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ABSTRACT

Anomaly detection in dynamic graphs is vital for identifying evolving threats
in domains such as social networks and financial systems. While Graph Neural
Networks (GNNs) have shown promise, they typically require ample labeled data
(both normal and anomalous) to distinguish anomalous nodes from normal ones.
In practice, however, only a small subset of anomalies are labeled, leaving most
nodes unlabeled, a scenario known as positive-unlabeled (PU) learning. This,
combined with the oversmoothing tendency of GNNs, leads to a strong bias toward
predicting most nodes as normal, thus severely limiting detection performance. To
address these challenges, we propose WAVEN-PULL: WAVElet-based ANomaly
detection in dynamic graphs via Positive-UnLabeled Learning. WAVEN-PULL fea-
tures: (1) dynamic graph encoder that combines Beta-Wavelet Graph Convolution
and temporal attention to capture multi-scale spectral patterns and the temporal
evolution of node behaviors, thereby effectively capturing anomalous signals in
dynamic graphs and mitigating oversmoothing; (2) PU-aware alignment module
that corrects prediction bias by aligning the anomaly ratio of unlabeled predic-
tions with class priors, which can be theoretically shown to yield an unbiased
risk estimator with temporal stability under exponential moving average (EMA);
and (3) anomaly probability estimation module that maps node embeddings to
probabilities, ensuring consistency with risk minimization principles and enabling
robust end-to-end detection even with scarce labels. Extensive experiments on
real-world dynamic graph datasets demonstrate that WAVEN-PULL consistently
outperforms state-of-the-art methods, achieving absolute AUC improvements of
6.15%, 22.81%, and 4.74% on Wikipedia, Reddit, and Bit-Alpha, respectively.

1 INTRODUCTION

Many real-world systems, such as social networks, financial transaction platforms, and traffic moni-
toring infrastructures, exhibit relational structures and node attributes that evolve over time, giving
rise to what are known as dynamic graphs (Ekle & Eberle, 2024). In these scenarios, timely and
accurate detection of anomalous nodes is crucial for ensuring system security, preventing the spread
of risks, and optimizing resource allocation (Jiao et al., 2021). In contrast to static graphs, dynamic
graphs exhibit continuously evolving spatiotemporal structures and node attributes, resulting in far
more intricate and rapidly changing anomalous patterns. This ongoing evolution greatly increases the
complexity of anomaly detection, making it a particularly challenging problem in dynamic graph
settings (Guo et al., 2023; Liu et al., 2021).

Graph Neural Networks (GNNs) have shown strong performance in dynamic graph anomaly detec-
tion by learning effective node embeddings (Huang et al., 2022b;a; Wang et al., 2022). However,
GNNs inherently suffer from over-smoothing: as layers or neighbor aggregations increase, node
representations become overly similar (Duan et al., 2023; Tang et al., 2023), which is especially
problematic for anomaly detection. The unique features of anomalous nodes are diluted by their
normal neighbors, making anomalies hard to distinguish (Zhang et al., 2022; Zhou et al., 2023; Tang
et al., 2023). This challenge is further exacerbated in the positive-unlabeled (PU) setting, where only
a few anomalies are labeled and most nodes are unlabeled Ding et al. (2022); Thorpe et al. (2022).
The abundance of unlabeled nodes biases models toward predicting all nodes as normal, leading
to missed anomalies and model collapse(formally analyzed in Appendix A.3). Fundamentally, this
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Figure 1: Illustration of the challenges in dynamic anomaly detection under sparse supervision, taking
a single graph snapshot as an example. (a) shows the ground-truth anomaly states; (b) reflects the
realistic PU setting with only a few known anomalies; (c) visualizes the over-smoothing effect of
GCNs, where the anomalous node’s embedding becomes indistinguishable; and (d) depicts the biased
prediction outcome where most nodes are predicted as normal.
is because GNN aggregation acts as a low-pass filter(see Proposition A.3 for the formal proof): it
preserves smooth, low-frequency patterns while suppressing the sharp, high-frequency signals that
often indicate anomalies. In the PU setting, this suppression of high-frequency information is even
more severe, as the model is further biased to ignore these crucial components (see our analysis of this
coupled amplification in Appendix A.3.3). Therefore, a frequency-domain approach that explicitly
preserves high-frequency information is needed to counteract over-smoothing and supervision bias.
However, existing frequency-based anomaly detection methods are typically designed for static
graphs, cannot handle temporal dynamics, and lack robustness to the supervision bias inherent in the
PU setting, making them ineffective for real-world, sparsely labeled dynamic graphs.

To address these challenges, we propose: WAVElet-based ANomaly detection in dynamic graphs via
Positive-UnLabeled Learning (WAVEN-PULL), a unified framework that jointly preserves anomaly
signals and ensures unbiased supervision. Our core insight is that effective anomaly detection
in dynamic graphs requires both node representations that retain high-frequency and temporal
information, and a learning objective that avoids bias from scarce labels. WAVEN-PULL integrates
two tightly coupled modules: (1) a dynamic graph encoder that uses Beta-Wavelet Graph Convolution
to preserve high-frequency structural features and temporal attention to capture evolving node
behaviors, and (2) a PU-aware calibration module that aligns predictions on unlabeled data with
the known anomaly prior, providing stable, unbiased supervision without requiring negative labels.
This joint optimization prevents over-smoothing and model collapse, enabling robust detection of
anomalies even under extreme label scarcity.

We highlight the key contributions of this work as follows:

• We formalize dynamic graph anomaly detection under the challenging yet practical Positive-
Unlabeled (PU) setting, and provide a theoretical analysis revealing how the interplay
between GNN over-smoothing and PU supervision bias fundamentally drives model collapse
(see Appendix A.3.3). Our analysis establishes the necessity of frequency-aware and bias-
corrected approaches in this setting.

• We introduce WAVEN-PULL, a unified framework with two theoretically grounded modules:
(1) a dynamic graph encoder leveraging Beta-Wavelet Graph Convolution and temporal
attention to provably preserve high-frequency and temporal anomaly signals (see Theo-
rem B.5 for the formal proof); and (2) a PU-aware learning objective that aligns predictions
on unlabeled data with the anomaly class prior, ensuring unbiased and stable training even
without negative labels. We provide formal guarantees for the optimality, stability, and
robustness of our objective (see Proposition 4.1 and related lemmas).

• Extensive experiments on real-world dynamic graph benchmarks demonstrate the effec-
tiveness of WAVEN-PULL, which consistently surpasses state-of-the-art baselines. Notably,
WAVEN-PULL achieves up to 6.15%, 32.2%, and 11.34% absolute improvements in AUC,
Precision@50, and Recall@50, respectively, validating both our theoretical insights and
practical design.

2 RELATED WORK

In the real world, the structure, attributes, and interactions of networks may evolve over time,
forming dynamic graphs. Dynamic graph anomaly detection seeks to identify nodes, edges, or
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subgraphs whose behaviors deviate significantly from normative patterns over time. Compared
to static graphs, dynamic graphs pose greater challenges for anomaly detection: anomalies may
only be prominent within specific time intervals, or they may become hidden or transform as time
passes. This dynamic nature makes it difficult to directly transfer static graph anomaly detection
methods, as they often fail to capture temporal signals and complex abnormal patterns induced by
evolving topologies. A series of recent methods have focused on dynamic graph representation
learning, providing a basis for anomaly detection in dynamic networks. For example, TGAT Xu
et al. (2020) uses self-attention layers and temporal encoding to aggregate neighborhood features and
learn dynamic representations, and TGN Rossi et al. (2020) integrates a memory module to capture
long-term dependencies and employs embedding modules to mitigate memory staleness, combined
with efficient parallel processing and attention-based graph aggregation. However, when applied to
anomaly detection, these approaches often still rely on partially available labeled anomalies, and the
high cost of obtaining such labels limits their practical applicability.

To tackle this challenge, SAD Tian et al. (2023) introduced an end-to-end semi-supervised anomaly
detection framework that combines a time-equipped memory bank with a pseudo-label contrastive
learning module, aiming to enhance effectiveness in dynamic graph anomaly detection scenarios.
TADDY Liu et al. (2021) explores a single Transformer model to incorporate both spatial and
temporal information into node representations of dynamic networks, but its heavy reliance on a
single model structure may limit its generalization when facing diverse temporal distributions of
anomalies. Moreover, there are works that seek to detect dynamic anomalies under limited or no
labeled data conditions. NetWalk Yu et al. (2018) incrementally updates node embeddings and uses
random walks to model dynamic graphs in an unsupervised manner, enabling the detection of dynamic
anomalies without extensive labeling. AddGraph Zheng et al. (2019) employs an attention-based
temporal GCN, fusing temporal and structural features for anomaly detection in dynamic graphs.

Furthermore, existing methods are often misaligned with the practical supervision constraints of
real-world scenarios, which typically follow a Positive-Unlabeled (PU) setting. This challenge is
distinct from standard learning paradigms. Semi-supervised frameworks, exemplified by SAD Tian
et al. (2023), still struggle as they require a source of reliable negative or pseudo-labeled samples,
a condition that is violated in a contaminated unlabeled set. Similarly, unsupervised approaches,
such as NetWalk Yu et al. (2018), are founded on the assumption of a predominantly "normal" data
distribution, a premise broken by both hidden anomalies and pervasive structural noise. To our
knowledge, no existing work provides an integrated solution that is robust to structural noise under
PU supervision, particularly by disentangling their overlapping effects in the spectral domain. This
leaves a critical gap for a more realistic and robust detection framework, which our work aims to fill.

3 PRELIMINARIES

In this section, we introduce the notation and formulate the problem statement. A quick background
on key concepts is provided in Appendix C.

Notation. We use G = {G1, G2, . . . , GT } to denote a dynamic graph, where each snapshot
Gt = (Vt, Et,Xt), t ∈ {1, 2, . . . , T}, represents the state of the graph at time step t. Here,
Vt = {vt1, vt2, . . . , vtn} is the node set; Et ⊆ Vt × Vt is the set of edges; and Xt ∈ R|Vt|×d is the
node feature matrix. Each node vti ∈ Vt may be associated with a latent label yti ∈ {0, 1}, indicating
whether it is anomalous (1) or normal (0). We summarize a list of commonly used symbols in
Appendix (Table 7).

Problem Statement. We address anomaly detection in dynamic graphs under a Positive-Unlabeled
(PU) setting, where only a few anomalous nodes are labeled and most nodes are unlabeled (potentially
normal or anomalous). Given a dynamic graph G = {G1, . . . , GT }with snapshots Gt = (Vt, Et,Xt),
we have a small set of labeled anomalies V L and treat all other nodes as unlabeled V U =

⋃T
t=1 V

t \
V L. The objective is to learn a scoring function fθ : Vt → R that assigns each node v ∈ Vt an
anomaly score stv , indicating its likelihood of being anomalous at time t.

4 WAVEN-PULL

Overview. The overview of WAVEN-PULL is illustrated in Figure 2, which consists of three key
modules: (i) Dynamic graph encoding module that captures low-frequency structural patterns
and high-frequency anomaly signals through Beta-Wavelet graph convolution, and models temporal

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overall workflow of WAVEN-PULL.

dynamics of node behavior via node-level temporal attention; (ii) PU-aware alignment module to
address label scarcity and class imbalance by calibrating predicted anomaly distributions to match a
prior and stabilizing training with temporal smoothing; (iii) Anomaly probability estimation module
to map node representations to anomaly probabilities via a feedforward network with skip connections.
All modules are trained end-to-end for robust anomaly detection under limited supervision.

4.1 DYNAMIC GRAPH ENCODING MODULE

We extend the Beta-Wavelet Graph Neural Network (BWGNN) Tang et al. (2022) with temporal
modeling to encode dynamic graphs for anomaly detection. Our approach decomposes node features
into spectral components, where high-frequency signals highlight abrupt structural deviations (po-
tential anomalies), and low-frequency components capture the smooth background structure. This
spectral decomposition is combined with temporal attention to model evolving node behaviors.

Spectral Decomposition. For each snapshot Gt of the dynamic graph G, we construct the adjacency
matrix At (with self-loops) and degree matrix Dt = diag(At1). The symmetric normalized Laplacian
is:

Lt = I − (Dt)
−1/2At(Dt)

−1/2. (1)

This Laplacian underpins our spectral filtering. To extract multi-frequency features, we use a bank of
Beta-wavelet polynomial filters (He et al., 2021) of order C:

gp,q(λ) =
1

2B(p+ 1, q + 1)

(
λ

2

)p(
1− λ

2

)q

, (2)

for p, q ≥ 0 with p + q = C, where B(·, ·) is the Beta function. Each gp,q(λ) acts as a band-pass
filter centered at λpeak = 2p/C, enabling selective emphasis of spectral regions.

