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ABSTRACT

There is more and more attention on constrained multi-objective optimization
(CMOO) problems, however, most of them are based on gradient-free methods.
This paper proposes a constraint gradient-based algorithm for multi-objective op-
timization (MOO) problems based on multi-gradient descent algorithms. We first
establish a framework for the CMOO problem. Then, we provide a Moreau
envelope-based Lagrange Multiplier (MLM-CMOO) algorithm to solve the for-
mulated CMOO problem, and the convergence analysis shows that the proposed
algorithm convergence to Pareto stationary solutions with a rate of O( 1√

T
). Fi-

nally, the MLM-CMOO algorithm is tested on several CMOO problems and has
shown superior results compared to some chosen state-of-the-art designs.

1 INTRODUCTION

Multi-objective optimization (MOO) is widely used in many real-world application scenarios, such
as, in online advertising, the models need to maximize both the Click-Through Rate and the Post-
Click Conversion Rate. In MOO, one attempts to simultaneously optimize several, potentially con-
flicting functions. MOO has wide applications in all industry sectors where decision-making is
involved due to the natural appearance of conflicting objectives or criteria. Applications span across
applied engineering, operations management, finance, economics, and social sciences, agriculture,
green logistics, and health systems. When the individual objectives are conflicting, no single solu-
tion exists that optimizes all of them simultaneously. In such cases, the goal of MOO is then to find
Pareto optimal solutions (also known as efficient points), roughly speaking points for which no other
combination of variables leads to a simultaneous improvement in all objectives. The determination
of the set of Pareto optimal solutions helps decision makers to determine the best trade-offs among
the several competing criteria.

MOO research can be divided into 2 categories, which are gradient-free and gradient-based methods.
For the gradient-free method, people focus on evolutionary and Bayesian MOO algorithms, which
are suitable for small-scale problems but less practical for high-dimensional MOO models and can
not provide a convergence guarantee. On the contrary, the gradient-based method can provide a
convergence guarantee in strongly convex, convex, and non-convex functions for MOO problems
with different assumptions. The CMOO problem in the gradient-free method is well-developed.
However, there is no gradient-based method for the CMOO problem.

Compared to conventional single-objective optimization, one key difference in MOO is the coupling
and potential conflicts between different objective functions. As a result, there may not exist a
common solution that minimizes all objective functions. Rather, the goal in MOO is to find a Pareto
stationary solution that is not improvable for all objectives without sacrificing some objectives. The
gradient-based method MOO has 2 lines, single-objective transformation, and the conflict gradients
alleviating method, where the latter has garnered more attention in recent years due to their better
performances. The single-objective transformation is the first step for the gradient-based method
MOO method. It first transfers a MOO problem into a single-objective optimization (SOO) problem
with a given fixed coefficient. With the sufficient algorithm in SOO, it is easy to solve. However, this
transformation can not give a stable guarantee for the convergence rate as it may give the farthest
Pareto front for the given coefficient. Then, the conflict gradients alleviating method is proposed to
resolve the conflicting gradients in MOO. However, none of them pay attention to the gradient-based
CMOO problem.
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Although many gradient-free methods can provide solutions to CMOO problems, very few of them
can provide the convergence guarantee. In addition, gradient-free methods are more suitable for
small-scale and low-dimension MOO problems, which limits the application of gradient-free algo-
rithms. Thus, we provide a Moreau envelope-based Lagrange Multiplier (MLM-CMOO) algorithm
for the CMOO problem via the gradient method. Our contributions are summarized as follows.

• We propose MLM-CMOO, which solves the CMOO problem using the gradient-based
method. MLM-CMOO first divides the CMOO problem into 2 parts, maximizes the min-
imum decrease across the losses, and makes the decrease obey the constraints. To maxi-
mize the minimum decrease across the losses, we use a similar method in MGDA (Sener
& Koltun, 2018). To limit the decrease, we the Moreau envelope-based proximal gradient
method.

• We provide convergence analyses for MLM-CMOO with convex multi-objectives and con-
vex multi-constraints. The convergence rate of MLM-CMOO is O( 1√

T .
)

• We conduct numerical experiments to verify the effectiveness of MLM-CMOO. The exper-
imental results demonstrate the efficiency of the MLM-CMOO.

The remainder of this paper is organized as follows. Section 2 reviews related work. In Section 3, we
present the system model and algorithm design of MLM-CMOO. In Section 4, we provide the con-
vergence analysis of the MLM-CMOO algorithm. Numerical results and conclusions are provided
in Section 5 and Section 6, respectively.

2 RELATED WORK

MOO. MOO algorithms can be grouped into two main categories. The first line of work is gradient-
free methods (e.g., evolutionary MOO algorithms and Bayesian MOO algorithms (Lin et al., 2022;
Zhang & Li, 2007; Laumanns & Ocenasek, 2002; Deb et al., 2002; Belakaria et al., 2020)). These
methods are more suitable for small-scale problems but less practical for high-dimensional MOO
models (e.g., deep neural networks). (Do et al., 2023; Zheng et al., 2022) provided the convergence
analysis for gradient-free methods to solve MOO problems. The second line of work focuses on
gradient-based approaches (Liu & Vicente, 2024; J. Fliege & Vicente, 2019; Momma et al., 2022;
Peitz & Dellnitz, 2018; Désidéri, 2012), which are more practical for high-dimensional MOO prob-
lems. However, while having received increasing attention from the community in recent years, the
Pareto-stationary convergence analysis of these gradient-based MOO methods attracts much more
attention.

Various works explored the convergence rates under different assumptions in strongly convex, con-
vex, and non-convex functions for MOO problems. Using full gradient, MGD (J. Fliege & Vicente,
2019) could achieve tight convergence rates in strongly-convex and non-convex cases, i.e., linear
rate O(rT ), r ∈ (0, 1) and sub-linear rate O(1/T ). However, it requires a linear search of the
learning rate in the algorithm and sequence convergence ({xt} converges to x∗). The linear search
of learning rate is a classic technique but does not fit in gradient-based algorithms in deep learn-
ing. Moreover, the sequence convergence assumption is too strong. If using a stochastic gradient,
SMGD (Liu & Vicente, 2024) methods make a further complicated case. The stochastic gradient
noise would complicate the analysis. an O(1/T ) rate analysis for SMGD was provided in (Liu &
Vicente, 2024) based on rather strong assumptions on a first-moment bound and Lipschtiz continu-
ity of common descent direction. On the other hand, (Liu & Vicente, 2024) and (Zhou et al., 2022)
showed that the common descent direction provided by the SMGD method is likely to be a biased
estimation, which may cause divergence issues. Recently, by utilizing momentum, oCo (Fernando
et al., 2024) and CR-MOGM (Zhou et al., 2022) were proposed with corresponding convergence
guarantees. (Xiao et al., 2023) utilized a direction-oriented approach by a preference direction.
(Yang et al., 2023) proposed a federated MOO algorithm with GD and SGD matching previous
centralized MOO algorithms.

CMOO. Most existing CMOO research focuses on gradient-free methods. SaE-CMO (Song et al.,
2024) proposed a cooperative evolutionary algorithm with a dual-population approach to enhance
search progress. PAC-MOO was proposed in (Ahmadianshalchi et al., 2024) based on Bayesian
optimization. (Zhang et al., 2024) introduced a dynamic assistant population to search direction for
CMOO. (Yang et al., 2024) proposed a feasibility tracking strategy to explore all feasible regions
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for CMOO. (Belaiche et al., 2023) proposed PCMOEA/D-DMA based on a multi-population mech-
anism and implemented under a synchronous master-slave parallel model to select the best Pareto
front based on an elitism mechanism. (Li et al., 2023) proposed a surrogate-ensemble-assisted co-
evolutionary algorithm to improve the search efficiency.

