniques applied to interconnected infrastructure in
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the event of some kind of disaster. First, there are single-
player Markov decision process models for interconnected
infrastructure (Espada Jr, 2014) that use linear programming
(Huang et al., 2017) along with decomposition techniques
(Huang et al., 2018) as well as approximate dynamic pro-
gramming techniques (Nozhati, 2021; Nozhati et al., 2020)
and Monte Carlo techniques (Khouj et al., 2014; 2018).
These models then move into reinforcement learning (Lopez
et al., 2018; Alutaibi, 2017; Sun & Zhang, 2020) and deep
reinforcement learning (Ishigaki et al., 2020; Memarzadeh
& Pozzi, 2019) techniques for single-player critical infras-
tructure applications. Our concentration is on cooperative,
multi-agent MDP and multi-agent reinforcement learning
methods for disaster affected interconnected infrastructure
systems, which is an underdeveloped literature. Some ex-
ceptions are a multi-agent reinforcement learning paper
(Megherbi et al., 2013) and three deep reinforcement learn-
ing papers (Rajulapati et al., 2020a;b; Srikanth et al., 2021)
that fit this description. There are a few additional papers
that focus upon non-cooperative infrastructure applications
(Panfili et al., 2018; Ni & Paul, 2019).

In Megherbi et al., they focus on experiments with reinforce-
ment learning in which the multiple agents involved either
did or did not pass information to each other, in which they
found that passing information leads to quicker learning
(2013). Our paper is different from Megherbi et al. because:
(i) Megherbi et al. does not truly deal with interconnected in-
frastructure networks in that they do not model connections
between different infrastructure systems and (ii) we focus
on centralized versus individualized control, along with a de-
layed information sharing model, thus presenting more cases
for interaction among agents and providing a best case sce-
nario against which to compare models (2013). Rajulapati
et al.’s papers use the multi-agent deep deterministic policy
gradient (MADDP) algorithm in which the agents involved
are trained using “centralized training” and “decentralized
execution” techniques, meaning that the agents are provided
with global information during the training phase but are
not provided with this information after the training phase
(2020a; 2020b). Srikanth et al. use the MADDP algorithm
in the context of Covid-19 interconnected infrastructure pre-
sumably with the same training scheme (2021). Our paper
differs from these last three papers because they only con-
sider the case of decentralized control and never consider
the case in which complete centralization could make the
situation better. We also consider network measures of re-
ward, whereas the reward mapping is not explicitly specified
in these three papers.

2.1. Our Contribution

Our contribution to the literature is to provide some addi-
tional models for multi-agent coordination in interconnected
infrastructure. We also shine a light on the policy objective

of having interconnected infrastructure systems coordinate
more by showing the two ends of the spectrum of coordina-
tion along with a point along the continuum where there is
delayed information sharing. Furthermore, we contribute to
the literature by explicitly modeling interconnected infras-
tructure outcomes using a network measurement of reward.

3. Markov Decision Processes
Before moving into our multi-agent models, we provide
some background regarding Markov decision processes. As
defined by Sutton and Barto, a Markov decision process for
an agent i over T total time steps can be defined by a few
sets and functions as follows (2018):

• S as the set of states in which the agent can exist.

• A as the set of actions the agent can take. A(s) can be
a function of the state the agent in which the agent is
currently.

• p(s′, r|s, a) = Pr{Rt+1 = r, St+1 = s′|St =
s,At = a}, as the probability of transitioning to state
s′ and obtaining reward r at time t+ 1 given that the
agent began at state s and took action a at time t. This
definition expresses the Markov Property of the next
state only depending upon the previous state and ac-
tion.

• r(s, a) = E[Rt+1|St = s,At = a] =∑
r∈R

r
∑
s′∈S

p(s′, r|s, a), as the reward at state s and

action a, requiring us to take the expectation over all
rewards.

• π(a|s) as the policy. It represents the probability of the
agent choosing action a given that the agent is at state
s.

• The state-value function is defined, with discount factor
γ ∈ [0, 1), as:

vπ(s) = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]
(1)

• The state-action-value function is defined as:

qπ(s, a) = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s,At = a

]
(2)

The Bellman Equation is defined as the optimal state-action-
value function for a pair (s, a) in the logical progression as
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follows (Sutton & Barto, 2018):

q∗(s, a) = max
π

qπ(s, a)

= E [Rt+1 + γv∗(St+1)|St = s,At = a]

= E
[
Rt+1 + γmax

a′
qπ∗(St+1, a

′)|St = s,At = a
]

=
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
q∗(s

′, a′)
]

(3)

We obtain a recursive equation which defines the Bellman
equation. The third step in (3) illustrates the greedy na-
ture of the process of finding an optimal policy (Sutton &
Barto, 2018) because it demonstrates that, as long as one
knows the next steps ahead are optimal, one can choose the
action that maximizes reward in this time period. Indeed,
this is the underpinning of the dynamic programming algo-
rithms which suppose that policies can be improved with
this greedy procedure (Sutton & Barto, 2018).

