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Abstract

Plackett–Luce Preference Optimization001
(PLPO) is a reinforcement-learning loss frame-002
work for training and fine-tuning sequence003
models when ground truth is unavailable.004
It uses the Plackett–Luce choice model to005
estimate the likelihood of ranked output lists006
under reward signals from a critic, which may007
be human, code-executor, or another evaluator.008
PLPO supports hard or soft constraints and009
applies during both primary training and010
downstream fine-tuning. At inference, it adapts011
online by sampling from a Gaussian-perturbed012
policy until a reward threshold is reached.013
We derive a closed-form gradient estimator014
and show that in the pairwise case it matches015
standard policy-gradient updates. Unlike016
DPO and PPO, both of which require a fixed017
reference model as “ground truth”, PLPO018
operates without any such reference point,019
making it suitable for real-world settings where020
true supervisor signals are unavailable and021
only reward bounds or constraints are known.022

1 Introduction023

Large language models (LLMs) have demonstrated024

unprecedented capabilities in natural language gen-025

eration, achieving state-of-the-art performance on026

tasks such as summarization, dialogue, question an-027

swering, and code completion (Brown et al., 2020;028

Raffel et al., 2020). Despite their fluency, these029

models frequently produce outputs that are mis-030

aligned with nuanced user objectives, exhibit fac-031

tual inaccuracies, or fail to satisfy long-horizon032

constraints. Traditional prompt engineering and033

few-shot demonstrations can mitigate such issues034

to some extent, but they often require extensive035

manual effort and do not generalize reliably across036

diverse tasks (Lester et al., 2021; Liu et al., 2021).037

Instruction tuning and other supervised fine-tuning038

approaches improve compliance with high-level039

instructions (Wei et al., 2022; Sanh et al., 2022),040

yet they remain insufficient for capturing complex041

preference structures when multiple candidate gen- 042

erations must be jointly evaluated. 043

Reinforcement Learning from Human Feedback 044

(RLHF) addresses some of these limitations by 045

training a reward model on human preference data 046

and applying Proximal Policy Optimization (PPO) 047

to align the policy with this learned critic (Stiennon 048

et al., 2020a; Ouyang et al., 2022). However, RLHF 049

predominantly relies on pointwise or pairwise re- 050

ward surrogates and requires a stable reference pol- 051

icy for advantage estimation, which can introduce 052

optimization instabilities and neglect higher-order 053

interactions among candidate outputs (Koh and 054

Liang, 2022; Fu et al., 2022). Direct Preference Op- 055

timization (DPO) obviates the need for an explicit 056

reference policy by solving a pairwise ranking ob- 057

jective directly on preference data (Bai et al., 2022), 058

but it still cannot model dependencies beyond pairs. 059

Consequently, existing methods struggle to inter- 060

nalize rich ranking information when the critic’s 061

feedback spans more than two candidates. 062

In this work, we propose Policy Learning with 063

Plackett–Luce Optimization (PLPO), a novel list- 064

wise ranking objective for LLM fine-tuning. PLPO 065

interprets each set of K sampled continuations as 066

a permutation drawn from a Plackett–Luce dis- 067

tribution (Plackett, 1975; Luce, 1959), and max- 068

imizes the likelihood of the critic’s preferred order- 069

ing. This formulation captures interdependencies 070

among all candidates and does not require a ref- 071

erence policy, making it robust to noisy or sparse 072

feedback. Moreover, PLPO supports an inference- 073

time adaptation procedure in which the model itera- 074

tively re-samples and re-ranks until the top-ranked 075

candidate exceeds a predefined quality threshold, 076

thereby enabling real-time quality control without 077

additional gradient updates. 078

Our contributions are: (1) We introduce PLPO, 079

a novel listwise preference optimization algorithm 080

for LLM alignment that does not require human 081

feedback or reward models. (2) We derive the 082
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PLPO loss and its theoretical properties, including083

