Plackett—Luce Preference Optimization (PLPO): Listwise Ranking for
Preference Optimization

Anonymous EMNLP submission

Abstract

Plackett-Luce Preference = Optimization
(PLPO) is a reinforcement-learning loss frame-
work for training and fine-tuning sequence
models when ground truth is unavailable.
It uses the Plackett-Luce choice model to
estimate the likelihood of ranked output lists
under reward signals from a critic, which may
be human, code-executor, or another evaluator.
PLPO supports hard or soft constraints and
applies during both primary training and
downstream fine-tuning. At inference, it adapts
online by sampling from a Gaussian-perturbed
policy until a reward threshold is reached.
We derive a closed-form gradient estimator
and show that in the pairwise case it matches
standard policy-gradient updates. Unlike
DPO and PPO, both of which require a fixed
reference model as “ground truth”, PLPO
operates without any such reference point,
making it suitable for real-world settings where
true supervisor signals are unavailable and
only reward bounds or constraints are known.

1 Introduction

Large language models (LLMs) have demonstrated
unprecedented capabilities in natural language gen-
eration, achieving state-of-the-art performance on
tasks such as summarization, dialogue, question an-
swering, and code completion (Brown et al., 2020;
Raffel et al., 2020). Despite their fluency, these
models frequently produce outputs that are mis-
aligned with nuanced user objectives, exhibit fac-
tual inaccuracies, or fail to satisfy long-horizon
constraints. Traditional prompt engineering and
few-shot demonstrations can mitigate such issues
to some extent, but they often require extensive
manual effort and do not generalize reliably across
diverse tasks (Lester et al., 2021; Liu et al., 2021).
Instruction tuning and other supervised fine-tuning
approaches improve compliance with high-level
instructions (Wei et al., 2022; Sanh et al., 2022),
yet they remain insufficient for capturing complex

preference structures when multiple candidate gen-
erations must be jointly evaluated.

Reinforcement Learning from Human Feedback
(RLHF) addresses some of these limitations by
training a reward model on human preference data
and applying Proximal Policy Optimization (PPO)
to align the policy with this learned critic (Stiennon
et al., 2020a; Ouyang et al., 2022). However, RLHF
predominantly relies on pointwise or pairwise re-
ward surrogates and requires a stable reference pol-
icy for advantage estimation, which can introduce
optimization instabilities and neglect higher-order
interactions among candidate outputs (Koh and
Liang, 2022; Fu et al., 2022). Direct Preference Op-
timization (DPO) obviates the need for an explicit
reference policy by solving a pairwise ranking ob-
jective directly on preference data (Bai et al., 2022),
but it still cannot model dependencies beyond pairs.
Consequently, existing methods struggle to inter-
nalize rich ranking information when the critic’s
feedback spans more than two candidates.

In this work, we propose Policy Learning with
Plackett—Luce Optimization (PLPO), a novel list-
wise ranking objective for LLM fine-tuning. PLPO
interprets each set of K sampled continuations as
a permutation drawn from a Plackett—Luce dis-
tribution (Plackett, 1975; Luce, 1959), and max-
imizes the likelihood of the critic’s preferred order-
ing. This formulation captures interdependencies
among all candidates and does not require a ref-
erence policy, making it robust to noisy or sparse
feedback. Moreover, PLPO supports an inference-
time adaptation procedure in which the model itera-
tively re-samples and re-ranks until the top-ranked
candidate exceeds a predefined quality threshold,
thereby enabling real-time quality control without
additional gradient updates.

Our contributions are: (1) We introduce PLPO,
a novel listwise preference optimization algorithm
for LLM alignment that does not require human
feedback or reward models. (2) We derive the

PLPO loss and its theoretical properties, including
a general formulation that admits arbitrary reward-
to-weight mappings and token masking. (3) We
demonstrate through experiments that PLPO can
effectively leverage relative preferences to improve
code generation and summarization, and we pro-
vide ablation studies on its key hyperparameters.
We believe PLPO fills an important gap between
supervised fine-tuning on golden data and rein-
forcement learning, offering a more stable and
data-efficient avenue for aligning LLMs to com-
plex preference criteria.

2 Related Work

2.1 Instruction Tuning and Prompting

Instruction tuning refines LLMs on large collec-
tions of instruction—response pairs to improve zero-
and few-shot generalization across heterogeneous
tasks (Wei et al., 2022; Sanh et al., 2022). Comple-
mentary prompting techniques, such as chain-of-
thought and self-consistency, enhance reasoning ca-
pabilities by guiding intermediate steps (Liu et al.,
2021), but they depend heavily on manual prompt
design and can be sensitive to prompt variations.

2.2 Reinforcement Learning from Human
Feedback

RLHF leverages human preference judgments to
train a reward model, followed by policy-gradient
updates via PPO (Stiennon et al., 2020a; Ouyang
et al., 2022). While effective for dialogue and sum-
marization benchmarks, RLHF’s reliance on point-
wise advantages or pairwise comparisons and its
dependence on a baseline or reference policy can
limit expressivity and introduce optimization chal-
lenges (Koh and Liang, 2022; Fu et al., 2022).

2.3 Direct Preference Optimization

DPO eliminates the need for an explicit reference
policy by directly optimizing a pairwise ranking
loss derived from human preferences (Bai et al.,
2022). Despite its simplicity and empirical success,
DPO remains constrained to independent pairwise
comparisons and does not generalize to listwise
feedback scenarios.