For our multi-agent models, our transition function is deter-
ministic so, although we presented the MDP model with a
probabilistic transition function for the sake of generality,
we will define our multi-agent models with a deterministic
transition function that still preserves the Markov Property.

4. Multi-Agent Models
The definition of a multi-agent Markov decision process
(MMDP) model comes jointly from Boutilier (1996) and
Oliehoek & Amato (2016) with Boutilier describing it as
thinking of the agents as having “one mind” and Oliehoek
& Amato describing it “as a regular MDP with a ‘puppeteer’
agent that selects joint actions”. Our centralized model
flows directly from these two definitions, with the agents
acting “as one mind” (Boutilier, 1996) and representing
the idealized situation in which the agents would be able
to take advantage of “global information” toward a shared
goal (Oliehoek & Amato, 2016). The individual model, on
the other hand, treats the agents entirely separately, with
each agent making its own decisions and receiving its own
rewards given either essentially no information about the
other player or delayed information about the other player,
which will be explained in the more detailed explanation
of the model. Therefore, we can call the centralized model
a multi-agent Markov decision process, but the individual
model needs a new term, which we assign as “multiple MDP
model” (MuMDP) because it recognizes that multiple single
agent MDP models are being solved for multiple agents.

These models will be defined specifically for our application
of an interconnected water and power system, and we con-
sider the specific disaster of an earthquake for the transition
functions.

Centralized Model: We define the centralized model as
follows:

• State St: A vector that can be split into two parts:
Swater
t and Spower

t . Each part has three components,
with each part the length of the number of nodes of
the infrastructure sub-network (water and power in our
case). The three components are:

– the initial damage state;
– the number of days that have been spent repairing

the network; and
– the amount of damage the node currently has.

Importantly, there are 5 initial damage states, taken
from the FEMA HAZUS Earthquake Manual (FEMA,
2020), that correspond to undamaged, slight, moderate,
extensive, and complete (with corresponding numbers
0, 1, 2, 3, and 4, respectively).

• Action At = Awater
t ×Apower

t : Represents the joint pair
of actions that the water and power operators take to
repair nodes in their respective networks. We assume
each time period is a day, and thus the operators can
send resources to repair one node per day. Depending
upon the initial damage, this repair will lead to different
amounts of repair of damaged components.

• Transition St+1 = T (St, At): Represents the transi-
tion function from St, At to St+1. This function ad-
justs St according to the At by adding 1 more day of
work to any component that has been chosen by At. It
also adjusts the damage levels using a combination of
(a) the initial damage and (b) the number of days that
work has been done on each of the nodes. The FEMA
HAZUS Documentation (FEMA, 2020) has restoration
functions for the water and power systems according
to their initial damage categorization, so our code im-
plements these curves. Thus, the correct restoration
curve is chosen for the correct component (supply, de-
mand, transition/transmission), and then the number
of days of work is plugged into this restoration curve.
These curves each have their own mean and standard
deviation regarding the percentage of functionality the
network component has attained for the number of days
upon which it has been worked. We use the cumulative
distribution functions.

• Reward R(St+1): Represents the reward obtained at
time t. We calculate the reward based upon the maxi-
mum amount of flow that can be sent between:

– The water supply and water demand nodes (water
flow);

– The power supply and power demand nodes
(power flow); and
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– The water demand and power supply nodes (water
flow) and the power demand and water supply
nodes (power flow).

Importantly, we should note that, based upon the im-
plementation of our algorithms, we do not make the
distinction between arcs devoted to water and arcs de-
voted to power. The arcs in the network are assumed
to be able to handle both water and power. The ca-
pacity of the arcs is determined by the nodes incident
to them. The determination occurs by taking the min-
imum of the repair levels of the two nodes i and j,
which produces the capacity level for the arc (i, j). We
use the Python package networkx to determine the
maximum flow between the pairs of nodes listed above
(Hagberg et al., 2008). This approach to measuring
critical infrastructure repair was inspired by Dueñas-
Osorio et al. (2007).

