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ABSTRACT

In data mining, and statistics, anomaly detection is the process of finding data
patterns (outcomes, values, or observations) that deviate from the rest of the other
observations or outcomes. Anomaly detection is heavily used in solving real-
world problems in many application domains like medicine, finance, cyberse-
curity, banking, networking, transportation, and military surveillance for enemy
activities, but not limited to only these fields. In this paper, we present an em-
pirical study on unsupervised anomaly detection techniques such as DBSCAN,
DBSCAN++ (with uniform initialization, k-center initialization, uniform with
approximate neighbor initialization, and k-center with approximate neighbor ini-
tialization), and k-means−− algorithms on six benchmark imbalanced datasets.
Findings from our in-depth empirical study show that k-means−− is more robust
than DBSCAN, and DBSCAN++, in terms of the different evaluation measures
(F1-score, False alarm rate, adjusted rand index, and Jaccard coefficient), and
running time. We also observe that DBSCAN performs very well on datasets with
fewer number of data points.

Keyword: Outliers, Noise points, ANN, k-means−−, DBSCAN, DBSCAN++.

1 INTRODUCTION

Anomaly detection is the process of finding data patterns (outcomes, values, or observations) that
deviate from the rest of the other observations or outcomes. Anomaly detection is heavily used
in solving real-world problems in many application domains like medicine, finance, cybersecurity,
banking, networking, transportation, and military surveillance for enemy activities, but not limited
to only these fields. These deviating outcomes or observations are refered to as anomalies (outliers,
deviants, discordant observations, exceptions, surprises or abnormalities) in different application
domains (Chandola et al. (2007)).
There have been many approaches to solve anomaly detection problems, with the most widely used
being the unsupervised algorithms because the techniques involve training the model with unlabeled
data.
Clustering is the process of grouping a set of observations or data points in to multiple groups so
that observations with a group or cluster have high similarity, but dissimilar to observations from
the other clusters. Clustering based techniques fall under a class of unsupervised anomaly detection
techniques, which operates on the output of the clustering algorithm thus turn out to be much faster
in general. The clustering based techniques can be grouped into the following categories: represen-
tative based techniques, density-based techniques and hierarchical based techniques.
Throughout the research community, a lot of work has been done to detect anomalies using cluster-
ing based based techniques, see the work of (Z.He & S.Deng. (2003)),(Li et al. (2020)), (Campello
et al. (2015)),(Hariri et al. (2018)),(Pu et al. (2021)), and (Chawla & Gionis (2013b)).
In this paper, we present what is (to the best of our knowledge) the first attempt of an empirical
study on anomaly detection using k-means−−, DBSCAN, and DBSCAN ++ using data sets from
different domains with varying proportions of outliers. The main aim of this paper is to find out
the effectiveness of representative based and density-based clustering algorithms in detecting out-
liers. Our goal is to find out how these methods perform on different data sets with regards to the
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following evaluation metrics: F1 Score, False alarm rate, Jaccard coefficient, and Adjusted rand
index including the run time of these algorithms on the data sets. Finally and most importantly, the
above mentioned techniques all have the tendency of finding noise points (anomalies or outliers) and
assigning labels to them as noise points.
Although the main goal is to evaluate the effectiveness of density-based clustering algorithms like
DBSCAN, DBSCAN ++ and representative-based clustering algorithm like k-means−− is the mo-
tivation of this paper, our approach can also provide guidance on how to evaluate and analyze these
clustering techniques in solving anomaly detection problems. Also, this method can be used to over-
come one of the main challenges of anomaly detection techniques, which is accurate representative
labels for normal and abnormal instances, which is a major concern. To overcome this challenge in
most anomaly detection problems, our approach can be used as a pre-labeling technique and then
apply supervised anomaly detection techniques to solve anomaly detection problems.
The remaining of this paper is organized as follows. In section 2, we briefly give a description of
the algorithms used in this paper. Section 3, analyses the empirical evaluation, where we review
data sets used, evaluation metrics description, variations in evaluation metrics, results and result
discussion. Section 4 covers the conclusion and future directions.

2 METHODS

This section presents the anomaly detection techniques used in this paper. These anomaly detection
techniques are: k-means−−, and two versions of Density-Based Spatial Clustering of Application
with Noise (DBSCAN and DBSCAN ++).

2.1 k-MEANS−−

k-means−− (Chawla & Gionis (2013a)) is a representative based clustering technique, which is an
extension of the k-means algorithm. The pseudo-code of the k-means−− is shown in algorithm
1. We implemented the k-means−− in python using the pseudo-code in algorithm 1, since the
implementation was not available in sklearn.

Figure 1: k-Means−− Pseudo-code

2



Under review as a conference paper at ICLR 2023

2.2 DENSITY-BASED SPATIAL CLUSTERING OF APPLICATIONS WITH NOISE (DBSCAN)

DBSCAN is a density-based clustering technique capable of finding arbitrarily shaped clusters. DB-
SCAN proceeds by computing the empirical densities for each sample point and then designating
points whose densities are above a threshold as core-points. Then, a neighborhood graph of the
core-points is constructed, and the clusters are assigned based on the connected components. The
pseudo-code of DBSCAN (Jiawei Han & Pei) is shown in algorithm 2. We used the sklearn imple-
mentation of DBSCAN in python, but this implementation is very slow with last data sets since its
uses the KDTree to build the nearest neighbor tree.