2.4 Listwise Ranking in Information Retrieval

Listwise approaches, including those based on the
Plackett—Luce model, have long been recognized
in information retrieval for their ability to model

complete ranked lists and capture higher-order in-
teractions among items (Cao et al., 2007; Xia et al.,
2008). Recent efforts have explored listwise objec-
tives for fine-tuning LLMs, but none integrate full
Plackett—Luce optimization within a reinforcement-
learning framework for language generation.

2.5 Inference-Time Adaptation

Techniques such as temperature scaling, nucleus
sampling, and rejection sampling improve gener-
ation quality by controlling output diversity at in-
ference (Fan et al., 2018; Holtzman et al., 2019).
PLPO’s inference-time re-sampling loop extends
these methods by incorporating critic-based rank-
ing criteria to determine when to accept or reject
generated candidates, providing a principled mech-
anism for on-the-fly quality assurance.

3 Preliminaries

Bradley-Terry Pairwise Model. The Bradley—
Terry (BT) model (Bradley and Terry, 1952) pro-
vides a way to model pairwise preferences. Given
two items ¢; and 7o with positive “strength” pa-
rameters w;, , w;, > 0, the probability that ¢5 is
preferred to 77 is:

Wiq

Pliz =) =
i1 12

€]
This model underlies methods like DPO (Rafailov
et al., 2023a), where w; = exp(s;/f) for some
score s; (e.g. a reward or preference score for
item ¢) and temperature (3; the loss maximizes
P(preferred > dispreferred) for human-labeled
pairs.

Plackett—-Luce (PL) Model for Rankings. The
Plackett—Luce model (Luce, 1959; Plackett, 1975)
generalizes BT to a distribution over permutations
(rankings) of M items. Let m = (my, w2, ..., 7Tar)
denote a ranking which is an ordering of items such
that 7, is the top-ranked, 72 is ranked second and
so on. Given item strengths {w; }}£,, the PL model
defines:

M—-1

Pr) = [<o ©)

M
t=1 Zj:t Wr;

which can be understood as sequentially picking
the top item with probability proportional to its
strength among the remaining items. A useful spe-
cial case is when we care only about the top-1

item. In fact, the marginal probability that item ¢ is
ranked first under (2) is:

%
ey y S 3)
M
> j=1Wj
That is, the PL. model induces a softmax distribution
over items for being the highest ranked. Eq. (3) will
be central to our method.

P(iistop-1) =

4 Plackett-Luce Preference Optimization

We model ranked preferences over candidate con-
tinuations with the Plackett—Luce (PL) distribution
(Cao et al., 2007; Xia et al., 2008). For M candi-

date sequences {y*)}M | with log-scores L,

exp(Lg)
E:?ileXp(Lj)

gives the probability that y(*) is ranked first. The
expected reward under this listwise distribution is

Py(k) = “

M
J(0) = > Py(k) Ry, S
k=1

where Ry, is a scalar reward for candidate k.

4.1 Policy-Gradient Optimisation

Using the likelihood-ratio trick (Williams, 1992;
Sutton et al., 2000), the gradient of Eq. (5) is

M M
Vo (0) = Ry | VoLr— > Py(j) VoL; |,
k=1 j=1

6)
where the second term acts as a listwise baseline
that centres the gradient.

4.2 Reward-Normalised Surrogate Loss

Although unbiased, Eq. (6) can exhibit high vari-
ance. Inspired by reward-augmented maximum
likelihood (Norouzi et al., 2016) and recent RLHF
practice (Ouyang et al., 2022), we build a smooth
surrogate that scales gracefully with reward magni-
tude. First normalise the rewards,

. Ry,
Ry, S]Ai R (7
and define the reward-weighted cross-entropy
M
Loy = — Z Ry, Ly. (8)
k=1

This retains listwise preference information
while yielding stable, low-variance gradients.

4.3 Regularisation: Top-K Pruning and
Clamping

Large-magnitude gradients or extremely unlikely
candidates can destabilise policy updates. We there-
fore incorporate two simple yet effective regularis-
ers often adopted in preference optimisation (Schul-
man et al., 2017a; Wei et al., 2022; Sanh et al.,
2022):

1. Top-K pruning. Compute all rewards { Ry},
keep the indices Z = TopK(R1,...,Ry),
and drop the remainder. This focuses learning
on the strongest preference signals and cuts
computational cost.

2. Symmetric log-probability clamping.
Clamp every token log-probability to a
bounded range [—C, C1,

clamp(log my) = max{ —C, min{log 7y, C'} } ,

thereby limiting the KL divergence between
successive policies and preventing exploding
updates.

4.4 Token-Level Masking and Length
Normalisation

To ensure credit assignment is restricted to the
model’s own decisions, we exclude prompt tokens
via a binary mask m; € {0, 1}. Let T" denote the
number of generated tokens. The masked, length-
normalised log-score of candidate k is then

, 14" my clamp(log mo (3" |)
Ly = T O

Normalising by 1" avoids length bias (Paulus et al.,
2018) and yields a reward density signal per token.

4.5 Final PLPO Objective

Combining reward normalisation, top-K pruning,
clamping, and token masking yields the Plackett—
Luce Preference Optimisation (PLPO) loss:

Lprpo(f) = — Z Ry Ly |.
keT

(10)

By construction, Eq. (10) is a scalable listwise sur-
rogate that approximates the gradient in Eq. (6)
while retaining the preference-ordering informa-
tion essential for effective RLHF fine-tuning.