Individual Model: The individual model shares elements
with the centralized model, but the key difference is that
the water and power operators act independently with ei-
ther a completely pessimistic of each other’s situations, a
completely optimistic view of each other’s situations, or
delayed information regarding each other’s situations. This
approach was inspired by Riel et al. (2017) and Talebiyan
& Duenas-Osorio (2020).

• State St: There are two separate vectors Swater
t and

Spower
t . They have the three components discussed in

the previous formulation.

• Action At: There are separate action spaces for water
and power instead of a joint action space. Therefore,
we have Awater

t and Apower
t separately.

• Transition Swater
t+1 = T (Swater

t , Awater
t ) and Spower

t+1 =
T (Spower

t , Apower
t ): The transition functions perform

the same routines as the transition function from the
previous set up, but we make it clear that there are
separate transition functions for the two players.

• Reward Rwater(Swater
t+1 ) and Rpower(Spower

t+1 ): This is the
most important part of this MuMDP formulation. Wa-
ter and power have explicitly separate reward functions,
in which the water reward function places all 0s, all 1s,
or the previous state capacities for the power node ca-
pacities and the power reward function places all 0s, all
1s, or the previous state capacities for the water node
capacities. The 0s correspond to each player thinking
the other has been completely destroyed by the disaster
(pessimistic assumption), the 1s correspond to each
player thinking the other sustained no damage after
the disaster (optimistic assumption), and the previous
state capacities represent delayed information about

the other player’s state after the disaster. These mod-
eling choices were certainly influenced by Talebiyan
& Duenas-Osorio’s Judgement Call mechanic which
assumes different information assumptions between
players (2020). The reward functions then calculate
the maximum amount of flow according to the three
tuples outlined in the reward function sub-section of
the centralized model for each of the new augmented
state vectors.

5. Algorithms to Solve Multi-Agent Models
As discussed in the beginning of Section 4, we have the cen-
tralized MMDP model and the individual MuMDP model.
As discussed by both Boutilier (1996) and Oliehoek & Am-
ato (2016), we can use single agent MDP solution tech-
niques for MMDP models. We can also use single agent
MDP solution techniques for our MuMDP model because
this model is comprised of single agent MDPs. Conse-
quently, we use policy iteration for the centralized MMDP
model and Q learning for the individual MuMDP model
(Sutton & Barto, 2018). As described by Sutton and Barto,
policy iteration falls in the class of dynamic programming
algorithms and, essentially, it works by iteratively updating
the value function with the current policy and, then, using
the updated value function to find a better policy (2018). In
Q learning, the algorithm makes use of the Bellman Equa-
tion discussed in Section 3 by taking a linear combination of
the previous value of the state-action pair and the bracketed
part of the last line of equation (3) to produce the following
update (Sutton & Barto, 2018):

Q(St, At)←(1− α)Q(St, At)

+α
(
Rt+1 + γmax

a
Q(St+1, a)

) (4)

See Algorithms 1 and 2 for more details regarding policy
iteration applied to the centralized model and Q learning
applied to the individual model. We note for the Q learning
algorithm (Algorithm 2) the following; when we run the
Q learning algorithm, we run it for a specific S0 so, for
every iteration k, the S0 is the same. This means that the Q
learning algorithm does not have a set of initialized states
from which it has to start searching; it repeatedly starts
from one initial state (Sutton & Barto, 2018). Thus, for the
experiments described in Section 6, Q learning has to be
run for each trial. We also note for Algorithm 2 that the
“current belief regarding state of other network” refers to
either the pessimistic, optimistic, or delayed information
assumptions discussed in Section 4. As a final note, readers
may notice that we do not engage with deep reinforcement
learning (DRL) algorithms for this work. This is due to time
limitations; our previous experience with DRL informed us

networkx
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Algorithm 1 Policy Iteration for Centralized MMDP (Sut-
ton & Barto, 2018)

Initialize V (s) ∈ R, π(s) ∈ A(s) = Awater × Apower ∀s,
θ = 1e− 6, and stable = 0
while stable = 0 do

∆ = 100;
while ∆ > θ do
∆ = 0
for s ∈ S do
v = V (s);
s′ = T (s, π(s));
V (s) = R(s′) + γV (s′);
∆ = max(∆, |v − V (s)|)

end for
end while
stable = 1;
for s ∈ S do

old joint action = π(s);
π(s) = argmaxa[R(T (s, a)) + γV (T (s, a))];
If old joint action ̸= π(s), then stable = 0;

end for
end while

that DRL algorithms can take some time to tune. In potential
future work on this subject, DRL algorithms would be an
interesting avenue to explore.

