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ABSTRACT

Nowadays, understanding the geometry of the loss landscape shows promise in en-
hancing a model’s generalization ability. In this work, we draw upon prior works
that apply geometric principles to optimization and present a novel approach to
improve robustness and generalization ability for constrained optimization prob-
lems. Indeed, this paper aims to generalize the Sharpness-Aware Minimization
(SAM) optimizer to Riemannian manifolds. In doing so, we first extend the con-
cept of sharpness and introduce a novel notion of sharpness on manifolds. To
support this notion of sharpness, we present a theoretical analysis characteriz-
ing generalization capabilities with respect to manifold sharpness, which demon-
strates a tighter bound on the generalization gap, a result not known before. Moti-
vated by this analysis, we introduce our algorithm, Riemannian Sharpness-Aware
Minimization (RSAM). To demonstrate RSAM’s ability to enhance generalization
ability, we evaluate and contrast our algorithm on a broad set of problems, such as
image classification and contrastive learning across different datasets, including
CIFAR100, CIFAR10, and FGVCAircraft. Our code is publicly available here.

1 INTRODUCTION

One of the challenges in deep learning is the overfitting issue, which is attributed to high-dimensional
and non-convex loss functions, which leads to complicated loss landscapes with multiple local min-
ima. Hence, it is crucial to understand the geometry of the loss landscape to train robust models and
improve generalization ability. Regarding this issue, flat minimizes, which seek for regions with low
sharpness, have been known to be among the most effective approaches for robustness (Keskar et al.,
2016; Kaddour et al., 2022b; Li et al., 2022). Indeed, Sharpness-Aware Minimization (SAM), as in-
troduced by Foret et al. (2021b), stands out as a notable method by simultaneously minimizing the
loss function and the worst-case loss within a neighborhood of the current model. Nowadays, SAM
has proven to be versatile across a diverse array of tasks such as meta-learning (Abbas et al., 2022),
federated learning (Qu et al., 2022), vision models (Chen et al., 2021), or language models (Bahri
et al., 2022).

Another challenge within deep learning is that to preserve the model’s robustness, it is often desir-
able to impose strict constraints on the parameters. Such constraints include the SPD constraints
(Gao et al., 2020), orthogonality, and full rank (Xie et al., 2017; Roy et al., 2019; Wang et al., 2020).
In such cases, the models are known to reside on some Riemannian manifolds, such as Grassmann
manifolds, SPD manifolds, or Stiefel manifolds. Given the importance of understanding the ge-
ometry of the parameter space, especially when it is a differential manifold, various optimization
techniques have been developed to learn on Riemannian manifolds (Bonnabel, 2013; Luenberger,
1972; Kasai et al., 2019; Sato et al., 2019; Zhang et al., 2017). Indeed, prior studies have demon-
strated that taking into account this intrinsic geometry structure will remarkably improve the model’s
generalization ability (Roy et al., 2019; Absil et al., 2008a).

Understanding these two challenges in enhancing the model’s robustness and generalization ability,
we seek to generalize the SAM optimizer to Riemannian manifolds. In particular, we introduce
a novel notion of sharpness on manifolds to study the intrinsic geometry of the parameter space
and the loss landscape. This notion is backed by a comprehensive theoretical analysis that formu-
lates generalization capacity in terms of neighborhood-wise training loss on the manifolds Indeed,
our theorem establishes a tighter upper bound of O(

√
d) compared to the existing bounds such as
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O(
√
k) from Foret et al. (2021b), in which d is the dimensionality of the manifold, embedded in a

higher dimensional Euclidean space with k ≫ d dimensions. Motivated by this theoretical analysis,
we propose a Riemannian optimization technique called Riemannian Sharpness-Aware Minimiza-
tion (RSAM). We show via an empirical study that RSAM improves the model’s generalization
ability across a range of different tasks such as supervised learning, self-supervised learning, and a
diverse array of computer vision datasets (CIFAR100, CIFAR10, FGVCAircraft), as well as differ-
ent models (ResNet34, ResNet50). Indeed, RSAM makes a notable improvement upon SAM and
SupCon. We will also show in our ablation studies the ability of RSAM to seek flat regions on the
loss landscape with the aid of Riemannian geometry. In short, our contributions are as follows:

• We introduce a novel notion of Sharpness on Riemannian manifolds, backed by a theoreti-
cal analysis establishing a tighter upper bound than the existing bounds.

• Motivated by the theory, we introduce RSAM and empirically study its efficacy across var-
ious settings. Our experiments show that RSAM outperforms current methods by notable
margins.

2 RELATED WORKS

2.1 SHARPNESS AWARE MINIMIZATION

The Sharpness-Aware Minimization (SAM) technique, introduced by Foret et al. (2021a), has gained
prominence due to its effectiveness and scalability compared to previous methods. SAM’s versatility
is evident across various tasks and domains, making it a powerful optimization approach. SAM has
found applications in diverse areas such as meta-learning bi-level optimization (Abbas et al., 2022),
federated learning (Qu et al., 2022), vision models (Chen et al., 2021), language models (Bahri et al.,
2022), domain generalization (Cha et al., 2021), and multi-task learning (Phan et al., 2022).

Recent research has further enhanced SAM’s capabilities by exploring its underlying geometry
(Kwon et al., 2021; Kim et al., 2022), minimizing surrogate gaps (Zhuang et al., 2022), and speeding
up training time (Du et al., 2022; Liu et al., 2022). Additionally, Kaddour et al. (2022a) empirically
studied SAM’s sharpness compared to SWA (Izmailov et al., 2018). In contrast, BSAM (Möllen-
hoff & Khan, 2023) demonstrated that SAM is an optimal Bayesian relaxation of standard Bayesian
inference with a normal posterior. Moreover, Nguyen et al. (2023b) developed the sharpness con-
cept for Bayesian Neural Networks. Finally, Nguyen et al. (2023a) generalized SAM by leveraging
optimal transport-based distributional robustness with sharpness-aware minimization.