Theoretical connection. As shown in Appendix A (Lemma A.1), the energy of a graph signal
x decomposes as

∑
i λix̂

2
i across frequencies. Applying our spectral filter gp,q yields filtered

coefficients ̂(gp,q ∗ x)i = gp,q(λi)x̂i (Appendix B.1), reweighting the energy by gp,q(λi)
2. Unlike

standard K-layer GNNs, which are proven to suppress high-frequency anomaly signals (Lemma A.2
and Proposition A.3), our filter bank covers the full spectrum. This preserves anomaly-relevant
high-frequency energy, a property that is formally established in our main theoretical analysis
(Proposition B.2 and Corollary B.3).

Efficient Filtering. Since gp,q(λ) is a degree-C polynomial, we avoid eigendecomposition by
applying the filter as a matrix polynomial:

Wp,q(At) = gp,q(Lt) =
1

2B(p+ 1, q + 1)

(
Lt

2

)p(
I − Lt

2

)q

. (3)

Given node features Xt ∈ R|V (t)|×Fin , we compute filtered features:

Z
(p)
t =Wp,q(At)Xt W

(p), p = 0, . . . , C, (4)

where W(p) are learnable projections. The multi-scale spatial embedding is:

Hsp
t = [Z

(0)
t ∥ · · · ∥Z

(C)
t ]Wmix ∈ R|V (t)|×d. (5)
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Temporal Attention. To capture temporal dynamics, we apply node-level attention over previous
snapshots k < t:

Qt = Hsp
t WQ, Kk = Hsp

k WK , V k = Hsp
k WV , (6)

αk = softmax(QtKk/
√
d), (7)

Hatt
t =

t−1∑
k=1

αkV
k, (8)

where WQ,WK ,WV are learnable. The final node representation is:

Ht = Hsp
t +Hatt

t . (9)

Theoretical motivation. As established in Appendix A.2.2, performing spectral analysis on individual
graph snapshots is fundamentally susceptible to temporal blind spots and instability arising from
nonstationary dynamics (see Lemma A.4). To address these deficiencies, our temporal attention
mechanism is explicitly constructed to incorporate historical information, thereby mitigating the
limitations of snapshot-based approaches. Importantly, this temporal aggregation is rigorously
shown to preserve the essential spectral characteristics produced by the spatial encoder, as it does
not induce any additional spatial smoothing; this property is formally proven in Appendix B.1.4
(Lemma B.4). The overall efficacy of our joint encoder is substantiated by our principal theoretical
result in Appendix B.1.5. In particular, Theorem B.5 demonstrates that the resulting representation
Ht exhibits a strictly reduced over-smoothing index (OSt), thereby providing a formal guarantee that
our module effectively mitigates the over-smoothing phenomenon.

4.2 PU-AWARE ALIGNMENT MODULE

WAVEN-PULL addresses the challenges of label sparsity and class imbalance in dynamic PU anomaly
detection by enforcing two key mechanisms: (a) Label Distribution Alignment to match the
predicted anomaly rate to the class prior, and (b) Temporal Stabilization via Exponential Moving
Average (EMA) to smooth predictions over time. These strategies mitigate majority-class bias and
temporal noise, leading to more robust PU anomaly detection.

(a) Label Distribution Alignment. In standard binary classification, the expected risk for a classifier
f is

R(f) = E(x,y)∼p(x,y) [1 [ŷ ̸= y]] , (10)

where ŷ = 1[f(x) ≥ 0]. This decomposes as

R(f) = πP

∣∣Ex∼pP (x)[ŷ]− 1
∣∣+ πN

∣∣Ex∼pN (x)[ŷ]− 0
∣∣

= πPRP + πNRN ,
(11)

where πP and πN = 1− πP are class priors, and RP , RN are the risks on positives and negatives,
respectively.

In the PU setting, negatives are unlabeled, but the expected label for an unlabeled sample is πP . The
expected prediction over unlabeled data is

Ex∼pU (x)[ŷ] = πPEx∼pP (x)[ŷ] + πNEx∼pN (x)[ŷ]. (12)

This allows us to express the negative risk RN in terms of observable quantities:

πNRN = Ex∼pU (x)[ŷ]− πP + πPRP . (13)

Substituting into equation 11 yields

R(f) = 2πPRP + Ex∼pU (x)[ŷ]− πP . (14)

However, both this objective and simpler heuristics are susceptible to the supervision bias inherent
in the PU setting, where the optimization is dominated by the vast unlabeled set. This bias creates
a persistent pressure to decrease predictions on all unlabeled nodes, leading to model collapse.
Appendix A.3 provides a formal analysis of this failure mode using a canonical naive objective
as a case study. To create an objective that is robust to this supervision bias, we introduce a label
alignment penalty that directly enforces consistency with the known class prior :

Rlab(f) = 2πPRP +
∣∣Ex∼pU (x)[ŷ]− πP

∣∣ . (15)
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This alignment term RU removes the degenerate descent direction by anchoring the mean prediction
on unlabeled data to πP . This approach is mathematically justified in Appendix B.2, where we
prove its equivalence to solving the theoretically optimal Neyman-Pearson classification problem
(see Proposition B.9 and Theorem B.11).

In practice, we estimate the expectations empirically: for labeled anomalies V L and unlabeled nodes
V U ,

E[ŷP ] =
1

|V L|
∑
v∈V L

ŷv, E[ŷU ] =
1

|V U |
∑

v∈V U

ŷv.

Thus, the risk becomes

Rlab(f) = 2πP |E[ŷP ]− 1|+ |E[ŷU ]− πP | .
This formulation directly counteracts the bias and collapse issues of the naive PU objective (see
Appendix B.2 for detailed analysis).

(b) Temporal Stabilization via EMA. Dynamic graphs introduce temporal noise in anomaly predic-
tions, especially for the mean prediction over unlabeled nodes. To stabilize training, we apply an
exponential moving average (EMA) to the estimated anomaly rate:

µ̂t = αU µ̂t−1 + (1− αU )E[ŷU ], (16)

where αU ∈ [0, 1] controls smoothing. At t = 1, we set µ̂1 = E[ŷ(1)U ]. We then use µ̂t in place of the
raw batch estimate in the risk:

Rfinal(f) = 2πP |E[ŷP ]− 1|+ |µ̂t − πP | . (17)

Mathematically, EMA reduces the effect of transient errors: letting et = E[ŷU ]−πP and ẽt = µ̂t−πP ,
we have

ẽt = αU ẽt−1 + (1− αU )et,

so |ẽt| ≤ max{|ẽt−1|, |et|}, ensuring the alignment penalty is bounded by the worst of current
and previous errors. This smoothing effect is crucial for stable optimization. As formally proven
in Appendix B.2, the EMA operator provides three essential guarantees: stability against error
amplification (Lemma B.13), long-term accuracy (Lemma B.14), and a quantifiable reduction in
variance (Proposition B.15).

Finally, since the true class prior πP is typically unknown, we set it to a small, fixed value (e.g.,
πP = 0.01) in our experiments. This is a common practice in anomaly detection scenarios where
anomalies are inherently rare. This practical approach is principled, as our theoretical analysis in
Appendix B.2 (Proposition B.16) formally proves that our framework is robust to misspecifications
of the class prior. This robustness is further confirmed by our parameter sensitivity analysis in
Appendix E.1.

4.3 ANOMALY PROBABILITY ESTIMATION MODULE

Each node representation h
(t)
i is mapped to an anomaly probability via a multi-layer feedforward

network fθ with skip connections, batch normalization, and dropout:

ŷ
(t)
i = σ(fθ(h

(t)
i )), (18)

where σ(·) is the sigmoid function and ŷ
(t)
i ∈ [0, 1]. The network is trained end-to-end using the PU

risk-based loss in equation 17, ensuring that anomaly scores are both label- and temporally-aligned
as justified above and in the Appendix B.2.

Our design is not only empirically effective but also theoretically grounded. Specifically, our
comprehensive analysis in Appendix B establishes rigorous guarantees for the core components
of WAVEN-PULL, demonstrating the encoder’s ability to preserve high-frequency signals and the
learning objective’s optimality and stability under PU supervision. We consolidate these key insights
into the following proposition:
Proposition 4.1 (Theoretical Guarantees of WAVEN-PULL). Jointly optimizing the dynamic graph
encoder and PU-aware alignment objective, WAVEN-PULL provably (i) preserves high-frequency
structural signals, (ii) attains an optimal and stable PU classifier under prior alignment, and (iii)
achieves robustness against oversmoothing and model collapse in dynamic graphs.

Formal derivations and proofs are deferred to Appendix B.3.3.
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4.4 WAVEN-PULL INTEGRATION

We unify the above components into an end-to-end framework. We proceed as follows: (1) We
first extract node embeddings {H1, . . . ,HT } from dynamic snapshots using Beta-Wavelet Graph
Convolution and temporal attention. (2) For each training batch, we sample a few labeled anomalies
from V L and more unlabeled nodes from V U , forming (XP ,XU ). (3) The model fθ outputs anomaly
scores, which are passed through a sigmoid to yield predictions ŷv. (4) The loss combines: (a) a
labeled term RP = |E[ŷP ]− 1| to encourage high scores for labeled anomalies, and (b) an unlabeled
term RU = |αU µ̂t−1 + (1− αU )E[ŷU ]− πP | to align the predicted anomaly rate among unlabeled
nodes with the class prior πP using EMA smoothing. The total loss is:

Ltotal = 2πPRP +RU . (19)
We train the model by minimizing Ltotal over all epochs. This approach ensures robust and temporally
stable anomaly detection under PU supervision. The full training process is detailed in Algorithm 1.

5 EXPERIMENTATION

5.1 EXPERIMENTAL SETTINGS

Datasets. We employ four real-world datasets, Wikipedia Kumar et al. (2019), Reddit Kumar et al.
(2019), Bit-Alpha Lee et al. (2024) and Bit-OTC Lee et al. (2024). The statistics are shown in
Table 4, and their detailed introduction can be found in Appendix D.1. For all datasets, we divide the
dataset into five temporal snapshots and reserve 90% of the final snapshot for testing. The remaining
data is split 80:20 for training and validation. To simulate the Positive–Unlabeled (PU) learning
setting, we randomly sample 100 anomalies from the training set as labeled positives. All remaining
samples—including both normal nodes and unlabeled anomalies—are treated as unlabeled data
during training.

Baseline Methods. To evaluate the performance, we include several state-of-the-art methods as
baselines. These include: TGAT Xu et al. (2020), TGN Rossi et al. (2020), GDN Ding et al. (2021),
AMNet Chai et al. (2022), SAD Tian et al. (2023), and SLADE Lee et al. (2024). Further details are
explained in Appendix D.2.

Evaluation Metric. We evaluate model performance using three widely adopted metrics: AUCDing
et al. (2021); Wang et al. (2021), Precision@KYuan et al. (2023), and Recall@KYuan et al. (2023).
Further details and mathematical formulations of the metrics are provided in Appendix D.3.

Experimental Setup. Detailed hyperparameter configurations and implementation details are pro-
vided in Appendix D.4.

5.2 MAIN RESULTS

We report the overall performance of WAVEN-PULL in Table 1 (AUC) and Table 2 (Precision@K
and Recall@K), comparing it against several state-of-the-art baselines across four dynamic graph
benchmarks. In all tables, we boldface the best performing scores and underline the second-best
results. For the AUC metric, WAVEN-PULL achieves the best performance on Wikipedia, Reddit, and
Bit-Alpha, and ranks second on Bit-OTC with an AUC of 0.7353, closely following the unsupervised
baseline SLADE (0.7718). The relative AUC improvements over the strongest baseline reach 6.1% on
Wikipedia, 22.8% on Reddit, and 4.7% on Bit-Alpha. These gains stem from two key design elements:
(1) our dynamic encoder, which combines Beta-Wavelet Graph Convolution and node-level temporal
attention to capture both high-frequency anomaly cues and temporal node dynamics; and (2) our PU-
aware label distribution alignment module, which corrects prediction bias under extreme label sparsity.
Compared to existing methods, TGAT and TGN do not explicitly address anomaly detection or label
imbalance, leading to lower performance. AMNet incorporates spectral filters but lacks temporal
modeling, while SLADE performs well on Bit-OTC (a dataset with bursty edges) yet underperforms
on others, highlighting the benefits of leveraging even a small number of positive labels. In Table 2,
WAVEN-PULL also consistently outperforms baselines on ranking-based metrics. For instance, on
Precision@100, it improves over the strongest baseline by 34.7% on Wikipedia, 61.1% on Reddit,
4.0% on Bit-Alpha, and 0.7% on Bit-OTC. Similarly, substantial gains in Recall@100 are observed,
especially on Reddit and Wikipedia.The unsupervised baseline SLADE achieves strong AUC scores
but struggles to prioritize true anomalies, as indicated by its lower Precision@K and Recall@K. In
contrast, AMNet, despite its lower AUC, performs competitively on the Bitcoin datasets, with some
@K metrics ranking among the best. These observations highlight the value of frequency-domain
signals in anomaly detection and support the design rationale behind our method, which integrates
frequency- and time-aware modeling under PU supervision.
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Table 1: Performance Comparison of Different Methods Across Datasets. We report the AUC scores
for WAVEN-PULL compared with other baselines.