a general formulation that admits arbitrary reward-084

to-weight mappings and token masking. (3) We085

demonstrate through experiments that PLPO can086

effectively leverage relative preferences to improve087

code generation and summarization, and we pro-088

vide ablation studies on its key hyperparameters.089

We believe PLPO fills an important gap between090

supervised fine-tuning on golden data and rein-091

forcement learning, offering a more stable and092

data-efficient avenue for aligning LLMs to com-093

plex preference criteria.094

2 Related Work095

2.1 Instruction Tuning and Prompting096

Instruction tuning refines LLMs on large collec-097

tions of instruction–response pairs to improve zero-098

and few-shot generalization across heterogeneous099

tasks (Wei et al., 2022; Sanh et al., 2022). Comple-100

mentary prompting techniques, such as chain-of-101

thought and self-consistency, enhance reasoning ca-102

pabilities by guiding intermediate steps (Liu et al.,103

2021), but they depend heavily on manual prompt104

design and can be sensitive to prompt variations.105

2.2 Reinforcement Learning from Human106

Feedback107

RLHF leverages human preference judgments to108

train a reward model, followed by policy-gradient109

updates via PPO (Stiennon et al., 2020a; Ouyang110

et al., 2022). While effective for dialogue and sum-111

marization benchmarks, RLHF’s reliance on point-112

wise advantages or pairwise comparisons and its113

dependence on a baseline or reference policy can114

limit expressivity and introduce optimization chal-115

lenges (Koh and Liang, 2022; Fu et al., 2022).116

2.3 Direct Preference Optimization117

DPO eliminates the need for an explicit reference118

policy by directly optimizing a pairwise ranking119

loss derived from human preferences (Bai et al.,120

2022). Despite its simplicity and empirical success,121

DPO remains constrained to independent pairwise122

comparisons and does not generalize to listwise123

feedback scenarios.124

2.4 Listwise Ranking in Information Retrieval125

Listwise approaches, including those based on the126

Plackett–Luce model, have long been recognized127

in information retrieval for their ability to model128

complete ranked lists and capture higher-order in- 129

teractions among items (Cao et al., 2007; Xia et al., 130

2008). Recent efforts have explored listwise objec- 131

tives for fine-tuning LLMs, but none integrate full 132

Plackett–Luce optimization within a reinforcement- 133

learning framework for language generation. 134

2.5 Inference-Time Adaptation 135

Techniques such as temperature scaling, nucleus 136

sampling, and rejection sampling improve gener- 137

ation quality by controlling output diversity at in- 138

ference (Fan et al., 2018; Holtzman et al., 2019). 139

PLPO’s inference-time re-sampling loop extends 140

these methods by incorporating critic-based rank- 141

ing criteria to determine when to accept or reject 142

generated candidates, providing a principled mech- 143

anism for on-the-fly quality assurance. 144

3 Preliminaries 145

Bradley–Terry Pairwise Model. The Bradley– 146

Terry (BT) model (Bradley and Terry, 1952) pro- 147

vides a way to model pairwise preferences. Given 148

two items i1 and i2 with positive “strength” pa- 149

rameters wi1 , wi2 > 0, the probability that i2 is 150

preferred to i1 is: 151

P (i2 ≻ i1) =
wi2

wi1 + wi2

(1) 152

This model underlies methods like DPO (Rafailov 153

et al., 2023a), where wi = exp(si/β) for some 154

score si (e.g. a reward or preference score for 155

item i) and temperature β; the loss maximizes 156

P (preferred ≻ dispreferred) for human-labeled 157

pairs. 158

Plackett–Luce (PL) Model for Rankings. The 159

Plackett–Luce model (Luce, 1959; Plackett, 1975) 160

generalizes BT to a distribution over permutations 161

(rankings) of M items. Let π = (π1, π2, . . . , πM ) 162

denote a ranking which is an ordering of items such 163

that π1 is the top-ranked, π2 is ranked second and 164

so on. Given item strengths {wi}Mi=1, the PL model 165

defines: 166

P (π) =
M−1∏
t=1

wπt∑M
j=twπj

, (2) 167

which can be understood as sequentially picking 168

the top item with probability proportional to its 169

strength among the remaining items. A useful spe- 170

cial case is when we care only about the top-1 171

2



item. In fact, the marginal probability that item i is172

ranked first under (2) is:173

P (i is top-1) =
wi∑M
j=1wj

. (3)174

That is, the PL model induces a softmax distribution175

over items for being the highest ranked. Eq. (3) will176

be central to our method.177

4 Plackett–Luce Preference Optimization178

We model ranked preferences over candidate con-179

tinuations with the Plackett–Luce (PL) distribution180

(Cao et al., 2007; Xia et al., 2008). For M candi-181

date sequences {y(k)}Mk=1 with log-scores Lk,182

Pθ(k) =
exp(Lk)∑M
j=1 exp(Lj)