2.2 LEARNING ON MANIFOLD

Within the literature of machine learning, it is often desirable to impose constraints on a model’s
parameters of a model, such as orthogonality or full rank. In such cases, the search space is no longer
an Euclidean space but a manifold. Studies in Riemannian geometry have indicated that considering
the intrinsic geometry of the parameter space during training can yield better performance (Roy
et al., 2019; Absil et al., 2008a). Indeed, the awareness of the intrinsic geometry can increase the
likelihood of discovering desirable parameters and optimize training time by confining the search to
a significantly lower-dimensional space.

As such, various classes of manifolds have been introduced across a spectrum of applications. For
example, in the domain of metric learning, Roy et al. (2019) incorporated Stiefel manifolds to ensure
that the learned parameters maintain orthogonality constraints. In the context of Gaussian mixture
models, Gao et al. (2020) proposed a strategy involving learning on SPD manifolds to enforce SPD
constraints. Furthermore, Grassmann manifolds have found applications in diverse domains, en-
compassing recommender systems (Dai et al., 2012; Boumal & Absil, 2015) or modeling affine
subspaces within document-specific language models (Hall & Hofmann, 2000).

Various procedures to learn on Riemannian manifolds were proposed. One notable approach to en-
force adherence to these manifold structures is the Riemannian gradient descent (RGD) algorithm
(Luenberger, 1972). However, it is worth noting that RGD has computational limitations since it re-
quires taking the whole dataset for each iteration. To address this issue, Bonnabel (2013) introduced
the Riemannian stochastic gradient descent (RSGD) method, which reduces computational overhead
and thus gains widespread adoption and is used on various manifolds such as SPD manifolds.
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3 RSAM: RIEMANNIAN SHARPNESS-AWARE MINIMIZATION

3.1 FORMULATIONS AND NOTATIONS

Figure 1: Neighborhoods on manifolds. Bθ(ρ; T )
(green) is an ρ-ball on the tangent space TθM. The
neighborhood Bθ(ρ;M) (red) of θ on M is the retrac-
tion image of Bo

θ(ρ; T ).

This section presents the problem formulations
and the notions used in our theory develop-
ment. We consider a model fθ : X →
Y parameterized by parameter θ, where X
is the data space and Y is the label space.
Let D be the data/label distribution that gen-
erates data/label pair (x, y) ∼ D. Based
on D, we sample a specific training set
S = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where
(x1, y1), . . . , (xn, yn)

iid∼ D.

Given (x, y) ∼ D, we use the per-sample loss
function ℓ(fθ(x), y) to quantify the loss suf-
fered by the model fθ when predicting (x, y).
At such, the empirical loss on the training set
S is LS(θ) =

1
n

∑n
i=1 ℓ(fθ(xi), yi), while the

general loss on the data/label distribution D is
LD(θ) = E(x,y)∼D

[
ℓ(fθ(x), y)

]
.

In this work, we assume that some constraints
are imposed on the models (e.g., orthogonality, full rank, or SPD constraints), making the model
parameters θ lying in a low-dimensional manifold M ⊂ Rk embedded in the ambient vector space
Rk. In other words, we assume that θ ∈ M, in which M has dimensionality d ≪ k. Bearing
this in mind, we further develop Riemannian Sharpness-aware Minimization in the next section.
For our theory development, we also introduce a few additional relevant notions. Indeed, for a point
θ ∈ M, we denote TθM as the tangent space of M. By convention, the tangent space TθM uses the
coordinate system with the current θ as an origin hence ϵ ∈ TθM specifies the offset from θ, thus
further representing the vector θ+ϵ on the ambient vector space Rk. On the tangent space, we need
to define the neighborhood (e.g., the ρ-ball) around θ for presenting the concept of sharpness over
the tangent space and the manifold. To serve our theory development, we define two equivalent ρ-
balls w.r.t. the tangent and ambient space coordinate systems: Bo

θ(ρ; T ) = {ϵ ∈ TθM : ∥ϵ∥2 ≤ ρ}
(i.e., the offset ball) and Ba

θ(ρ; T ) = θ + Bo
θ(ρ; T ) = {θ + ϵ : ϵ ∈ TθM and ∥ϵ∥2 ≤ ρ} (i.e., the

absolute ball). Furthermore, we define the neighborhood of θ on the manifold M as the retraction
map of the one on the tangent space: Bθ(ρ;M) = Rθ(Bo

θ(ρ; T )), where Rθ specifies the retraction
operation at θ. For clarity, we refer to Figure 1 for an illustration of the neighborhood on Riemannian
manifolds.

3.2 OUR THEORY DEVELOPMENT

In what follows, we present our theory development for RSAM. We consider the minimization
problem in which the parameter space is an embedded submanifold M ∈ Rk:

min
θ∈M

LD(θ)

Here, we can think of the condition θ ∈ M as a constraint to the optimization problem, such as
orthogonality. There are two significant challenges regarding this constrained optimization problem.
The first challenge is that D exists but is unknown and can only be realized through the training set
S. The second challenge, which is our main concern, is that θ must remain within a manifold M,
i.e., satisfy the constraints. To tackle the second challenge, we present our main theorem about
generalization ability on manifolds whose proof can be found in Appendix A.1.3.