Method Wikipedia Reddit Bit-Alpha Bit-OTC
TGAT 0.8563 0.6664 0.6227 0.6615
TGN 0.8753 0.6673 0.6602 0.5254
GDN 0.8512 0.6782 0.7687 0.6227

AMNet 0.5423 0.4966 0.6447 0.6960
SAD 0.8554 0.6789 0.7489 0.6498

SLADE 0.8868 0.7508 0.7692 0.7718
WAVEN-PULL 0.9483 0.9789 0.8166 0.7353

Table 2: Precision@50(P@50) and Recall@50(R@50) comparison with baselines across four
datasets.

Method Wikipedia Reddit Bit-Alpha Bit-OTC

P@50 R@50 P@50 R@50 P@50 R@50 P@50 R@50
TGAT 0.0042 0.0227 0.0040 0.0426 0.2333 0.0365 0.2453 0.0277
TGN 0.0000 0.0000 0.0280 0.0149 0.0760 0.0165 0.0560 0.0060
GDN 0.0280 0.0318 0.0000 0.0000 0.1400 0.0304 0.2500 0.0266
AMNet 0.0220 0.0289 0.0400 0.0250 0.1220 0.1355 0.3580 0.1125
SAD 0.0140 0.0159 0.0060 0.0032 0.1400 0.0304 0.2780 0.0296
SLADE 0.0200 0.0227 0.0000 0.0000 0.3600 0.0783 0.3800 0.0404
WAVEN-PULL 0.3600 0.1452 0.7600 0.2550 0.3800 0.7600 0.4400 0.2136

Overall, these results validate the importance of (i) frequency–temporal joint modeling and (ii)
PU-aware distribution alignment, both of which are central to the design of WAVEN-PULL and are
key drivers of its superior anomaly detection performance across diverse dynamic graph benchmarks.

We conduct a comprehensive set of experiments to evaluate WAVEN-PULL from multiple perspectives.
Below, we present the ablation results and sample setting analysis in the main text. Additional
experimental analyses, including robustness analysis, error analysis and few shot evaluation, are
provided in Appendix E.

5.3 ABLATION STUDY

For ablation analysis, we systematically disable or replace one key module at a time to create four
distinct model variants. The results, shown in Figure 3, compare the AUC, Precision@50, and
Recall@50 metrics for each variant, highlighting the contribution of each component to the overall
performance. We summarize our core findings as follows:

w/o Temporal Attention (–TA). This variant removes the temporal attention mechanism and re-
places it with mean pooling over historical embeddings. The performance drop demonstrates the
importance of modeling temporal evolution in dynamic graphs. Temporal attention enables the model
to adaptively weigh past snapshots based on their relevance, allowing it to capture key changes in
node behavior over time. In contrast, mean pooling treats all historical states equally, overlooking
critical temporal shifts and weakening anomaly detection.

(a) (b) (c)

Figure 3: Performance comparison of WAVEN-PULL and its variants after removing key components,
evaluated by (a) AUC, (b) Precision@50, and (c) Recall@50.
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Table 3: AUC, Precision@50, and Recall@50 under varying numbers of labeled anomalies.

Wikipedia Reddit Bit-Alpha Bit-OTC
Num AUC P@50 R@50 AUC P@50 R@50 AUC P@50 R@50 AUC P@50 R@50

50 0.9431 0.3600 0.1452 0.9782 0.7200 0.2416 0.7381 0.3400 0.6800 0.7449 0.4600 0.2233
60 0.9383 0.3000 0.1210 0.9788 0.8000 0.2685 0.7815 0.3800 0.7600 0.7353 0.3800 0.1845
70 0.9436 0.4000 0.1613 0.9785 0.7400 0.2483 0.7687 0.3200 0.6400 0.7616 0.5400 0.2621
80 0.9432 0.3400 0.1371 0.9788 0.7400 0.2483 0.7959 0.3600 0.7200 0.7573 0.5000 0.2427
90 0.9450 0.4000 0.1613 0.9793 0.7800 0.2617 0.8140 0.3800 0.7600 0.7546 0.4600 0.2233

100 0.9483 0.5000 0.2016 0.9789 0.7600 0.2550 0.8166 0.3800 0.7600 0.7353 0.4400 0.2136
110 0.9464 0.3800 0.1532 0.9792 0.7400 0.2483 0.8170 0.3600 0.7200 0.7477 0.4600 0.2233
120 0.9423 0.4200 0.1694 0.9792 0.7600 0.2550 0.8200 0.3800 0.7600 0.7440 0.5000 0.2427
130 0.9459 0.4200 0.1694 0.9802 0.8000 0.2685 0.8245 0.3600 0.7200 0.7402 0.4400 0.2136
140 0.9414 0.2600 0.1048 0.9796 0.8400 0.2819 0.8287 0.4000 0.8000 0.7482 0.5000 0.2427
150 0.9465 0.4400 0.1774 0.9798 0.8200 0.2752 0.8362 0.4000 0.8000 0.7492 0.5000 0.2427

w/o Beta-Wavelet Graph Convolution (–BWGNN). This variant substitutes the Beta-Wavelet
Graph Convolution with a standard GCN layer. The resulting decline in AUC and Precision@50
underscores the value of frequency-aware modeling. The wavelet design captures high-frequency
components associated with localized, subtle anomalies. In contrast, standard GCNs act as low-pass
filters, oversmoothing node features and suppressing anomaly signals.

w/o Label Distribution Alignment (–LDA). In this ablation study, we replace our label distribution
alignment loss with the standard binary cross-entropy (BCE) loss, where all unlabeled nodes are
directly treated as normal. The resulting drops in AUC, Precision@50, and Recall@50 indicate
impaired anomaly detection, as the weak signal from the few true anomalies is overwhelmed by the
noisy, majority-class signal from the unlabeled set. This increases overfitting to the majority class and
weakens detection of rare anomalies. These findings underscore the essential role of label alignment
in providing robust supervision when confirmed positive labels are extremely scarce.

w/o Exponential Moving Average (–EMA). In this variant, we remove the EMA-based smoothing
and instead update the anomaly expectation solely based on each mini-batch. This leads to increased
volatility in both AUC and Recall@50 metrics, highlighting the crucial role of temporal smoothing.
The EMA mechanism helps to dampen short-term prediction noise and stabilize the learning process,
which is especially important in the presence of noisy labels and limited supervision. Without it, the
model is more vulnerable to transient fluctuations, leading to less consistent estimation of anomaly
distributions over time.

5.4 SAMPLE SETTING ANALYSIS

In our setting, only a small subset of anomalies are labeled, with the vast majority of nodes remaining
unlabeled during training, This scenario reflects the severe label sparsity typical in real-world anomaly
detection. To assess how well WAVEN-PULL copes with varying levels of supervision, we vary the
number of labeled anomalies (num_labeled) from 50 to 150. The Num column in Table 3 indicates
the value of num_labeled for each experiment. As shown in Table 3, WAVEN-PULL demonstrates
robust and stable performance across all datasets, even when supervision is extremely limited. With
as few as 50 labeled anomalies, the model achieves AUC scores above 0.94 on Wikipedia and
Reddit, and above 0.74 on the Bitcoin datasets. As the number of labeled anomalies increases,
we observe gradual improvements, especially in top-ranked precision and recall, but the overall
performance remains strong even in the lowest-label regime. This resilience is attributed to our
joint frequency–temporal modeling and label distribution alignment, which together help mitigate
prediction bias and enhance the detection of subtle anomalies under scarce supervision—a crucial
property for practical deployment where large-scale labeling is rarely feasible.

6 CONCLUSION

This work addresses the critical challenge of prediction bias in dynamic graph anomaly detection,
a problem rooted in the realistic yet underexplored positive-unlabeled (PU) setting where only
a few anomalies are labeled. Our method WAVEN-PULL combines a frequency-aware spatial
encoder with temporal attention to capture evolving high-frequency anomaly signals, and a PU-aware
alignment module provides stable supervision, preventing the model from collapsing to majority-
class predictions. Extensive experiments on real-world dynamic graph datasets demonstrate that
WAVEN-PULL consistently outperforms state-of-the-art methods under limited supervision scenarios,
highlighting its robustness and potential applicability in various realistic anomaly detection tasks.
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A FUNDAMENTAL CHALLENGES IN DYNAMIC GRAPH ANOMALY DETECTION

A.1 GNN OVER-SMOOTHING AS A LOW-PASS FILTER

A.1.1 GNNS AS SPECTRAL FILTERS: A GRAPH SIGNAL PROCESSING PERSPECTIVE

Graph Neural Networks (GNNs) can be analyzed via graph signal processing by treating node features
as signals on a graph, which enables a frequency-domain interpretation of aggregation.

Consider an undirected, nonnegative-weight graph G = (V,A,X) with N nodes, adjacency A ∈
RN×N , and node features X ∈ RN×d. For simplicity, let x ∈ RN be a one-dimensional signal (the
analysis applies column-wise to X). The (symmetric) normalized Laplacian is

L = I −D−1/2AD−1/2,

with eigendecomposition

L = UΛU⊤, Λ = diag(λ1, . . . , λN ), 0 = λ1 ≤ · · · ≤ λN ≤ 2.

The Graph Fourier Transform (GFT) is x̂ = U⊤x. A linear GNN layer acts as a spectral filter g(λ):

x′ = U g(Λ)U⊤x, g(Λ) = diag
(
g(λ1), . . . , g(λN )

)
.

A.1.2 LOW-PASS FILTERING AND OVER-SMOOTHING IN GNNS

Smoothness functional. We quantify the smoothness of x by the (normalized) Dirichlet energy
x⊤Lx. It penalizes edge-wise disagreements and admits two equivalent forms:

Lemma A.1 (Dirichlet energy identities). Let L = I −D−1/2AD−1/2 and set y = D−1/2x. Then

x⊤Lx = 1
2

∑
i,j

Aij (yi − yj)
2 =

N∑
i=1

λi x̂
2
i , (20)

where L = UΛU⊤, x̂ = U⊤x.

Proof sketch. Using L = I − D−1/2AD−1/2 and y = D−1/2x, x⊤Lx = x⊤D−1/2(D −
A)D−1/2x = y⊤(D − A)y = 1

2

∑
i,j Aij(yi − yj)

2. With L = UΛU⊤ and x̂ = U⊤x,
x⊤Lx = x̂⊤Λx̂ =

∑
i λix̂

2
i .

Eq. equation 20 shows that (i) x⊤Lx is small when degree-normalized neighbors agree (edge-
wise smoothness); and (ii) it weights spectral components by their eigenvalues, thus penalizing
higher-frequency modes more heavily. Therefore, we quantify smoothness by

x⊤Lx =

N∑
i=1

λix̂
2
i ,

which connects directly to the low-pass behavior below.
Lemma A.2 (Spectral Filter of a GCN Layer). Ignoring non-linearities, a standard GCN layer using
the renormalization trick (Ŝ = D̃−1/2ÃD̃−1/2 with Ã = A+ I) acts as a linear spectral filter on
the graph signal x. With respect to the associated Laplacian L̃ = I − Ŝ, this filter has a response
function given by:

gGCN(λ) = 1− λ.

Proof. The propagation rule of a linearized GCN layer is x′ = Ŝx. By definition, Ŝ = I − L̃. In the
spectral domain defined by the eigendecomposition of L̃ = UΛU⊤, this operation becomes:

x′ = (I − L̃)x = U(I − Λ)U⊤x.

This corresponds to a spectral filter with a diagonal operator g(Λ) = I − Λ, whose response function
is g(λ) = 1− λ.
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The filter response gGCN(λ) = 1 − λ preserves low frequencies (λ ≈ 0), but its effect becomes
catastrophic when layers are stacked. The following proposition formalizes this phenomenon, which
is the spectral essence of over-smoothing.
Proposition A.3 (Over-smoothing as Multi-Layer Low-Pass Filtering). Stacking K linearized GCN
layers leads to over-smoothing, which manifests spectrally in two ways:

1. Dirichlet Energy Reduction: A single GCN layer smooths the signal by reducing its
Dirichlet energy: (x′)⊤L̃x′ ≤ x⊤L̃x.

2. Exponential Attenuation: The K-layer composite filter has a response function gK(λ) =
(1− λ)K . This causes any non-zero frequency component (λ ∈ (0, 2]) to decay to zero as
the number of layers K →∞.

Proof. Part 1 (Energy Reduction): Let x̂ be the GFT of x. The GFT of the output x′ is x̂′ =
(I − Λ)x̂. The Dirichlet energy of x′ is:

(x′)⊤L̃x′ = (x̂′)⊤Λx̂′ =

N∑
i=1

λi(1− λi)
2 x̂ 2

i .

Since (1− λi)
2 ≤ 1 for all λi ∈ [0, 2], this sum is less than or equal to

∑N
i=1 λi x̂

2
i = x⊤L̃x.

Part 2 (Exponential Attenuation): Stacking K layers is equivalent to applying the propagation
matrix K times: x(K) = (Ŝ)Kx. In the spectral domain, this corresponds to a filter with response
gK(λ) = (gGCN(λ))

K = (1−λ)K . For any λ ∈ (0, 2], |1−λ| < 1, therefore limK→∞(1−λ)K = 0.
Only the zero-frequency component (λ = 0) is preserved.