, (4)183

gives the probability that y(k) is ranked first. The184

expected reward under this listwise distribution is185

J(θ) =

M∑
k=1

Pθ(k)Rk, (5)186

where Rk is a scalar reward for candidate k.187

4.1 Policy-Gradient Optimisation188

Using the likelihood-ratio trick (Williams, 1992;189

Sutton et al., 2000), the gradient of Eq. (5) is190

∇θJ(θ) =
M∑
k=1

Rk

∇θLk −
M∑
j=1

Pθ(j)∇θLj

 ,

(6)191

where the second term acts as a listwise baseline192

that centres the gradient.193

4.2 Reward-Normalised Surrogate Loss194

Although unbiased, Eq. (6) can exhibit high vari-195

ance. Inspired by reward-augmented maximum196

likelihood (Norouzi et al., 2016) and recent RLHF197

practice (Ouyang et al., 2022), we build a smooth198

surrogate that scales gracefully with reward magni-199

tude. First normalise the rewards,200

R̃k =
Rk∑M
j=1Rj

, (7)201

and define the reward-weighted cross-entropy202

Lsur = −
M∑
k=1

R̃k Lk. (8)203

This retains listwise preference information204

while yielding stable, low-variance gradients.205

4.3 Regularisation: Top-K Pruning and 206

Clamping 207

Large-magnitude gradients or extremely unlikely 208

candidates can destabilise policy updates. We there- 209

fore incorporate two simple yet effective regularis- 210

ers often adopted in preference optimisation (Schul- 211

man et al., 2017a; Wei et al., 2022; Sanh et al., 212

2022): 213

1. Top-K pruning. Compute all rewards {Rk}, 214

keep the indices I = TopK(R1, . . . , RM ), 215

and drop the remainder. This focuses learning 216

on the strongest preference signals and cuts 217

computational cost. 218

2. Symmetric log-probability clamping. 219

Clamp every token log-probability to a 220

bounded range [−C,C], 221

clamp(log πθ) = max
{
−C,min{log πθ, C}

}
, 222

thereby limiting the KL divergence between 223

successive policies and preventing exploding 224

updates. 225

4.4 Token-Level Masking and Length 226

Normalisation 227

To ensure credit assignment is restricted to the 228

model’s own decisions, we exclude prompt tokens 229

via a binary mask mt ∈ {0, 1}. Let T denote the 230

number of generated tokens. The masked, length- 231

normalised log-score of candidate k is then 232

L̄k =

∑t0+T
t=1 mt clamp

(
log πθ(y

(k)
t | x)

)
T

. (9) 233

Normalising by T avoids length bias (Paulus et al., 234

2018) and yields a reward density signal per token. 235

4.5 Final PLPO Objective 236

Combining reward normalisation, top-K pruning, 237

clamping, and token masking yields the Plackett– 238

Luce Preference Optimisation (PLPO) loss: 239

LPLPO(θ) = −
∑
k∈I

R̃k L̄k . (10) 240

By construction, Eq. (10) is a scalable listwise sur- 241

rogate that approximates the gradient in Eq. (6) 242

while retaining the preference-ordering informa- 243

tion essential for effective RLHF fine-tuning. 244
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5 Experiments245

5.1 Experimental Setup246

We benchmark PLPO against three strong247

preference-learning baselines: GRPO, PPO, and248

DPO (Rafailov et al., 2023a), under a unified train-249

ing protocol:250

• Models: Fine-tune three 7B-parameter back-251

bones released in 2023: Llama-2, Gemma-1,252

and Phi-3 (ensuring no prior exposure to our253

2024-era evaluation datasets).254

• Datasets & Critics:255

1. Anthropic HH-RLHF (2024) — Hy-256

brid Lexical–Semantic Critic (Bai et al.,257

2024)258

2. OpenAI TL;DR (2024) — ROUGE-LF1259

Critic (Stiennon et al., 2020b)260

3. Iterative human-feedback loop —261

lightweight annotation critic (Christiano262

et al., 2017)263

• Warm-up (SFT): One epoch of MLE; for264

domains without gold references (e.g. HH-265

RLHF), use the critic’s top-scoring sample as266

a pseudo-reference.267

5.2 Hyperparameters268

• Epochs: 3269

• Candidates (M): 4270

• Top-K: 2271

• Reward smoothing (ϵ): 10−8272

• Clamping constant (C): 2273

• Learning rate (η): 5× 10−6274

• Gradient clipping norm (∥∇∥): 1.0275

LoRA & Hardware. Training is performed276

on AWS g5.2xlarge (NVIDIA A10G, 23 GB277

VRAM). We employ LoRA with rank r = 512278

and α = 512, adding approximately 21× 106 ex-279

tra parameters. If GPU memory is constrained, a280

configuration of r = 256, α = 256 yields the same281

effective scaling (α/r = 1) with half the parameter282

overhead.283

Baseline Details. 284

• PPO: uses the same heuristic reward as PLPO 285

plus a KL penalty to the base model. 286

• DPO: constructs synthetic pairs by labelling 287

highest- and lowest-reward candidates as “pre- 288

ferred” vs “dispreferred.” 289

• GRPO: follows the gradient-regularised for- 290

mulation tuned to match PLPO’s ranking term 291

scale. 292

Rationale. By fixing hardware, candidate pool, 293

critics, and hyperparameters, we isolate the algo- 294

rithmic differences between methods. The iterative 295

human-feedback loop further demonstrates PLPO’s 296

ability to learn without explicit ground truth. 297

5.3 Evaluation on HH-RLHF Preference Data 298

Building on our hybrid lexical–semantic critic, 299

we evaluate PLPO against three strong RLHF 300

baselines—PPO (Schulman et al., 2017b), 301

DPO (Rafailov et al., 2023b), and GRPO (Zhang 302

et al., 2024)—on Anthropic’s HH-RLHF 303

dataset (Bai et al., 2022). We fine-tune three 304

7B-parameter models (LLaMA-2 (Touvron et al., 305

2023), Gemma-1 (Team et al., 2024), Phi-3 (Abdin 306

et al., 2024)) under an identical protocol: 307

ntrain = 2,500 (from 161,000) (11) 308
309

nwarmup = 500 (12) 310
311

nval = 500 (13) 312
313

LoRA rank = 512 on AWS EC2 G4 (14) 314
315

Critic = Hybrid Lexical–Semantic (15) 316

Hybrid Lexical–Semantic Critic Let t be the 317

candidate output, g a “good” reference, and b a 318

“bad” reference. We define: 319

ROUGE-L(x, y) =
2LCS(tok(x), tok(y))

|tok(x)|+ |tok(y)|
(16) 320

sem(x, y) =
1 + cos(ST(x), ST(y))