Theorem 1. For any small ρ > 0 and δ ∈ [0; 1], with a high probability 1 − δ over training set S
generated from a distribution D, we have the following inequalities on the manifold M:
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LD(θ) ≤ max
θ′∈Bθ(ρ;M)

LS(θ
′) +O

(
CMρ2 +

√
d+ log n

δ

n− 1

)
(1)

in which CM is a constant depends on M.

Remark 1. The constant CM depends on the structure manifold and may scale with dimensions
for general manifolds. Additionally, for the retraction operations on the Stiefel manifold used in our
practical algorithm and our experiments, the constant can be computed as CM = 1 +

√
2/2.

This inequality expresses the generalization ability regarding neighborhood-wise training loss on
the manifold instead of the whole ambient space as in Foret et al. (2021b). We note that M can have
much smaller intrinsic dimensionality than the ambient space dimension, d ≪ k. Therefore, this
theorem gives us a tighter bound of O(d1/2) compared to O(k1/2) of SAM (Foret et al., 2021b).
As a follow-up of this theoretical analysis, we also empirically demonstrate in Section 5.3.3 and
Appendix 4c that our method did find the lower-sharpness region compared to prior works.

3.3 ALGORITHM

From the theorem above, we are thus motivated to find the local minimum in regions with small
sharpness. Hence, motivated by the theoretical analysis, we propose to define the sharpness on
manifolds as:

max
θ′∈Bθ(ρ;M)

LS(θ
′)− LS(θ)

Inspired by the term above, we propose to select the parameter values by solving the sharpness
minimization problem:

min
θ∈M

LRSAM
S (θ), where LRSAM

S (θ) = max
θ′∈Bθ(ρ;M)

LS(θ
′)

Minimizing the equation above is equivalent to:

min
θ∈M

LRSAM
S (θ) = min

θ∈M
max

θ′∈Bθ(ρ;M)
LS(θ

′) = min
θ∈M

max
θ′∈Rθ(Bo

θ(ρ;T ))
LS(θ

′)

= min
θ∈M

[
LS(θ) +

(
max

ϵ∈Bo
θ(ρ;T )

LS(Rθ(ϵ))− LS(θ)
)]

= min
θ∈M

[
LS(θ) +

(
max

ϵ∈Bo
θ(ρ;T )

⟨gradθLS(θ), ϵ⟩θ +O(||ϵ||2θ)
)]

≈ min
θ∈M

(
LS(θ) + max

ϵ∈Bo
θ(ρ;T )

⟨gradθLS(θ), ϵ⟩θ
)

Where the third equality comes from the Taylor expansion on Riemannian manifold in Boumal
(2023) and gradθLS(θ) indicates the Riemannian gradient. Recall the definition that Bo

θ(ρ;M) =
{ϵ ∈ TθM : ∥ϵ∥2 ≤ ρ}. We also define the Riemannian metric ⟨ϵ, ϵ′⟩θ = ϵ⊤Dθϵ

′ for some matrix
Dθ that reflects the local geometry at θ, the minimization problem is thus equivalent to:

min
θ∈M

max
∥ϵ∥2≤ρ,ϵ∈TθM

〈
gradθ(LS(θ)), ϵ

〉
θ

(2)

We first attempt to solve the inner maximization problem. Indeed, the problem has the following
closed-form solution whose proof can be found in Appendix A.1.1.

Proposition 1. Let gradθL(θ)⊤Dθ = v⊤θ and (uθ,j) be the system of orthonormal vectors of space
formed by TθM. The closed-form solution to the maximization problem in Eq. (2) is given by:

ϵ∗ = ρ
∑
j

gradθL(θ)⊤Dθuθ,j√∑
j

[
gradθL(θ)⊤Dθuθ,j

]2 uθ,j
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However, this closed-form solution is impractical in a wide range of cases. Firstly, due to the nested
loop computation, the complexity scales poorly with respect to the dimensionality of M. Moreover,
finding the set of orthogonal vectors (uθ,j) for a general manifold is not always straightforward in
practice. Thus, we propose a more practical yet effective algorithm that first aims to find the solution
ϵ to the following relaxed problem:

max
∥ϵ∥2≤ρ

gradθ(LS(θ))
⊤Dθϵ (3)

and then project the solution onto the tangent space TθM to get ϵ∗ = Projθ(ϵ), which gives us an
approximated solution to the maximization problem. Indeed, Eq. (3) yields the following solution,
whose proof can be found in Appendix A.1.1.

Proposition 2. The solution to the maximization problem in Eq. (3) is given by:

ϵ = ρ
gradθ(L(θ))⊤Dθ

∥gradθ(L(θ))⊤Dθ∥2

After finding ϵ, we project the solution onto the tangent space and derive the approximated solution
ϵ∗ = Projθ(ϵ) to the maximization problem in Eq. 2. We will use this approximated solution for
RSAM throughout this work, showing that it remarkably improves generalization ability in practice.
Moreover, we empirically demonstrate in Section 5.3.1 that compared to the previous exact com-
putation, this approach is notably more efficient and yet remains the same performance. Also, this
approximated approach is much more flexible and applicable to a broad category of manifolds since
the computation does not involve the orthogonal vectors of the manifolds. One may also notice that
we use a matrix Dθ that can be adapted to learn the local metric at θ. The choice of this matrix is
flexible. It can be either Dθ = diag(|θ1| , |θ2| , · · · , |θk|), or Dθ = I. In our empirical studies, we
use the former and refer to Section 5.3.2 for comparisons between these choices. Then, we solve
the outer minimization problem with Riemannian gradient descent. In short, we summarize our
algorithm Riemannian Sharpness-Aware Minimization as per Algorithm 1.