A.1.3 IMPLICATIONS FOR ANOMALY DETECTION: A FUNDAMENTAL CONFLICT

This low-pass property fundamentally conflicts with anomaly detection. Anomalous nodes have
features xi that differ from their neighbors, resulting in large gradients across edges and high values
of xTLx, i.e., energy in high-frequency components.

Mathematically, anomalies are encoded in the high-frequency spectrum:

xTLx =

N∑
i=1

λix̂
2
i , with anomalies =⇒ x̂2

i large for λi ≫ 0.

However, GNNs, by design, suppress these high-frequency components, leading to "representational
dilution": with each layer, anomaly-indicative signals are exponentially attenuated, and anomalous
node embeddings become indistinguishable from normal ones. This analysis reveals a fundamental
and inherent conflict: The objective of anomaly detection is to amplify high-frequency signals, yet the
core architectural bias of message-passing GNNs is designed to suppress them. This explains the sub-
optimal performance of standard GNNs for anomaly detection and motivates the need for architectures
(e.g., graph wavelets) that can adaptively capture both low- and high-frequency information.

A.2 THE FAILURE OF STATIC FILTERS ON DYNAMIC GRAPHS

A.2.1 WHY A FREQUENCY-DOMAIN APPROACH IS FEASIBLE

Message-passing GNNs act as low-pass operators; stacking layers progressively suppresses high-
frequency components and thus “washes out” anomaly-indicative signals. A more goal-aligned route
is to work directly in the frequency domain and selectively amplify the high-frequency content that
anomalies tend to carry.

This is not ad hoc. Both theoretical analyses and empirical observations support a spectral right-shift:
as anomaly severity increases, energy moves from low to high graph frequencies. A convenient
high-frequency summary is the Rayleigh quotient

Shigh(x, L) =
x⊤Lx

x⊤x
,
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which grows as more energy concentrates in high-frequency modes and, crucially, can be computed
without eigendecomposition—making it suitable for large graphs. Hence, continuing to use low-pass
filters systematically attenuates precisely the information we wish to amplify; band-pass filtering is
the more purposeful choice.

Graph wavelets provide an operational framework for this choice. Admissible wavelet kernels
exhibit band-pass behavior in the spectral domain; a multi-scale bank of such kernels covers distinct
frequency ranges; and, in practice, one implements these filters as polynomials of the Laplacian,

g(L) =

K∑
k=0

akL
k,

to avoid eigendecomposition and enable efficient, parallel sparse-matrix recurrences.

Compared with heat kernels (fundamentally low-pass), a well-designed wavelet bank offers both a
low-pass channel and multiple band-pass channels. Multi-scale responses can be positive or negative,
capturing not only neighborhood similarity but also explicit differences, which improves anomaly
separability.

Moreover, appropriate wavelet families enjoy dual locality: (i) spectral locality, allowing the response
to be anchored around target bands (so valuable high frequencies are not inadvertently smoothed
away), and (ii) spatial locality, since a K-degree polynomial acts within K hops, limiting global
diffusion and mitigating the re-averaging that drives over-smoothing.

Clarifying when snapshot scores become zero. We make explicit the cases under which the
snapshot high-frequency score Shigh(x, L) =

x⊤Lx
x⊤x

(and the band-pass captured energy) evaluate to
zero.

Lemma A.4 (Spatially constant signals yield zero snapshot score).
1. Unnormalized Laplacian (L = D −A). If x is constant on each connected component (i.e.,

x = c1 component-wise), then x⊤Lx = 0, hence Shigh(x, L) = 0.

2. Symmetric normalized Laplacian (Lsym = I −D−1/2AD−1/2). Let y = D−1/2x. If y is
constant on each connected component (equivalently, x = D1/2c1 component-wise), then

x⊤Lsymx = 1
2

∑
(i,j)∈E

Aij (yi − yj)
2 = 0,

and thus Shigh(x, Lsym) = 0.

Proof sketch. For (1), L1 = 0 on each connected component, so x⊤Lx = 0 when x is constant. For
(2), the edge-sum identity above shows the quadratic form is a sum of squared neighbor differences
of y = D−1/2x; if those differences vanish, the sum is zero.

Consequence for band-pass responses. Let B(·) be any admissible band-pass kernel with B(0) = 0.
If x is spatially constant in the sense of Lemma A.4, then B(L)x = 0 and the captured energy

E =
∥B(L)x∥22
∥x∥22

is also zero. Intuitively, spatially constant signals contain only the DC (zero-frequency) component,
which admissible band-pass filters suppress.

Implication for dynamic graphs (temporal-only changes). If at every time t the snapshot signal is
spatially constant on each connected component (e.g., xt = ct1 for unnormalized L, or D−1/2x(t) =
ct1 for Lsym), then

St
high = 0 and Et = 0 for all t,

even if the constants (ct) change abruptly over time. Thus, purely temporal changes that remain
spatially smooth within each snapshot are invisible to snapshot spectral criteria by construction.
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A.2.2 LIMITATIONS OF DIRECTLY PORTING THE STATIC FREQUENCY-DOMAIN RECIPE TO
DYNAMIC GRAPHS

The frequency-domain framework is well validated on static graphs. When it is transplanted to
dynamic graphs via per-snapshot processing, the introduction of time brings two limitations that
merit attention and should be addressed in modeling.

1. Snapshot blind spot for purely temporal anomalies. Let Lt and xt denote the Laplacian and
node features at time t. If within each snapshot the signal is spatially smooth on every connected
component (e.g., xt = ct1 component-wise), then the high-frequency score

St
high =

(xt)
⊤Ltxt

∥xt∥22
is 0 for all t because Lt1 = 0. Hence, even if there is an abrupt temporal change ct ̸= ct−1,
snapshot-only spectral criteria do not explicitly reflect such anomalies that vary over time while
remaining spatially smooth within each snapshot.

2. Band mis-centering under nonstationary spectral “right-shift”. Let µt be the spectral
measure of xt with respect to Lt, and define the energy captured by a fixed band-pass B as

Et =

∫
B(λ)2 dµt(λ).

Assume that at time t at least a fraction ρt of the mass lies in It = [ωt − ϵ, ωt + ϵ] (the empirical
high-frequency center ωt). If B is centered at ω⋆ with half-bandwidth b and Lipschitz constant LB ,
then whenever |ωt − ω⋆| > b+ ϵ,

Et ≤ (1− ρt) ∥B∥2∞ + ρt

(
B(ω⋆)− LB

(
|ωt − ω⋆| − b− ϵ

))2
.

i.e., once the center drift exceeds the passband, the captured anomaly energy degrades markedly. As
{ωt} drifts over time, {Et} fluctuates across snapshots, revealing a systematic misalignment caused
by temporal nonstationarity; cross-snapshot information is therefore needed to align and complement
snapshot cues.

A.3 LIMITATIONS IN THE PU SCENARIO

In this section, we provide a concise theoretical analysis of standard learning strategies under the
Positive-Unlabeled (PU) setting, focusing on the widely used naive approach. We formalize its risk
estimation and demonstrate its inherent bias, which leads to model collapse—a key failure mode for
GNN-based anomaly detection in dynamic graphs.

A.3.1 THE NAIVE APPROACH: FORMULATION AND BIAS

In PU learning, the absence of labeled negatives often leads practitioners to treat all unlabeled nodes
V U as negatives. Let V L denote the set of labeled positives, and f be the anomaly scoring function
with predictions ŷv = f(zv) ∈ [0, 1]. The empirical risk for the naive approach is:

R̂naive(f) = π̂P

(
1− 1

|V L|
∑
v∈V L

ŷv

)
+ (1− π̂P )

(
1

|V U |
∑

v∈V U

ŷv

)
, (21)

where π̂P = |V L|
|V L|+|V U | is the observed positive label ratio, typically much smaller than the true class

prior πP .

The flaw lies in the second term: it assumes the mean prediction over V U estimates the negative risk,
i.e., EU [ŷ] ≈ EN [ŷ]. However, since V U contains both true negatives and hidden positives, this is
incorrect. The bias is:

Bias = EU [ŷ]− EN [ŷ] = πP (EP [ŷ]− EN [ŷ]) ̸= 0,

making R̂naive(f) a biased estimator of the true risk R(f) (Du Plessis et al., 2014; Bekker & Davis,
2020).
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A.3.2 MODEL COLLAPSE DRIVEN BY BIAS

This bias distorts optimization. In practice, |V U | ≫ |V L|, so (1 − π̂P ) ≈ 1 and the second
term in equation 21 dominates the loss. Minimizing R̂naive(f) thus encourages the model to drive

1
|V U |

∑
v∈V U ŷv → 0, i.e., to predict all unlabeled nodes as normal (ŷv = 0), including hidden

anomalies. This leads to model collapse: the classifier f becomes biased toward the majority (normal)
class and loses discriminative power for anomalies.

Mathematical Illustration: Descent Toward Zero Predictor Let ℓ(a, y) be a differentiable loss
(e.g., logistic or squared), and consider the population risk:

Rnaive(f) = π̂P Ev∼P [ℓ(1, ŷv)] + (1− π̂P )Ev∼U [ℓ(0, ŷv)].

For a perturbation δŷv = −ϵ for v ∈ U (and 0 otherwise), the directional derivative is

DRnaive(f)[δ] = (1− π̂P )Ev∼U [∂2ℓ(0, ŷv) (−ϵ)] < 0,

since ∂2ℓ(0, y) > 0 for y ∈ (0, 1]. Thus, the loss always decreases by reducing ŷv for v ∈ U ,
regardless of the true class.

For logistic loss, ℓ(a, y) = −a log y − (1− a) log(1− y), so ∂2ℓ(0, y) =
1

1−y > 0, yielding

DRnaive(f)[δ] = −(1− π̂P ) ϵEU

[
1

1− ŷv

]
< 0.

This confirms a persistent descent direction toward the zero predictor, independent of the data’s true
structure.

A.3.3 COUPLED AMPLIFICATION OF OVER-SMOOTHING AND PU BIAS

In the Positive–Unlabeled (PU) setting, the failure of GNN-based anomaly detection arises from
a coupled amplification between architectural over-smoothing and supervision bias. On the one
hand, during the forward pass, the message-passing encoder behaves as a low-pass filter: for node
representations Z(k)∈R|V |×d and Laplacian L, the Dirichlet energy monotonically decreases,

Tr
(
(Z(k))⊤LZ(k)

)
≤ Tr

(
(Z(k−1))⊤LZ(k−1)

)
,

which implies that high-frequency components carrying anomaly cues are exponentially attenuated
across layers. On the other hand, in the PU setting with standard convex classification losses (e.g.,
logistic) and a dominant unlabeled set U , gradient-based optimization consistently decreases the
unlabeled average prediction

ȳUt :=
1

|U |
∑
v∈U

ŷ(t)v ,

thereby pushing hidden positives toward zero. Crucially, the only corrective force that could increase
ȳUt —the representation-level separability of hidden positives in the high-frequency spectrum—is
itself suppressed by the encoder’s low-pass bias. Formally, one obtains a net drift inequality

ȳUt+1 − ȳUt ≤ − c1 + c2 γ
K ,

where c1 > 0 quantifies the persistent downward pull on U under the PU setting, c2 γK upper-
bounds the attenuated corrective signal after K low-pass layers, and γ < 1 is the high-frequency
attenuation factor. Whenever c1 > c2γ

K , the sequence {ȳUt } decreases monotonically and approaches
collapse. Hence the architectural bias (mechanism) and the supervision bias (incentive) are aligned,
forming a self-reinforcing loop that annihilates anomaly signals—explaining why standard GNNs are
particularly prone to failure in PU anomaly detection.
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B THEORETICAL GUARANTEES OF THE WAVEN-PULL FRAMEWORK

B.1 DYNAMIC GRAPH ENCODING

B.1.1 DEFINITIONS AND SETUP

Graph Formulation. Let G = {Gt}Tt=1 be a dynamic graph, where Gt = (Vt, At, Xt) is the graph
snapshot at time t with |V | = n nodes, adjacency matrix At, and node feature matrix Xt. Let Lt be
the symmetrically normalized Laplacian of Gt with eigendecomposition:

Lt = UtΛt(Ut)
⊤,

where Λt = diag(λt
1, . . . , λ

t
n) with 0 = λt

1 ≤ · · · ≤ λt
n ≤ 2, and U t = [ut

1, . . . ,u
t
n] is the matrix of

orthonormal eigenvectors.

Beta-Wavelet Spectral Filter. Fix an order C ∈ N. For any non-negative integers p, q such that
p+ q = C, we define a Beta-wavelet spectral kernel:

gp,q(λ) =
1

2B(p+ 1, q + 1)

(
λ

2

)p(
1− λ

2

)q

, λ ∈ [0, 2],

where B(·, ·) is the Beta function. The corresponding graph filter operator at time t is defined as:

Wt
p,q := gp,q(Lt) =

1

2B(p+ 1, q + 1)

(
Lt

2

)p(
I − Lt

2

)q

.