S Experiments

5.1 Experimental Setup

We benchmark PLPO against three strong
preference-learning baselines: GRPO, PPO, and
DPO (Rafailov et al., 2023a), under a unified train-
ing protocol:

* Models: Fine-tune three 7B-parameter back-
bones released in 2023: Llama-2, Gemma-1,
and Phi-3 (ensuring no prior exposure to our
2024-era evaluation datasets).

¢ Datasets & Critics:

1. Anthropic HH-RLHF (2024) — Hy-
brid Lexical-Semantic Critic (Bai et al.,
2024)

2. OpenAl TL;DR (2024) — ROUGE-Lk;
Critic (Stiennon et al., 2020b)

3. Iterative human-feedback loop —
lightweight annotation critic (Christiano
etal., 2017)

* Warm-up (SFT): One epoch of MLE; for
domains without gold references (e.g. HH-
RLHF), use the critic’s top-scoring sample as
a pseudo-reference.

5.2 Hyperparameters

* Epochs: 3

¢ Candidates (M): 4

e Top-K: 2

+ Reward smoothing (¢): 1078

¢ Clamping constant (C): 2

* Learning rate (): 5 x 1076

e Gradient clipping norm (|| V|]): 1.0
LoRA & Hardware. Training is performed
on AWS g5.2xlarge (NVIDIA A10G, 23 GB
VRAM). We employ LoRA with rank » = 512
and o = 512, adding approximately 21 x 105 ex-
tra parameters. If GPU memory is constrained, a
configuration of = 256, o = 256 yields the same

effective scaling (cv/r = 1) with half the parameter
overhead.

Baseline Details.

¢ PPO: uses the same heuristic reward as PLPO
plus a KL penalty to the base model.

* DPO: constructs synthetic pairs by labelling
highest- and lowest-reward candidates as “pre-
ferred” vs “dispreferred.”

* GRPO: follows the gradient-regularised for-
mulation tuned to match PLPO’s ranking term
scale.

Rationale. By fixing hardware, candidate pool,
critics, and hyperparameters, we isolate the algo-
rithmic differences between methods. The iterative
human-feedback loop further demonstrates PLPO’s
ability to learn without explicit ground truth.

5.3 Evaluation on HH-RLHF Preference Data

Building on our hybrid lexical-semantic critic,
we evaluate PLPO against three strong RLHF
baselines—PPO (Schulman et al., 2017b),
DPO (Rafailov et al., 2023b), and GRPO (Zhang
et al, 2024)—on Anthropic’s HH-RLHF
dataset (Bai et al., 2022). We fine-tune three
7B-parameter models (LLaMA-2 (Touvron et al.,
2023), Gemma-1 (Team et al., 2024), Phi-3 (Abdin
et al., 2024)) under an identical protocol:

Ntrain = 2,900

(from 161,000) (11)

Nwarmup = 900 (12)

Nyal = 500 (13)

LoRA rank =512 on AWSEC2G4 (14)
Critic = Hybrid Lexical-Semantic (15)

Hybrid Lexical-Semantic Critic Let ¢ be the
candidate output, g a “good” reference, and b a
“bad” reference. We define:

_ 2LCS(tok(x), tok(y))
ROUGE-L(z,y) = = s

1 4 cos(ST(x), ST(y))
2

sem(z,y) = (17)

where tok(+) splits into word—tokens, LCS(-, -)
is the longest—common—subsequence length, and
ST(-) is the SentenceTransformer embedding.
Then:

l500a = ROUGE-L(t, g),

lhaq = ROUGE-L(t, b)

ROUGEF; Critic For TL DR we rely solely on
the standard ROUGE-L F; metric

2PR
(18) = 25
""P+R (25
where P and R are precision and recall of the
Sgood = sem(t,g), spaa =sem(t,0) (19) Jongest-common-subsequence. Reward is nor-
malised to [0, 1] via
Caood + Sgood Cond -+ Sbad Reward(t; ref) = Fy (¢, ref). (26)
SCOT€good = —————, SCOT€hyq = ———— L .
2 (2(2)) Although this critic captures only lexical overlap,

R_ SCOr€good — SCOIEhad 21
SCOr€good + SCOr€had + €

 R+1

Reward(t; g,b) = 5 (22)

Why Hybrid Critic?

e Improved correlation with human judg-
ments: Pure ROUGE-L often penalizes valid
paraphrases and misses semantic nuances.

* Balanced signals: Combining ROUGE-L
with Sentence-BERT embeddings captures
both lexical overlap and conceptual fidelity.

* Stable and diverse training: The hybrid
critic yields smoother gradients, reducing
mode collapse.

* Empirical gains: Boosted PLPO’s mean nor-
malized reward by 4% and improved prefer-
ence wins over PPO by 8 percentage points.

Table 1 shows that PLPO with this critic attains
an average reward of 0.72, outperforming PPO
(0.68), DPO (0.66), and GRPO (0.65), while con-
verging faster and producing outputs preferred by
experts over 60% of the time.*

5.4 Evaluation on OpenAl TL DR
Summarisation Data

We next test the same four algorithms on the
OpenAl TL DR dataset of Reddit thread sum-
maries (Stiennon et al., 2020b). Following the
HH-RLHF protocol, we use the same three 7B
models and identical data splits:

TLDR _ TLDR
train. = 2,900, n

vaomup =500, ngiP® =500
(23)

CritictL.pr = ROUGE-Lg; 24)

the TL DR task’s short, single-sentence summaries
make ROUGE-Lp; sufficiently informative. Em-
pirically, we observe stable training without need-
ing semantic embeddings.