Algorithm 1 Riemannian Sharpness-aware Minimization (RSAM)

Input Riemannian manifold M, training set S .
= ∪n

i=1{(xi, yi)}. Loss function ℓ : W×X×Y 7→
R+, batch size b, learning rate η > 0, neighborhood size ρ > 0.
Output: Model trained with SAM on manifolds
Initialize weight θ0 on the manifold M, t = 0
while not converge do

Sample mini batch B = {(x1, y1), · · · , (xb, yb)}
Compute the batch Riemannian gradient gradθLB(θ) = Projθ

(
∇LB(θ)

)
Compute ϵ = ρ

(
gradθLB(θ)

)⊤
Dθ∥∥∥∥(gradθLB(θ)

)⊤
Dθ

∥∥∥∥
2

, and ϵ∗ = Projθ(ϵ)

Ascend step: Compute θ∗ = Rθ(ϵ
∗)

Descend step: Update θt+1 = Rθt

(
− ηgradθ

(
LB(θ

∗)
))

end while

4 PRACTICAL METHODS FOR SELF-SUPERVISED AND SUPERVISED
LEARNING

In this section, we discuss the practical applications of RSAM for two settings: supervised learning
and self-supervised learning. We will demonstrate these applications empirically in the next section.
Throughout this paper, we are specifically interested in the Stiefel manifolds, that is defined as:

Definition 1 (The Stiefel Manifolds). The set of (n × p)−dimensional matrices, p ≤ n, with or-
thogonal columns and Frobenius inner products forms a Riemannian manifold is called the Stiefel
manifold St(p, n)

St(p, n) .
= {X ∈ Rn×p : X⊤X = Ip}
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Absil et al. (2008b) proposed multiple retractions for Stiefel manifolds. For the sake of computa-
tional complexity, we suggest using the retraction: RX(ε) = qf(X + ε) in which qf(A) denote the
Q factor of the decomposition of A ∈ Rn×p

∗ as A = QR. The projection can also be derived as
ProjX(v) = v − XSym(X⊤v) in which Sym(A) = 1

2 (A + A⊤). In this paper, we demonstrate the
performance of the Stiefel manifold in two applications: imposing orthogonal convolutional filters
in CNN and metric learning for supervised contrastive learning.

4.1 METRIC LEARNING FOR SELF-SUPERVISED LEARNING

Figure 2: Metric learning with R-Stiefel
layer. The projectional layer, which is typ-
ically a linear layer or an MLP, is replaced
with the R-Stiefel layer consisting of a ma-
trix U ∈ St(n, p) and a diagonal matrix S.

In this section, we particularly consider the Super-
vised Contrastive (SupCon) methodology as proposed
by Khosla et al. (2021). For a set of N randomly
sampled sample/label pairs, {xk, yk}k=1···N , the corre-
sponding batch used for training consists of 2N pairs,
{x̃l, ỹl}l=1,··· ,2N , where x̃2k and x̃2k−1 are random aug-
mentations of xk, and ỹ2k−1 = ỹ2k = yk. We refer to a
set of N samples as a “batch” and the set of 2N samples
as a “multiview batch”. Within a multiviewed batch, let
i ∈ I = {1, · · · , 2N} be the index of an arbitrary aug-
mented sample, and let j(i) be the index of the other aug-
mented sample originating from the same source sample.
The architecture of SupCon involves two components: 1)
The backbone Encoders, which we denote as Enc(·); and
2) The projection head Proj(·), which is either a linear or
fully-connected low-dimensional layer. For any l, we denote zl = Proj(Enc(x̃l)). We also define
A(i) = I/{i}. As proposed by Khosla et al. (2021), zl’s are then trained with the SupCon objective:

Lsup
out =

∑
i∈I

Lsup
out,i =

∑
i∈I

−1

|P (i)|
log

exp(zi · zp/τ)∑
a∈A(i) exp(zi · za/τ)

= L(z1 · · · , z2N ) = L(Proj(f(x̃1)) · · · ,Proj(f(x̃2N )))

Here, P (i) = {p ∈ A(i) : ỹp = ỹi}. Instead of using the Euclidean dot product, we replace it with
the Mahalanobis distant ⟨·, ·⟩ in which

〈
h,h′〉 = h⊤Mh′, and M is learnable. By doing so, M can

be learned to take into account the local geometry of the parameter space, and the neighborhood be-
comes an adaptive ellipsoid instead of an open ball that treats every dimension identically. Singular
Value Decomposition yields M = UDU⊤ = UD1/2D1/2U⊤. Denote S = D1/2, it follows that:〈

h,h′〉 = h⊤Mh′ = (hUS)⊤ · (h′US)

Thus, instead of optimizing L(Proj(Enc(x̃1)), · · · ,Proj(Enc(x̃2N ))), we will optimize
L(Proj(Enc(x̃1))US, · · · ,Proj(Enc(x̃2N ))US) in which U is a rotational matrix on the Stiefel
manifold, and S is a diagonal matrix. From now on, we will call the layer that multiplies with
the matrix US an R-Stiefel layer. We refer to Figure 2 for illustration. Such modification can be
done not only on the SupCon loss function but also on different loss functions involving distance
calculations such as triplet loss (Roy et al., 2019). Since U is constrained to lies on the Stiefel
manifold, we will optimize it with RSAM, and the rest of the parameters, including the backbone
and the diagonal matrix S, will be learned via traditional optimizers such as SAM or SGD.

