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ABSTRACT

Bayesian optimization in large unstructured discrete spaces is often hindered by
the computational cost of maximizing acquisition functions due to the absence
of gradients. We propose a scalable alternative based on Thompson sampling
that eliminates the need for acquisition function maximization by directly pa-
rameterizing the probability that a candidate yields the maximum reward. Our
approach, Thompson Sampling via Fine-Tuning (TOSFIT), leverages the prior
knowledge embedded in prompt-conditioned large language models, and incre-
mentally adapts them toward the posterior. Theoretically, we derive a novel re-
gret bound for a variational formulation of Thompson Sampling that matches the
strong guarantees of its standard counterpart. Our analysis reveals the critical
role of careful adaptation to the posterior probability of maximality—a princi-
ple that underpins our TOSFIT algorithm. Empirically, we validate our method
on three diverse tasks: FAQ response refinement, thermally stable protein search,
and quantum circuit design. Within a collection of methods covering Bayesian
optimization, reinforcement learning, and evolutionary search, TOSFIT exhibits
both state-of-the-art sample efficiency and computational efficiency.

1 INTRODUCTION

Humans rely on beliefs, shaped by internal world models, to make decisions. Since our knowledge
of the world is often incomplete, these beliefs must account for uncertainty through probabilistic
reasoning. To stay effective, beliefs must be updated as new information arises. Bayesian inference
provides a principled method for this updating process, using Bayes’ theorem to adjust beliefs by
combining prior knowledge with new evidence. This foundational idea extends naturally to compu-
tational settings, where algorithms must make decisions under uncertainty.

Bayesian optimization (Kushner, 1964; Garnett, 2023) is one such algorithmic framework that lever-
ages Bayesian inference for large-scale experimental design and automated discovery, particularly
in settings where experimental evaluations are costly or time-consuming. As a strategy for optimiz-
ing expensive black-box reward functions, it maintains a posterior distribution over the unknown
rewards—typically modeled as a Gaussian process over a domain X—and uses this model to guide
the search for promising configurations. New candidates are selected by maximizing an acquisition
function that balances two objectives: exploring uncertain regions to gather new information, and
exploiting areas that are already known to perform well (Kushner, 1964; Auer, 2002).
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Figure 1: TOSFIT treats candidate genera-
tion as Thompson sampling and fine-tunes
the LLM toward the posterior PoM.

Among existing acquisition strategies, Thompson
sampling (Thompson, 1933; Russo et al., 2018)
stands out due to its state-of-the-art convergence
guarantees (Russo & Van Roy, 2014; 2016; Chowd-
hury & Gopalan, 2017) and its strong empirical per-
formance (Chapelle & Li, 2011), despite being one
of the earliest strategies for Bayesian optimization.
Thompson sampling draws a function from the re-
ward posterior, which effectively serves as an acqui-
sition function, and selects the point that maximizes
it. The resulting evaluation points are distributed ac-
cording to the probability of maximality (PoM) of rewards (Menet et al., 2025).
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Figure 2: Whereas in continuous domains gradient ascent can be used to maximize the acquisition
function, in unstructured discrete domains maximization would require iterating over all points. To
scale to combinatorially large discrete domains, we propose to circumvent intractable acquisition
function maximization by directly sampling from the parameterized probability of maximality.

While acquisition function maximization has been made tractable in high-dimensional Euclidean
spaces—through projection to lower dimensions (Wang et al., 2016; Kirschner et al., 2019) or lo-
cal optimization (Eriksson et al., 2019)—it remains a fundamental challenge in large unstructured
discrete domains, where the absence of gradients precludes efficient search. Yet, such spaces are of
high scientific and economic relevance. Notable examples include the space of amino acid sequences
(Jumper et al., 2021; Liu et al., 2023) and the space of valid code for quantum circuits (Javadi-Abhari
et al., 2024; Vishwakarma et al., 2024). Note that with 20 amino acids and a maximum sequence
length of 100, the search space already exceeds the number of atoms in the observable universe.

In this work, we scale Bayesian optimization to large unstructured discrete spaces by instantiating
Thompson Sampling as fine-tuning of large language models (TOSFIT, see Figure 1). Our approach
builds on Variational Bayesian Optimistic Sampling (VBOS), established by O’Donoghue & Latti-
more (2021), but introduces a key distinction: instead of optimizing toward the posterior probability
of maximality starting from a uniform policy, we initialize it with a prompt-conditioned pre-trained
LLM, and gradually adapt it toward the posterior. By treating generated proposals as Thompson
samples, TOSFIT avoids intractable acquisition function maximization. Our contributions are:

1. We improve the cumulative regret bound of exact VBOS from Õ(
√
T |X|) to Õ(

√
TγT ),

accounting for reward correlation across the search space X through the maximal informa-
tion gain γT , and generalize the bound to cover approximate (e.g., gradient-based) VBOS.

2. Our novel regret bound motivates policy initialization according to pre-training & context
as well as deliberate fine-tuning to the posterior PoM, resulting in the TOSFIT algorithm.

3. We validate our method on FAQ response refinement, protein optimization, and quantum
circuit design. Within a collection of methods covering Bayesian optimization, reinforce-
ment learning, as well as evolutionary search, ToSFiT exhibits state-of-the-art performance.

2 PRELIMINARIES

Consider an unknown reward vector R over a discrete domain X . In Bayesian optimization, we
want to find the x ∈ X that maximizes Rx. Typically, we model our prior belief as Gaussian, i.e.,
R ∼ N (µ,K) with mean µ and covariance K. Thompson sampling suggests conducting Bayesian
optimization by repeatedly conditioning the Gaussian reward vector R on a noisy observation Yx :=
Rx +N (0, σ2

n) at a point x ∈ X sampled from the posterior probability of maximality

PoM(x|data) := P[Rx = R∗ |data] with R∗ :=maxz Rz.