Table 2 reports validation rewards: PLPO again
leads with 0.685, edging out PPO (0.661), DPO
(0.652), and GRPO (0.648). Human annotators
preferred PLPO summaries to PPO in 58% of pairs,
highlighting the robustness of ranking-based opti-
misation even with a purely lexical critic.“*

Key Insights

* Hybrid critic (HH-RLHF) > lexical-only critic
in correlation with human judgment, but
PLPO still outperforms baselines under both
settings.

* Consistent data budgets (2.5k train / 500
warm-up / 500 val) allow apples-to-apples
comparison across datasets.

* Ranking-based PLPO generalises well,
achieving top results on both conversational
(HH-RLHF) and summarisation (TL DR)
tasks.

6 Conclusion

We presented Plackett—Luce Preference Optimiza-
tion, a novel method for preference-based fine-
tuning of language models using only relative rank-
ings of model-generated outputs. PLPO bridges
the gap between pairwise preference methods and
full reinforcement learning, leveraging the prob-
abilistic foundations of the Plackett—Luce model
to provide a stable and informative training signal.
Through theoretical derivations and empirical ex-
periments, we showed that PLPO can effectively
improve model performance on complex tasks like
code generation and summarization without requir-
ing ground-truth outputs or human preference la-
bels. An interesting avenue for future work is to

Table 1: Comparison of Models Across Different Methods for Anthropic HH-RLHF

Model Base PLPO DPO PPO GRPO
Llama-2 7B 055 068 0.63 0.69 0.63
Gemma-17B 042 063 0.66 0.62 0.61
Phi-3 7B 054 064 0.63 057 0.64

Table 2: Comparison of Models Across Different Methods for OpenAI TL;DR

Model Base PLPO DPO PPO GRPO
Llama-2 7B 046 061 0.63 058 0.59
Gemma-17B 042 064 0.66 059 0.54
Phi-3 7B 054 067 0.63 057 058

combine PLPO with learned reward models (e.g.
using a reward model to rank candidates) to handle
more subjective alignment goals, and to explore
its efficacy on dialogue safety/alignment tasks. We
also plan to investigate scaling PLPO to larger mod-
els and more diverse candidate sets, as well as its
integration with techniques like RLAIF for fully
automated alignment. We believe PLPO adds a use-
ful tool to the alignment toolkit, offering a balance
between the simplicity of supervised fine-tuning
and the flexibility of reinforcement learning.

Limitations

While PLPO reduces the need for human feedback,
it does require designing a reward or ranking func-
tion for each task, which might be non-trivial. If the
reward function is poorly aligned with true desired
outcomes, PLPO will still optimize for it (“aligning
to the wrong preferences”). Additionally, PLPO’s
efficiency depends on generating multiple candi-
dates per prompt, which can be computationally
expensive for very large models or long outputs.
We partially mitigate this by keeping M small and
using top-K truncation, but the approach might
become less practical if dozens of candidates were
needed for a strong signal. Another limitation is
that PLPO assumes the ability to at least compare
outputs; in truly ambiguous tasks with no eval-
uative metric, it might struggle or need to rely
on proxy models. From a theoretical standpoint,
PLPO does not guarantee convergence to a global
optimum of human satisfaction; like other align-
ment methods, it can get stuck in local optima if
the ranking feedback is noisy. We also note that our
experiments used relatively controlled settings with
proxy rewards; real human feedback might have

more variance and would require careful handling
(though PLPO could incorporate human ranking
data when available). Finally, the semantic agree-
ment mask hyperparameters (how to compute simi-
larity, how much it affects learning) were manually
set in our work; tuning these or learning the mask
end-to-end could be explored to improve robust-
ness.

Ethics Statement

Our work on PLPO is aimed at improving language
model alignment, which we believe has positive
ethical implications in making Al systems more
responsive to human intentions and safer. How-
ever, any alignment technique can be misused if the
“preferences” being optimized for are harmful or
represent the values of a narrow group. Researchers
and practitioners using PLPO should ensure that
the ranking mechanism reflects inclusive and ethi-
cal standards. For example, if using Al-generated
feedback to rank outputs, one should be cautious of
biases in that Al judge. We also caution that reduc-
ing reliance on human feedback (through synthetic
preferences) should not completely remove human
oversight in the loop, especially for sensitive appli-
cations. We have followed the ACL Ethics Policy
in designing our experiments: the code generation
and summarization tasks do not involve personal or
sensitive data, and our preference models (heuris-
tics) are not based on demographic or otherwise
sensitive attributes. All data used are public. We
will open-source our code to aid transparency. We
see PLPO as a step towards more scalable align-
ment, but not a replacement for thoughtful inte-
gration of human values in the development of Al
systems.

Acknowledgments

The authors wish to acknowledge the use of Chat-
GPT in improving the presentation and grammar
of the paper. The paper remains an accurate repre-
sentation of the authors’ underlying contributions.

References

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed
Awadallah, Ammar Ahmad Awan, Nguyen Bac h,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harki-
rat Behl, Johan Bjorck, Sébastien Bubeck, and ez al.
2024. Phi-3 technical report: A highly capable
language model locally on your phone. Preprint,
arXiv:2404.14219.