Figure 2: DBSCAN Pseudo-code

2.3 DBSCAN ++

DBSCAN ++ (Jang & Jiang (2019)) is an extension to the DBSCAN, which runs much faster,
efficient, and less sensitive to hyperparameter settings. We couldn’t find any python implementation
of the DBSCAN ++ available, so we used the pseudo-code provided (Jang & Jiang (2019)) by
using the KDTree scipy in the implementation. This implementation didn’t allow us to run it on
large data sets because of the limitation of the KDTree implementation. The pseudo-code is shown
in algorithm 3. There were two initialization methods mentioned in this paper.

Figure 3: DBSCAN++ Pseudo-code

1. Uniform initialization
2. k-center initialization

Uniform initialization was implemented by uniformly sampling m number of points from the given
data set. We only ran KDTree queries for m sampled data points, after running the queries we de-
veloped the core point set and then we created the neighbourhood tree by adding edges to points in
the radius of the core points.
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k-center initialization was more complicated than the Uniform initialization, we had to implement
part of the greedy k-center clustering algorithm for this initialization. As mentioned in the paper
(Jang & Jiang (2019)) k-center initialization should run faster than DBSCAN algorithm on the same
hyper-parameters, but this did not happen in our implementation, k-center initialization took consid-
erable amount of time even though the time complexity was O(mn). To improve the performance
of this initialization, we vectorized the computation and used a slightly better algorithm mentioned
in Geometric Approximation Algorithms (Har-Peled (2011)). We saw a massive improvement in
initialization time but still it took longer than DBSCAN algorithm. This happened because in both
DBSCAN and DBSCAN++ we had to build the KDTree which takes the same time if the input data
set is the same but in k-center initialization we had to run the initialization algorithm to pick the m
points. Although this m number of points are less than the total number of points, the speed up gain
from running m number of queries against running queries for all the points does not exceed the
time taken to run the k-center initialization. We suspect that if this was implemented in C++, there
might be a difference in result. Since the paper did not mention about any implementation details
we cannot be certain about this.

2.4 DBSCAN AND DBSCAN++ ON APPROXIMATE NEAREST NEIGHBOUR

Since we could not run DBSCAN or DBSCAN++ on large data sets we moved on to implementing
approximate nearest neighbour on DBSCAN and DBSCAN++ algorithm. We used a python library
Annoy ((Bernhardsson)) which wrapped a C++ implementation of approximate nearest neighbour
tree using python. We saw a massive speed up in creating the nearest neighbour tree after imple-
menting this. This library did not allow us to query the points given in a radius ball what it allowed
us to do was to get the approximate k-nearest neighbours, this posed a challenge for us because we
need to query the points given in a ε−radius ball. So what we did was to query 2∗minpts number
of points for each core point selection query and check if there are more than minpts number of
points that has less than eps distance to the queried point. This allowed us to reduce the uncertainty
of not picking all the points in the ε−radius ball. Since the minpts is a small value, going through
2 ∗minpts was not affecting the performance of the algorithm.

After completing the implementation of these algorithms we ran experiments on the given data sets.
Since we are interested in detecting anomalies, we plotted histograms of ground truth labels of each
data sets. Then we decided what class labels are normal instances and what class labels are noise
instances. Some of the data sets already had document explaining what class labels can be identified
as normal instances and what class labels are noise labels. Generally, if a class label had a less
frequency we picked them as noise labels. After running the algorithms we modified the ground
truth and cluster label arrays to only contain two class labels. 0 if a data point is a normal instance
and 1 if data point is a noise instance. We did this because we are only interested in detecting normal
and abnormal instances, we no longer care whether we have the right number of clusters as the result.
Then we ran different assessment metrics on both the ground truth and the labels obtained from these
algorithms. Explanation of these results are mentioned in the empirical evaluation section.

Also we did a small modification to DBSCAN algorithm hoping to solve the problem of detecting
small outlier clusters. What we did was we added a threshold parameter to the DBSCAN algorithm
where it will check the size of clusters before assigning the cluster label, if the size of cluster is
smaller than the given threshold, it was marked as a noise cluster. We only made this change to the
DBSCAN on an Approximate Nearest Neighbor (ANN) implementation and we tested this on the
shuttle data set. This has a very small change but we got extremely good results for Shuttle data set.
This part was done as an extension to what we already did. We could not test this algorithm for all
the data sets. It was only tested on the Shuttle data set because it contained small outlier clusters and
it was a large data set. We will explain the results in the discussion section.