This operator acts on a graph signal x ∈ Rn by spectral multiplication: if x̂k = (u
(t)
k )⊤x, then the

k-th spectral component of the filtered signal is gp,q(λ
(t)
k )x̂k.

Temporal Attention Mechanism. Let Hsp
t be the spatial node embeddings obtained after the

Beta-wavelet graph convolution. The node-level temporal attention computes the representation for
node i at time t as:

Ht(i, :) = Hsp
t (i, :) +

t−1∑
k=1

αt
i,k H

sp
k (i, :),

where the attention weights αt
i,k are computed using query and key projections. The output of the

attention mechanism, representing the pure temporal context, is defined as the temporal embedding at
time t:

Hatt
t = At({Hsp

k }
t−1
k=1) =

t−1∑
k=1

αt
i,k H

sp
k (i, :).

The final node representation at time t is then the sum of spatial and temporal embeddings:

Ht = Hsp
t +Hatt

t .

This decomposition allows us to separately analyze the effects of spatial filtering and temporal
aggregation.

Over-Smoothing Index. Fix 0 < ε < η ≤ 2. Define spectral projectors at time t:

PL
t := Ut diag(1{λt,k ≤ ε})U⊤

t , PH
t := Ut diag(1{λt,k ≥ η})U⊤

t .

For a vector x ∈ Rnt , define the spectral contrast (over-smoothing index):

OSt(x) :=
∥PL

t x∥2
∥PH

t x∥2
(with 0/0 := 0, a/0 := +∞ for a > 0).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.1.2 CORE SPECTRAL PROPERTIES

Lemma B.1 (Spectral properties of the Beta-wavelet filter). For any p ≥ 1, q ≥ 0 with p+ q = C,
the kernel gp,q(λ) satisfies gp,q(0) = 0. Furthermore, for any 0 < ε < η ≤ 2, there exist positive
constants c1, c2 (depending on p, q) such that:

sup
λ∈[0,ε]

gp,q(λ) ≤ c1ε
p, inf

λ∈[η,2]
gp,q(λ) ≥ c2η

p(1− η/2)q.

In particular, for p ≥ 1, gp,q is a strict high-pass or band-pass filter.

Proof. Since p ≥ 1, gp,q(λ) ∼ λp as λ ↓ 0, hence gp,q(0) = 0 and supλ∈[0,ε] gp,q(λ) ≤ c′1ε
p for

some constant c′1 > 0. For the lower bound, gp,q is continuous and positive on the compact set [η, 2],
hence achieves a positive minimum there. This minimum can be bounded below by c′2η

p(1− η/2)q

for some constant c′2 > 0. The constants c1 and c2 in the statement are precisely c′1 and c′2.

B.1.3 PROOF OF SPECTRAL-CONTRAST CONTRACTION

Proposition B.2 (Spectral-contrast contraction). For any x ∈ Rnt , time t, and filter gp,q with p ≥ 1,

OSt(Wt
p,qx) ≤ κp,q(ε, η) OSt(x), where κp,q(ε, η) :=

supλ∈[0,ε] gp,q(λ)

infλ∈[η,2] gp,q(λ)
.

Furthermore, from Lemma B.1, it follows that

κp,q(ε, η) ≤
c1
c2
· εp

ηp(1− η/2)q
< 1,

where c1, c2 are the positive constants from Lemma B.1.

Proof. Let y =Wt
p,qx. Recall that y = gp,q(Lt)x. Any graph signal x admits a spectral representa-

tion x =
∑

k x̂kut,k with x̂k = u⊤
t,kx. Thus, the filtered signal is y =

∑
k gp,q(λt,k)x̂kut,k, and its

GFT coefficients are ŷk = gp,q(λt,k)x̂k.

The energy of the low-frequency projection of y is:

∥PL
t y∥22 =

∑
λt,k≤ε

|ŷk|2 =
∑

λt,k≤ε

|gp,q(λt,k)|2|x̂k|2.

Since |gp,q(λt,k)|2 ≤
(
supλ∈[0,ε] gp,q(λ)

)2
for all λt,k ≤ ε, it follows that:

∥PL
t y∥22 ≤

(
sup

λ∈[0,ε]

gp,q(λ)

)2 ∑
λt,k≤ε

|x̂k|2 =

(
sup

λ∈[0,ε]

gp,q(λ)

)2

∥PL
t x∥22.

Similarly, the energy of the high-frequency projection of y is:

∥PH
t y∥22 =

∑
λt,k≥η

|ŷk|2 =
∑

λt,k≥η

|gp,q(λt,k)|2|x̂k|2.

Since |gp,q(λt,k)|2 ≥
(
infλ∈[η,2] gp,q(λ)

)2
for all λt,k ≥ η, it follows that:

∥PH
t y∥22 ≥

(
inf

λ∈[η,2]
gp,q(λ)

)2 ∑
λt,k≥η

|x̂k|2 =

(
inf

λ∈[η,2]
gp,q(λ)

)2

∥PH
t x∥22.

Taking the square root of both sides of the two inequalities yields:

∥PL
t y∥2 ≤

(
sup

λ∈[0,ε]

gp,q(λ)

)
∥PL

t x∥2,
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∥PH
t y∥2 ≥

(
inf

λ∈[η,2]
gp,q(λ)

)
∥PH

t x∥2.

Finally, forming the ratio OSt(y) =
∥PL

t y∥2

∥PH
t y∥2

and combining the above inequalities gives the desired
result:

OSt(y) ≤
supλ∈[0,ε] gp,q(λ)

infλ∈[η,2] gp,q(λ)
· ∥P

L
t x∥2

∥PH
t x∥2

= κp,q(ε, η) OSt(x).

The bound on κp,q(ε, η) is obtained by substituting the inequalities from Lemma B.1 into its definition:

κp,q(ε, η) ≤
c1ε

p

c2ηp(1− η/2)q
=

c1
c2

(ε/η)p

(1− η/2)q
.

The term (ε/η)p < 1 is the primary driver of the contraction, ensuring that κ < 1 under practical
choices of spectral bands (i.e., η not arbitrarily close to 2). This confirms that applying the filter
necessarily reduces the over-smoothing index.

Corollary B.3 (High-frequency anomaly sensitivity). Let an anomaly indicator signal x ∈ Rnt

satisfy ∥PH
t x∥2 > 0. Then,

∥PH
t (Wt

p,qx)∥2 ≥ γp,q∥PH
t x∥2, with γp,q := inf

λ∈[η,2]
gp,q(λ) > 0,

∥PL
t (Wt

p,qx)∥2 ≤ βp,q∥PL
t x∥2, with βp,q := sup

λ∈[0,ε]

gp,q(λ).

Since κp,q = βp,q/γp,q < 1, the high-to-low-frequency signal ratio increases after filtering.

B.1.4 PROPERTIES OF TEMPORAL OPERATIONS

Lemma B.4 (Temporal operations preserve spectral contrast). The temporal attention operation
At and its output Hatt

t are block-diagonal across nodes. For any signal x ∈ Rn, the outputs
zatt = Hatt

t x and z = Htx satisfy that each component zatti and zi depends only on {(Hsp
k x)i}t−1

k=1
and (Hsp

t x)i respectively. Consequently, At, Hatt
t , and Ht do not perform spatial smoothing and

cannot increase OSt(x).

Proof. The temporal attention computes a weighted sum of previous features for each node inde-
pendently. There is no interaction between different nodes i and j within this operation, making it
commutative with any node-wise projection. Therefore, it cannot reduce the relative strength of high-
frequency components. The final representation H(t) is a sum of two block-diagonal components
and thus also block-diagonal.

B.1.5 MAIN THEOREM: MITIGATION OF OVER-SMOOTHING

Theorem B.5 (Mitigation of over-smoothing). Consider the computation of node representations at
time t:

Hsp
t = σ

([
Wt

0,CXtW
(0)∥ · · · ∥Wt

C,0XtW
(C)
]
Wmix

)
,

Hatt
t = At({Hsp

k }
t−1
k=1),

Ht = Hsp
t +Hatt

t .

Assume σ is 1-Lipschitz and the linear transformations are arbitrary. Then for any nonzero x ∈ Rnt :

OSt(H
sp
t x) ≤ max

p≥1
κp,C−p(ε, η) ·OSt(Xtx),

OSt(H
att
t x) ≤ max

k∈{1,...,t−1}
OSt(H

sp
k x),

OSt(Htx) ≤ max
(
OSt(H

sp
t x),OSt(H

att
t x)

)
.

The composite block thus reduces over-smoothing while preserving temporal information.
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Proof. (Sketch) The first bound follows from Proposition B.2 applied to each filtered component
(p ≥ 1), noting that Lipschitz activation and linear mixing preserve the spectral contrast ratio. The
second bound follows from Lemma B.4, as temporal attention does not introduce spatial mixing. The
third bound follows from the linearity of spectral projectors and the fact that the norm of a sum is
bounded by the sum of norms, and thus the ratio is dominated by the component with larger spectral
contrast.

Remark B.6 (Filter design for anomaly detection). Higher order C provides richer spectral filters.
Filters with p ≥ 1 ensure strong low-frequency attenuation (∼ εp) while maintaining high-frequency
response (∼ ηp), crucial for anomaly amplification. The parameter q = C − p controls high-end
attenuation (λ→ 2); q ≥ 1 ensures numerical stability.
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B.2 THEORETICAL ANALYSIS OF THE PU-AWARE ALIGNMENT MODULE

This section provides a rigorous theoretical foundation for the PU-aware alignment module introduced
in the main text. We structure our analysis into three parts. First, we derive our proposed label-
alignment-aware objective from first principles. Second, we establish its theoretical guarantees,
proving its equivalence to a constrained optimal classification problem. Finally, we analyze its
robustness and stability in practical, dynamic settings.

B.2.1 DERIVATION OF THE LABEL-ALIGNMENT-AWARE PU OBJECTIVE

We begin by tracing the derivation of our proposed objective, starting from the standard risk formula-
tion for binary classification and adapting it to the Positive-Unlabeled (PU) setting.

Setup. Let (X,Y ) ∼ p(x, y) with Y ∈ {0, 1}, πP := P(Y = 1), πN = 1− πP , class conditionals
pP (x) := p(x | Y = 1) and pN (x) := p(x | Y = 0), and the unlabeled mixture pU (x) :=
πP pP (x) + πNpN (x). A probabilistic classifier is f : X → R, and we define the predicted score as
ŷ = σ(f(x)) ∈ [0, 1], where σ is the sigmoid function. In standard binary classification, a classifier
f minimizes the expected risk:

R(f) = E(x,y)∼p(x,y) [1 [ŷ ̸= y]] ,

where ŷ = 1[f(x) ≥ 0] is the predicted label. This risk can be decomposed into contributions from
positive and negative samples:

R(f) = πPEx∼pP (x) [1 [ŷ ̸= 1]] + πNEx∼pN (x) [1 [ŷ ̸= 0]]

= πPEx∼pP (x) [1− ŷ] + πNEx∼pN (x) [ŷ]

= πP

∣∣Ex∼pP (x) [ŷ]− 1
∣∣︸ ︷︷ ︸

RP

+πN

∣∣Ex∼pN (x) [ŷ]− 0
∣∣︸ ︷︷ ︸

RN

,
(22)

where πP and πN = 1 − πP are the class priors, and pP (x), pN (x) are the class-conditional
distributions. The expected risk thus measures the deviation between predicted and true label
distributions; minimizing it aligns the predicted class proportions with the true ones Zhao et al.
(2022).

Lemma B.7 (PU decomposition and elimination of negatives). For unlabeled data, which mixes
positives and negatives, the expected ground-truth label equals the class prior: E(x,y)∼p(x,y)[y] = πP .
With pU (x) as the unlabeled data distribution (a mixture of pP and pN ), the expected prediction is:

Ex∼pU (x)[ŷ] = πPEx∼pP (x)[ŷ] + πNEx∼pN (x)[ŷ].

Based on this decomposition, the negative risk RN can be indirectly estimated without access to
negative labels.

Proof.
πNRN = Ex∼pU (x) [ŷ]− πPEx∼pP (x) [ŷ]

= Ex∼pU (x) [ŷ]− πP +
(
πP − πPEx∼pP (x) [ŷ]

)
= Ex∼pU (x) [ŷ]− πP + πPRP .

(23)

Substituting equation 23 into equation 22 yields an alternative expression for R(f) that eliminates
the need for explicit negative label computations, as follows:

R(f) = 2πPRP + Ex∼pU (x) [ŷ]− πP

To enforce alignment between the predicted label distribution on unlabeled data and the class prior,
we add an absolute difference term to the risk function. This yields the label-alignment-aware risk
R(f):

R(f) = 2πPRP +
∣∣Ex∼pU (x) [ŷ]− πP

∣∣︸ ︷︷ ︸
RU

. (24)
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Label-alignment-aware PU objective. Motivated by equation 24, WAVEN-PULL uses the follow-
ing PU objective, which is implemented and stable in practice:

R(f) = 2πP (1− EP [ŷ]) + |EU [ŷ]− πP | . (25)

This objective simultaneously maximizes the recall on labeled positives (minimizing 1− EP [ŷ]) and
enforces alignment of the predicted positive rate on U with the class prior πP .
Remark B.8 (Interpretation of the Objective Components). The proposed objective consists of two
core components addressing two distinct goals.