Constraint Handling Techniques. Penalty function methods, decoders, special operators, and sep-
aration techniques are a simple taxonomy of the constraint handling methods in nature-inspired
optimization algorithms. There are several types of penalty functions used with evolutionary al-
gorithms (EAs), the most important ones include (Kramer, 2010) Death penalty, Dynamic penalty,
Static penalty, Adaptive penalty, and Stochastic ranking. As an example of decoders, (Koziel &
Michalewicz, 1998) proposed a homomorphous mapping (HM) method between an n-dimensional
cube and feasible space. The feasible region can be mapped onto a sample space where a population-
based algorithm could run a comparative performance (Koziel & Michalewicz, 1998; Kim & Hus-
bands, 1998a;b; Koziel & Michalewicz, 1999). However, this method requires high computational
costs. A special operator is used to preserve the feasibility of a solution or move within a special
region (Michalewicz, 1996; Schoenauer & Michalewicz, 1996; 1997). Nevertheless, this method is
hindered by the initialization of feasible solutions in the initial population, which is challenging with
highly constrained optimization problems. Unlike the penalty function technique, another approach
separates the values of objective functions and constraints in the nature-inspired algorithms (NIAs)
(Powell & Skolnick, 1993), which is known as the separation of objective function and constraints.
The authors of (Hinterding & Michalewicz, 1998) initially proposed dividing the search space into
two phases. In the first phase, feasible solutions are found, and optimizing the objective function
is considered in the second phase. Representative methods of this type of CHT are the Constraint
dominance principle (CDP), Epsilon CHT, and Feasibility rules.

3 SYSTEM AND PROBLEM FORMULATION

This section introduces the basic background knowledge of MOO, typical algorithms, and their
convergence analysis. Then, we proposed the objective of CMOO and the algorithm to solve the
formulated problem.

3.1 MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization (MOO) is concerned with solving the problems of optimizing multi-
objective functions simultaneously, which can be formulated as

min
x

F (x) = (f1(x), f2(x), ..., fn(x))
⊤
, (1)

where fi are real-valued functions, and N represents the set of the total n objectives (n > 2). The
MOO problem is smooth if all objective functions fi are continuously differentiable. Different from
single objective optimization where 2 solutions x, y can be ordered by f(x) < f(y) or f(x) ≥
f(y). MOO could have two parameter vectors where one performs better for task i and the other
performs better for task j, where i ̸= j. Therefore, Pareto optimality is defined to deal with such an
incomparable case.

Definition 3.1 (Pareto optimality). For any two solutions x1, x2 ∈ X , we say that x1 dominates x2,
denoted as x1 ≺ x2, if fi(x1) ≤ fi(x2) for all i, and there exists one i such that fi(x1) < fi(x2);
otherwise, we say that x1 does not dominate x2, denoted as x1 ⊀ x2. A solution x∗ ∈ X is called
Pareto optimal if it is not dominated by any other solution in X .

Note that a set of Pareto optimal solutions is called a Pareto set. The goal of MOO is to find a Pareto
optimal solution, which must be Pareto critical (Custódio et al., 2011).

Definition 3.2 (Pareto criticality). A solution x∗ ∈ X is called Pareto critical if there is no common
descent direction d such that ∇fi(x

∗)⊤d < 0, i ∈ M for all objectives.

This definition indicates that if x is not Pareto critical, such direction d will be a local descent
direction for F at point x. Optimizing through d in the local neighborhood of x can get a better
solution that dominates x (J. Fliege & Vicente, 2019). Since Pareto criticality reflects the local
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property compared with Pareto optimality, it is often used as the local minimal condition for MOO
with non-convex objectives (Fliege & Svaiter, 2000). We then present sufficient conditions for
determining Pareto criticality/optimality, which appear as metrics to study the convergence for the
MOO algorithm (Fliege & Svaiter, 2000; H. Tanabe & Yamashita, 2023).

Similar to single-objective optimization, MOO can be solved by running iteratively with gradient-
based algorithms. For example, in MGDA (Sener & Koltun, 2018), it directly optimizes towards the
Pareto criticality in Definition 3.2. Specifically, in each iteration, MGDA aims to find a direction d
to maximize the minimum decrease across the losses by solving the following subproblem,

max
d

min
i
(fi(x)− fi(x+ ηd) ≈ ηmax

d
min
i

∇fi(x)
⊤d.

By regularizing the norm of d on the right side, it computes the direction by

d = argmin
d

{max
i

λi∇fi(x) +
1

2
∥d∥2}.

This sub-problem can be rewritten equivalently as the following differentiable quadratic optimiza-
tion

d, µ = argmin
d,µ

(
1

2
∥d∥2 + µ), s.t. λi∇fi(x) ≤ µ.

If µ < 0, then ∇fi(x)
⊤d < 0, which means x is not Pareto critical from Definition 3.2, and d is the

direction to descent all the objectives simultaneously (Fliege & Svaiter, 2000; J. Fliege & Vicente,
2019). To simplify the optimization, such a primal problem has a dual objective as a min-norm
oracle

λ = argmin
λ

∥∥∥∥∥
m∑
i=1

λi∇fi(x)

∥∥∥∥∥ .
The direction is then calculated by d = −

∑m
i=1 λi∇fi(x).

Convergence analysis. MGDA has been shown to converge to an arbitrary Pareto critical/optimal
point with the same rate as single-objective optimization (J. Fliege & Vicente, 2019). A similar
result has been proved with PCGrad (Yu et al., 2020). CAGrad has been shown to converge to the
minimizer or stationary point of the averaging loss 1

n

∑n
i=1 fi(x) when c ∈ [0, 1), or an arbitrary

Pareto critical/optimal point when c ≥ 1 (Liu et al., 2021).

3.2 CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION

Followed by previous research, this paper considers a MOO problem, where each objective has its
constraints. It is formulated as

min
x

F (x) = (f1(x), f2(x), ..., fn(x))
⊤
,

s.t. gi(x) ≤ 0, ∀i ∈ N .

Similar to MGDA, we aim to find a direction d to maximize the minimum decrease across the losses.
Thus, our problem can be reformulated as

min
x

F (x,λ) :=

m∑
i=1

λifi(x), (2)

s.t. λ = argmin
λ′

∥∥∥∥∥
m∑
i=1

λ′
i∇fi(x)

∥∥∥∥∥ ,
gi(x) ≤ 0, ∀i ∈ N .

To simiplify the expression, we note H(x,λ) := ∥
∑m

i=1 λi∇fi(x)∥, due to the non-smooth of
H(x,λ), we use ∇H(x,λ) to express the proxmial gradient of H(x,λ), where ∇xH(x,λ) :=

argminu{H(u,λ) + 1
2 ∥u− x∥2} and ∇λH(x,λ) := argminv{H(x,v) + 1

2 ∥v − λ∥2}.
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To solve the above problem 2, we first find the suitable coefficient (λ) of the problem 2, where we
get a subproblem.

min
λ

H(x,λ), (3)

s.t. gi(x) ≤ 0, ∀i ∈ N .