3 EMPIRICAL EVALUATION

3.1 DATA SETS

We perform our experiments on six data sets from UCI machine learning repository (Dua & Graff
(2017)). The data sets description and distribution of the classes is shown on the figures and table
below:
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(a) Breast Cancer DataSet (b) Cardio DataSet

Figure 4: Breast cancer and Cardiotography data sets class distribution

(a) Pima DataSet (b) Wine DataSet

Figure 5: Pima and Wine data set class distribution

Figure 6: Glass DataSet Class distribution

Table 1: Data set description

Dataset #points #dim #outliers outlier percentage
pima 768 8 268 35%
cardio 1831 21 176 9.60%
wine 129 13 10 7.70%
glass 214 9 9 4.20%
breastw 683 9 239 35%
shuttle 43500 (36752) 9 2644 7.19%

We had to change the data sets proposed due to the fact that DBSCAN was unable to process large
data sets.
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3.2 EVALUATION METRICS

Four evaluation metrics were used to assess the validity of the results of this experiments.

1. False alarm rate
2. F-Score (weighted)
3. Jaccard coefficient
4. Adjusted rand Index

False alarm rate is the ratio of number of incorrectly labelled noise instances that were normal
instances in ground truth over total number of noise instances predicted.

The F- measure of a cluster is the harmonic mean of the precision and recall values of a cluster. We
took the weighted F-measure values of each cluster as the final F − score. ((Zaki & Meira, 2020))

Fi =
2

1
preci

+ 1
recalli

=
2 ∗ preci ∗ recalli
preci + recalli

F =

k∑
i=1

wi ∗ Fi

where wi is the weight of the cluster

The Jaccard Coefficient measures the fraction of true positive point pairs, but after ignoring the true
negatives. It is defined as follows: ((Zaki & Meira, 2020))

Jaccard =
TP

TP + FN + FP

Before we use these metrics, we converted the ground truth and cluster labels to two classes
containing normal and outlier classes. This helped us to focus more on noise prediction results
rather than looking at cluster predictions. The adjusted rand index assessment is included but was
not use in interpreting the result.

3.3 EMPIRICAL RESULTS PRESENTED IN THE FORM OF TABLES

Table 2: DBSCAN results on chosen data sets

DBSCAN results on the data sets
parameters Evaluation metrics

Data set min pts epsilon f1 score False alarm Adjusted Rand Index Jaccard
Pima 20 5 0.1805 0.651 0 0.349

Cardio
10 3 0.88 0.58 0.31 0.26
10 4 0.88 0.43 0.19 0.14
10 5 0.88 0.15 0.17 0.12

Wine

4 25 0.91 0.58 0.46 0.41
4 30 0.95 0.41 0.664 0.58
4 35 0.97 0.23 0.83 0.76
4 38 0.98 0.16 0.88 0.83
4 72 0.95 0.14 0.65 0.54

Glass

8 0.9 0.8736 0.8085 0.206 0.1915
8 1 0.8767 0.8043 0.213 0.1957
8 1.2 0.86 0.875 0.11 0.11
8 2 0.9 0.88 0.08 0.08
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BreastW

10 2.9 0.9508 0.119 0.8098 0.8745
10 4 0.9636 0.072 0.8579 0.9027
10 5 0.82 0.05 0.429 0.54
10 5.5 0.74 0.03 0.26 0.36
20 5 0.9225 0.0483 0.7143 0.7912

Table 3: DBSCAN++ k-center results on data sets

DBSCANPP kcenter
Data sets Parameters Evaluation Measures

min pts factor epsilon f1 score False alarm Adjusted Rand Index Jaccard

Pima
10 0.2 0.9 0.1805 0.651 0 0.349
10 0.35 2 0.6797 0.3396 0.1177 0.4136
20 0.2 5 0.1805 0.651 0 0.349

Cardio
10 0.5 5 0.8835 0.1538 0.1788 0.1222
10 0.5 4 0.88 0.42 0.2 0.15
10 0.5 3 0.88 0.59 0.3 0.27

Wine

4 0.3 25 0.84 0.72 0.25 0.27
4 0.3 30 0.9 0.6 0.43 0.4
4 0.3 35 0.92 0.54 0.51 0.45
4 0.3 38 0.97 0.28 0.78 0.71
4 0.3 72 0.95 0.14 0.65 0.54
10 2 1.5 0.0112 0.9225 0 0.0775

Glass

8 0.5 0.4 0.41 0.94 -0.04 0.05
8 0.5 0.9 0.87 0.8 0.2 0.19
8 0.5 1 0.87 0.8 0.21 0.19
8 0.5 1.2 0.86 0.87 0.11 0.11
8 0.5 2 0.8885 0.8485 0.1499 0.1351

BreastW

10 0.5 1.9 0.8812 0.2578 0.5723 0.7422
10 0.5 2.9 0.9509 0.1218 0.8098 0.875
10 0.5 4 0.96 0.07 0.85 0.89
10 0.5 5 0.82 0.05 0.42 0.54
10 0.5 5.5 0.74 0.03 0.26 0.36
20 1 4 0.9607 0.0794 0.847 0.8958
20 1 5 0.9634 0.0542 0.8576 0.9008