6. Experimental Set-up
For the experimental set-up, we produce 10 random dam-
age states for the water and power networks by drawing a
random integer number between 0 to 4 for each node for
each of the 10 trials. These random numbers represent the 5
damage categories for each sub-node of the water and power
systems according to FEMA in the event of an earthquake
(FEMA, 2020). We then use the policy iteration Algorithm
1 to solve the centralized MMDP model for three time peri-
ods into the future to produce a partially repaired network
for each of the 10 damage states. We then use Q-learning
(Algorithm 2) to solve the individual MuMDP model for
three time periods into the future to produce a partially re-
paired network for each of the 10 damage states. We run the
individual MuMDP model for each of the 10 damage states
for a pessimistic (all 0s capacity for the opposing network),
an optimistic (all 1s capacity for the opposing network), and
a delayed information (the previous capacity state for the
opposing network) perspectives on the opposing networks.
We then compare the maximum flow using the same metric
as for the reward for both partially repaired networks under
the two models (and for the pessimistic, the optimistic, and
the delayed approaches for the individual MuMDP model).

We run our experiment on a small but illustrative network

Algorithm 2 Q Learning Algorithm for Individualized
MuMDP (Sutton & Barto, 2018)

Initialize Qw(s, a),∀s ∈ S, a ∈ Aw(s), arbitrarily, and
Qw(terminal state, ·) = 0 and Qp(s, a),∀s ∈ S, a ∈
Ap(s), arbitrarily, and Qp(terminal state, ·) = 0
for k = 1,K do

Initialize Sw and Sp with S0 value;
for t = 1, T do

Choose Aw from Aw(S) using policy derived from
Qw (such as ϵ-greedy);
Choose Ap from Ap(S) using policy derived from
Qp (such as ϵ-greedy);
Take action Aw, observe Sw′

, and obtain Rw by
concatenating Sw′

with current belief regarding state
of other network;
Take action Ap, observe Sp′ , and obtain Rp by con-
catenating Sp′ with current belief regarding state of
other network;
Bw ← Rw + γmaxa Q

w(Sw′
, a)

Qw(Sw, Aw)← (1− α)Qw(Sw, Aw) + αBw;
Bp ← Rp + γmaxa Q

p(Sp′ , a)
Qp(Sp, Ap)← (1− α)Qp(Sp, Ap) + αBp;
Sw ← Sw′

;
Sp ← Sp′ ;

end for
end for

from Yu and Baroud (2020). See Figure 1. It has 8 water
nodes (in blue and on the left), 8 power nodes (in red and
on the right), and 18 total links in the network (including
interconnected links between the two networks). The water
and power networks each have supply (S), demand (D), and
transmission/transition (T) nodes (Yu & Baroud, 2020).

For Algorithm 1, the θ value is set at 1e− 6. For Algorithm
2, the parameters values are:

• K = 5000

• ϵ = 0.9

1+e10
k−(0.4)(K)

K

, which comes from (Yu et al.,

2021)

• α = 0.99

• γ = 0.9

7. Results
The results in Tables 1, 2, and 3 show that the centralized
model solution maximum flow acts as an upper bound on
the individual model solution maximum flow. This makes
intuitive sense because, in the centralized model, the agents
are acting as one unit whereas, in the individual model, the
agents are not, which does not allow them to take advantage



Centralized vs Individual Models for Decision Making in Interconnected Infrastructure

Figure 1. Toy Network (Yu & Baroud, 2020)

of coordination opportunities to maximize flow in the inter-
connected arcs/nodes. Figure 2, demonstrates that, among
the individual models, the delayed information model leads
to less variability in the percentage difference metric be-
tween the individual model and the centralized model when
the ranges of the metric are compared. This indicates that
there is value in delayed information sharing between agents,
which requires very little coordination and perhaps suggests
an important policy idea in improving disaster management
practices between interconnected networks. We do note that
the fourth quartiles of the pessimistic and optimistic indi-
vidual models lie above the fourth quartile of the delayed
information individual model but, overall, if we have to
choose one model and aim to guard against comparatively
large negative outliers, the experiments still point to the
delayed information model because its first quartile lies well
above the two other models’ first quartiles.