Then, we transfer problem 3 into an unconstrained optimization problem via the Lagrange Multiplier
method, which is expressed as

L = H(x,λ) +

m∑
i=1

µigi(x). (4)

Due to the absolute value of
∑m

i=1 λi∇fi(x), the Lagrange function (L) may not be smooth, thus
we use a Moreau envelope-based Lagrange Multiplier function to solve above problems, which can
be expressed as

Ls(x,λ, z) := min
θ

max
µ

{
H(x,θ) +

N∑
i=1

µigi(x) +
1

2γ1

N∑
i=1

∥θi − λi∥2 −
1

2γ2

N∑
i=1

∥zi − µi∥2
}
,

where γ1, γ2 are the proximal parameter and γ1 ≥ 0, γ2 ≥ 0.

Employing the function of Ls, we reformulated the problem 2 as

min
x

F (x,λ), (5)

s.t. H(x,λ)− Ls ≤ 0.

To guarantee the theoretical convergence of the proposed method, instead of directly solving refor-
mulation 5, we consider its variant using a truncated Lagrangian function,

Ls,r(x,λ, z) := min
θ

max
µ∈Z

{
H(x,θ) +

N∑
i=1

µigi(x) +
1

2γ1

N∑
i=1

∥θi − λi∥2 −
1

2γ2

N∑
i=1

∥zi − µi∥2
}
.

where Z := [0, r]p and r > 0. We define θ∗ := θ∗(x,λ, z) and µ∗ := µ∗(x,λ, z) is the
unique saddle point of the above min-max problem. Compared with Ls(x,µ), the truncated ver-
sion Ls,r(x,µ) is defined by maximizing z over a bounded set Z. The truncated Lagrangian value
function gives us the following variant to a reformulation of problem 5

min
x

F (x,λ), (6)

s.t. H(x,λ)− Ls,r ≤ 0.

Note that ∥
∑m

i=1 λi∇fi(x)∥−Ls ≤ 0 for any x, λ in their domain. If r is sufficiently large, the so-
lution of reformulation of problem 5 can be obtained by solving variant problem 6. A comprehensive
proof is presented in Theorem A.2 within Appendix A.3.

Then, problem 6 is solved by introducing a penalty parameter {c(t)}T−1
t=0 , where t is the round index,

min
x,λ

1

c(t)
F (x,λ) +H(x,λ)− Ls,r.

The detailed steps are provided in Algorithm 1.

4 CONVERGENCE ANALYSIS

4.1 CONVERGENCE RESULTS OF MLM-CMOO

Assumption 4.1 In the CMOO, suppose the objectives fi and the constraints gi are convex for any
i ∈ N .

5
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Algorithm 1 Moreau envelope-based Lagrange Multiplier Constrained MOO (MLM-CMOO)

1: Input: Initial point x(0). λ(0), θ(0). µ(0), penalty parameter {c(t)}T−1
t=0 ;

2: for t = 0 to T − 1 do
3: θ(t+1) = θ(t) − η∇θLs,r(x

(t)λ(t), z(t));
4: µ(t+1) = µ(t) − η∇µLs,r(x

(t),λ(t), z(t));
5: U = argminu{H(u,λ(t)) + 1

2

∥∥u− x(t)
∥∥2} − argminu{H(u,θ(t+1)) + 1

2

∥∥u− x(t)
∥∥2};

6: x(t+1) = x(t) − α
(

1
c(t)

∇xF (x(t),λ(t)) + U +
∑n

i=1 µ
(t+1)
i ∇xgi(x

(t))
)

;

7: λ′ = argminλ
∥∥∑m

i=1 λi∇fi(x
(t))
∥∥;

8: V = argminv{H(x(t),v) + 1
2

∥∥v − λ(t)
∥∥2} − argminv{H(u,θ(t+1)) + 1

2

∥∥u− x(t)
∥∥2};

9: λ(t+1) = λ(t) − α
(

1
c(t)

(λ(t) − λ′) + V − 1
γ1
(λ)(t) − θ)(t+1))

)
;

10: z(t+1) = z(t) + β
γ2
(µ(t+1) − z(t))

11: end for

Assumption 4.2 For the general MOO, there exists a finite constant B ∈ R, such that 0 ≤ λ
(t)
i ≤

B,
∑N

i=1 λ
(t)
i = 1, for all t = 0, ..., T − 1.

Assumption 4.3 f1(x), ..., fN (x) are all differentialable, Sf -Lipschitz and Lf -smoothness, sug-
gesting that for all x, y and i ∈ N , it holds ∥∇fi(x)∥ ≤ Sf and ∥∇fi(x)−∇fi(y)∥ ≤
Lf ∥x− y∥ ≤ 2Sf .

Assumption 4.4 g1(x), ..., gN (x) are all differentialable, Sg-Lipschitz and Lg-smoothness, sug-
gesting that for all x, y and i ∈ N , it holds ∥∇fi(x)∥ ≤ Sg and ∥∇fi(x)−∇fi(y)∥ ≤
Lg ∥x− y∥ ≤ 2Sg .

We first define a new function and then demonstrate the decreasing properties of this new function
to show the convergence rate of the proposed algorithm.

Vt := ϕct(x
(t),λ(t), z(t)) + Cθ,µ

∥∥∥(θ(t),µ(t))− (θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))
∥∥∥2 ,

where Cθ,µ := max{(Lg + CZLg)
2 + 1/(2γ2

1) + L2
g, 1/γ2

2}, and ϕct(x
(t)λ(t), z(t)) :=

1
c(t)

(F (x,λ)− F ∗) +H(x,λ)− Ls,r, where F ∗ is the optimal value of function F (x,λ).

Lemma 4.5 Under Assumptions 4.2, 4.3 and 4.4 hold, let γ1 ∈ (0, 1/ρT ), γ2 > 0, ct ≤ ct+1 and
ηt ∈ (η, ργ/L

2
B) with η > 0, then there exist constants cα, cβ > 0 such that when 0 < α ≤ cα

and0 < β ≤ cβ , the sequence of (x(t),λ(t), z(t)) generated by Algorithm 1: MLM-CMOO satisfies

Vt+1 − Vt ≤− 1

4α

∥∥∥x(t+1) − x(t)
∥∥∥2 − 1

4α

∥∥∥λ(t+1) − λ(t)
∥∥∥2 − 1

4β

∥∥∥z(t+1) − z(t)
∥∥∥2

− ηρTCθ,µ

∥∥∥(θ(t),µ(t))− (θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))
∥∥∥2 .

The step sizes are carefully chosen to guarantee the sufficient descent property of Vt. This is essential
for the non-asymptotic convergence analysis.

Given the decreasing property of Vt, we establish the non-asymptotic convergence analysis. The
standard KKT conditions are inappropriate as necessary optimality conditions for problem equa-
tion 6. Motivated by the approximate KKT condition presented by (Andreani et al., 2010), which
is characterized as an optimality condition for nonlinear program, regardless of constraint qual-
ifications’ fulfillment, we consider the following residual function Rt := Rt(x

(t),λ(t), z(t)) as
a stationarity measure, we define the residual function as Rt := dist(0, (∇F (x(t),λ(t)), 0)) +
ct((∇H(x(t),λ(t)), 0)−∇Ls,r(x

(t),λ(t), z(t)))+MC×Z(x
(t),λ(t), z(t))), where MΩ(s) denotes

the normal cone to Ω at s. This residual function Rt also serves as a stationarity measure for the
penalized problem of equation 6, with ct serving as the penalty parameter,

min
x,λ,z∈Z

ϕct(x
(t),λ(t), z(t)) := F (x(t),λ(t)) + ct

(
H(x(t),λ(t))− Ls,r(x

(t),λ(t), z(t))
)
. (7)

6
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Evidently, Rt = 0 if and only if (x(t),λ(t), z(t)) is a stationary point for the problem equation 7,
meaning 0 ∈ ∇ϕct(x

(t),λ(t), z(t)) +MC×Z(x
(t),λ(t), z(t)).