1. Recall Maximization: The term 2πP (1 − EP [ŷ]) serves as a continuous surrogate for
maximizing recall. Minimizing this term is equivalent to maximizing the expected score on
known positives, EP [ŷ], which directly incentivizes the model to identify all true positive
instances.

2. Alignment Regularization: The term |EU [ŷ]− πP | is a regularizer that enforces consis-
tency with the class prior, preventing the model collapse associated with the naive PU
objective.

B.2.2 THEORETICAL GUARANTEES OF THE ALIGNMENT OBJECTIVE

Having derived our objective, we now provide its rigorous theoretical justification. We proceed in
two steps. First, we show that our practical, unconstrained objective is an exact method for solving
a more ideal constrained optimization problem. Second, we characterize the solution to this ideal
problem and show that it is, in fact, the theoretically optimal classifier.

Constrained alignment counterpart. We also consider the constrained formulation corresponding
to equation 25:

min
f

2πP

(
1− EP [ŷ]

)
s.t. EU [ŷ] = πP . (26)

Exact L1-penalty at unit weight. Throughout this part we take ŷ = σ(f(x)) ∈ [0, 1] as the
training-time score (hard decisions are a limiting case). To provide a rigorous theoretical grounding
for our proposed objective in equation 25, we now establish its connection to the constrained
optimization problem defined in equation 26. Specifically, we aim to show that our unconstrained,
penalty-based objective is not merely an approximation, but is in fact an exact method for solving
the ideal constrained problem. The following proposition formalizes this equivalence under a mild
condition.
Proposition B.9 (Equivalence to a Constrained Problem). Let J⋆ := 2πP

(
1 − EP [ŷ

⋆]
)

be the
optimal value of the constrained problem equation 26 at some feasible optimizer f⋆. Assume the
KKT conditions hold at f⋆ with Lagrange multiplier ν⋆ ∈ R. If |ν⋆| ≤ 1, then any global minimizer
of equation 25 is feasible for equation 26 and also minimizes equation 26. In other words, the unit
L1 penalty in equation 25 is exact under the bounded-multiplier condition.

Proof sketch. Using |a| = max|ν|≤1 νa, we rewrite equation 25 as

R(f) = max
|ν|≤1

{
2πP

(
1− EP [ŷ]

)
+ ν
(
EU [ŷ]− πP

)}
=: max

|ν|≤1
L(f, ν).

Let ν⋆ be a KKT multiplier for equation 26 at f⋆. If |ν⋆| ≤ 1, then (f⋆, ν⋆) is a saddle point
on {|ν| ≤ 1}: for any ν, L(f⋆, ν) ≤ L(f⋆, ν⋆) (feasibility gives EU [ŷ

⋆] = πP ); for any f ,
L(f, ν⋆) ≥ L(f⋆, ν⋆) (KKT optimality). Thus

min
f

R(f) = min
f

max
|ν|≤1

L(f, ν) ≥ max
|ν|≤1

min
f

L(f, ν) ≥ L(f⋆, ν⋆) = J⋆,

while any feasible f satisfies R(f) = 2πP (1−EP [ŷ]) ≥ J⋆ with equality at f⋆. Hence every global
minimizer of equation 25 is feasible and solves equation 26.

Remark B.10 (Near-exactness via worst-case slope). Define the worst-case slope (as in your original
text)

λex := sup
EU [ŷ]̸=πP

2πP

(
1− EP [ŷ]

)
− J⋆∣∣EU [ŷ]− πP

∣∣ ∈ [0,∞].
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Then for any f ,
R(f) ≥ J⋆ +

(
1− λex

)
·
∣∣EU [ŷ]− πP

∣∣.
Thus if λex < 1, the unit-penalty objective R(f) remains exact; if λex ≥ 1, the inequality quantifies
the trade-off between suboptimality and alignment residual for analysis (and can be instantiated with
the EMA-smoothed estimate in the dynamic setting).

The preceding analysis established that our PU objective is an exact method for the constrained
problem. This naturally raises a question: What is the nature of the optimal solution to this problem?
The following theorem leverages the classic Neyman-Pearson lemma to provide a precise answer.

Theorem B.11 (Optimality of the Constrained Solution). Among all measurable scorers ŷ =
σ(f(x)) ∈ [0, 1] satisfying the alignment constraint EU [ŷ] = πP , the maximum of EP [ŷ] (equiva-
lently, the minimum of 1 − EP [ŷ]) is attained by a (possibly randomized) threshold on the likeli-
hood ratio L(x) := pP (x)

pU (x) . In particular, there exist a threshold τ and a boundary randomization
γ(x) ∈ [0, 1] such that

ŷ⋆(x) = 1{L(x) > τ}+ γ(x)1{L(x) = τ} and EU [ŷ
⋆] = πP ,

and ŷ⋆ maximizes EP [ŷ] among all feasible scorers. Equivalently, any maximizer is (almost surely)
a nondecreasing transform of L(x), or of the posterior ηU (x) := P(Y = 1 | X = x, X∼pU ) =
πP pP (x)
pU (x) .

Proof sketch. This is the Neyman–Pearson lemma with the “size” measured under pU . For any fixed
α = EU [ŷ], the tests that maximize EP [ŷ] are (a.s.) thresholds on L(x) with boundary randomization
to meet the constraint exactly. Setting α = πP yields the claim; monotone transforms preserve the
ranking.

Corollary B.12 (Global optimality of alignment+ranking). Under the exactness condition of Propo-
sition B.9 (e.g., |ν⋆| ≤ 1 or λex < 1), any global minimizer of the penalized objective equation 25 is
feasible for the constrained problem equation 26. By Theorem B.11, its output score (almost surely)
implements a likelihood-ratio threshold and thus induces the Neyman–Pearson optimal PU ranking
under the alignment constraint.

B.3 GUARANTEES FOR PRACTICAL IMPLEMENTATION

Finally, we address two critical challenges of practical implementation: the temporal noise inherent
in dynamic graphs and the uncertainty in the class prior πP .

B.3.1 TEMPORAL STABILIZATION USING EMA

In practice, our objective is optimized using empirical estimates from batches of data. However,
in dynamic settings, the empirical estimate of EU [ŷ] can exhibit high variance across timesteps,
hindering stable training. To mitigate this, we employ an Exponential Moving Average (EMA) to
smooth this estimate over time.

Proper surrogate and scores. In practice, WAVEN-PULL uses a score f(x) parameterized by a
neural network and optimizes the objective Rfinal directly using empirical estimates and gradient
descent. The empirical risk over a batch is:

R̂final(f) = 2πP

(
1− 1

|V L|
∑
v∈V L

ŷv

)
+

∣∣∣∣∣ 1

|V U |
∑

v∈V U

ŷv − πP

∣∣∣∣∣ .
Crucially, to mitigate the instability of the empirical estimate 1

|V U |
∑

ŷv in dynamic settings, WAVEN-
PULL employs an Exponential Moving Average (EMA) to smooth this quantity over time, as described
in Equation (13) of the main text. This replaces the second term with |µ̂t − πP |, where µ̂t is the
EMA-smoothed estimate. This temporal stabilization is key to robust optimization in dynamic graphs.
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EMA stability: essential facts. Let et := E[ŷ(t)U ]− πP and define the EMA

µ̂t = αU µ̂t−1 + (1− αU )E[ŷ(t)U ], µ̂1 = E[ŷ(1)U ], αU ∈ [0, 1),

and set ẽt := µ̂t − πP . Equivalently,

ẽt = αU ẽt−1 + (1− αU )et = (1− αU )

t−1∑
k=0

αk
U et−k. (27)

Lemma B.13. Stability: Bound on Error Amplification] For all t ≥ 2,

|ẽt| ≤ αU |ẽt−1|+ (1− αU )|et| ≤ max{ |ẽt−1|, |et| }.
With ẽ1 = e1, it follows that |ẽt| ≤ max1≤s≤t |es| for all t.

Proof. Use |αa+(1−α)b | ≤ α|a|+(1−α)|b|with α = αU , then the fact that a convex combination
is bounded by the maximum of its endpoints.

Lemma B.14 (Accuracy: Asymptotic Consistency). If et → e∞ as t→∞, then ẽt → e∞.

Proof. Let zt := ẽt − e∞ and ut := et − e∞ → 0. From equation 27, zt = αUzt−1 + (1− αU )ut.
Taking lim sup of absolute values gives lim supt |zt| ≤ αU lim supt |zt|, so lim supt |zt| = 0 since
αU < 1.

Proposition B.15 (Effectiveness: Variance Reduction). Assume et = m+ ξt where (ξt) is zero-mean,
uncorrelated across time with Var(ξt) = σ2, and independent of ẽt−1. Then

Var(ẽt) = α2
U Var(ẽt−1) + (1− αU )

2σ2,

so Var(ẽt) converges to the unique fixed point

Var∞(ẽ) =
(1− αU )

2

1− α2
U

σ2 =
1− αU

1 + αU
σ2 ≤ σ2,

with strict reduction for any αU ∈ (0, 1).

B.3.2 ROBUSTNESS TO PRIOR MISSPECIFICATION

In practice, the true class prior π is unknown and must be estimated as π̂. We now formally analyze the
impact of small errors in this estimation, proving that our method is robust to such misspecifications.
Specifically, we show that a small error in the prior leads to only a small, bounded change in the
objective function, and that the resulting trained model remains near-optimal.

Proposition B.16 (Robustness of the Objective Function). Let R(π)
final(f) := 2π

(
1−EP [ŷ]

)
+
∣∣EU [ŷ]−

π
∣∣. If one uses π̂ in place of the true π, with |π̂ − π| ≤ ϵ, then for any f ,∣∣R(π̂)

final(f)−R
(π)
final(f)

∣∣ ≤ 2 ϵ + ϵ = 3 ϵ.

Proof. Write

R
(π̂)
final(f)−R

(π)
final(f) = 2(π̂ − π)

(
1− EP [ŷ]

)
+
(
|EU [ŷ]− π̂| − |EU [ŷ]− π|

)
.

Take absolute values. Since 0 ≤ 1 − EP [ŷ] ≤ 1, the first term is bounded by 2|π̂ − π| ≤ 2ϵ. For
the second term, use ||a| − |b|| ≤ |a − b| with a = EU [ŷ] − π̂, b = EU [ŷ] − π, giving a bound
|π̂ − π| ≤ ϵ. Sum them to get 3ϵ.

Corollary B.17 (Near-Optimality of the Learned Model). Let δ := 3ϵ as in Proposition B.16. Then∣∣ min
f

R
(π̂)
final(f)−min

f
R

(π)
final(f)

∣∣ ≤ δ,

and if f̂ ∈ argminf R
(π̂)
final(f), then

R
(π)
final(f̂) ≤ min

f
R

(π)
final(f) + 2δ = min

f
R

(π)
final(f) + 6ϵ.
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Remark B.18 (Path-tightened bound and full-scale normalization). The bound in Proposition B.16
can be written more tightly along the optimization path as∣∣R(π̂)

final(f)−R
(π)
final(f)

∣∣ ≤ 2ϵ
(
1− EP [ŷ]

)
+ ϵ,

which is often much smaller than 3ϵ as training improves recall (i.e., EP [ŷ] ↑). Moreover, since
R

(π)
final(f) ∈ [0, 3], this implies a full-scale relative perturbation ≤ ϵ.

Remark B.19 (Transferring alignment under a misspecified prior). If training with the estimated prior
achieves |EU [ŷ]− π̂| ≤ ρ, then by the triangle inequality∣∣EU [ŷ]− π

∣∣ ≤ ρ+ ϵ.

In particular, driving |EU [ŷ]− π̂| → 0 ensures the true alignment residual is ≤ ϵ.

B.3.3 PROOF OF PROPOSITION 4.1 (THEORETICAL GUARANTEES OF WAVEN-PULL) IN MAIN
TEXT

Proposition 4.1 states that by jointly optimizing the dynamic graph encoder and the PU-aware
alignment objective, WAVEN-PULL provably achieves three key properties. We prove each of these
claims by synthesizing the results established throughout Appendix.

(i) Proof of Preserving High-Frequency Structural Signals.

This property is a direct consequence of the theoretical analysis of our dynamic graph encoder in
Appendix B.1.

1. We formally quantify the degree of over-smoothing using the Over-Smoothing Index,
defined as OSt(x) := ∥PL

t x∥2/∥PH
t x∥2. A smaller index indicates better preservation of

high-frequency signals relative to low-frequency ones.
2. Proposition B.2 proves that our Beta-wavelet spatial filterWt

p,q acts as a contraction map
on this index for any high-pass or band-pass channel (p ≥ 1):

OSt(Wt
p,qx) ≤ κp,q ·OSt(x), where the contraction factor κp,q < 1.

This mathematically guarantees that the spatial encoding step actively reduces over-
smoothing.