As a note on timing for the experiments, these are the av-
erage timing results in seconds for the four experiments
undertaken:

• Policy Iteration for the MMDP/Centralized Model:
3976 seconds

• Q Learning for the MuMDP/Individual Model with
Pessimistic Assumption: 178 seconds

• Q Learning for the MuMDP/Individual Model with
Optimistic Assumption: 562 seconds

• Q Learning for the MuMDP/Individual Model with
Delayed Information Assumption: 545 seconds

Table 1. Flow Results of Centralized vs Individual Model Deci-
sions after 3 Time Periods and Pessimistic Information Assumption
for Individual Model

INITIAL
DAMAGE

FLOW

CENTRALIZED
SOLUTION

FLOW

INDIVIDUAL
SOLUTION

FLOW

DIFFERENCE AS
PERCENTAGE OF
CENTRALIZED

(%)

4.1 6.17 6.17 0.0
4.17 5.63 5.31 -5.77
3.11 4.23 4.0 -5.37
7.39 12.93 12.93 0.0

13.47 24.15 22.16 -8.23
7.59 12.0 11.67 -2.74
3.71 5.44 5.42 -0.5
1.56 2.63 1.98 -24.63
2.69 3.52 3.17 -9.96
3.61 5.05 5.05 0.0

Table 2. Flow Results of Centralized vs Individual Model Deci-
sions after 3 Time Periods and Optimistic Information Assumption
for Individual Model

INITIAL
DAMAGE

FLOW

CENTRALIZED
SOLUTION

FLOW

INDIVIDUAL
SOLUTION

FLOW

DIFFERENCE AS
PERCENTAGE OF
CENTRALIZED

(%)

4.1 6.17 6.17 0.0
4.17 5.63 5.57 -1.11
3.11 4.23 3.7 -12.67
7.39 12.93 12.02 -7.02

13.47 24.15 24.15 0.0
7.59 12.0 11.68 -2.66
3.71 5.44 5.19 -4.67
1.56 2.63 2.15 -17.98
2.69 3.52 3.38 -4.07
3.61 5.05 4.42 -12.31

8. Conclusions & Future Work
In conclusion, this work demonstrates the two ends of the
spectrum regarding coordination in interconnected infras-
tructure in the aftermath of a disaster as well as a point on
this spectrum in the form of delayed information sharing.
We propose two models, the centralized and the individual
model, that span this spectrum as well as a modified version
of the individual model with delayed information sharing,
and we demonstrate all of these models using a 10 trial ex-
periment. From this experiment, we see that the centralized
model acts as an upper bound on the individual model, and
we showcase the value in at least limited coordination in the
form of delayed information sharing.

In the future, we would test the two models on a larger net-
work, which would require more sophisticated MDP and
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Table 3. Flow Results of Centralized vs Individual Model Deci-
sions after 3 Time Periods and Delayed Information Assumption
for Individual Model

INITIAL
DAMAGE

FLOW

CENTRALIZED
SOLUTION

FLOW

INDIVIDUAL
SOLUTION

FLOW

DIFFERENCE AS
PERCENTAGE OF
CENTRALIZED

(%)

4.1 6.17 6.01 -2.55
4.17 5.63 5.38 -4.43
3.11 4.23 4.06 -4.09
7.39 12.93 12.02 -7.02

13.47 24.15 24.13 -0.07
7.59 12.0 11.35 -5.47
3.71 5.44 5.17 -5.04
1.56 2.63 2.53 -3.78
2.69 3.52 3.3 -6.31
3.61 5.05 4.98 -1.33

Figure 2. Boxplots Comparing Pessimistic vs Optimistic vs De-
layed Percentage of Centralized (%)

reinforcement learning solution techniques. We would also
test more realistic earthquake damage disaster situations, as
opposed to the randomized damage scenarios we used for
our experiments. Finally, we would explore deep reinforce-
ment learning algorithms applied to this context.

9. Acknowledgements
We would like to thank Dr. Allison Reilly from University
of Maryland, College Park for a very insightful conversation
in Spring 2022 that helped inspire this work. She pointed
us toward the NIPP 2013 (DHS, 2013) and informed us of
the lack of communication between different infrastructure
entities.

References
Alutaibi, K. Decision support for emergency response in

interdependent infrastructure systems. PhD thesis, Uni-
versity of British Columbia, 2017.

Boutilier, C. Planning, learning and coordination in mul-
tiagent decision processes. In TARK, volume 96, pp.
195–210. Citeseer, 1996.

DHS. Nipp 2013: Partnering for critical infrastructure secu-
rity and resilience, 2013. URL https://www.cisa.
gov/sites/default/files/publications/
national-infrastructure-protection-plan-2013-508.
pdf.
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