4.2 ORTHOGONAL CONVOLUTIONAL NEURAL NETWORK

Orthogonality of convolutional filters has been proven to be useful for several purposes, such as
alleviating gradient vanishing or exploding phenomenon (Xie et al., 2017), or decorrelating the filter
banks so that they learn distinct features (Wang et al., 2020). For each ℓ, let {Wi}Ci=1 be the set of
convolutional kernels in ℓ−th layer, in which Wi ∈ RWHM . Previous works impose orthogonality

by introducing orthogonal regularizers such as Lortho =
λ

2

D∑
i=1

∥W⊤
i W − I∥22 (Xie et al., 2017), or

a self-convolution regularization term of the kernels (Wang et al., 2020) to encourage orthogonality
between the convolutional kernels. In this section, we propose eliminating those regularizers and
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directly enforcing the kernels to be always orthogonal during training. Indeed, we flatten the kernels
Wi into column vectors of shape W × H × M . Let Wℓ be the matrix with the columns formed
by W′

is. The advantage of RSAM is that we can guarantee Wℓ always lies on the Stiefel manifold
St(W ×H ×M,C) during training, which means that:

W⊤
ℓ Wℓ = Id

always holds throughout training, therefore guarantees orthonormality between the kernels on that
specific layer ℓ. By directly guaranteeing the parameters to reside within its true geometry, it is
expected to improve the robustness of the learned model. In the next section, we will demonstrate
that simply imposing orthogonality onto a single convolutional layer in the middle of the architecture
by training with RSAM can improve generalization ability notably.

5 EXPERIMENTS

5.1 TRAINING DETAILS

To assess RSAM’s efficacy, we experiment on various vision datasets (including CIFAR10, CI-
FAR100, and FGVCAircraft) and different architectures (including ResNet50 and ResNet34). We
conduct two sets of experiments: the standard supervised classification from scratch and supervised
contrastive learning. All the experiments were trained for 500 epochs. The learning rates η of SGD,
SAM, and RSAM are set to 0.1 with a cosine learning rate scheduler throughout the experiments.
ρ in SAM is set to 0.1, and ρ in RSAM is set to 0.5. We trained our model with a batch size of
256 on CIFAR100 and CIFAR10. We specifically note that the FGVCAircraft dataset has a higher
resolution, so we use a smaller batch size of 64 on this dataset for all methodologies.

5.2 EXPERIMENTAL RESULTS

Supervised Learning. We examine the classification accuracy with cross-entropy loss for the first
set of experiments, optimizing by SGD, Sharpness Aware Minimization (SAM), and our algorithm
RSAM. In this scenario, RSAM is used for imposing orthogonality of convolutional layers. Specif-
ically, we imposed orthogonality on a single convolutional layer in the middle of the architecture in
all settings. Table 1 shows that RSAM generalizes better than the baselines in this standard training
setting, with an improvement of 1-3% compared to SGD and more than 1% higher than SAM.

Method CIFAR100 CIFAR10 FGVCAircraft
ResNet50 ResNet34 ResNet50 ResNet34 ResNet50 ResNet34

CE + SGD 74.62 73.67 94.56 95.14 82.44 78.79
CE + SAM 75.04 75.05 95.39 95.52 83.01 80.56

CE + RSAM 77.78 76.36 96.32 96.10 84.68 83.12

Table 1: Top-1 classification accuracy for supervised learning settings. We compare cross-entropy training
with SGD with momentum, SAM, and RSAM (Ours). RSAM is used to impose orthogonality convolutional of
the filter banks.

Self-Supervised Learning. The second set of experiments has two stages. SupCon is trained with
SGD with momentum, SAM, and RSAM in pretraining. Then, in the second stage, we conduct
linear evaluation, that is, to freeze the parameters and train a linear classifier. We note that in the pre-
trained step, the projectional layer of SGD and SAM are linear layers, while RSAM’s is the R-Stiefel
layer as discussed in Section 4.1. Therefore, the applications of RSAM in this setting are two-fold:
RSAM is used to impose orthogonality on the convolutional layers and used for the R-Stiefel during
pretraining. As shown in Table 2, RSAM consistently outperforms the baselines. Furthermore,
we note that on ResNet50, RSAM made a remarkable accuracy of 81.62% on CIFAR100, which
outperforms 5% compared to SupCon on the same setting.

We also further note that RSAM involves additional manifold computations, which are expected to
be slower. However, as we will show in Appendix. A.2.1, such difference in runtime is negligible
and, therefore, worth the trade-off for better performance. Furthermore, we show in Appendix A.2.2

7



Under review as a conference paper at ICLR 2024

that RSAM has successfully found the low-sharpness region as suggested by our theoretical analysis.

Method CIFAR100 CIFAR10 FGVCAircraft
ResNet50 ResNet34 ResNet50 ResNet34 ResNet50 ResNet34

SupCon + SGD 75.29 74.04 95.99 95.34 82.03 78.19
SupCon + SAM 76.73 76.91 96.31 96.07 82.84 81.73

SupCon + RSAM 81.62 80.51 96.86 96.65 84.73 84.52

Table 2: Top-1 classification accuracy for self-supervised learning settings with SupCon loss. SupCon is
trained with SGD with momentum, SAM, and RSAM (Ours). RSAM is used for metric learning and imposing
orthogonality on the convolutional operations.