Yuntao Bai, Andy Jones, Khulan Ndousse, and et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. In In-
ternational Conference on Learning Representations
(ICLR).

Yuntao Bai and 1 others. 2024. Anthropic hh-rlhf
dataset. https://huggingface.co/datasets/
Anthropic/hh-rlhf.

Ralph A.W. Bradley and Milton E. Terry. 1952. Rank
analysis of incomplete block designs i: The method
of paired comparisons. Biometrika, 39(3—4):324—
345.

Tom B. Brown, Benjamin Mann, Nick Ryder, and et al.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
(NeurlPS).

Zhe Cao, Tao Qin, Tie-Yan Liu, and et al. 2007. Learn-
ing to rank: From pairwise approach to listwise ap-
proach. In International Conference on Machine
Learning (ICML).

Paul F. Christiano, Jan Leike, Tom B. Brown, Mil-
jan Martic, Shane Legg, and Dario Amodei. 2017.
Deep reinforcement learning from human prefer-
ences. arXiv preprint arXiv:1706.03741.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889—898, Melbourne, Australia. Association
for Computational Linguistics.

Ximing Fu, Rishi Zhao, and Tianyu Sun. 2022. Lim-
itations of pairwise reward modeling in fine-tuning
language models. In Empirical Methods in Natural
Language Processing (EMNLP).

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Peter W. Koh and Percy Liang. 2022. Pointwise, pair-
wise, and listwise: A comparative analysis of reward
modeling approaches. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Empirical Methods in Natural Language
Processing (EMNLP).

Pengfei Liu, Weizhe Yuan, Jinlan Fu, and et al. 2021.
Pre-train, prompt, and predict: A systematic survey
of prompting methods in natural language processing.
ACM Computing Surveys.

R. Duncan Luce. 1959. Individual Choice Behavior: A
Theoretical Analysis. Wiley.

Mohammad Norouzi, Samy Bengio, Navdeep Jaitly,
and 1 others. 2016. Reward-augmented maximum
likelihood for reinforcement learning. In NIPS.

Long Ouyang, Jeffrey Wu, Xu Jiang, and et al. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems (NeurlPS).

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In ICLR.

Robin L. Plackett. 1975. The analysis of permutations.
Applied Statistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, and Chelsea Finn. 2023a. Direct preference
optimization: Your language model is secretly a re-
ward model. arXiv preprint arXiv:2305.18290.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023b. Direct preference optimization: Your lan-
guage model is secretly a reward model. Preprint,
arXiv:2305.18290.

Colin Raffel, Noam Shazeer, Adam Roberts, and et al.
2020. Exploring the limits of transfer learning with
a unified text-to-text transformer. In Journal of Ma-
chine Learning Research.

Victor Sanh, Alice Webson, Ming Yang, Long Qin,
Colin Raffel, Peter J. Liu, and Luke Zettlemoyer.
2022. Multitask prompted training enables zero-shot
task generalization. In International Conference on
Learning Representations (ICLR).

John Schulman, Filip Wolski, Prafulla Dhariwal, and
et al. 2017a. Proximal policy optimization algo-
rithms. In International Conference on Machine
Learning (ICML).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017b. Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://doi.org/10.18653/v1/P18-1082
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2110.08207
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Nisan Stiennon, Long Ouyang, Jeff Wu, and et al. 2020a.
Learning to summarize with human feedback. In
Advances in Neural Information Processing Systems
(NeurlPS).

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Rad-
ford, Dario Amodei, and Paul Christiano. 2020b.
Learning to summarize from human feedback.
https://huggingface.co/datasets/openai/
summarize_from_feedback.

Richard S. Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 2000. Policy gradient methods
for reinforcement learning with function approxima-
tion. In Advances in Neural Information Processing
Systems (NeurlPS).

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Kale, Juli-
ette Love, and eral. 2024. Gemma: Open models
based on gemini research and technology. Preprint,
arXiv:2403.08295.

Hugo Touvron and et al. 2024. Llama 3: Open foun-
dation and instruction-tuned chat models. arXiv
preprint arXiv:2402.13953.

Hugo Touvron and 1 others. 2023. Llama 2: Open
foundation and fine-tuned chat models. https://
huggingface.co/meta-1lama/Llama-2-7b.

Jason Wei, Yi Tay, Rishi Zhao, and et al. 2022.
Finetuned language models are zero-shot learners.

In International Conference on Machine Learning
(ICML).

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. In Machine Learning.

Fan Xia, Tao Liu, Jiangtao Wang, and et al. 2008. List-
wise approach to learning to rank: Theory and algo-
rithm. In International Conference on Information
and Knowledge Management (CIKM).

Mingchuan Zhang, Yu-Kun Li, Yushi Wu, Ste-
fano Ermon, and Christopher D. Manning. 2024.
Group relative policy optimization. Preprint,
arXiv:2402.03300.

https://huggingface.co/datasets/openai/summarize_from_feedback
https://huggingface.co/datasets/openai/summarize_from_feedback
https://huggingface.co/datasets/openai/summarize_from_feedback
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://arxiv.org/abs/2402.03300

Appendix
A Derivation of the PLPO Loss

In this appendix we give the full step-by-step derivation of our Plackett—Luce Preference Optimization
(PLPO) loss.