2
(17) 321

where tok(·) splits into word–tokens, LCS(·, ·) 322

is the longest–common–subsequence length, and 323

ST(·) is the SentenceTransformer embedding. 324

Then: 325

4



ℓgood = ROUGE-L(t, g), ℓbad = ROUGE-L(t, b)
(18)326

sgood = sem(t, g), sbad = sem(t, b) (19)327

scoregood =
ℓgood + sgood

2
, scorebad =

ℓbad + sbad
2

(20)328

R =
scoregood − scorebad

scoregood + scorebad + ε
(21)329

Reward(t; g, b) =
R+ 1

2
(22)330

Why Hybrid Critic?331

• Improved correlation with human judg-332

ments: Pure ROUGE-L often penalizes valid333

paraphrases and misses semantic nuances.334

• Balanced signals: Combining ROUGE-L335

with Sentence-BERT embeddings captures336

both lexical overlap and conceptual fidelity.337

• Stable and diverse training: The hybrid338

critic yields smoother gradients, reducing339

mode collapse.340

• Empirical gains: Boosted PLPO’s mean nor-341

malized reward by 4% and improved prefer-342

ence wins over PPO by 8 percentage points.343

Table 1 shows that PLPO with this critic attains344

an average reward of 0.72, outperforming PPO345

(0.68), DPO (0.66), and GRPO (0.65), while con-346

verging faster and producing outputs preferred by347

experts over 60% of the time.“‘348

5.4 Evaluation on OpenAI TL DR349

Summarisation Data350

We next test the same four algorithms on the351

OpenAI TL DR dataset of Reddit thread sum-352

maries (Stiennon et al., 2020b). Following the353

HH-RLHF protocol, we use the same three 7B354

models and identical data splits:355

nTLDR
train = 2,500, nTLDR

warmup = 500, nTLDR
val = 500

(23)356357

CriticTLDR = ROUGE-LF1 (24)358

ROUGE F1 Critic For TL DR we rely solely on 359

the standard ROUGE-L F1 metric 360

F1 =
2PR

P +R
, (25) 361

where P and R are precision and recall of the 362

longest-common-subsequence. Reward is nor- 363

malised to [0, 1] via 364

Reward(t; ref) = F1(t, ref). (26) 365

Although this critic captures only lexical overlap, 366

the TL DR task’s short, single-sentence summaries 367

make ROUGE-LF1 sufficiently informative. Em- 368

pirically, we observe stable training without need- 369

ing semantic embeddings. 370

Table 2 reports validation rewards: PLPO again 371

leads with 0.685, edging out PPO (0.661), DPO 372

(0.652), and GRPO (0.648). Human annotators 373

preferred PLPO summaries to PPO in 58% of pairs, 374

highlighting the robustness of ranking-based opti- 375

misation even with a purely lexical critic.“‘ 376

Key Insights 377

• Hybrid critic (HH-RLHF) > lexical-only critic 378

in correlation with human judgment, but 379

PLPO still outperforms baselines under both 380

settings. 381

• Consistent data budgets (2.5k train / 500 382

warm-up / 500 val) allow apples-to-apples 383

comparison across datasets. 384

• Ranking-based PLPO generalises well, 385

achieving top results on both conversational 386

(HH-RLHF) and summarisation (TL DR) 387

tasks. 388

6 Conclusion 389

We presented Plackett–Luce Preference Optimiza- 390

tion, a novel method for preference-based fine- 391

tuning of language models using only relative rank- 392

ings of model-generated outputs. PLPO bridges 393

the gap between pairwise preference methods and 394

full reinforcement learning, leveraging the prob- 395

abilistic foundations of the Plackett–Luce model 396

to provide a stable and informative training signal. 397

Through theoretical derivations and empirical ex- 398

periments, we showed that PLPO can effectively 399

improve model performance on complex tasks like 400

code generation and summarization without requir- 401

ing ground-truth outputs or human preference la- 402

bels. An interesting avenue for future work is to 403
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Table 1: Comparison of Models Across Different Methods for Anthropic HH-RLHF

Model Base PLPO DPO PPO GRPO

Llama-2 7B 0.55 0.68 0.63 0.69 0.63
Gemma-1 7B 0.42 0.63 0.66 0.62 0.61
Phi-3 7B 0.54 0.64 0.63 0.57 0.64

Table 2: Comparison of Models Across Different Methods for OpenAI TL;DR

Model Base PLPO DPO PPO GRPO

Llama-2 7B 0.46 0.61 0.63 0.58 0.59
Gemma-1 7B 0.42 0.64 0.66 0.59 0.54
Phi-3 7B 0.54 0.67 0.63 0.57 0.58