5.3 ABLATION STUDIES

5.3.1 APPROXIMATED SOLUTION VS. CLOSED-FORM SOLUTION COMPARISION

In this section, we justify the usage of the approximated solution as per Eq. (2) instead of the exact
solution as derived in Eq. (1) by contrasting the two approaches. It is noteworthy that the exact
solution contains the orthogonal vectors (uθ,j). For each matrix X on the Stiefel manifold, these
vectors are given as the set of matrices {XS}, where S is any p-by-p matrices. However, for a
general manifold, the computation of these orthogonal vectors is not always available. Thus, the
approximated approach of RSAM gives us more flexibility and applies to other manifolds beyond
the Stiefel manifolds. Moreover, the exact solution in Eq. (1) contains nested loops that sum over
the orthogonal vectors. Therefore, it is expected to be O(p2) asymptotically slower than RSAM.
We refer to Table 3 for an empirical comparison, showing that both approaches have roughly the
same accuracy. In contrast, the exact solution is about 1.75x times slower. Furthermore, when we
imposed orthogonality on convolutional layers with more than 512 kernels, the exact solution failed
to complete an epoch within a reasonable time. Thus, using the approximated solution as we did in
RSAM is preferable.

Method CIFAR100 CIFAR10 FGVCAircraft
Accuracy Runtime Accuracy Runtime Accuracy Runtime

RSAM (exact) 75.21 78.5±1.2 96.15 78.9±1.3 83.31 154.5±2.6

RSAM (approx) 76.36 52.6±1.7 96.10 51.1±1.9 83.12 133.0±1.4

Table 3: Comparision between the exact solution and approximated solution to Eq. (2) in terms of Top-1
classification accuracy and per-epoch wallclock runtime. The experiment is conducted on ResNet34.

5.3.2 CHOICES OF Dθ COMPARISON

We recall that the procedure of RSAM in 1 involves the matrix Dθ, which serves to adjust the metric
on the Euclidean tangent space. In Table 4, we compare the performance on the standard training
settings for different choices of Dθ. As shown in the table, an adaptive choice for Dθ does have an
effect on the final performance, but this effect is negligible, and hence RSAM’s performance is not
highly dependent on the choice for this Dθ.

Method CIFAR100 CIFAR10
ResNet34 ResNet50 ResNet34 ResNet50

Dθ = diag(|θ1| , |θ2| , · · · , |θk|) 76.36 77.78 96.10 96.32
Dθ = I 76.02 76.91 96.21 96.21

Table 4: Top-1 Accuracy on standard training settings for different choices of Dθ .
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5.3.3 SAM VS. RSAM: BEHAVIORAL COMPARISON

In this ablation, we design a simple experiment on the dataset MNIST to show a particular case
where RSAM is favorably robust. In particular, we train a simple PCA-style autoencoder that aims
to find an orthogonal matrix W that encodes each input x into lower-dimensional z = xW, and then
decodes as x̃ = zW⊤. The encoded vector z is then used for the classification task. Therefore,
the objective that we will minimize is the reconstruction loss with a classification loss act as a
regularizer. Since W is constrained to be orthogonal, it lies on a Stiefel manifold. To enforce
orthogonality with SAM, we need to add an orthogonal regulazrizer ∥W⊤W − Id∥22. Thus, our
objective function is:

LS(W) =
1

n

n∑
i=1

∥xi − x̃i∥22 + βCrossEntropyLoss(zi, yi) + λ∥W⊤W − Id∥22

In this set of experiments, we set the batch size to 16, the learning rate to 0.1, β = 0.1, and ρ =
0.3. In Figure 3, we report 1) the loss value over time, 2) The sharpness of the loss function over
time, and 3) the values of the orthogonal regularize, which measures how orthogonal the parameters
were. Indeed, in terms of loss function convergence, the smaller λ is, the better SAM can keep
up with RSAM because the orthogonal regularization has less impact on the final loss function.
However, for smaller values λ, W fails to be orthogonal, demonstrating that SAM is remarkably
sensitive to this orthogonal regularization. Hence, we emphasize that by directly enforcing W to be
on the Stiefel manifold, RSAM eliminates this vulnerability, remarkably reducing the sharpness and
leading to better loss convergence. In short, the ablation suggests that in certain scenarios, taking
into account the intrinsic geometry of the parameters can notably enhance the model’s robustness
and performance, and we propose that RSAM has successfully done so.

(a) Loss values (b) Sharpness (c) Values of ∥W⊤W − Id∥2
2

Figure 3: Comparision between SAM with different λ’s and RSAM (black) over 50 epochs

6 CONCLUSION

In this work, we have generalized the SAM technique by introducing a novel notion of sharpness on
Riemannian manifolds. On the theoretical side, we backed this notion with a theorem that character-
izes the generalization ability in terms of neighborhood-wise training loss on the manifolds, which
demonstrated a tighter bound compared to existing works. Motivated by this theoretical analysis, we
propose RSAM, which considers the parameter space’s intrinsic geometry and seeks regions with
flat surfaces on Riemannian manifolds. On the experimental side, the effectiveness of RSAM is
demonstrated on different tasks with various datasets and models, in which RSAM outperforms the
comparative methodologies by a notable margin. Our code is publicly available here.
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A APPENDIX

A.1 ALL PROOFS

A.1.1 PROOF OF PROPOSITION 1

Firstly, we restate the optimization problem:

max
∥ϵ∥2

2≤ρ2,ϵ∈TθM

〈
gradθ(LS(θ)), ϵ

〉
θ

(4)

Let gradθL(θ)⊤Dθ = v⊤θ and (uθ,j) be an orthonormal basis of TθM. Then, it follows that:

u⊤
θ,iuθ,j = δi,j .

Under the assumption that the uθ,j form a basis in the tangent space at θ, there exist βj such that

ϵ =
∑
j

βjvθ,j .

It deduces that

ϵ⊤ϵ =
[∑

j

βjuθ,j

]⊤[∑
j

βjuθ,j

]
=
∑
j

β2
j .