Table 4: k-means−− results on chosen data sets

k-means−− results on the data sets
Data sets Parameters Evaluation Measures

k l iteration epsilon f1 score False alarm Adjusted Rand Index Jaccard
Pima 2 268 10 0.2 0.7057 0.4216 0.1614 0.4068

Cardio
2 176 10 0.05 0.9312 0.358 0.5536 0.4728
2 176 20 0.05 0.9345 0.3409 0.5734 0.4915
3 176 20 0.05 0.9421 0.3011 0.6201 0.5371

Wine 2 10 10 0.2 0.9845 0.1 0.8753 0.8182
2 10 10 0.05 0.9845 0.1 0.8753 0.8182

Glass 2 9 10 0.05 0.9252 0.8889 0.0658 0.0588

BreastW

2 239 10 0.2 0.9444 0.0795 0.7879 0.8527
2 239 10 0.05 0.9239 0.1088 0.716 0.8038
2 239 10 0.35 0.9444 0.0795 0.7879 0.8527
3 239 10 0.05 0.9209 0.113 0.706 0.797
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Table 5: Result of Shuttle data set DBSCAN on ANN

DBSCAN on ANN on Shuttle Data set
parameters Evaluation metrics

Data set minpts eps factor f-score false alrm rate ARS jaccard score

Shuttle

10 4.5 1 0.88758301 0.775670841 0.146802475 0.130299252
10 4.8 1 0.89255751 0.757217848 0.149587292 0.126857143
10 5 1 0.89574317 0.740279938 0.150095945 0.123035363
10 5.3 1 0.90068313 0.695989651 0.162924769 0.126344086
10 5.5 1 0.90195679 0.679245283 0.162242457 0.123463687
10 5.8 1 0.90298582 0.659681475 0.158728371 0.118332848
10 6 1 0.90418584 0.628742515 0.156338474 0.11362248
10 6.8 1 0.90566123 0.566360053 0.153339959 0.107317073
10 7 1 0.90567793 0.550143266 0.149568631 0.103698811
10 9 1 0.90520426 0.504621072 0.135841986 0.091875214
10 10 1 0.90441125 0.507936508 0.126851763 0.085517241
10 28 1 0.89643437 0.655462185 0.041910848 0.029285714
10 28.5 1 0.89647958 0.65106383 0.042092565 0.029317125

Table 6: Result of shuttle data set on k-means−−

Dataset k outliers iterations f1 score FAR ARS JS time

Shuttle

1 2500 50 0.96890 0.08634 0.72703 0.62157 55
1 2644 50 0.97034 0.09082 0.74045 0.63810 45
1 2700 50 0.97089 0.09704 0.74599 0.64520 35
2 2500 50 0.97169 0.07394 0.75167 0.65113 149
2 2644 50 0.97226 0.08608 0.75763 0.65910 128
2 2700 50 0.96234 0.25512 0.68565 0.58323 56

Table 7: Result of shuttle data set on Modified DBSCAN on ANN

Modified DBSCAN on ANN on shuttle data set
Dataset minpts eps factor threshold f1 score FAR ARS JS #noise pts

Shuttle

10 4.5 1 0.2 0.61831 0.87032 -0.00768 0.12968 27136
10 4.8 1 0.2 0.93744 0.50524 0.56876 0.49476 9603
10 5 1 0.2 0.96127 0.37524 0.70772 0.62476 8210
10 5.3 1 0.2 0.96998 0.31289 0.76610 0.68711 7797
10 5.5 1 0.2 0.97280 0.29058 0.78586 0.70942 7660
10 5.8 1 0.2 0.97900 0.23716 0.83098 0.76284 7392
10 6 1 0.2 0.98369 0.19243 0.86654 0.80757 6875
10 6.8 1 0.2 0.98868 0.14016 0.90574 0.85984 6648
10 7 1 0.2 0.98988 0.12682 0.91537 0.87318 6584
10 9 1 0.2 0.99274 0.09359 0.93872 0.90641 6444
10 10 1 0.2 0.99313 0.08834 0.94191 0.91103 6414
10 28 1 0.2 0.89643 0.65546 0.04191 0.02929 263
10 28.5 1 0.2 0.89648 0.65106 0.04209 0.02932 260

3.4 DISCUSSION OF RESULTS

The factor parameter in DBSCAN++ is the number of point that were quarried by the algorithm.
l and k parameter in the k-means−− results indicates the outlier parameter and cluster number
parameter. FAR means False Alarm Rate, ARS means Adjusted Rand Score and JS means Jaccard
Score