Theorem 4.6 If Assumptions of Assumptions 4.2, 4.3 and 4.4 hold, let γ1 ∈ (0, 1/ργ), γ2 > 0,
ct = c(t+1)p with p ∈ (0, 1/2) and c > 0. Pick ηt ∈ (0, ργ/L

2
B), then there exists cα, cβ > 0 such

that when α ∈ (α, cα) andβ ∈ (β, cβ), with α, β > 0, the sequence of (x(t),λ(t), z(t),θ(t),µ(t))
generated by Algorithm 1: MLM-CMOO satisfies

min
t

∥∥∥(θ(t),µ(t))− (θ∗
r (x

(t),λ(t), z(t)),µ∗
r(x

(t),λ(t), z(t)))
∥∥∥ = O(

1√
T
),

and

min
t

Rt(x
(t),λ(t), z(t)) = O(

1√
T 1−2p

).

Remark 1: Theorem 4.6 first shows that the reformulated Lagrange Multiplier function
Ls,r(x,λ, z) reaches its KKT stationary point with a convergence rate of O( 1√

T
), which matches

general constrained optimization method. In addition, MLM-CMOO can converge to the stationary
point of the problem equation 7, where problem equation 7 is the penalized form of the original
problem equation 2. Furthermore, the last statement shows that the convergence rate of each client’s
truncated proximal Lagrangian value function is related to the selection of the penalized parameter.
The maximum convergence rate is O( 1√

T
).

4.2 PROOF SKETCH

Lemma 4.7 Suppose the assumption of 4.3 and 4.4 hold, and let γ1 ∈ (0, 1/ρg), γ2 > 0. Pick
ηt ∈ (0, ρT /L

2
B) with LB := max{(2 + Cz)Lg + 1/γ1, Lg + 1/γ2} then the sequence of

(x(t),λ(t), z(t),θ(t),µ(t)) generated by Algorithm 1: MLM-CMOO satisfies∥∥∥(θ(t+1),µ(t+1))−
(
θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))

)∥∥∥
≤(1− ηρT )

∥∥∥(θ(t),µ(t))−
(
θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))

)∥∥∥
Lemma 4.7 shows that the decay rate of the reformulated Lagrange Multiplier function Ls,r(x,λ, z)
is related to the step size and problem parameters ((1−ηtρT )). If we select the proper step size (i.e.,
ηt ∈ (0, ργ/L

2
B)), the reformulated Lagrange Multiplier function converges to the KKT stationary

point.

Lemma 4.8 Suppose the assumption of 4.2, 4.3 and 4.4 hold, and let γ1 ∈ (0, 1/ρg), γ2 > 0.
Pick η ∈ (0, ργ/L

2
B) with LB := max{2Lg + CzLg + 1/γ1, Lg + 1/γ2} then the sequence of

(x(t),λ(t), z(t)) generated by Algorithm 1: MLM-CMOO satisfies

ϕct(x
(t+1),λ(t+1), z(t+1)) ≤ ϕct(x

(t),λ(t), z(t))− (
1

2β
− Lvz

2
)
∥∥∥z(t+1) − z(t)

∥∥∥2
−

(
1

2α
− Lϕk

2
−

βL2
θ,µ

γ2
2

)(∥∥∥x(t+1) − x(t)
∥∥∥2 + ∥∥∥λ(t+1) − λ(t)

∥∥∥2)
+

α

2

(
2(Lg + CzLg)

2 +
1

γ2
1

)∥∥∥θ(t+1) − θ∗(x(t),λ(t), z(t))
∥∥∥2

+ (αL2
g +

β

γ2
2

)
∥∥∥µ(t+1) − µ∗(x(t),λ(t), z(t))

∥∥∥2 .
where Lϕt := Lf/ct + Lg + ρv .

Lemma 4.8 shows that a client’s Lagrangian reformulation of objects decreases with the distance
between its current parameters (x(t),λ(t), z(t)). In addition, the bias of the reformulated Lagrange
Multiplier function affects the convergence rate. The more accurate the reformulated Lagrange

7
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Multiplier function is, the faster the reformulated Lagrangian reformulation of CMOO objectives de-
creases. Then, the proof of Lemma 4.8 lies in 2 parts: the descent of the MOO objectives (F (x,λ))
and the descent of the reformulated Lagrange Multiplier function Ls,r(x,λ, z). The challenge of
the proof lies in 2 aspects: the decreasing of the MOO objectives based on dynamic coefficient (λ)
and binding the reformulated Lagrange Multiplier function Ls,r(x,λ, z).

5 EXPERIMENTS

This section introduces the experimental setups, including the datasets and models, multi-objective
optimization algorithm setup, and experimental settings. We use multi-task learning experiments to
verify the effectiveness of the proposed method. A typical MTL system is given a collection of input
points and sets of targets for various tasks per point. A common way to set up the inductive bias
across tasks is to design a parametrized hypothesis class that shares some parameters across tasks.
One effective solution for MTL is finding solutions that are not dominated by any others, which is
the same objective as MOO problems(Sener & Koltun, 2018).

5.1 EXPERIMENTS SETUP

1. Datasets and Models. 1). MultiMNIST Datasets and Learning Tasks: We test the convergence
performance of MLM-CMOO using the “MultiMNIST” dataset (Sabour et al., 2017), which is a
multi-task learning version of the MNIST dataset (LeCun et al., 1998) from LIBSVM repository.
Specifically, to convert the hand-written classification problem into a multi-task problem, we ran-
domly chose 60000 images. Images are divided into 2 tasks, and each task has m = 30000 samples.
In our experiments, a group of images is positioned in the top left corner, while another group of
images is positioned in the bottom right. The two tasks are task “L” (to categorize the top-left digit)
and task “R” (to classify the bottom-right digit). The overall problem is to classify the images of
different tasks. All algorithms use the same randomly generated initial point. The learning rates are
chosen as η = β = α = 0.01. we directly apply existing single-task MNIST models.

2). CelebA Dataset and Learning Tasks: We utilize the CelebA dataset (Liu et al., 2015), consist-
ing of 200K facial images annotated with 40 attributes. We approach each attribute as a binary
classification task, resulting in a 40-way multi-task learning (MTL) problem. To create a shared rep-
resentation function, we implement ResNet-18 (He et al., 2016) without the final layer, attaching a
linear layer to each attribute for classification. In this experiment, we set η = 0.0005, α = β = 0.1.

3). River Flow Dataset and Learning Tasks: We further test our algorithms on MOO problems of
larger sizes. In this experiment, we use the River Flow dataset (Nie et al., 2017), which is for flow
prediction flow at eight locations within the Mississippi River network. Thus, there are eight tasks
in this problem. In this experiment, we set η = 0.001, α = β = 0.1. To better visualize 8 different
tasks, we illustrate the normalized loss in radar charts.

2. Baseline. The NSGA-II (Deb et al., 2002) and PSL (Lin et al., 2022) are considered as our base-
lines. NSGA-II is a well-known MOO evolutionary algorithm, while PSL is a novel MOO Bayesian
optimization algorithm. NSGA-II and PSL do not handle constraints. For a fair comparison, we
report the Pareto optimal solutions satisfying constraints generated from NSGA-II and PSL, thus
NSGA-II and PSL can work towards the Pareto optimal solutions without considering constraints.