3. Furthermore, Lemma B.4 establishes that the temporal attention module does not perform
spatial smoothing and therefore cannot increase the over-smoothing index.

4. Combining these results, Theorem B.5 provides the overarching guarantee for the entire en-
coder, confirming that the final node representations Ht have a strictly controlled (and often
reduced) over-smoothing index compared to the input features. This formally proves that
the encoder preserves the high-frequency structural signals crucial for anomaly detection.

(ii) Proof of Attaining an Optimal and Stable PU Classifier.

This property is established by the rigorous analysis of our PU-aware alignment module in Ap-
pendix B.2.

1. Optimality: The analysis culminates in Corollary B.12, which synthesizes two key re-
sults. First, Proposition B.9 proves that minimizing our practical, unconstrained objective
Eq. equation 25 is mathematically equivalent to solving an ideal constrained problem
Eq. equation 26. Second, Theorem B.11 leverages the Neyman-Pearson lemma to prove
that the solution to this ideal problem is the theoretically optimal classifier that maximizes
recall under the alignment constraint. Therefore, our objective function guides the model
towards a provably optimal solution.

2. Stability: In dynamic settings, stability is crucial. Our use of an Exponential Moving
Average (EMA) is theoretically justified. Lemma B.13 proves that the EMA is stable and
does not amplify temporal errors (|ẽt| ≤ maxs≤t |es|). Proposition B.15 further proves
its effectiveness by showing it achieves a strict variance reduction:

Var∞(ẽ) =
1− αU

1 + αU
σ2 < σ2, for αU ∈ (0, 1).
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These guarantees ensure that the classifier is not only optimal but also stable against the
temporal noise inherent in dynamic graphs.

(iii) Proof of Achieving Robustness Against Oversmoothing and Model Collapse.

This overall robustness is a joint consequence of the encoder’s properties (proven in (i)) and the
objective’s properties (proven previously).

1. Robustness Against Over-smoothing: As proven in (i), our encoder is designed to be an
over-smoothing mitigator. It preserves the high-frequency signals that standard GNNs are
proven to destroy (as analyzed in Appendix A). This provides the necessary representational
foundation for the classifier to distinguish anomalies.

2. Robustness Against Model Collapse: As proven in (ii), our PU-aware objective is optimal
and stable. The symmetric alignment term, |EU [ŷ]− πP |, eliminates the degenerate descent
direction that plagues naive PU objectives (analyzed in Appendix A.3). This provides the
correct unbiased supervision signal that prevents the model from collapsing to a trivial
solution.

3. The Joint Effect: The robustness of WAVEN-PULL arises from breaking the "coupled
amplification" feedback loop described in Appendix A.3.3. The encoder preserves the
anomaly signal (solving the representation problem), and the PU objective incentivizes the
model to correctly use that signal (solving the supervision problem). Without the former,
the latter has no signal to act upon. Without the latter, the preserved signal would be ignored
due to bias. The joint optimization ensures both modules work in synergy, leading to a
system that is robust to both over-smoothing and model collapse.

■
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C PRELIMINARY CONCEPTS

C.1 DYNAMIC GRAPH.

A dynamic graph is a graph whose structure and node attributes evolve over time, reflecting changes
in real-world systems. Formally, a dynamic graph is represented as a sequence of graph snapshots
G = {G(1), G(2), . . . , G(T )}, where each snapshot G(t) = (V (t), E(t),X(t)) consists of a node set
Vt, an edge set Et, and a node feature matrix X(t) ∈ R|Vt|×d at time t. Both the set of nodes and
edges, as well as their attributes, may change across time steps, resulting in varying graph sizes and
structures. Dynamic graphs are prevalent in many domains, including social networks, financial
transaction systems, and communication networks, where the relationships and behaviors of entities
are inherently time-dependent. An example of a dynamic graph is shown in Figure 4.

Anomalies in such graphs often correspond to abrupt changes in connectivity patterns or unusual
shifts in node attributes, making their detection particularly challenging. The temporal evolution of
the graph introduces additional complexity, as the underlying patterns and distributions can shift,
leading to instability in node behavior and making reliable prediction more difficult. Furthermore,
in real-world applications, only a small fraction of anomalous nodes are typically labeled, due to
the rarity of anomalies and the high cost of manual annotation. A key challenge in dynamic graph
analysis is to effectively capture both spatial (structural) and temporal dependencies. Unlike static
graphs, which provide only a single snapshot, dynamic graphs require models to leverage historical
information and temporal context to uncover meaningful patterns and detect anomalies. Temporal
dependencies arise from the evolution of node interactions and attribute distributions, which can
influence the emergence and manifestation of anomalous behaviors. Therefore, robust anomaly
detection in dynamic graphs demands learning representations that jointly encode both the structural
and temporal aspects of the data.

Time
t1 t2 t3

Node New node Edge New edge

Figure 4: Illustration of a dynamic graph evolving over three time steps. Nodes and edges can appear
or disappear as the graph evolves.

C.2 POSITIVE-UNLABELED LEARNING

Positive-Unlabeled (PU) learning is a weakly supervised learning paradigm designed for scenarios
where only a small subset of positive instances are labeled, while the vast majority of data remains
unlabeled. Unlike traditional supervised learning, which requires both positive and negative labels,
PU learning operates under the realistic constraint that negative labels are unavailable or prohibitively
expensive to obtain. To effectively address this issue, PU learning commonly adopts the Selected
Completely At Random (SCAR) assumption, which posits that labeled positives are randomly drawn
from the true positive distribution, while unlabeled instances accurately represent the overall data
distribution. This assumption is crucial as it ensures unbiased estimation of class probabilities from
incomplete labels.

The PU learning problem is typically formulated within the empirical risk minimization (ERM)
framework. Let πP = Pr(y = 1) denote the class prior (i.e., the proportion of positives in the data).
The expected classification risk can be expressed as:

R(f) = πP · Ex∼pP (x)[ℓ(f(x), 1)] + (1− πP ) · Ex∼pN (x)[ℓ(f(x), 0)],

where pP (x) and pN (x) are the distributions of positive and negative samples, respectively, and ℓ
is a loss function. Since negative labels are not available, the second term is estimated indirectly
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using the unlabeled data, allowing the model to be trained using only labeled positives and unlabeled
examples Garg et al. (2021). This risk decomposition forms the basis for a variety of PU learning
algorithms, such as unbiased PU (uPU) Du Plessis et al. (2014) and non-negative PU (nnPU) Kiryo
et al. (2017).

In the context of dynamic graph anomaly detection, this PU setting naturally arises: only a handful of
anomalous nodes are labeled, while the rest of the nodes are unlabeled and may include both normal
and anomalous cases. Standard supervised approaches, which require explicit negative labels, are thus
inapplicable. PU learning provides a principled and practical alternative by leveraging the available
labeled anomalies and the abundant unlabeled data, without relying on confirmed negatives. This
approach has demonstrated success in diverse applications such as disease diagnosis, fraud detection,
and web mining. In this work, we leverage the PU learning framework to tackle the challenge of
dynamic anomaly detection under sparse anomaly supervision.

D ADDITIONAL EXPERIMENTAL SETTINGS

D.1 DATASETS

In this subsection, we provide a brief introduction to the datasets used in the experiments. The
statistics are shown in Table 4.

Table 4: Statistics of datasets

Dataset #Nodes #Edges #Anomalies

Wikipedia 9,227 157,474 217
Reddit 10,984 672,447 366

Bit-Alpha 3,783 24,186 874
Bit-OTC 5,881 35,592 2,568

(i) Wikipedia Kumar et al. (2019). This dataset captures the temporal evolution of user interactions
on Wikipedia, one of the largest collaborative knowledge bases. Each node represents a user, and each
edge corresponds to an edit event where a user modifies a page. The dynamic graph is constructed by
aggregating edit events into temporal snapshots, reflecting the evolving structure of user collaborations
and interactions over time. The binary label for each user indicates whether the user has been banned
for violating Wikipedia’s community guidelines, with banned users considered anomalous. The
dataset is challenging due to the sparsity of labeled anomalies and the complex, evolving patterns of
user behavior.

(ii) Reddit Kumar et al. (2019). This dataset consists of user activity logs from a specific subreddit
within the Reddit platform, a popular online discussion forum. Nodes represent users, and edges
denote interactions such as posting, commenting, or replying within the subreddit. The temporal
aspect is captured by dividing the event stream into discrete time windows, forming a sequence of
dynamic graph snapshots. Each user is assigned a binary label indicating whether they have been
banned from the subreddit, with banned users treated as anomalies. The dataset is characterized by
highly dynamic user engagement, bursty activity patterns, and a small fraction of labeled anomalies,
making it a realistic and challenging benchmark for dynamic anomaly detection.

(iii) Bitcoin-Alpha (Bit-Alpha) Lee et al. (2024). This dataset is derived from the Bitcoin Alpha
trust network, an online platform where users trade Bitcoin and rate each other based on transaction
experiences. Nodes correspond to users, and directed edges represent trust ratings, with each edge
carrying a signed score from -10 (complete distrust) to +10 (complete trust). The dynamic graph
is constructed by segmenting the rating events into temporal snapshots, capturing the evolution of
trust relationships over time. Anomalous users are labeled following the preprocessing procedure
of SLADE Lee et al. (2024), where node-level anomaly states are inferred from aggregated trust
interactions rather than from individual edges. The dataset poses unique challenges due to the signed,
weighted nature of edges, the presence of both positive and negative interactions, and the temporal
drift in user behavior.

(iv) Bitcoin-OTC (Bit-OTC) Lee et al. (2024). Similar in structure to Bitcoin-Alpha, the Bitcoin-
OTC dataset originates from the OTC (Over-The-Counter) Bitcoin trading platform, where users
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assign trust ratings to one another following transactions. Each node is a user, and each directed edge
encodes a trust score in the range of -10 to +10. The dynamic graph is formed by organizing trust
rating events into time-based snapshots, enabling the study of evolving trust dynamics. Anomaly
labels are obtained in the same way as in Bitcoin-Alpha, following the preprocessing procedure of
SLADE Lee et al. (2024). The dataset is notable for its complex trust network, the rarity of labeled
anomalies, and the need to distinguish between normal fluctuations in trust and genuine anomalous
activity.

D.2 BASELINES

Below, we summarize the baseline methods employed for comparison in our experiments:

(i) TGAT Xu et al. (2020). Temporal Graph Attention Network (TGAT) introduces a self-attention
mechanism tailored for dynamic graphs, along with a novel time encoding scheme grounded in
Bochner’s theorem from harmonic analysis. This enables the model to effectively capture both
structural and temporal dependencies in evolving graphs. In our experiments, TGAT is configured
with two layers, two attention heads, and a dropout rate of 0.1 for optimal performance.

(ii) TGN Rossi et al. (2020) Temporal Graph Networks (TGN) provide a flexible framework for
learning on continuous-time dynamic graphs. TGN incorporates a memory module to retain long-
term node histories and employs embedding modules to address memory staleness. The architecture
combines efficient parallel processing with attention-based graph aggregation, enabling scalable and
expressive modeling of temporal interactions.

(iii) GDN Ding et al. (2021). Graph Deviation Network (GDN) leverages a small set of labeled
anomalies to enforce statistically significant deviations between abnormal and normal nodes. The
model learns generalizable knowledge that can be used for initialization and rapid adaptation to new
nodes. In our setup, GDN is trained for 1000 epochs with a batch size of 16.

(iv) AMNet Chai et al. (2022). Adaptive Multi-frequency Network (AMNet) is designed for anomaly
detection in attributed graphs by addressing the mismatch between GNNs’ inherent low-pass filtering
and the high-frequency nature of many anomalies. AMNet utilizes node-wise frequency filters
parameterized by restricted Bernstein polynomials and a signal fusion module to effectively capture
and integrate multi-frequency information for robust anomaly identification.

(v) SAD Tian et al. (2023). Self-supervised Anomaly Detection (SAD) combines a time-aware
memory bank with a pseudo-label contrastive learning module to exploit large volumes of unlabeled
data. The model adopts mini-batch training and samples two-hop subgraphs with 20 nodes per hop,
enabling efficient and scalable anomaly detection in dynamic graphs.

(vi) SLADE Lee et al. (2024). SLADE is a self-supervised anomaly detection framework for dynamic
edge streams. It employs temporal contrastive learning and memory generation tasks, leveraging
TGAT-based aggregation and GRU-updated node memories. This design enables efficient, label-free
detection of anomalies in evolving graph structures.

D.3 EVALUATION METRICS

In this subsection, we provide a detailed explanation of the evaluation metrics used in our experiments.

AUC. The Area Under the Receiver Operating Characteristic Curve (AUC) is a widely used metric to
evaluate the ranking quality of anomaly detection models. It measures the probability that a randomly
chosen anomalous (positive) instance is ranked higher than a randomly chosen normal (negative)
instance by the model. AUC is threshold-independent and provides a comprehensive assessment of
the model’s ability to distinguish between anomalies and normal nodes across all possible decision
thresholds.