We have the Lagrangian objective being:

v⊤
θ ϵ+ λ

[
ϵ⊤ϵ− ρ2

]
=
∑
j

βjv⊤
θ uθ,j + λ

[∑
j

β2
j − ρ2

]
.

Taking derivative with respect to λ and βj , we get the following system of equations:∑
j

β2
j = ρ2

v⊤θ uθ,j + 2λβj = 0.

Solving the second equation of the system yields:

βj = − 1

2λ
v⊤θ uθ,j

Substituting into the first equation of the system, we get:

1

4λ2

∑
j

[
v⊤θ uθ,j

]2
= ρ2

⇒ 1

2λ
= ±ρ

{∑
j

[
v⊤
θ uθ,j

]2}− 1
2

Then, the optimal solution to the maximization problem is given by:

ϵ∗ = ρ
∑
j

v⊤θ uθ,j√∑
j

[
u⊤
θ uθ,j

]2 uθ,j

= ρ
∑
j

gradθL(θ)⊤Dθuθ,j√∑
j

[
gradθL(θ)⊤Dθuθ,j

]2 uθ,j

A.1.2 PROOF OF PROPOSITION 2

Firstly, we restate the optimization problem:

max
∥ϵ∥2≤ρ

gradθ(LS(θ))
⊤Dθϵ (5)
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We prove that the optimal solution of the problem in Eq. (5) occurs on the boundary. Sup-
pose on the contrary that the optimal solution is ϵ∗ satisfies (ϵ∗)⊤ϵ∗ = (ρ∗)2 < ρ2. Then,
−gradθL(θ)⊤Dθϵ

∗ ≤ 0, otherwise we may replace ϵ∗ with −ϵ∗ that still satisfies the constraint
and arrive at a strictly smaller objective. However, if we replace ϵ∗ with ϵ = ϵ∗

√
ρ
ρ∗ , it follows:

ϵ⊤ϵ = ρ2

and arrive at a smaller objective since ϵ > ϵ∗, which is a contradiction since we are assuming that
ϵ∗ is the optimal solution.

Therefore, the optimal solution ϵ∗ occurs on the boundary. Thus, the problem is reduced to:

maximize: gradθ(L(θ))⊤Dθϵ (6a)

subject to: ϵ⊤ϵ− ρ2 = 0 (6b)

This problem has the Lagrangian:

L(ϵ, λ) = −gradθ(L(θ))⊤Dθϵ+ λ(ϵ⊤ϵ− ρ2)

The stationary point of L satisfies ∂L
∂ϵ = 0 and ∂L

∂λ = 0, which is equivalent to:

−gradθ(L(θ))⊤Dθ + 2λϵ = 0

ϵ⊤ϵ = ρ2

Thus, we have the system of equations:

ϵ =
1

2λ
gradθ(L(θ))⊤Dθ

ϵ⊤ϵ = ρ2

Substituting the first equation into the second one, we get:

1

4λ2
D⊤

θ gradθ(L(θ))gradθ(L(θ))⊤Dθ = ρ2

Which follows that:

1

2λ
=

ρ(
(gradθ(L(θ))⊤Dθ)⊤(gradθ(L(θ))⊤Dθ)

) 1
2

=
ρ

∥gradθ(L(θ))⊤Dθ∥2

Therefore, the maximization problem governs a closed-form solution:

ϵ = ρ
gradθ(L(θ))⊤Dθ

∥gradθ(L(θ))⊤Dθ∥2

A.1.3 PROOF OF THEOREM 1

Firstly, we state a lemma that we will be using, whose proof can be found

Lemma 1. (Boumal et al., 2018) There exists a constant CM > 0 such that for any θ ∈ M and
ϵ ∈ TθM, the following holds:

∥Rθ(ϵ)− θ − ϵ∥F ≤ CM ∥ϵ∥2F
Remark: The constant CM depends on the manifold structure. Indeed, for retractions on the Stiefel
manifold, the constant is independent of (d, k) and can be computed explicitly. Specifically, when
using the QR factorization or the polar decomposition as the retraction, we have CM = 1+

√
2/2.
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Now, we are ready to prove our main theorem. Indeed, we restate the theorem statement:

Theorem 1. Assuming that the loss function L is K−Lipschitz. Then, for any small ρ > 0 and
δ ∈ [0; 1], with a high probability 1 − δ over training set S generated from a distribution D, the
following holds:

LD(θ) ≤ max
θ′∈Bθ(ρ;M)

LS(θ
′) +O

(
CMρ2 +

√
d+ log n

δ

n− 1

)

Proof. We assume that M is a compact manifold. Then, for every ε > 0, there exists a set {θi}Ji=1
of predefined points on the manifold M that forms an ε-net of M with respect to the geodesic
distance on M. Indeed, for each θ ∈ M, there exists i such that θ lies inside a neighborhood of θi
such that dM(θi,θ) = di < ε, in which dM is the geodesic distance on manifold M. Since the loss
function L is K-Lipschitz, we have:∣∣LD(θ)− LD(θi)

∣∣ ≤ Kdi = Kε.

For any θ′ ∈ Bθ(ρ,M), we define the logarithm map logθi
(θ′) = θ̃′

i, it follows that:

ρ− di ≤ dM(θ′,θi) = ∥θ̃′
i − θi∥2 ≤ di + ρ.