We will describe the the result of each data set separately and will make conclusions based on the
entire results. For each data set, we tried different parameters, we included a range of parame-
ters and their results in the empirical result tables. The density-based algorithms (DBSCAN and
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DBSCAN++) did not perform well on the Pima data set. We only included the parameter and best
possible result for the Pima data set. In most cases it either recognized all the points as normal
instances or outliers. We believe this was as a result of the high percentage of outliers in the Pima
data set, that is 35% as shown in Table 1. We could not find the balance between the minpoints and
epsilon values that can distinguish the clusters and the noise points. This is because this data set
has different densities points at different levels. When we ran k-means−− on Pima data set we got
slightly better results (Table 4), we had a smaller false alarm rate value of 0.4216 compared to 0.651
that we got from DBSCAN algorithm. In the case of DBSCAN or DBSCAN++ tests more than half
of the detected noise points are false positive values indicating that Pima data set does not consist
of a density-based cluster structure. Low F -score of 0.185 in both DBSCAN and DBSCAN++
tests indicates that quality of instances detected as normal and outlier cluster are low. Jaccard co-
efficient of 0.349 indicates that False negatives and False positive value pairs are high compared to
true positive pairs. When we look at the k-means−− results of Pima data set we have better Jac-
card coefficient and f1 score 0.4068 and 0.7057 4. Even though k-means−− results are better than
DBSCAN and DBSCAN++ results, the results are not accurate enough. Then what we did was to
use statistical methods such as dimensionality reduction (PCA) on the Pima data set before using
the above mentioned algorithms, which resulted in better results. We first normalize the data and
then applied PCA on the Pima data set and picked best 7 components from the result then we ran
DBSCAN and DBSCAN++ algorithms on the data set. For the results refer the Table 12. We had to
increase the min points parameters to 270− 290 range to get better results. This is because the data
set only contains one major cluster and all the other points are considered outliers. There are 268
outliers in the data set, thus we had to bring the minpoints to 270 range to exclude outliers from
the result. This resulted in better outputs. We could achieve false alarm rate of 0.45 at eps = 0.35
with minpts = 270 and F -score of 0.69 on DBSCAN algorithm. We could achieve similar results
for DBSCAN++ on both initializations at 0.5 factor values. Then we ran the k-means−− on the
data set (dimensional reduced), we got better results compared to DBSCAN results. Refer the Table
11. It shows at k = 1 and l = 268 we get the lowest false alarm rate of 0.45 and highest F1-score
of 0.68 for this data set. However on both algorithms there are considerable amount of false positive
noise predictions. And the Jaccard coefficients of both algorithms for this data set is low as well,
which indicates that there are false negative pairs in the result. Slightly higher F-scores indicates
that quality of the clustering is much better.

The second data set we experimented on was the Cardio data set, which also performed well on
k-means−− algorithm. This data set contains about 9.60% outliers. On DBSCAN, Cardio data set
gives about 0.8 − 0.9 F-score. which means that the quality of clusters is high. Note that we used
weighted F-score. False alarm rate of both DBSCAN and DBSCAN++ algorithms were around
0.15 which means the False positive noise points are low in the predicted labels. Jaccard coefficient
results of DBSCAN algorithm was not ideal, which was 0.12 where DBSCAN++ gave around
0.15. This happened because of high false negative value pairs. We know that we have low number
of FP because of lower false alarm rate, then we can conclude that we have low Jaccard coefficient
is because of False negative pairs, which means DBSCAN could not identify when two points are
in different groups in the data set. Note than DBSCAN++ also have higher F-score and low false
alarm rate just like DBSCAN. Since we took the weighted F-score and there are higher number of
normal instances in the Cardio data set, we can conclude that normal point prediction accuracy is
high. We can conclude that true positives of predicting normal instances as normal instances is high
with this result. k-means−− result of the Cardio data set has best F-score of 0.94 and 0.30 false
alarm rate (lowest of k-means−− tests for cardio data set) and Jaccard coefficient of 0.5 (Table 4).
F-score and Jaccard coefficients are better than the density-based results, although we had higher
false alarm rate than the density level results, which indicates that out of the noise points predicted
there were high number of false positives. However Jaccard coefficient was high for this test which
indicates that False negatives pairs are low in the k-means−− result. Because of high F-score values
we can say quality of two clusters are high, thus true positive numbers should be high as well, then
higher Jaccard coefficient should have come from the low false negative pairs. This indicates that
k-means−− was good at identifying pairs of points that are in different clusters but it was not good
at identifying some normal instances as normal instances.

Our third data set was the Wine data set. Both density-based and representative based algorithms
performed well on this data set. DBSCAN and DBSCAN++ algorithms gave best F-scores around
0.98 and best false alarm rates around 0.14 and best Jaccard coefficients of 0.83 (Table 2, Table 3
and Table 8). Note that best Jaccard coefficient came from uniform initialization of DBSCAN++.
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Best value for the DBSCAN++ k-center was 0.71. k-means−− algorithm gave the best results for
this data set in terms of all the assessment metrics. F-score of 0.98, false alarm rate of 0.14 and
Jaccard coefficient of 0.81 (Table 4).

Our fourth data set was Glass data set. On both types of the algorithms (representative-based and
the density-based), they were able to identify the noise instances as noise instances but there were
lot of false positives. Both algorithms types gave more than 0.8 F-score which means the quality of
the clustering is good, but both types of algorithms had very high false alarm rates, which means
algorithms classified normal instances as noise instances. Both result types had low Jaccard coef-
ficients as well, which occurred due to high false positives and false negatives. This occurred due
to classifying pairs of normal instances in two different clusters. This shows that both algorithms
could not identify the anomalies correctly.