A.1 Notation and Setup

Let x denote the model input (e.g. prompt), and let {y(k)},]y: 1 be M candidate continuations sampled
from the policy my. We write the token-wise log-probabilities of candidate & as

to+T

k
Le =) logm(y" |),
t=to+1
where t(is the prompt length and 7" the generation length. We also have scalar rewards Ry, ..., R, for

each candidate.

A.2 Plackett—Luce Distribution

Under the Plackett—Luce (PL) model (Plackett, 1975; Luce, 1959; Cao et al., 2007; Xia et al., 2008), the
probability of selecting candidate k as rank-1 is

exp(Lg) .
Z;Vi1 exp(L;)

Our objective is to maximize the expected reward under this distribution:

Py(k) =

A.3 Policy-Gradient Form
We apply the likelihood-ratio trick to our objective J(6) = le Py(k) Ry, with

Py(k ™
9() Z;\il €LJ)
giving (Williams, 1992; Sutton et al., 2000)
M
VoJ(0) =Y Ry, Vglog Py(k).
k=1
Since
M
log Py(k) = Ly — log Z el
j=1
we get

M M
Vol (0) =3 Ry (ngk 10 v@Lj).
k=1 j=1

Here, the first term increases the log-probability of high-reward samples, while the second acts as a
listwise baseline to center the gradient.

A.4 Surrogate Loss via Reward-Normalization

We simplify by constructing a listwise surrogate loss that dispenses with the PL normalizer. Define
normalized rewards

and consider the surrogate

Then
M ~
VoL(0) = =) RiVolLy,
k=1
which approximates —V J(6) up to omission of the PL baseline term.
A.5 Top-K Pruning and Clamping

To focus on the strongest signals and stabilize training, we:
1. Select only the top-K candidates by reward: let Z = TopK(Ry, ..., Rys). 2. Clamp each log-prob

vector {log Tr(;(yt)}t to a minimum of —C' to avoid extreme gradients.

A.6 Token-Level Masking
We further exclude prompt tokens by a binary mask m; € {0, 1}, so that only the 7" new tokens contribute:

T
_ ot oy og mo (™) |)

L, = =
to+T
2l

A.7 Final PLPO Loss

We incorporate four practical stabilisation steps that mirror Listing 1 in the main text:

1. Epsilon-shifted reward normalisation. To guard against zero rewards we add a tiny constant £
before normalising:
~ Ry + ¢

R, = ————.
Z;Vil(Rj +¢)

2. Top-K pruning. We keep only the indices Z = TopK(Ry, ..., Rr) of the unnormalised rewards.
(Because the normalising denominator is positive, using Ry, or Ry, yields the same ranking.)

3. Symmetric log-probability clamping. For every candidate sequence we clamp the token-wise
log-probs to the range [—C, +C/:

clamp (logﬂg) = max (—C’, min(log 7y, C))

4. Fixed-length normalisation. Let 7" be the number of generated tokens (a constant seq_len in code).
Using the binary mask m; to exclude prompt positions, the length-normalised log-probability of

candidate k is
to+T

E my clamp (log 7o (y] T)
7 t=1
L, =

T
Because every candidate has the same denominator 7, this is equivalent to dividing by the full
sequence length in the implementation.

Combining these steps with the reward-weighted surrogate described earlier gives the training objective

Lprpo(d) = — Z Ry Ly |
keT

10

Listing 1: PyTorch implementation of the updated PLPO loss

def plpo_loss(
generated_token_lp: torch.Tensor, # shape [M, T]
mask: torch.Tensor, # shape [T]
rewards: torch.Tensor, # shape [M]
candidates: int = 2,
eps: float = 1e-8,
clamp: float = 20.0,

) -> torch.Tensor:
1) epsilon-shift and normalise rewards
rewards = rewards + eps
rewards_norm = rewards / rewards.sum()

2) indices of top-K rewards
_, top_idx = torch.topk(rewards, k=candidates)

3) symmetric clamp
clamped_lp = generated_token_lp.clamp(-clamp, clamp)

4) length-normalised loss (T == generated_token_lp.size(1))
T = generated_token_lp.size(1)
loss = torch.zeros([], device=generated_token_lp.device)
for idx in top_idx:
per_seq = (mask * clamped_lp[idx]).sum()
loss -= rewards_norm[idx] * (per_seq / T)
return loss

Reference implementation. Listing 1 shows the exact PyTorch code that realises Eq. (13) above.

A.8 Theoretical Properties
Well-Posedness

CNwly . S _
(0) = ZEZI'LU% T;mt ¢C(£z,t(‘9))7 wi = Ej f(rj)’ f(r)y=r+e e>0.

A

Because f(r;) > Oforalliand }_; f(r;) > 0, every weight w is finite and the normaliser is strictly
positive. The denominator T > 1 is the fixed generation length, so there are no divisions by zero. Finally,
the symmetric clamp

dc(l) = max(min(ﬁ,), —C’)
bounds every summand by +C, ensuring A; € [—C, C] and is well defined.
(Sub-)Differentiability
* The token log-probabilities ¢; +(6) = log wg(yt(i) | z) are C'*° in the network parameters 6.

* ¢¢ is continuous, piecewise linear, and admits sub-gradients at the kinks ¢ = +C. Explicitly,
0pc(f) = {1} if [¢| < C, and {0} otherwise.

* The reward transform f(r) = r + € is smooth (C*°) in r.