NSGA-II Setup. For binary chromosomes, we apply a single-point crossover with a probability
of 0.9 and a bit-flip mutation with a probability of 0.1. For real-valued chromosomes, we apply
a simulated binary crossover (SBX) [14] with a probability of 0.9 and nc = 2 and a polynomial
mutation with a probability of 0.1 and nm = 20, where nc and nm denote spread factor distribution
indices for crossover and mutation, respectively.

PSL Setup. We follow literature (Lin et al., 2022) to set PSL parameters. At each iteration, we train
the Pareto set model hθ with 1000 update steps using Adam optimizer with a learning rate of 1e−5

and no weight decay. At each iteration, we generate 1000 candidate solutions using hθ and select
the population size of solutions from the 1000 candidates.

8
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5.2 EXPERIMENTS RESULTS

For the MultiMNIST Datasets and Learning Tasks. Table 5.2 shows that the MLM-CMOO outper-
forms than the rest 2 baselines. This is because that NSGA-II and PSL are designed for uncon-
strained MOO problems, even we have generated the Pareto optimal solutions satisfying constraints
from those algorithm, their evolutionary or Bayesian Optimisation are not the most fit algorithm. On
the contrary, MLM-CMOO is specifically designed for constrained MOO problems, where it uses an
increasing Lagrange coefficient (µ) to make it follow the limits. In this way, MLM-CMOO is more
time-efficient. The Fig 1(a) and Fig 1(b) shows the results of 3 algorithm on CelebA Dataset and
Learning Tasks. It shows that MLM-CMOO matches the selected baselines. The Fig 1(c) shows that
MLM-CMOO’s loss on River Flow Dataset and Learning Tasks is better than selected algoritms.

Table 1: Completion time are taken to reach Pareto stationary point with a specified loss for different
algorithms using MultiMNIST Datasets.

Loss 10−2

Task Task L Task R
Algorithm NSGA-II PSL MLM-CMOO NSGA-II PSL MLM-CMOO
Time (s) × 2.2 × 1.8 1302 × 2.3 × 1.7 1322

Loss 10−3

Task Task L Task R
Algorithm NSGA-II PSL MLM-CMOO NSGA-II PSL MLM-CMOO
Time (s) × 3.2 × 2.03 2057 × 3.1 × 2.1 2104

(a) CelebA Dataset and Learning
Tasks.

(b) CelebA Dataset and Learning
Tasks.

(c) River Flow Dataset and Learn-
ing Tasks

Figure 1: Experiments on CelebA dataset and River Flow Dataset.

6 CONCLUSION

This paper studies the constrained multi-objective optimization problem. We first establish a frame-
work for the CMOO problem, which is suitable for gradient descent algorithms. For the formulated
CMOO problem, we use the Lagrange Multiplier method to make a decrease in the overall objec-
tive obey the constraints. Then, due to the non-smoothness of the coefficient function, we use a
Moreau envelope to make it smooth. Next, the convergence analysis shows that the proposed algo-
rithm (MLM-CMOO) convergence to Pareto stationary solutions with a rate of O( 1√

T
). Finally, we

conduct experiments to verify the effectiveness of the MLM-CMOO algorithm.
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Supplementary Material for ”Constrained Multi-Objective Optimization”

A SOME USEFUL LEMMA

To simplify the notions, we use ω(t) = (x(t),λ(t), z(t)) in the following proof.

Lemma A.1 Yao et al. (2024) Lemma A.1. Under Assumption 4.3 and 4.4, for the Moreau
envelope-based Lagrange Multiplier function Ls(x,λ, z with γ1 ∈ (0, 1/ρf ) and γ2 > 0. That
is,

(1) The function Ls(x,λ, z) is continuously differentiable;

(2) The gradient of Ls(x,λ, z) has closed-form given by

∇xLs(x,λ, z) = argmin
u

{H(u,θ∗) +
1

2
∥u− x∥2}+

n∑
i=1

µ∗
i∇gi(x),

∇λLs(x,λ, z) =
λ− θ∗

γ1
,

∇λLs(x,λ, z) =
µ∗ − z

γ2
,

where θ∗ := θ∗(x,λ, z) and µ∗ := µ∗(x,λ, z) is the unique saddle point of the following min-max
problem:

min
θ

max
µ

{
H(x,θ) +

N∑
i=1

µigi(x) +
1

2γ1

N∑
i=1

∥θi − λi∥2 −
1

2γ2

N∑
i=1

∥zi − µi∥2
}
.

(3) Furthermore, for any ρv ≥ ρf/(1 − γ1ρf ), Ls(x,λ, z) is ρv-weakly convex with respect to
variables (x,λ) on for any fixed z.

Proof: The proof is similar to the proof of Lemma A.1 in Yao et al. (2024).

Lemma A.2 Yao et al. (2024) Lemma A.2 and Lemma A.4.

Under Assumption 4.3 and 4.4, let γ1 ∈ (0, 1/ρf ) and γ2 > 0. Then, for any ρv ≥ ρf/(1− γ1ρf ),
the following inequality holds:

−Ls(x1,λ, z) ≤− Ls(x2,λ, z)− ⟨∇xLs(x2,λ, z), x1 − x2⟩+
ρv
2

∥x1 − x2∥2 ,

−Ls(x,λ1, z) ≤− Ls(x,λ2, z)− ⟨∇λLs(x,λ2, z),λ1 − λ2⟩+
ρv
2

∥λ1 − λ2∥2 ,

−Ls(x,λ, z1) ≤− Ls(x,λ, z2)− ⟨∇λLs(x,λx, z2), z1 − z2⟩+
Lz

2
∥z1 − z2∥2 ,

where Lz := (γ2ρT + 1)/(γ2
2ρT ).

Proof: The first 2 conclusions follow directly from Lemma A.2 that Ls(x,λ, z) is ρv-weakly convex
with respect to variables (x,λ) on for any fixed z, and the third conclusion is similar to the proof of
Lemma A.4 in Yao et al. (2024).

Lemma A.3 Yao et al. (2024) Lemma A.3. Under Assumption 4.3 and 4.4, let γ1 ∈ (0, 1/ρf ) and
γ2 > 0. Then, for any (x1,λ1, z1) and (x2,λ2, z2), the following Lipschitz property holds:

∥(θ∗(x1,λ1, z1),µ
∗(x1,λ1, z1))− (θ∗(x2,λ2, z2),µ

∗(x2,λ2, z2))∥

≤Lf + Lg + CZLg

ρT
∥x1 − x2∥+

1

γ1ρT
∥λ1 − λ2∥+

1

γ2ρT
∥z1 − z2∥

≤Lθ,µ ∥(x1,λ1, z1)− (x2,λ2, z2)∥ ,

where ρT := min{1/γ1 − ρf , 1/γ2}, CZ = maxz∈Z ∥z∥, and Lθ,µ :=
√
3max{Lf + Lg +

CZLg, 1/γ1, 1/γ2}/ρT .