We also have: ∣∣LS(θ̃
′)− LS(θ

′)
∣∣ = ∣∣LS

(
θi + (θ̃′

i − θi)
)
− LS

(
Rθi(θ̃

′
i − θi)

)∣∣
≤ KCM

∥∥θ̃′
i − θi

∥∥2
F
= KCM(ε+ ρ)2.

and for any θ̃′
i ∈ Ba

θi
(ρ− ε, T ) and Rθi(θ̃

′
i − θi) = θ′, we have

dM(θ′,θ) ≤ dM(θ′,θi) + dM(θi,θ) ≤ ε+ ρ− ε = ρ. (9)

Therefore, it follows that:

max
θ̃′
i∈Ba

θi
(ρ−ε,T )

LS(θ̃
′
i) ≤ max

θ′∈Bθ(ρ,M)
LS(θ

′) +KCM(ε+ ρ)2. (10)

Now, for each i, we consider a collection of pairs of distributions (Qi, Pi) on the tangent space
TθiM which takes θi to be its origin, in which

Pi = Qi = N (0, r2Id)

here Pi is a prior distribution and Qi is the posterior distribution. According to the union bound
theorem, with probability at least 1− δ in which δi = δ/J , the following holds:

Eθ∼Qi

[
LD(θ)

]
≤ Eθ∼Qi

LS(θ) +

√
KL(Qi∥Pi) + log n

δi

2n− 2
= Eθ∼Qi

LS(θ) +

√
log n

δi

2n− 2
(11)

Under the assumption that adding Gaussian perturbation on the weight space does not improve the
test error, we have:

LD(θi) ≤ Eθ∼Qi
LD(θ). (12)

Also, for z ∼ N (0, r2Id) we have the following concentration inequality:

∥z∥22 ≤ r2d
(
1 +

√
ln(n)

d

)2
≤ (ρ− ε)2 ⇔ r ≤ (ρ− ε)

1
√
d
(
1 +

√
ln(n)
d

) .
with probability at least 1− 1/

√
n. Thus, if we choose r = ρ−ε

√
d
(
1+

√
ln(n)

d

) , it follows that:

Eθ∼Qi
L(θ) ≤

(
1− 1√

n

)
max

∥z∥2≤ρ−ε,z∈Tθi
M

LS(θi + z) +
1√
n
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Combining this result with the inequalities at 12, 11, 10, and 9, we derive that

LD(θ) ≤ LD(θi) +Kε ≤ Eθ∼Qi

[
LD(θ)

]
+Kε+

√
ln(n) + ln(J) + ln( 1δ )

2n− 2

≤ max
∥z∥2≤ρ−ε,z∈Tθi

M
LS(θi + z) +

1√
n
+Kε+

√
ln(n) + ln(J) + ln( 1δ )

2n− 2

≤ max
θ′∈Bθ(ρ,M)

LS(θ
′) +KCM(ε+ ρ)2 +Kε+

√
O(ln(J) + ln(n/δ))

n− 1

Now, we are left to bound ln J . Recall that M is a d−dimensional manifold covered within J
ε-balls. If we denote Rj to be the ε−ball with the center θi, then vol(Rj) = O(εd), implying
J = O(maxj diam(M)d/rdj ), thus log J = O(d). Plugging this into the last inequality, we derive
that:

LD(θ) ≤ max
θ′∈Bθ(ρ,M)

LS(θ
′) +KCM(ε+ ρ)2 +Kε+

√
O(d+ ln(n/δ))

n− 1

which concludes our proof.

A.2 ADDITIONAL EXPERIMENTS

A.2.1 PER-EPOCH RUNTIME

This ablation compares the single-epoch wallclock runtimes of SGD, SAM, and RSAM. Indeed, it
is expected that SAM and RSAM take at least twice as long as SGD because both SAM and RSAM
involve double backward-forward each iteration. We especially note that since RSAM involves
additional computations on a manifold, it is expected that RSAM would take longer than SAM. As
shown in Table 5, while RSAM improves the final performance, its runtime is only about 6% slower
than SAM, therefore worth the tradeoff.

Method CIFAR100 CIFAR10 AirCraft
ResNet34 ResNet50 ResNet34 ResNet50 ResNet34 ResNet50

SGD 21.5±1.73 40.1±2.96 21.4±1.72 38.8±3.05 57.6±2.59 114.5±4.77

SAM 49.1±1.68 83.9±2.79 48.8±1.62 84.7±2.68 125.3±1.3 245.6±4.30

RSAM 52.6±1.66 88.7±3.14 51.1±1.90 88.3±2.79 133.0±1.4 259.2±3.82

Table 5: Per-epoch wall-clock runtime in seconds.

A.2.2 SHARPNESS EVOLUTION AND HESSIAN SPECTRAL

Throughout this work, we have designed RSAM to actively seek local minima in the regions within
a manifold with both low loss value and low sharpness. In this section, to further verify whether
RSAM found the low-sharpness region, we first contrast the spectral of the Hessian for ResNet34
trained on CIFAR100 for 400 steps with RSAM and SAM. Indeed, the model trained with RSAM
has a lower maximum eigenvalue (10.86 of RSAM vs. 13.32 of SAM), and RSAM has a flatter
eigenvalue distribution as shown in the Figure 4, therefore suggests that RSAM entered the lower-
sharpness region on the loss landscape. Besides, we also report the sharpness evolutions over itera-
tions as shown in Figure 4c. These results together indicate that RSAM successfully seeks points in
lower-sharpness regions within the loss landscape.
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(a) Hessian Spectra of SAM (b) Hessian Spectra of RSAM

(c) Sharpness over iterations of SAM vs RSAM.

Figure 4: The spectrum of the Hessian at the termination of the training phase with SAM vs. RSAM (above)
and the evolution of sharpness over iterations (below). The results are reported on the CIFAR100 dataset with
the SupCon loss function. ρ in both methods is set to 0.1
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