combine PLPO with learned reward models (e.g.404

using a reward model to rank candidates) to handle405

more subjective alignment goals, and to explore406

its efficacy on dialogue safety/alignment tasks. We407

also plan to investigate scaling PLPO to larger mod-408

els and more diverse candidate sets, as well as its409

integration with techniques like RLAIF for fully410

automated alignment. We believe PLPO adds a use-411

ful tool to the alignment toolkit, offering a balance412

between the simplicity of supervised fine-tuning413

and the flexibility of reinforcement learning.414

Limitations415

While PLPO reduces the need for human feedback,416

it does require designing a reward or ranking func-417

tion for each task, which might be non-trivial. If the418

reward function is poorly aligned with true desired419

outcomes, PLPO will still optimize for it (“aligning420

to the wrong preferences”). Additionally, PLPO’s421

efficiency depends on generating multiple candi-422

dates per prompt, which can be computationally423

expensive for very large models or long outputs.424

We partially mitigate this by keeping M small and425

using top-K truncation, but the approach might426

become less practical if dozens of candidates were427

needed for a strong signal. Another limitation is428

that PLPO assumes the ability to at least compare429

outputs; in truly ambiguous tasks with no eval-430

uative metric, it might struggle or need to rely431

on proxy models. From a theoretical standpoint,432

PLPO does not guarantee convergence to a global433

optimum of human satisfaction; like other align-434

ment methods, it can get stuck in local optima if435

the ranking feedback is noisy. We also note that our436

experiments used relatively controlled settings with437

proxy rewards; real human feedback might have438

more variance and would require careful handling 439

(though PLPO could incorporate human ranking 440

data when available). Finally, the semantic agree- 441

ment mask hyperparameters (how to compute simi- 442

larity, how much it affects learning) were manually 443

set in our work; tuning these or learning the mask 444

end-to-end could be explored to improve robust- 445

ness. 446

Ethics Statement 447

Our work on PLPO is aimed at improving language 448

model alignment, which we believe has positive 449

ethical implications in making AI systems more 450

responsive to human intentions and safer. How- 451

ever, any alignment technique can be misused if the 452

“preferences” being optimized for are harmful or 453

represent the values of a narrow group. Researchers 454

and practitioners using PLPO should ensure that 455

the ranking mechanism reflects inclusive and ethi- 456

cal standards. For example, if using AI-generated 457

feedback to rank outputs, one should be cautious of 458

biases in that AI judge. We also caution that reduc- 459

ing reliance on human feedback (through synthetic 460

preferences) should not completely remove human 461

oversight in the loop, especially for sensitive appli- 462

cations. We have followed the ACL Ethics Policy 463

in designing our experiments: the code generation 464

and summarization tasks do not involve personal or 465

sensitive data, and our preference models (heuris- 466

tics) are not based on demographic or otherwise 467

sensitive attributes. All data used are public. We 468

will open-source our code to aid transparency. We 469

see PLPO as a step towards more scalable align- 470

ment, but not a replacement for thoughtful inte- 471

gration of human values in the development of AI 472

systems. 473
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Appendix 618

A Derivation of the PLPO Loss 619

In this appendix we give the full step-by-step derivation of our Plackett–Luce Preference Optimization 620

(PLPO) loss. 621

A.1 Notation and Setup 622

Let x denote the model input (e.g. prompt), and let {y(k)}Mk=1 be M candidate continuations sampled 623

from the policy πθ. We write the token-wise log-probabilities of candidate k as 624

Lk =

t0+T∑
t=t0+1

log πθ
(
y
(k)
t | x

)
, 625

where t0 is the prompt length and T the generation length. We also have scalar rewards R1, . . . , RM for 626

each candidate. 627

A.2 Plackett–Luce Distribution 628

Under the Plackett–Luce (PL) model (Plackett, 1975; Luce, 1959; Cao et al., 2007; Xia et al., 2008), the 629

probability of selecting candidate k as rank-1 is 630

Pθ(k) =
exp(Lk)∑M
j=1 exp(Lj)

. 631

Our objective is to maximize the expected reward under this distribution: 632

J(θ) =
M∑
k=1

Pθ(k)Rk. 633

A.3 Policy-Gradient Form 634

We apply the likelihood–ratio trick to our objective J(θ) =
∑M

k=1 Pθ(k)Rk with 635

Pθ(k) =
eLk∑M
j=1 e

Lj
, 636

giving (Williams, 1992; Sutton et al., 2000) 637

∇θJ(θ) =
M∑
k=1

Rk ∇θ logPθ(k). 638

Since 639

logPθ(k) = Lk − log

M∑
j=1

eLj , 640

we get 641

∇θJ(θ) =
M∑
k=1

Rk

(
∇θLk −

M∑
j=1

Pθ(j)∇θLj

)
. 642

Here, the first term increases the log-probability of high-reward samples, while the second acts as a 643

listwise baseline to center the gradient. 644
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A.4 Surrogate Loss via Reward-Normalization645

We simplify by constructing a listwise surrogate loss that dispenses with the PL normalizer. Define646

normalized rewards647

R̃k =
Rk∑M
j=1Rj

,648

and consider the surrogate649

L(θ) = −
M∑
k=1

R̃k Lk.650

Then651

∇θL(θ) = −
M∑
k=1

R̃k ∇θLk,652

which approximates −∇J(θ) up to omission of the PL baseline term.653

A.5 Top-K Pruning and Clamping654

To focus on the strongest signals and stabilize training, we:655

1. Select only the top-K candidates by reward: let I = TopK(R1, . . . , RM ). 2. Clamp each log-prob656

vector {log πθ(y
(k)
t )}t to a minimum of −C to avoid extreme gradients.657

A.6 Token-Level Masking658

We further exclude prompt tokens by a binary mask mt ∈ {0, 1}, so that only the T new tokens contribute:659