Proof: The proof is similar to the proof of Lemma A.3 in Yao et al. (2024).
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B PROOF OF MAIN THEOREM AND LEMMAS

B.1 PROOF OF THEOREM 4.6

Theorem 4.6 If Assumptions of Assumptions 4.2, 4.3 and 4.4 hold, let γ1 ∈ (0, 1/ργ), γ2 > 0,
ct = c(t+1)p with p ∈ (0, 1/2) and c > 0. Pick ηt ∈ (0, ργ/L

2
B), then there exists cα, cβ > 0 such

that when α ∈ (α, cα) andβ ∈ (β, cβ), with α, β > 0, the sequence of (x(t),λ(t), z(t),θ(t),µ(t))
generated by Algorithm 1: MLM-CMOO satisfies

min
t

∥∥∥(θt,µt)− (θ∗
r (x

(t),λ(t), z(t)),µ∗
r(x

(t),λ(t), z(t)))
∥∥∥ = O(

1√
T
),

and

min
t

Rt(x
(t),λ(t), z(t)) = O(

1√
T 1−2p

).

Proof: First, using the descent lemma in Lemma 4.5 and its condition, telescoping the inequality for
t = 0, 1, ..., T − 1, we get

VT − V0 ≤− 1

4α

T−1∑
t=0

(∥∥∥x(t+1) − x(t)
∥∥∥2 + ∥∥∥λ(t+1) − λ(t)

∥∥∥2)− 1

4β

T−1∑
t=0

∥∥∥z(t+1) − z(t)
∥∥∥2

− ηρTCθ,µ

T−1∑
t=0

∥∥∥(θ(t),µ(t))− (θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))
∥∥∥2 .

From assumptions, we have
∑T−1

t=0

∥∥(θ(t),µ(t))− (θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))
∥∥2 is up-

per bounded, which is

T−1∑
t=0

∥∥∥(θ(t),µ(t))− (θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))
∥∥∥2 ≤ +∞.

Thus, we have

min
t

∥∥∥(θ(t),µ(t))− (θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))
∥∥∥ = O(

1√
T
).

Secondly, according to the update rule of variables (x, y, z), we have

0 ∈ ct(d
(t)
x , d

(t)
λ ) +MC(x

(t),λ(t)) +
ct
α
((x(t+1),λ(t+1))− (x(t),λ(t))),

0 ∈ ctd
(t)
z +MZ(z

(t+1)) +
ct
β
(z(t+1) − z(t)).

where d
(t)
x = 1

c(t)
∇xF (x(t),λ(t)) + U +

∑n
i=1 µ

(t+1)
i ∇xgi(x

(t)), d
(t)
λ = 1

c(t)
(λ(t) − λ′) +

V − 1
γ1
(λ)(t) − θ)(t+1)), and d

(t)
z = µ(t+1) − z(t). Note, U = argminu{H(u,λ(t)) +

1
2

∥∥u− x(t)
∥∥2}− argminu{H(u,θ(t+1))+ 1

2

∥∥u− x(t)
∥∥2}, λ′ = argminλ

∥∥∑m
i=1 λi∇fi(x

(t))
∥∥,

and V = argminv{H(x(t),v) + 1
2

∥∥v − λ(t)
∥∥2} − argminv{H(u,θ(t+1)) + 1

2

∥∥u− x(t)
∥∥2}.

By the meanings of d(t)x , d(t)λ , and d
(t)
z , we obtain

(e
(t)
x,λ, e

(t)
z ) ∈(∇F (x(t+1),λ(t+1)), 0) + ct(

n∑
i=1

µi∇gi(x
(t+1)), 0)

− ct(∇Li,s,r(x
(t+1),λ(t+1), z(t+1)) +MC×Z(x

(t+1),λ(t+1), z(t+1)),

where

e
(t)
x,λ :=∇x,λϕct(x

(t),λ(t), z(t))− ct(d
(t)
x , d

(t)
λ )− ct

α
− ((x(t+1),λ(t+1))− ((x(t),λ(t))),

14
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e(t)z :=∇zϕct(x
(t),λ(t), z(t))− ct(d

(t)
x , d

(t)
λ )− ctd

(t)
z − ct

β
− (z(t+1) − z(t))).

Next, we estimate
∥∥∥e(t)x,λ

∥∥∥. Using the estimates in Yao et al. (2024), we have∥∥∥e(t)x,λ

∥∥∥ ≤ctLϕ1

∥∥∥(x(t+1),λ(t+1), z(t+1))− (x(t),λ(t), z(t))
∥∥∥

+
ct
α

∥∥∥(x(t+1),λ(t+1))− (x(t),λ(t))
∥∥∥+ ctCϕ1

+
∥∥∥(θ(t),µ(t))− (θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))

∥∥∥ ,
where Cϕ1

:=
√
max{2(Lg + CzLg)2, 2L2

g}.

For
∥∥∥e(t)z

∥∥∥, we have∥∥∥e(t)z

∥∥∥ ≤(
ct
β

+
ct
γ2

)
∥∥∥z(t+1) − z(t)

∥∥∥+ ct
γ2

∥∥∥µ(t) − µ∗(x(t),λ(t), z(t))
∥∥∥ .

Thus,

Rt(x
(t),λ(t), z(t)) ≤(

ct
β

+
ct
γ2

)
∥∥∥z(t+1) − z(t)

∥∥∥+ ct
α

∥∥∥(x(t+1),λ(t+1))− (x(t),λ(t))
∥∥∥

+ ct(Cϕ1
+

1

γ2
)
∥∥∥(θ(t),µ(t))− (θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))

∥∥∥
+ ctLϕ1

∥∥∥(x(t+1),λ(t+1), z(t+1))− (x(t),λ(t), z(t))
∥∥∥ .

Let αt ≥ α and βt ≥ β for some positive constants α and β, we can show that there exists CR > 0
such that

1

c2t
R2

t (x
(t),λ(t), z(t)) ≤CR

(
1

4α

∥∥∥(x(t+1),λ(t+1))− (x(t),λ(t))
∥∥∥2 + 1

4β

∥∥∥z(t+1) − z(t)
∥∥∥2

+ηρTCθ,µ

∥∥∥(θ(t),µ(t))− (θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))
∥∥∥2) .

This completes the proof.

B.2 PROOF OF LEMMA 4.7

Lemma 4.7. Under Assumption 4.3 and 4.4, let γ1 ∈ (0, 1/ρf ), γ2 > 0 and pick η ∈ (0, ρT /L
2
b ,

where Lb := max{Lf + Lg + CZLg + 1/γ1, Lg + 1/γ2}. Then, the sequence generated by
Algorithm 1 satisfies ∥∥∥(θ(t+1),µ(t+1))−

(
θ∗(ω(t)),µ∗(ω(t))

)∥∥∥
≤(1− ηρT )

∥∥∥(θ(t),µ(t))−
(
θ∗(ω(t)),µ∗(ω(t))

)∥∥∥ .
Proof: The proof is similar to the proof of Lemma A.5 in Yao et al. (2024).

B.3 PROOF OF LEMMA 4.8

Lemma 4.8. Suppose the assumption of 4.2, 4.3 and 4.4 hold, and let γ1 ∈ (0, 1/ρg), γ2 > 0. Pick
η ∈ (0, ργ/L

2
B) with LB := max{2Lg + CzLg + 1/γ1, Lg + 1/γ2} then the sequence of (ω(t))

generated by Algorithm 1: MLM-CMOO satisfies

ϕct(ω
(t+1)) ≤ ϕct(ω

(t))− (
1

2β
− Lvz

2
)
∥∥∥z(t+1) − z(t)

∥∥∥2
15
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−

(
1

2α
− Lϕk

2
−

βL2
θ,µ

γ2
2

)(∥∥∥x(t+1) − x(t)
∥∥∥2 + ∥∥∥λ(t+1) − λ(t)

∥∥∥2)
+

α

2

(
2(Lg + CzLg)

2 +
1

γ2
1

)∥∥∥θ(t+1) − θ∗(ω(t))
∥∥∥2

+ (αL2
g +

β

γ2
2

)
∥∥∥µ(t+1) − µ∗(ω(t))

∥∥∥2 ,
where Lϕt

:= Lf/ct + Lg + ρv .