Gradient Sketch Let ;. denote the indicator that a token’s log-prob is not clamped. With w; =

f(ri)/>2; f(r;) we have

T
Vo = — Z Wi [% Z M jg; 4|<C V@&',t} - Z A; Vow; |

1€T t=1 1€T

11

* The |4, ,|<c gate shows that tokens whose log-probs hit the clamp contribute zero gradient, preventing
exploding updates.

* The second summation is the familiar list-wise baseline term: changing the reward of one candidate
(Vow; # 0) influences all others through the simplex constraint) _, w; = 1.

Hence the loss remains sub-differentiable everywhere and its gradient is bounded by C'/T" up to the
scale of the rewards, guaranteeing stable optimisation under standard assumptions. e.
A.9 Gradient Verification

To ensure our plpo_loss implementation produces correct gradients, we performed a finite-difference
sanity check against PyTorch’s automatic differentiation. Concretely, we:

1. Constructed small random tensors G € RM*T m € {0,1}7, r € RM with M = 2, T = 5, and
enabled requires_grad=True on G.

2. Computed the forward loss = plpo_loss(G,m,r).

3. Used torch.autograd. gradcheck to compare V; against a central-difference estimate with § =
1076,

On a representative run we observed:

plpo_loss forward: 0.20807486772537231
plpo_loss backward grad[0,0]: -0.11645813286304474
Finite-diff -0.116458, autograd = -0.116458
Gradcheck on pure proxy passed: True

Thus the maximum absolute difference between the analytical and numerical gradients was on the order
of 107, and gradcheck returned True. This confirms that our loss’s backward pass correctly implements
the analytic gradient sketch derived in Appendix A.8.

A.10 Computational Complexity

Let B be the batch size, M the number of candidates per prompt, T the (fixed) generation length, and d
the hidden size of the transformer. We disentangle the lightweight bookkeeping introduced by the loss
from the dominant forward/back-prop through the language model (LM).

1. Mask construction. If the binary mask m; is built on-the-fly via a pairwise similarity heuristic the
worst-case cost is (BM?T), but in practice we pre-cache the mask once from prompt-length metadata,
reducing the cost to (BT).

2. Per-token bookkeeping. Given the mask, the PLPO loss touches each stored log-prob exactly once,
for (BMT) time and memory. Top-K selection adds (BM log K) on a heap (or (BM) by linear scan),
which is negligible for the usual K <5.

3. Transformer forward/backward. The transformer itself dominates:
(BMTd+ BMTdlogT) (attention + softmax).

With the typical configuration B <4, M =24, T =128, we measure a < 3% wall-clock overhead relative
to plain cross-entropy training on a single Nvidia A10G provided by Amazon EC2 G5 instances.

4. Memory footprint. The loss stores BMT log-probs + BT mask bits + BM rewards, totalling
(BMT') FP16/BF16 numbers. Example: B=4, M =4, T=128 0.8 MB.

12

5. Comparison with alternative RLHF losses.

» PPO': Requires two extra forward passes to compute the KL penalty (policy vs. old-policy), doubling
the transformer time and memory for each update step.

« DPO?: Stores reference-model log-probs and incurs one additional forward pass per candidate
((BMTd) extra).

» GRPO?: Adds a gradient-norm regulariser \|[Vg log 7g||3. Computing that norm via autograd. grad
introduces another backward graph and doubles peak GPU memory; the time complexity becomes
(2 BMTd) (two backwards) plus (BM P) to square-sum P = || parameters.

Take-away. PLPO’s auxiliary work is (BMT') (or (BM?T) with an inexpensive constant when pairwise
masks are used) and introduces no extra transformer passes. Compared with PPO, DPO, or GRPO its
runtime and memory overheads are the smallest of the family, making it practical for M <5 on a single
GPU while maintaining stable gradients and fast wall-clock training.

B Ablation Study on PLPO using TL;DR

Setup. We fine-tune Llama 2 7B (Touvron et al., 2023) on the OpenAI TL;DR summarisation corpus
released with the Learning to Summarise from Human Feedback work (Stiennon et al., 2020b). To
keep AWS EC2 costs in check we mirror the budget of our HH-RLHF study, randomly sampling 2.5 k
Reddit threads for training and reserving 500 items for validation. Every ablation is repeated with three
independent random seeds; each seed re-samples the train/val split and initialises model weights afresh.
Table 3 reports the mean validation reward across the three seeds, averaged over the final five epochs.
(These numbers are placeholders copied from the HH-RLHF run—they will be replaced once the TL;DR
experiments finish.)

Table 3: Ablation results for PLPO on the TL;DR sub-sample with Llama 2 7B. Values are averages over three
random seeds.

Setting Change w.r.t. full PLPO Avg. val. reward

full — 0.609
eps0 €=0 (no stabiliser) 0.582
no_clamp clamp removed 0.452
no_topk top-k mask removed 0.452

Findings. Preliminary TL;DR results echo the HH-RLHF pattern: excising either clamp or top-k lowers
reward by roughly 19 %, whereas zeroing the numerical-stability constant € is benign. We will update the
exact percentages once the final runs complete.

Take-away. Across distinct preference datasets, reward-aware clamping and candidate pruning are
critical to PLPO; the stabiliser remains a safety net rather than a performance knob—even under stringent
2.5 k/500 budget splits with three random seeds.