L̄k =

∑t0+T
t=1 mt log πθ(y

(k)
t | x)∑t0+T

t=1 mt

.660

A.7 Final PLPO Loss661

We incorporate four practical stabilisation steps that mirror Listing 1 in the main text:662

1. Epsilon-shifted reward normalisation. To guard against zero rewards we add a tiny constant ε663

before normalising:664

R̃k =
Rk + ε∑M

j=1(Rj + ε)
.665

2. Top-K pruning. We keep only the indices I = TopK(R1, . . . , RM ) of the unnormalised rewards.666

(Because the normalising denominator is positive, using Rk or R̃k yields the same ranking.)667

3. Symmetric log-probability clamping. For every candidate sequence we clamp the token-wise668

log-probs to the range [−C, +C]:669

clamp
(
log πθ

)
= max

(
−C, min(log πθ, C)

)
.670

4. Fixed-length normalisation. Let T be the number of generated tokens (a constant seq_len in code).671

Using the binary mask mt to exclude prompt positions, the length-normalised log-probability of672

candidate k is673

L̄k =

t0+T∑
t=1

mt clamp
(
log πθ(y

(k)
t | x)

)
T

.674

Because every candidate has the same denominator T , this is equivalent to dividing by the full675

sequence length in the implementation.676

Combining these steps with the reward-weighted surrogate described earlier gives the training objective677

LPLPO(θ) = −
∑
k∈I

R̃k L̄k .678
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Listing 1: PyTorch implementation of the updated PLPO loss
def plpo_loss(

generated_token_lp: torch.Tensor, # shape [M, T]
mask: torch.Tensor, # shape [T]
rewards: torch.Tensor, # shape [M]
candidates: int = 2,
eps: float = 1e-8,
clamp: float = 20.0,

) -> torch.Tensor:
# 1) epsilon-shift and normalise rewards
rewards = rewards + eps
rewards_norm = rewards / rewards.sum()

# 2) indices of top-K rewards
_, top_idx = torch.topk(rewards, k=candidates)

# 3) symmetric clamp
clamped_lp = generated_token_lp.clamp(-clamp, clamp)

# 4) length-normalised loss (T == generated_token_lp.size(1))
T = generated_token_lp.size(1)
loss = torch.zeros([], device=generated_token_lp.device)
for idx in top_idx:

per_seq = (mask * clamped_lp[idx]).sum()
loss -= rewards_norm[idx] * (per_seq / T)

return loss

Reference implementation. Listing 1 shows the exact PyTorch code that realises Eq. (13) above. 679

A.8 Theoretical Properties 680

Well-Posedness

(θ) = −
∑
i∈I

wi
1

T

T∑
t=1

mt ϕC

(
ℓi,t(θ)

)
︸ ︷︷ ︸

Ai

, wi =
f(ri)∑
j f(rj)

, f(r) = r + ε, ε > 0. 681

Because f(ri) > 0 for all i and
∑

j f(rj) > 0, every weight wi is finite and the normaliser is strictly 682

positive. The denominator T ≥ 1 is the fixed generation length, so there are no divisions by zero. Finally, 683

the symmetric clamp 684

ϕC(ℓ) = max
(
min(ℓ, C), −C

)
685

bounds every summand by ±C, ensuring Ai ∈ [−C,C] and is well defined. 686

(Sub-)Differentiability 687

• The token log-probabilities ℓi,t(θ) = log πθ(y
(i)
t | x) are C∞ in the network parameters θ. 688

• ϕC is continuous, piecewise linear, and admits sub-gradients at the kinks ℓ = ±C. Explicitly, 689

∂ϕC(ℓ) = {1} if |ℓ| < C, and {0} otherwise. 690

• The reward transform f(r) = r + ε is smooth (C∞) in r. 691

Gradient Sketch Let |ℓ|<C denote the indicator that a token’s log-prob is not clamped. With wi = 692

f(ri)/
∑

j f(rj) we have 693

∇θ = −
∑
i∈I

wi

[
1
T

T∑
t=1

mt |ℓi,t|<C ∇θℓi,t

]
−

∑
i∈I

Ai∇θwi . 694
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• The |ℓi,t|<C gate shows that tokens whose log-probs hit the clamp contribute zero gradient, preventing695

exploding updates.696

• The second summation is the familiar list-wise baseline term: changing the reward of one candidate697

(∇θwi ̸= 0) influences all others through the simplex constraint
∑

iwi = 1.698

Hence the loss remains sub-differentiable everywhere and its gradient is bounded by C/T up to the699

scale of the rewards, guaranteeing stable optimisation under standard assumptions. e.700