Proof: Given Assumptions 4.2, 4.3, and4.4 that ∇F and ∇g are LF - and Lg-Lipschitz continuous
on their domain, respectively, and applying Lemma 5.7 in Beck (2017)] and previous Lemmas, we
obtain

ϕct(ω
(t+1)) ≤ϕct(ω

(t)) +
〈
∇x,λϕct(ω

(t)), (x(t+1),λ(t+1))− (x(t),λ(t))
〉

+
Lϕt

2

∥∥∥(x(t+1),λ(t+1))− (x(t),λ(t))
∥∥∥2 ,

with Lϕt
:= LF /ct+Lg +ρv . Based on the update rule of variable x(t),λ(t), the convexity and the

property of the proximal operator, we have〈
(x(t),λ(t))− α(d(t)x , d

(t)
λ )− (x(t+1),λ(t+1)), (x(t),λ(t))− (x(t+1),λ(t+1))

〉
≤ 0,

thus, we have〈
(d(t)x , d

(t)
λ ), (x(t+1),λ(t+1))− (x(t),λ(t))

〉
≤ − 1

α

∥∥∥(x(t+1),λ(t+1))− (x(t),λ(t))
∥∥∥2 .

Considering the formula of ∇x,λLs,r derived in Lemma A.2 and the meanings of d(t)x , d
(t)
λ provided

in the previous proof, we can obtain that∥∥∥∇x,λLs,r(ω
(t))− (d(t)x , d

(t)
λ )
∥∥∥2

=

∥∥∥∥∥∇xH(x(t),θ∗(ω(t))) +

n∑
i=1

µ∗
i (ω

(t))∇xg(x
(t))−∇xH(x(t),θ(t+1))−

n∑
i=1

µ
(t+1)
i ∇xg(x

(t))

∥∥∥∥∥
2

+
1

γ2
1

∥∥∥θ(t+1) − θ∗(ω(t))
∥∥∥2

≤2

∥∥∥∥∥∇xH(x(t),θ∗(ω(t))) +

n∑
i=1

µ∗
i (ω

(t))∇xg(x
(t))−∇xH(x(t),θ∗(ω(t)))−

n∑
i=1

µ
(t+1)
i ∇xg(x

(t))

∥∥∥∥∥
2

+ 2

∥∥∥∥∥∇xH(x(t),θ∗(ω(t))) +

n∑
i=1

µ
(t+1)
i ∇xg(x

(t))−∇xH(x(t),θ(t+1))−
n∑

i=1

µ
(t+1)
i ∇xg(x

(t))

∥∥∥∥∥
2

+
1

γ2
1

∥∥∥θ(t+1) − θ∗(ω(t))
∥∥∥2

≤
(
2(Lf + CZLg +

1

γ2
1

)∥∥∥θ(t+1))− θ∗(ω(t))
∥∥∥2 + 2L2

g

∥∥∥µ(t+1))− µ∗(ω(t))
∥∥∥2 ,

which yields〈
∇x,λLs,r(ω

(t))− (d(t)x , d
(t)
λ ),λ(t+1)), (x(t+1),λ(t+1))− (x(t),λ(t))

〉
≤α

2

(
2(Lf + CZLg +

1

γ2
1

)∥∥∥θ(t+1))− θ∗(ω(t))
∥∥∥2 + αL2

g

∥∥∥µ(t+1))− µ∗(ω(t))
∥∥∥2

+
1

2α

∥∥∥(x(t+1),λ(t+1))− (x(t),λ(t))
∥∥∥2 ,
16
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Combing with the above inequalities, we have

ϕct(ω
(t+1)) ≤ϕct(ω

(t)) +

(
1

2α
− Lϕt

2

)∥∥∥(x(t+1),λ(t+1))− (x(t),λ(t))
∥∥∥2

+
α

2

(
2(Lf + CZLg +

1

γ2
1

)∥∥∥θ(t+1))− θ∗(ω(t))
∥∥∥2 + αL2

g

∥∥∥µ(t+1))− µ∗(ω(t))
∥∥∥2

For variable z, we have

ϕct(ω
(t+1)) ≤ϕct(ω

(t)) +
〈
∇zϕct(ω

(t)), z(t+1) − z(t)
〉
+

Lz

2

∥∥∥z(t+1) − z(t)
∥∥∥2 .

According to the property of the proximal gradient, we have〈
d(t)z , z(t+1) − z(t)

〉
≤ − 1

β

∥∥∥z(t+1) − z(t)
∥∥∥2

Thus, we have

ϕct(ω
(t+1)) ≤ϕct(ω

(t)) +
〈
∇zϕct(ω

(t))− d(t)z , z(t+1) − z(t)
〉
+ (

Lz

2
− 1

β
)
∥∥∥z(t+1) − z(t)

∥∥∥2 .
Based on the definition of d(t)z provided in the previous section, we have∥∥∥ω(t) − d(t)z

∥∥∥2 ≤ 1

γ2
2

∥∥∥µ(t+1) − µ∗(x(t+1),λ(t+1), z(t))
∥∥∥2 ,

and〈
∇zϕct(ω

(t))− d(t)z , z(t+1) − z(t)
〉
≤ β

2γ2
2

∥∥∥µ(t+1) − µ∗(x(t+1),λ(t+1), z(t))
∥∥∥2 + 1

2β

∥∥∥z(t+1) − z(t)
∥∥∥2

The, for variable z, we can get

ϕct(ω
(t+1)) ≤ϕct(ω

(t)) +
β

2γ2
2

∥∥∥µ(t+1) − µ∗(x(t+1),λ(t+1), z(t))
∥∥∥2 + (

Lz

2
− 1

2β
)
∥∥∥z(t+1) − z(t)

∥∥∥2
≤ϕct(ω

(t)) +
β

2γ2
2

∥∥∥µ(t+1) − µ∗(x(t),λ(t), z(t))
∥∥∥2 + (

Lz

2
− 1

2β
)
∥∥∥z(t+1) − z(t)

∥∥∥2
+

βL2
θ,µ

2γ2
2

∥∥∥(x(t+1),λ(t+1))− (x(t),λ(t))
∥∥∥2 .

Combining the inequities for variable (x,λ) and z, we can get Lemma 4.8.

B.4 PROOF OF LEMMA 4.5

Lemma 4.5 Under Assumptions 4.2, 4.3 and 4.4 hold, let γ1 ∈ (0, 1/ρT ), γ2 > 0, ct ≤ ct+1 and
ηt ∈ (η, ργ/L

2
B) with η > 0, then there exist constants cα, cβ > 0 such that when 0 < α ≤ cα

and0 < β ≤ cβ , the sequence of (x(t),λ(t), z(t)) generated by Algorithm 1: MLM-CMOO satisfies

Vt+1 − Vt ≤− 1

4α

∥∥∥x(t+1) − x(t)
∥∥∥2 − 1

4α

∥∥∥λ(t+1) − λ(t)
∥∥∥2 − 1

4β

∥∥∥z(t+1) − z(t)
∥∥∥2

− ηρTCθ,µ

∥∥∥(θ(t),µ(t))− (θ∗(x(t),λ(t), z(t)),µ∗(x(t),λ(t), z(t))
∥∥∥2 .