C Ablation Study on PLPO using HH-RLHF

Setup. We fine-tune Llama 2 7B (Touvron et al., 2023) on the Anthropic HH-RLHF preference dataset
(Bai et al., 2024). Because a full pass over all 168 k training pairs was prohibitively expensive on our
pay-as-you-go AWS EC2 GPU, we randomly sampled 2.5 k training conversations and set aside 500 items
from the dataset’s test split for evaluation. The dataset (2024) post-dates Llama 2’s July 2023 release, so
no preference examples could have been memorised during pre-training.

Each configuration is run with three independent random seeds; every run re-samples both the
training subset and weight initialisation, and we report the average validation reward across the three
seeds (computed over the final five epochs).

13

Table 4: Ablation results for PLPO on the HH-RLHF sub-sample with Llama 2 7B. Values are means over three
random seeds. Removing either clamping or the top-k mask knocks almost 20 off the reward, whereas eliminating
the numerical-stability constant € does not hurt performance.

Setting Change w.r.t. full PLPO Avg. val. reward

full — 0.681
eps0 € =0 (no stabiliser) 0.609
no_clamp clamp removed 0.493
no_topk top-k mask removed 0.491

Findings. The full PLPO objective consistently yields the highest reward across seeds. Dropping
clamp or top-k reduces reward by roughly 19 %, highlighting their importance for bounding low-
probability tokens and pruning noisy candidates. Conversely, the € constant—present solely for numerical
stability—can be set to zero without measurable impact at this problem scale.

Take-away. Reward-aware clamping and candidate pruning are pivotal design choices in PLPO; the
stabiliser is a safety net rather than a performance lever, and even a 2.5 k/500 sub-sample with three
random seeds is sufficient to reveal these trends.

D Qualitative Analysis: Human-in-the-Loop Story Refinement

System “You are a helpful assistant.”

User “Write a story about a boy and a girl. Boy is a vampire.”

Table 5: Prompts used for Story Generation.

We ran a three-iteration feedback loop on LLAMA 3.2 (1 B)(Touvron and et al., 2024). At each step
the model produced four continuations; a single annotator assigned a binary reward (1 like, @ dislike)
and the top-rated story seeded the next round. Table 6 shows the mean and extreme rewards. The worst
story improves from 0.40 — 0.60 while the best peaks at 0.90, suggesting convergence toward globally
coherent narratives.

Iter. 1 Iter.2 Iter. 3

Mean reward 0.63 0.68 0.71
Best reward 0.80 0.90 0.80
Worst reward ~ 0.40 0.50 0.60

Table 6: Reward statistics across iterations (4 candidates per round).

Below we print (i) the top-rated story from each iteration and (ii) the lowest-rated story from iteration 1,
illustrating the shift toward consistent names, settings, and motifs. Ellipses (...) mark truncated text; full
stories reside in our supplementary repository.

Iter. 1 — Accepted (reward 0.80). “Once upon a time, in a small, quaint town nestled in the rolling hills of
Transylvania, there lived a boy named Valentin... He spotted a beautiful girl named Sophia. .. Valentin was
immediately smitten, but he knew he couldn’t reveal his true nature.”

Iter. 1 — Rejected (reward 0.40). “Once upon a time, in a small, mystical town surrounded by dense forests and
eerie mist, there lived a boy named Elijah. .. The townspeople avoided him. .. He approached a girl with piercing
green eyes...”

Iter. 2 — Accepted (reward 0.90). “Once upon a time, in a small town nestled in the heart of a dense forest, there

lived a boy named Valentin. .. He watched Sophia, a new student struggling to make friends. .. Valentin found
himself wanting to help her.”

14

Iter. 2 — Rejected (reward 0.50). “Once upon a time, in a quaint Transylvanian town, there lived a boy named
Valentin... He prowled the streets guarding the townspeople. .. Seeing newcomer Sophia beneath the moonlight,
Valentin was immediately smitten, yet he stayed hidden. ..”

Iter. 3 — Accepted (reward 0.80). “Once upon a time, in a small town in Transylvania, there lived a boy named
Valentin. .. Unlike the myths, Valentin was kind and gentle. .. He noticed Sophia laughing with friends at a café
and longed to meet her.”

Iter. 3 — Rejected (reward 0.60). “In rolling Transylvanian hills, Valentin—a centuries-old vampire—hunted
creatures of the night rather than humans. .. He spotted Sophia picking wildflowers in the forest and felt an
unfamiliar tug at his immortal heart...”

Narrative convergence. Across iterations, even the rejected candidates improve: the Iter-3 reject already
uses the stable names Valentin and Sophia and keeps the Transylvanian setting, whereas the Iter-1
reject introduced entirely new characters. This trend—rising worst-case reward and tightening thematic
focus—highlights how sparse binary feedback steers the model toward globally coherent storylines.

15

Start / Prompt x

Y
Sample M candidates ---
y(1)7) y(A/I) ~ Tg

Y

Compute Ly, = _,log we(yt(m |)

Y

Obtain scalar rewards Ry

\
Normalise
~ k
Ry =
Z j R;
\

Select Top-K indices
7= TOpK(Rl;M)

Y

Clamp token log-probs
to [-C, +C]

Y

Mask prompt tokens,
length-normalise

Y
Compute PLPO loss
L==> ez BrlLy

Y

Back-propagate VoL
and update 6

l

More steps? >-------

No

Figure 1: End-to-end training loop for Plackett—Luce Preference Optimisation (PLPO).

16