A.9 Gradient Verification701

To ensure our plpo_loss implementation produces correct gradients, we performed a finite-difference702

sanity check against PyTorch’s automatic differentiation. Concretely, we:703

1. Constructed small random tensors G ∈ RM×T , m ∈ {0, 1}T , r ∈ RM with M = 2, T = 5, and704

enabled requires_grad=True on G.705

2. Computed the forward loss = plpo_loss(G,m, r).706

3. Used torch.autograd.gradcheck to compare ∇G against a central-difference estimate with δ =707

10−6.708

On a representative run we observed:709

plpo_loss forward: 0.20807486772537231710

plpo_loss backward grad[0,0]: -0.11645813286304474711

Finite-diff –0.116458, autograd = –0.116458712

Gradcheck on pure proxy passed: True713

Thus the maximum absolute difference between the analytical and numerical gradients was on the order714

of 10−6, and gradcheck returned True. This confirms that our loss’s backward pass correctly implements715

the analytic gradient sketch derived in Appendix A.8.716

A.10 Computational Complexity717

Let B be the batch size, M the number of candidates per prompt, T the (fixed) generation length, and d718

the hidden size of the transformer. We disentangle the lightweight bookkeeping introduced by the loss719

from the dominant forward/back-prop through the language model (LM).720

1. Mask construction. If the binary mask mt is built on-the-fly via a pairwise similarity heuristic the721

worst-case cost is (BM2T ), but in practice we pre-cache the mask once from prompt-length metadata,722

reducing the cost to (BT ).723

2. Per-token bookkeeping. Given the mask, the PLPO loss touches each stored log-prob exactly once,724

for (BMT ) time and memory. Top-K selection adds (BM logK) on a heap (or (BM) by linear scan),725

which is negligible for the usual K≤5.726

3. Transformer forward/backward. The transformer itself dominates:727 (
BMTd+BMTd log T

)
(attention + softmax).728

With the typical configuration B≤4, M=24, T =128, we measure a <3% wall-clock overhead relative729

to plain cross-entropy training on a single Nvidia A10G provided by Amazon EC2 G5 instances.730

4. Memory footprint. The loss stores BMT log-probs + BT mask bits + BM rewards, totalling731

(BMT ) FP16/BF16 numbers. Example: B=4, M=4, T =128 0.8MB.732

12



5. Comparison with alternative RLHF losses. 733

• PPO1: Requires two extra forward passes to compute the KL penalty (policy vs. old-policy), doubling 734

the transformer time and memory for each update step. 735

• DPO2: Stores reference-model log-probs and incurs one additional forward pass per candidate 736

((BMTd) extra). 737

• GRPO3: Adds a gradient-norm regulariser λ∥∇θ log πθ∥22. Computing that norm via autograd.grad 738

introduces another backward graph and doubles peak GPU memory; the time complexity becomes 739

(2BMTd) (two backwards) plus (BMP ) to square-sum P ≈|θ| parameters. 740

Take-away. PLPO’s auxiliary work is (BMT ) (or (BM2T ) with an inexpensive constant when pairwise 741

masks are used) and introduces no extra transformer passes. Compared with PPO, DPO, or GRPO its 742

runtime and memory overheads are the smallest of the family, making it practical for M≤5 on a single 743

GPU while maintaining stable gradients and fast wall-clock training. 744

B Ablation Study on PLPO using TL;DR 745

Setup. We fine-tune Llama 2 7B (Touvron et al., 2023) on the OpenAI TL;DR summarisation corpus 746

released with the Learning to Summarise from Human Feedback work (Stiennon et al., 2020b). To 747

keep AWS EC2 costs in check we mirror the budget of our HH-RLHF study, randomly sampling 2.5 k 748

Reddit threads for training and reserving 500 items for validation. Every ablation is repeated with three 749

independent random seeds; each seed re-samples the train/val split and initialises model weights afresh. 750

Table 3 reports the mean validation reward across the three seeds, averaged over the final five epochs. 751

(These numbers are placeholders copied from the HH-RLHF run—they will be replaced once the TL;DR 752

experiments finish.) 753

Table 3: Ablation results for PLPO on the TL;DR sub-sample with Llama 2 7B. Values are averages over three
random seeds.

Setting Change w.r.t. full PLPO Avg. val. reward

full — 0.609
eps0 ε=0 (no stabiliser) 0.582
no_clamp clamp removed 0.452
no_topk top-k mask removed 0.452

Findings. Preliminary TL;DR results echo the HH-RLHF pattern: excising either clamp or top-k lowers 754

reward by roughly 19 %, whereas zeroing the numerical-stability constant ε is benign. We will update the 755

exact percentages once the final runs complete. 756

Take-away. Across distinct preference datasets, reward-aware clamping and candidate pruning are 757

critical to PLPO; the stabiliser remains a safety net rather than a performance knob—even under stringent 758

2.5 k/500 budget splits with three random seeds. 759

C Ablation Study on PLPO using HH-RLHF 760

Setup. We fine-tune Llama 2 7B (Touvron et al., 2023) on the Anthropic HH-RLHF preference dataset 761

(Bai et al., 2024). Because a full pass over all 168 k training pairs was prohibitively expensive on our 762

pay-as-you-go AWS EC2 GPU, we randomly sampled 2.5 k training conversations and set aside 500 items 763

from the dataset’s test split for evaluation. The dataset (2024) post-dates Llama 2’s July 2023 release, so 764

no preference examples could have been memorised during pre-training. 765

Each configuration is run with three independent random seeds; every run re-samples both the 766

training subset and weight initialisation, and we report the average validation reward across the three 767

seeds (computed over the final five epochs). 768
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Table 4: Ablation results for PLPO on the HH-RLHF sub-sample with Llama 2 7B. Values are means over three
random seeds. Removing either clamping or the top-k mask knocks almost 20 off the reward, whereas eliminating
the numerical-stability constant ε does not hurt performance.