Formally, let P denote the set of positive (anomalous) samples and N denote the set of negative
(normal) samples. Let s(x) be the anomaly score assigned by the model to sample x. The AUC can
be computed as:

AUC =
1

|P| · |N |
∑
xp∈P

∑
xn∈N

I (s(xp) > s(xn)) ,
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where I(·) is the indicator function, which equals 1 if the condition is true and 0 otherwise. An
AUC of 1.0 indicates perfect separation between anomalies and normal nodes, while an AUC of 0.5
corresponds to random guessing.

Precision@K. Precision at K (Precision@K) is a metric that quantifies the proportion of true
anomalies among the top K instances ranked by the model’s anomaly scores. It reflects the accuracy
of the model’s highest-confidence predictions, which is particularly important in practical scenarios
where only a limited number of top-ranked anomalies can be investigated.

Formally, let SK denote the set of K samples with the highest anomaly scores, and let P denote the
set of ground-truth positive (anomalous) samples. Precision@K is defined as:

Precision@K =
|SK ∩ P|

K
,

where |SK ∩P| is the number of true anomalies among the top K predictions. A higher Precision@K
indicates that the model is more effective at prioritizing true anomalies in its top-ranked outputs.

Recall@K. Recall at K (Recall@K) is a metric that quantifies the proportion of true anomalies
among the top K instances ranked by the model’s anomaly scores. It measures the coverage of the
model’s top-ranked predictions, indicating how many of the actual positive instances are included in
the top K ranked list.

Formally, let SK denote the set of K samples with the highest anomaly scores, and let P denote the
set of ground-truth positive (anomalous) samples. Recall@K is defined as:

Recall@K =
|SK ∩ P|
|P|

,

where |SK ∩ P| is the number of true anomalies among the top K predictions. A higher Recall@K
indicates that the model is more effective at capturing the majority of the actual positive instances in
its top-ranked outputs.

D.4 EXPERIMENTAL SETUP

The class prior πP was set to a default value of 0.01 for the main experiments. To reduce temporal
fluctuations in predictions, we applied an exponential moving average (EMA) with a momentum
parameter of αU = 0.85 to the statistics of unlabeled samples. For optimization, we employed the
Adam optimizer Kingma & Ba (2014) with a constant learning rate of 1×10−3 and a weight decay of
1×10−4. The learning rate was further annealed using a cosine schedule without restarts. To simulate
a realistic PU learning scenario, we fixed the number of labeled positive samples (num-labeled)
at 100. During training, the batch size was set to 48 for positive samples (P ), 128 for unlabeled
samples (U ), and 128 for testing. Each model was trained for 60 epochs. To ensure the robustness of
our results, all experiments were repeated five times with different random seeds, and the average
performance was reported. The experiments were executed using Python 3.8 on a server with an
NVIDIA A40 GPU running CUDA 11.3.

E ADDITIONAL EXPERIMENTAL ANALYSES

To further validate the effectiveness and reliability of WAVEN-PULL under diverse conditions, we
present a comprehensive set of additional experimental analyses. These include: (1) a robustness
analysis on key hyperparameters such as the number of snapshots, labeled anomaly batch size, and
class prior; (2) a few-shot evaluation simulating deployment under minimal supervision on future time
steps; and (3) an in-depth error analysis identifying factors contributing to false positive predictions.
Together, these experiments demonstrate the stability, adaptability, and practical utility of our method
in real-world PU-based dynamic anomaly detection scenarios.

E.1 ROBUSTNESS ANALYSIS

In this section, we examine the robustness of WAVEN-PULL by evaluating its anomaly detection
performance under various settings using AUC, Precision@50, and Recall@50 as representative
metrics.
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Snapshot. We vary the number of temporal slices (snapshot) from 4 to 8 to study its impact. As
shown in Figure 5 (a), the best AUC on Wikipedia appears at snapshot = 5, while Reddit benefits
from finer partitions, peaking at snapshot = 6. On the Bitcoin datasets, Bitcoinalpha achieves
optimal performance at snapshot = 7, whereas Bitcoinotc prefers snapshot = 6. These results
indicate that datasets with rapidly evolving anomalies favor finer-grained snapshots, while coarser
segmentation suits more stable patterns. Overall, setting snapshot within 5–7 offers a good trade-off
between detection accuracy and computational cost.

P_batch_size. This parameter controls the number of anomalous samples included in each training
batch. We vary it from 32 to 64 to assess its impact. As shown in Figure 5 (b), setting P_batch_size
around 48 achieves the best AUC on Wikipedia, Bitcoinalpha, and Bitcoinotc, while Reddit slightly
favors a smaller batch of 40 anomalies. Using too few anomalies (e.g., 32) may lead to unstable
gradient updates and hinder the model’s ability to learn meaningful anomaly patterns. Conversely,
excessively large batches (e.g., 64) increase the risk of overfitting to the limited labeled anoma-
lies, offering only marginal improvements or even degrading generalization. Overall, maintaining
P_batch_size between 40 and 56 achieves a robust balance between training stability and anomaly
detection performance.

Prior. As discussed earlier, the ground-truth class prior πP is typically unavailable in real-world
scenarios. Instead, our method adopts an adaptive, data-driven estimation strategy to approximate
this prior during training Garg et al. (2021). To assess the robustness of our framework with respect
to prior estimation error, we varied the value of πP from 0.001 to 0.5. As shown in Figure 5(c),
WAVEN-PULL exhibits stable detection performance across a wide range of prior values. This
demonstrates that the model is not overly sensitive to the exact value of πP , and that our distribution
alignment mechanism remains effective even when the prior is inaccurately specified. These results
confirm the practicality of our prior estimation approach and the robustness of the training process
under uncertain class prior conditions.

E.2 ERROR ANALYSES

To better understand the limitations of our model, we conduct an error analysis focusing on false
positives (FPs)—i.e., normal nodes that are incorrectly predicted as anomalies. Specifically, we
analyze the top-K nodes with the highest predicted anomaly scores and examine their structural and
temporal properties. Representative examples of misclassified nodes are summarized in Table 5. We
identify two prominent patterns contributing to these misclassifications:

• Contamination by Abnormal Neighbors. Some normal nodes are densely connected to
multiple labeled anomalies, which may propagate misleading patterns. For instance, as
shown in Table 5, node 7995 has 23 unique neighbors, including 8 anomalies. Similarly,
node 6127 connects to 11 neighbors, 7 of whom are labeled anomalous. Such proximity to
abnormal behavior can distort message aggregation and lead to overestimation of anomaly
scores.

• Abruptly Emerging Sparse Nodes. Another category includes nodes that appear suddenly
in the final snapshots of the dynamic graph, with very limited structural and temporal history.
Examples like node 254, 108, and 2696 show minimal connectivity and activity—yet due to
their abrupt emergence and lack of past context, the model may interpret their behavior as
anomalous. This highlights a limitation of temporal models under extreme label sparsity,
where lack of historical evidence makes newcomers harder to classify reliably.

These findings reveal two critical vulnerabilities of our model under extreme label sparsity: sensitivity
to anomalous structural context and instability in classifying nodes with minimal historical data.
These issues suggest two potential directions for further improvement. First, future work may
explore neighborhood denoising or robust aggregation mechanisms to suppress the propagation of
contaminated features from abnormal neighbors. Second, incorporating uncertainty-aware learning
or memory-augmented modules could improve robustness in detecting anomalies among nodes with
limited temporal history, such as abruptly emerging or sparsely connected nodes.
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(a) Snapshot

(b) P_batch_size

(c) Prior

Figure 5: Performances analysis of WAVEN-PULL with various hyperparameter settings: (a)
Snapshot, (b) P_batch_size, (c) Prior.

Table 5: Structural and Temporal Features of Selected False Positive Nodes

Node ID Total Edges Unique Neighbors Abnormal Neighbors Active Snapshots
644 145 17 5 1,2,3,4,5

2277 9 8 4 1,2,3,4,5
6127 30 11 7 1,2,3,4,5
7995 32 23 8 1,2,3,4,5

49 8 4 0 1
108 6 3 0 1
254 5 3 0 1

2696 2 1 0 2
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E.3 FEW SHOT EVALUATION

To evaluate the generalization ability of WAVEN-PULL under limited supervision in future time steps,
we design a few-shot evaluation protocol tailored to dynamic graph anomaly detection. Specifically,
we treat the final snapshot in the dynamic graph sequence as a proxy for future data, while the
preceding snapshots constitute historical observations. In our default experimental setup, 10% of
the nodes in the final snapshot are included in the training set, from which 100 anomalous nodes
are randomly labeled to simulate real-world settings where only a small number of anomalies are
observed.

To further assess the model’s capability in detecting anomalies under more challenging few-shot
conditions, we vary the visibility of future data in the training set. In particular, we evaluate four
scenarios where 10%, 5%, 1%, or 0% of the nodes from the final snapshot are included in training.
This simulates practical deployment settings where few or no future anomalies are observable at
training time. The model must therefore rely entirely on temporal patterns learned from historical
data to identify anomalies in previously unseen nodes.

Table 6: Few-shot anomaly detection performance under varying proportions of future data observed
during training.

% Seen Metric Wikipedia Reddit Bit-Alpha Bit-OTC

10%
AUC 0.9483 0.9789 0.8166 0.7353

Precision@50 0.3600 0.7600 0.3800 0.4400
Recall@50 0.1452 0.2550 0.7600 0.2136

5%
AUC 0.9479 0.9773 0.8142 0.7316

Precision@50 0.3000 0.7600 0.3600 0.4600
Recall@50 0.1163 0.2389 0.7200 0.2129

1%
AUC 0.9466 0.9785 0.7835 0.7596

Precision@50 0.2800 0.7800 0.3600 0.5600
Recall@50 0.1045 0.2393 0.6667 0.2545

0%
AUC 0.9440 0.9790 0.8261 0.7378

Precision@50 0.3000 0.7600 0.4000 0.5800
Recall@50 0.1111 0.2331 0.7407 0.2589

We report the results of few-shot evaluation in Table 6, where different proportions (10%, 5%, 1%, and
0%) of nodes from the final snapshot are included in training. Each setting is evaluated using AUC,
Precision@50, and Recall@50 across four datasets. Overall, the model maintains strong performance
even with minimal future supervision. On Wikipedia and Reddit, AUC remains consistently above
0.94, though Precision@50 and Recall@50 show modest declines as fewer nodes are seen during
training. Interestingly, on Bitcoin-Alpha and Bitcoin-OTC, the performance is robust and even
improves slightly in the 0% case, suggesting that the model can effectively generalize to unseen
future nodes based on historical representations. These results demonstrate that WAVEN-PULL is
capable of detecting anomalies in future snapshots with very limited or no future supervision.

F USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) to assist in polishing the manuscript. All content generated
with the help of LLMs was carefully reviewed, verified, and edited by the authors to ensure accuracy
and originality. We take full responsibility for all content in the paper, including any parts assisted by
LLMs.
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Table 7: Frequently-used symbols in this research

Symbol Meaning Symbol Meaning

G Sequence of dynamic graph
snapshots.

Lt Symmetric normalized
Laplacian.

Vt Node set at time t. Et Edge set at time t.
At Adjacency matrix at time t. Dt Degree matrix at time t.
Gt Graph snapshot at time t. Xt Node feature matrix at time t.
Hatt

t Temporal attention-based
representation.

Ht Final node representation at
time t.

Hsp
t Spatial node representation. fθ(·) Anomaly scoring network.

ŷ
(t)
i Predicted anomaly score for

node vi at t.
V L Labeled positive (anomalous)

nodes.
σ(·) Sigmoid activation function. V U Unlabeled nodes.
RP Risk over labeled positives. RU Risk over unlabeled nodes.
αU EMA momentum parameter. E[·] Expectation operator.
R(f) Risk for label distribution

alignment.
µ̂t Smoothed expectation of

unlabeled nodes.
πP Class prior probability of

anomalies.
Ltotal Overall training loss based on

PU risk

Algorithm 1 WAVEN-PULL Training Workflow

Require: Dynamic graph G = {G(1), G(2), . . . , G(T )}; class prior πP ; EMA momentum αU ;
labeled positives VL; unlabeled nodes VU

Ensure: Trained anomaly scoring network fθ
1: for each snapshot G(t) for t = 1 to T do
2: Hsp

t ← BETAWAVELETGNN(G(t))
3: Hatt

t ← TEMPORALATTENTION(G(t))
4: Fuse representations: Ht ← Hsp

t +Hatt
t

5: end for
6: Build training batches B from {H1, . . . ,HT−1} using VL and sampled VU

7: for each training epoch do
8: for each batch (XP ,XU ) ∈ B do
9: Predict scores: ŷP ← fθ(XP ), ŷU ← fθ(XU )

10: Compute labeled set risk: RP ← 1− E[ŷP ]
11: Estimate and smooth unlabeled mean: µ̂t ← αU · µ̂t−1 + (1− αU ) · E[ŷU ]
12: Compute unlabeled risk: RU ← |µ̂t − πP |
13: Total loss: Lt ← 2πP ·RP +RU

14: Update model parameters: θ ← θ − η · ∇θLt

15: end for
16: end for
17: return Trained scoring network fθ
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