Fifth data set is the BreastW data set, which has around 35% of outliers. Both types of algorithms
performed very well on this data set. Both had very low false alarm rates and high F-scores, and
Jaccard coefficients which indicates that algorithms were able to predict the anomalies accurately.
BreastW data set has a Gaussian based and density-based cluster structure which helped the algo-
rithms to identify the cluster structures more accurately.

However we could not run our DBSCAN or DBSCAN++ implementations on large data sets be-
cause of the KDTree limitations. Thus, we used a approximate nearest neighbour library to query
the nearest neighbours. We tested this on Shuttle data set which has 43500 data points. There are 7
ground truth class labels in the data set. Class label 1 has the highest frequency, all the other classes
has lower frequencies compared the class 1. We removed data with class label 4 and considered all
other classes except class 1 as outliers. The important thing about this data set is that its outliers
are in small clusters. For example, class 2, 3, 5, 6, 7 are outlier classes. If those outlier classes
has different densities, such as lower densities, density-based algorithms cannot detect those out-
liers by tweaking the minpoint and epsilon parameters. Please refer Table 5 With eps = 9, we
had the lowest false alarm rate and then it increases. This is because outliers form small clusters
and density-based algorithms cannot find it by tweaking the parameters due to breaking of cluster
structure. Out of DBSCAN and DBSCAN++ algorithms, DBSCAN on ANN performed well, this
is because we are only querying a part of data points to find the core-points. Thus, some core-points
that are identified in the DBSCAN are no longer identified as a core point, thus we would get a
higher false positive noise points, that is why we get high false alarm rate for the uniform and k-
center initialization (Refer Tables 9 and 10). We also ran this on k-means−− algorithm and it gave
us excellent results on this data set. Not only it took less time but the resultant clusters were of
higher quality. In Table 6, we have very low false alarm rates and high F-score. We even changed
the input k value to the algorithm and checked the results, even if we input a higher cluster value,
we still get the correct numbers of outliers, with favorable results. We even changed the range of
outlier numbers input to the parameter, algorithm seems to be robust even if we increase or decrease
the number of outliers slightly.

Next we modified the DBSCAN on ANN algorithm as mentioned in 2.4 then we ran the algorithm
on Shuttle data set. We got extremely good results. Refer Table 7. We changed the threshold to 0.2
because Shuttle data set only have 1 class and it takes about 80% of the data. We ran the experiments
on a wide range of eps values from 4.5 to 28.5. The results we obtained was amazing. We got best
F-score of 0.99 and False alarm rate of 0.88 and Jaccard score of 0.91. This accuracy is better than
the k-means results. Best thing about this is that we only need to know the percentage of outliers in
the data set. We do not need the number of clusters in the data to get a better result. However, we
ran this on normalized and dimensionality reduced Pima data set hoping to see better results, but
we did not obtain better results, they were very close to DBSCAN results. Thus, we did not include
the results in this report.

One of the interesting observation that was identified in the results is that k-center initialization of
DBSCAN takes more time to run than the normal DBSCAN instance on the same parameters, even
for a small factor value. This contradicts with the results shown in ((Jang & Jiang, 2019)) where
they showed that k-center initialization runs faster than normal DBSCAN. However, we did not
see this in our results. It seems that speed up gained from running fewer KDTree queries does not
compensate the time that it takes to initialize k-center points. We also implemented a slightly better
k-center initialization algorithm mentioned in the ((Har-Peled, 2011)) and improved the calculations
by vectorizing. Still, time taken to run the DBSCAN++ on k-center is higher than DBSCAN on
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same parameters. However DBSCAN++ on uniform initialization ran faster than all the other
algorithms.