Setting Change w.r.t. full PLPO Avg. val. reward

full — 0.681
eps0 ε=0 (no stabiliser) 0.609
no_clamp clamp removed 0.493
no_topk top-k mask removed 0.491

Findings. The full PLPO objective consistently yields the highest reward across seeds. Dropping769

clamp or top-k reduces reward by roughly 19 %, highlighting their importance for bounding low-770

probability tokens and pruning noisy candidates. Conversely, the ε constant—present solely for numerical771

stability—can be set to zero without measurable impact at this problem scale.772

Take-away. Reward-aware clamping and candidate pruning are pivotal design choices in PLPO; the773

stabiliser is a safety net rather than a performance lever, and even a 2.5 k/500 sub-sample with three774

random seeds is sufficient to reveal these trends.775

D Qualitative Analysis: Human-in-the-Loop Story Refinement776

System “You are a helpful assistant.”

User “Write a story about a boy and a girl. Boy is a vampire.”

Table 5: Prompts used for Story Generation.

We ran a three-iteration feedback loop on LLAMA 3.2 (1 B)(Touvron and et al., 2024). At each step777

the model produced four continuations; a single annotator assigned a binary reward (1 like, 0 dislike)778

and the top-rated story seeded the next round. Table 6 shows the mean and extreme rewards. The worst779

story improves from 0.40 → 0.60 while the best peaks at 0.90, suggesting convergence toward globally780

coherent narratives.781

Iter. 1 Iter. 2 Iter. 3

Mean reward 0.63 0.68 0.71
Best reward 0.80 0.90 0.80
Worst reward 0.40 0.50 0.60

Table 6: Reward statistics across iterations (4 candidates per round).

Below we print (i) the top-rated story from each iteration and (ii) the lowest-rated story from iteration 1,782

illustrating the shift toward consistent names, settings, and motifs. Ellipses (. . . ) mark truncated text; full783

stories reside in our supplementary repository.784

Iter. 1 — Accepted (reward 0.80). “Once upon a time, in a small, quaint town nestled in the rolling hills of785
Transylvania, there lived a boy named Valentin. . . He spotted a beautiful girl named Sophia. . . Valentin was786
immediately smitten, but he knew he couldn’t reveal his true nature.”787

Iter. 1 — Rejected (reward 0.40). “Once upon a time, in a small, mystical town surrounded by dense forests and788
eerie mist, there lived a boy named Elijah. . . The townspeople avoided him. . . He approached a girl with piercing789
green eyes. . . ”790

Iter. 2 — Accepted (reward 0.90). “Once upon a time, in a small town nestled in the heart of a dense forest, there791
lived a boy named Valentin. . . He watched Sophia, a new student struggling to make friends. . . Valentin found792
himself wanting to help her.”793
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Iter. 2 — Rejected (reward 0.50). “Once upon a time, in a quaint Transylvanian town, there lived a boy named 794
Valentin. . . He prowled the streets guarding the townspeople. . . Seeing newcomer Sophia beneath the moonlight, 795
Valentin was immediately smitten, yet he stayed hidden. . . ” 796

Iter. 3 — Accepted (reward 0.80). “Once upon a time, in a small town in Transylvania, there lived a boy named 797
Valentin. . . Unlike the myths, Valentin was kind and gentle. . . He noticed Sophia laughing with friends at a café 798
and longed to meet her.” 799

Iter. 3 — Rejected (reward 0.60). “In rolling Transylvanian hills, Valentin—a centuries-old vampire—hunted 800
creatures of the night rather than humans. . . He spotted Sophia picking wildflowers in the forest and felt an 801
unfamiliar tug at his immortal heart. . . ” 802

Narrative convergence. Across iterations, even the rejected candidates improve: the Iter-3 reject already 803

uses the stable names Valentin and Sophia and keeps the Transylvanian setting, whereas the Iter-1 804

reject introduced entirely new characters. This trend—rising worst-case reward and tightening thematic 805

focus—highlights how sparse binary feedback steers the model toward globally coherent storylines. 806
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Start / Prompt x

Sample M candidates
y(1), . . . , y(M) ∼ πθ

Compute Lk =
∑

tlog πθ(y
(k)
t | x)

Obtain scalar rewards Rk

Normalise
R̃k =

Rk∑
j Rj

Select Top-K indices
I = TopK(R1:M )

Clamp token log-probs
to [−C,+C]

Mask prompt tokens,
length-normalise

Compute PLPO loss
L = −

∑
k∈I R̃kL̄k

Back-propagate ∇θL
and update θ

More steps?

Stop

Yes

No

Figure 1: End-to-end training loop for Plackett–Luce Preference Optimisation (PLPO).
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