Proof: From Lemma 4.8 and server aggregation rule, we have

ϕct(ω
(t)) ≤ ϕct(ω

(t))− (
1

2β
− Lvz

2
)
∥∥∥z(t+1) − z(t)

∥∥∥2 (8)
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−

(
1

2α
− Lϕk

2
−

βL2
θ,µ

γ2
2

)(∥∥∥x(t+1) − x(t)
∥∥∥2 + ∥∥∥λ(t+1) − λ(t)

∥∥∥2)
+

α

2

(
2(Lg + CzLg)

2 +
1

γ2
1

)∥∥∥θ(t+1) − θ∗(ω(t))
∥∥∥2

+ (αL2
g +

β

γ2
2

)
∥∥∥µ(t+1) − µ∗(ω(t))

∥∥∥2 .
Since ct+1 ≥ ct, we can infer that (F (x(t),λ(t))− F )/ct+1 ≤ (F (x(t),λ(t))− F )/ct. Combining
with inequality equation 8 leads to

Vt+1 − Vt =ϕct+1
(ω(t+1)))− ϕct(ω

(t))) + Cθ,µ

∥∥∥(θ(t+1),µ(t+1))− (θ∗(ω(t+1)),µ∗(ω(t+1))
∥∥∥2

− Cθ,µ

∥∥∥(θ(t),µ(t))− (θ∗(ω(t)), µ∗(ω(t)))
∥∥∥2

≤− (
1

2α
− Lϕt

2
−

βL2
θ,µ

γ2
2

)
∥∥∥(x(t+1),λ(t+1))− (x(t),λ(t))

∥∥∥2 − (
1

2β
− Lvz

2
)
∥∥∥z(t+1) − z(t)

∥∥∥2
+ (αL2

g +
β

γ2
2

)
∥∥∥µ(t+1) − µ∗(ω(t))

∥∥∥2 + α

2

(
2(Lg + CzLg)

2 +
1

γ2
1

)∥∥∥θ(t+1) − θ∗(ω(t))
∥∥∥2

+ Cθ,µ

∥∥∥(θ(t+1),µ(t+1))− (θ∗(ω(t+1)),µ∗(ω(t+1))
∥∥∥2

− Cθ,µ

∥∥∥(θ(t),µ(t))− (θ∗(ω(t)), µ∗(ω(t)))
∥∥∥2

≤− (
1

2α
− Lϕt

2
−

βL2
θ,µ

γ2
2

)
∥∥∥(x(t+1),λ(t+1))− (x(t),λ(t))

∥∥∥2 − (
1

2β
− Lvz

2
)
∥∥∥z(t+1) − z(t)

∥∥∥2
+ Cθ,λ

{
−
∥∥∥(θ(t),µ(t))− (θ∗(ω(t)), µ∗(ω(t)))

∥∥∥2 + ∥∥∥(θ(t),µ(t))− (θ∗(ω(t)),µ∗(ω(t))
∥∥∥2

+2max{α, β}
∥∥∥(θ(t+1),µ(t+1))− (θ∗(ω(t)),µ∗(ω(t))

∥∥∥2} ,

where the last inequality follows from the fact that Cθ,λ := max{(Lg + CZLg)
2 + 1/(2γ2

1) +
L2
g, 1/γ

2
2}.

Then, for the last 3 terms in the previous equation, we have

−
∥∥∥(θ(t),µ(t))− (θ∗(ω(t)), µ∗(ω(t)))

∥∥∥2 + ∥∥∥(θ(t),µ(t))− (θ∗(ω(t)),µ∗(ω(t))
∥∥∥2

+ 2α
∥∥∥(θ(t+1),µ(t+1))− (θ∗(ω(t)),µ∗(ω(t))

∥∥∥2
a
≤(1 +

1

ϵt
)
∥∥∥(θ∗(ω(t+1)),µ∗(ω(t+1))− (θ∗(ω(t)),µ∗(ω(t))

∥∥∥2
−
∥∥∥(θ(t),µ(t))− (θ∗(ω(t)), µ∗(ω(t)))

∥∥∥2
+ (1 + ϵt + 2α)

∥∥∥(θ(t+1),µ(t+1))− (θ∗(ω(t)),µ∗(ω(t))
∥∥∥2

b
≤(1 +

1

ϵt
)Lθ,µ

∥∥∥ω(t+1) − ω(t)
∥∥∥2 − ∥∥∥(θ(t),µ(t))− (θ∗(ω(t)), µ∗(ω(t)))

∥∥∥2
+ (1 + ϵt + 2α)(1− ηρT )

2
∥∥∥(θ(t+1),µ(t+1))− (θ∗(ω(t)),µ∗(ω(t))

∥∥∥2
≤(1 +

2

ηρT
)L2

θ,µ

∥∥∥ω(t+1) − ω(t)
∥∥∥2 − ηρT

∥∥∥(θ(t),µ(t))− (θ∗(ω(t)), µ∗(ω(t)))
∥∥∥2 ,

where a from Lemma A.5 and A.7 for ϵ > 0, and b from setting ϵ = ηρT /2 and picking α ≤ ηρT /4
where holds that (1 + ϵ+ 2α)(1− ηρT ) ≤ 1.
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Similarly, we can show that when β ≤ ηρT /4, it holds that

−
∥∥∥(θ(t),µ(t))− (θ∗(ω(t)), µ∗(ω(t)))

∥∥∥2 + ∥∥∥(θ(t),µ(t))− (θ∗(ω(t)),µ∗(ω(t))
∥∥∥2

≤(1 +
2

ηρT
)L2

θ,µ

∥∥∥ω(t+1) − ω(t)
∥∥∥2 − ηρT

∥∥∥(θ(t),µ(t))− (θ∗(ω(t)), µ∗(ω(t)))
∥∥∥2 .

Combining the above inequities, we have

Vt+1 − Vt ≤−

(
1

2α
− Lϕt

2
−

βL2
θ,µ

γ2
2

− (1 +
2

ηρT
)L2

θ,µCθ,λ

)∥∥∥(x(t+1),λ(t+1))− (x(t),λ(t))
∥∥∥2

−
(

1

2β
− Lvz

2
− (1 +

2

ηρT
)L2

θ,µCθ,λ

)∥∥∥z(t+1) − z(t)
∥∥∥2

+ ηρTCθ,λ

∥∥∥(θ(t),µ(t))− (θ∗(ω(t)), µ∗(ω(t)))
∥∥∥2 .

When ct+1 ≥ ct, η ≥ η > 0, α ≤ ηρT /4 and β ≤ ηρT /4, then Lϕt

2 +
βL2

θ,µ

γ2
2

+(1+ 2
ηρT

)L2
θ,µCθ,µ ≤

Lϕ0

2 − ηρTL2
θ,µ

γ2
2

− (1 + 2
ηρT

)L2
θ,µCθ,µ =: Cα and Lvz

2 + (1 + 2
ηρT

)L2
θ,µCθ,µ ≤ Lvz

2 + (1 +
2

ηρT
)L2

θ,µCθ,µ =: Cβ

Consequently, if Cα, Cβ > 0 satisfies Cα ≤ min
{

ηρT

4 , 1
4Cα

}
and Cβ ≤ min

{
ηρT

4 , 1
4Cβ

}
, it holds

that Lϕt

2 +
βL2

θ,µ

γ2
2

+ (1 + 2
ηρT

)L2
θ,µCθ,µ ≥ 1

4α and Lvz

2 + (1 + 2
ηρT

)L2
θ,µCθ,µ ≥ 1

4β

This completes the proof.
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