4 CONCLUSIONS AND FUTURE DIRECTIONS

From the result obtained from these experiments, we can conclude that k-means−− is a more robust
algorithm than DBSCAN or DBSCAN++ algorithms in terms of time and performance, specially
when data sets have small outlier clusters with different densities, density-based algorithms struggles
to find the outliers, specially if the small outlier clusters have higher densities than the normal clus-
ters, it becomes extremely difficult to tweak the DBSCAN hyper-parameters. k-means−− algorithm
seem to be more robust in this case, however we need to know the number of clusters and outlier per-
centage beforehand to get better results. Nonetheless, k-means−− has shown to be robust to slight
changes in input parameters. Refer Tables 11 and 6. The modification of DBSCAN algorithm with
approximate nearest neighbour implementation worked very well in terms of time. We could also
improve the k-center initialization a little bit more by paralleling the k-center initialization which
can be a good future direction in terms of improving the running time. Although, k-means−− is
robust, we can create synthetic data sets that would not work very well on k-means−− by adding
non-Gaussian shaped clusters and adding noise points. The problem with density-based algorithms
to find noise points is that, it is hard for the density-based algorithms to identify small outlier clusters,
but we can change this by modifying the DBSCAN algorithm. We need to add another parameter
that will act as a threshold for determining a small outlier cluster. let’s call it t. At the end of the
DBSCAN algorithm when we go through the connected components we need to check the number
of nodes in these connected components, if the fraction of number of nodes in these connected com-
ponents is less than this threshold, we can identify these nodes as a outlier cluster. By making this
modification we can overcome this weakness in density-based algorithms. We already made this
change and tested on a data set with oultlier clusters which resulted in extremely good results. How-
ever, we could not run this modified algorithm on all the data sets because of time limitations, we
believe testing this modified algorithm will be a good future direction. The weakness of k-means−−
is that we need to have an understanding about the cluster structure to get accurate result, but we
believe by doing this change to DBSCAN we could have a robust algorithm than the k-means−−.
Another proposed change will be to run in polynomial time given that we only have to go through
the connected components to find the size of it, if we improve this graph data structure we should be
able to this in constant time. These are some good future directions that we can use. We still believe
density-based algorithm should be more powerful than representative based methods but we need to
make some modifications to these algorithms to make it better.And also we should find how these
algorithms can perform against unsupervised learning (Like Isolation Forest) (Fei Tony Liu & Zhou.
(2000)) and semi-supervised learning (One-Class Support Vector) (M.Manevitz & Yousef.) based
outlier detection methods as well. Also we should look at how k-nearest neighbour based methods
perform against these algorithms. Another future work area would be to find how we can use time
series data on density-based algorithm to find the outliers.
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A APPENDIX

Table 8: DBSCAN++ uniform results on the data sets

DBSCAN++ Uniform
Data sets Parameters Evaluation Measures

min pts factor epsilon f1 score False alarm Adjusted Rand Index Jaccard

Pima
10 0.2 0.9 0.1805 0.651 0 0.349
10 0.35 2 0.6797 0.3396 0.1177 0.4136
20 0.2 5 0.1805 0.651 0 0.349

Cardio
10 0.5 3 0.88 0.6 0.3 0.27
10 0.5 4 0.88 0.46 0.2 0.15
10 0.5 5 0.88 0.17 0.18 0.12

Wine

4 0.3 25 0.78 0.78 0.14 0.21
4 0.3 30 0.9 0.6 0.43 0.4
4 0.3 35 0.89 0.61 0.41 0.38
4 0.3 38 0.97 0.23 0.83 0.76
4 0.3 72 0.98 0.16 0.88 0.83

Glass

8 0.5 0.4 0.55 0.93 -0.02 0.06
8 0.5 0.9 0.83 0.85 0.13 0.15
8 0.5 1.2 0.87 0.8 0.21 0.19
8 0.5 2 0.86 0.87 0.11 0.11

BreastW

10 0.5 2.9 0.94 0.12 0.79 0.84
10 0.5 4 0.96 0.07 0.84 0.89
10 0.5 5 0.84 0.06 0.49 0.6
10 0.5 5.5 0.77 0.05 0.33 0.44
20 1 4 0.9607 0.0794 0.847 0.8958
20 1 5 0.9634 0.0542 0.8576 0.9008
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Table 9: Result of Shuttle data set on DBSCAN++ on ANN with uniform initialization

DBSCAN++ on ANN uniform initialization
Data set minpts eps factor f-score FAR ARS JS #noise recnzd

Shuttle

10 4.5 0.1 0.7798 0.87893 0.05142 0.10694 13234
10 4.8 0.1 0.7947 0.87076 0.06308 0.11277 12169
10 5 0.1 0.7961 0.87803 0.05530 0.10488 11582
10 5.3 0.1 0.8028 0.88439 0.04908 0.09699 10638
10 5.5 0.1 0.8134 0.86978 0.06712 0.10918 10154
10 5.8 0.1 0.8186 0.87152 0.06558 0.10584 9673
10 6 0.1 0.8188 0.87662 0.05956 0.10065 9395
10 6.8 0.1 0.8180 0.89827 0.03413 0.08005 8597
10 7 0.1 0.8261 0.87291 0.06435 0.10194 8553
10 9 0.1 0.8272 0.89449 0.03868 0.08094 7713
10 10 0.1 0.8285 0.90223 0.02960 0.07354 7398
10 28 0.1 0.8226 0.92128 0.00768 0.05852 7255
10 28.5 0.1 0.8203 0.92319 0.00551 0.05739 7575

Table 10: Result of Shuttle data set on DBSCAN++ on ANN with KCENTER initialization

DBSCAN++ on ANN kcenter initialization
Data set minpts eps factor f-score FAR RS JS #noise pts rcgzd

Shuttle

10 4.5 0.1 0.63363 0.92146 0.00109 0.07327 20717
10 4.8 0.1 0.66854 0.92519 0.00127 0.06839 18291
10 5 0.1 0.68213 0.93147 -0.00188 0.06170 16989
10 5.3 0.1 0.70901 0.93335 -0.00383 0.05880 14934
10 5.5 0.1 0.72200 0.93444 -0.00510 0.05716 13929
10 5.8 0.1 0.73162 0.93805 -0.00852 0.05329 13025
10 6 0.1 0.73937 0.94119 -0.01173 0.04999 12320
10 6.8 0.1 0.75174 0.95081 -0.02170 0.04069 11051
10 7 0.1 0.75317 0.95335 -0.02429 0.03839 10832
10 9 0.1 0.75998 0.96095 -0.03254 0.03151 10029
10 10 0.1 0.76010 0.96276 -0.03435 0.02998 9941
10 28 0.1 0.75842 0.98063 -0.05189 0.01525 9609
10 28.5 0.1 0.75853 0.98061 -0.05190 0.01526 9603

Table 11: Result of Pima data set on k-means−−, after running PCA and selecting 7 components

Pima on pca with 7 components on k-means−−
Dataset k lterations l (outliers) f1 score FAR ARS JS type

Pima

1 50 250 0.6559 0.4880 0.0899 0.3282 k-means−−
1 50 268 0.6823 0.4552 0.1247 0.3744 k-means−−
1 50 275 0.6923 0.4436 0.1393 0.3923 k-means−−
2 50 250 0.6743 0.4600 0.1147 0.3525 k-means−−
2 50 268 0.6979 0.4328 0.1487 0.3958 k-means−−
2 50 275 0.6534 0.4982 0.0851 0.3407 k-means−−
3 50 250 0.7163 0.3960 0.1815 0.4114 k-means−−
3 50 268 0.6823 0.4552 0.1247 0.3744 k-means−−
3 50 275 0.6689 0.4764 0.1053 0.3609 k-means−−
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Table 12: Result of DBSCAN and DBSCAN++ algorithms on pima data set after running PCA
with 7 components

Pima on pca with 7 components
Data set minpts eps factor f-score FAR RS JS Type

Pima

270 0.5 1 0.5377 0.5806 0.0068 0.0455 DBSCAN
270 0.4 1 0.6566 0.4425 0.1001 0.2812 DBSCAN
270 0.35 1 0.6901 0.4554 0.1342 0.4064 DBSCAN
270 0.3 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
270 0.2 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
270 0.1 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
280 0.5 1 0.5430 0.5455 0.0110 0.0524 DBSCAN
280 0.4 1 0.6617 0.4350 0.1066 0.2899 DBSCAN
280 0.35 1 0.6973 0.4532 0.1441 0.4330 DBSCAN
280 0.3 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
280 0.2 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
280 0.1 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
290 0.5 1 0.5456 0.5294 0.0131 0.0559 DBSCAN
290 0.4 1 0.6684 0.4301 0.1145 0.3046 DBSCAN
290 0.35 1 0.6821 0.4767 0.1207 0.4469 DBSCAN
290 0.3 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
290 0.2 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
290 0.1 1 0.1805 0.6510 0.0000 0.3490 DBSCAN
270 0.5 0.5 0.5433 0.5676 0.0095 0.0554 Initialization.UNIFORM
270 0.4 0.5 0.6613 0.4513 0.1030 0.3006 Initialization.UNIFORM
270 0.35 0.5 0.6937 0.4540 0.1391 0.4185 Initialization.UNIFORM
270 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
270 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
270 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
280 0.5 0.5 0.5692 0.4348 0.0323 0.0903 Initialization.UNIFORM
280 0.4 0.5 0.6692 0.4439 0.1126 0.3175 Initialization.UNIFORM
280 0.35 0.5 0.6859 0.4724 0.1262 0.4487 Initialization.UNIFORM
280 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
280 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
280 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
290 0.5 0.5 0.5451 0.5641 0.0104 0.0586 Initialization.UNIFORM
290 0.4 0.5 0.6770 0.4242 0.1250 0.3239 Initialization.UNIFORM
290 0.35 0.5 0.6833 0.4755 0.1226 0.4491 Initialization.UNIFORM
290 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
290 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
290 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.UNIFORM
270 0.5 0.5 0.5458 0.5526 0.0116 0.0588 Initialization.KCENTRE
270 0.4 0.5 0.6613 0.4513 0.1030 0.3006 Initialization.KCENTRE
270 0.35 0.5 0.6821 0.4762 0.1207 0.4420 Initialization.KCENTRE
270 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
270 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
270 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
280 0.5 0.5 0.5468 0.5610 0.0113 0.0619 Initialization.KCENTRE
280 0.4 0.5 0.6618 0.4518 0.1034 0.3025 Initialization.KCENTRE
280 0.35 0.5 0.6183 0.5280 0.0469 0.4359 Initialization.KCENTRE
280 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
280 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
280 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
290 0.5 0.5 0.5468 0.5610 0.0113 0.0619 Initialization.KCENTRE
290 0.4 0.5 0.6612 0.4550 0.1021 0.3036 Initialization.KCENTRE
290 0.35 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
290 0.3 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
290 0.2 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
290 0.1 0.5 0.1805 0.6510 0.0000 0.3490 Initialization.KCENTRE
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