In practice, sampling from the probability of maximality is typically implemented by drawing a
realization from the reward posterior and then selecting the point that maximizes this sample—
effectively treating the realization as an acquisition function (Russo et al. 2018, see Figure 2). How-
ever, in large unstructured discrete domains, such maximization becomes intractable. To address
this, we propose to directly parameterize the probability of maximality using a generative LLM.
This approach, illustrated in Figure 1, avoids explicit maximization and, following the framework of
O’Donoghue & Lattimore (2021), ensures consistency with the underlying reward model and thus
vanishing regret (see Theorem 1).
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2.1 BATCHED BAYESIAN OPTIMIZATION

Traditionally, Bayesian optimization is performed sequentially: one candidate is selected, evalu-
ated, and used to update the Gaussian reward model before the next candidate is chosen. However,
in many real-world applications—such as drug discovery (Houghten, 2000) or automated program
synthesis (Romera-Paredes et al., 2024)—simultaneous candidate evaluation can significantly re-
duce wall-clock time, motivating the development of batched Bayesian optimization (Ginsbourger
et al., 2010; Azimi et al., 2012; Desautels et al., 2014; Wang et al., 2018). Classical Bayesian
optimization methods typically propose a single, deterministic candidate, and therefore require ad-
ditional mechanisms to promote diversity across the batch and avoid redundant evaluations. In con-
trast, Thompson sampling naturally generates diverse candidates by independently sampling from
the posterior (Hernández-Lobato et al., 2017), achieving equal asymptotic regret as in the sequen-
tial setting (Kandasamy et al., 2018; Nava et al., 2022). This property makes Thompson sampling
particularly well-suited for batched optimization, a key feature of TOSFIT.

2.2 REGRET BOUNDS FOR BAYESIAN OPTIMIZATION

Bayesian optimization algorithms such as Thompson sampling and Upper Confidence Bound (UCB,
Srinivas et al. 2010) are typically framed as balancing exploration with exploitation (Kushner, 1964;
Auer, 2002) such that, assuming the black-box reward function R : X → R is drawn from a
Gaussian process, in expectation cumulative regret grows sublinearly:

E[
∑T
t=1R

∗ −Rxt ] ∈ o(T ).

Here, xt denotes the action played by the Bayesian optimization algorithm conditioned on a history
of observations Ht. Note that sublinear cumulative regret is equivalent to vanishing average regret,
i.e., asymptotically optimal performance.

Beyond the Bayesian setting, regret guarantees can also be established for the model-agnostic setting
that assumes the reward r to lie in a reproducing kernel Hilbert space H induced by a kernelK : X×
X → R+.1 In this case, a Gaussian reward model is still used for inference, but its amplitude (i.e.,
prior uncertainty) must be chosen large enough to accommodate the complexity of r, as measured
by the norm ∥r∥K . Notable examples of such model-agnostic algorithms include GP-UCB (Srinivas
et al., 2010) and GP-TS (Chowdhury & Gopalan, 2017), a variant of Thompson sampling.

In practice, however, hyperparameters such as the amplitude are often fit to observations via marginal
likelihood maximization (MLM), which can underestimate the true complexity of the reward func-
tion (Berkenkamp et al., 2019). To avoid overconfident posterior estimates and premature conver-
gence, it is common to adopt a multiplicative exploration bonus on the MLM-fitted prior amplitude.
This ensures sufficient uncertainty for effective exploration—a strategy we incorporate into TOSFIT
to account for the fixed-reward setting used in our experiments.

2.3 VARIATIONAL BAYESIAN OPTIMISTIC SAMPLING

As shown in O’Donoghue & Lattimore (2021) and Tarbouriech et al. (2024), Gaussian PoM is
effectively approximated by the VBOS policy π̃, the distribution that maximizes the functional

V(π) := Ex∼π[µx +
√
−2 ln(πx)︸ ︷︷ ︸

adaptive UCB exploration bonus

·σx], where π is a distribution over X and σx :=
√
Kx,x. (1)

Here, the reward surrogate r̂x := µx +
√
−2 ln(πx) · σx represents a high-probability upper bound

on Rx (O’Donoghue & Lattimore, 2021). VBOS reveals an intimate connection (Tarbouriech et al.,
2024; Menet et al., 2025) between PoM and upper confidence bounds augmented with entropy reg-
ularization (Ziebart, 2010; Haarnoja et al., 2018). Moreover, maxπ V(π) ≥ V(PoM) ≥ E[R∗] (see
Corollary 2 in Appendix E), which is the key property that allows bounding the expected cumulative

1The expressivity of a reproducing kernel Hilbert space can vary widely with the choice of its kernel. For
instance, the linear kernel induces the reproducing kernel Hilbert space of (all) linear functions, whereas the
radial basis function kernel corresponds to a smooth subset of the square-integrable functions L2 that can
uniformly approximate any continuous function on a compact set.
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regret by Õ(
√
T ) for any optimistic policy π with V(π) ≥ E[R∗]. In addition to its variational form,

Menet et al. (2025) pointed out a near-closed form with almost-linear runtime in |X|, given by

π̃x = v(µx−κ
∗

σx
) for v(c) := exp(−(

√
c2 + 4− c)2/8) with κ∗ such that

∑
x π̃x = 1. (2)

In combinatorially large domains X , even the near-closed form of Equation (2) becomes too ex-
pensive, despite its almost-linear runtime in |X|. Instead, an approximate policy π ≈ π̃ :=
argmaxp∈∆|X|-1 V(p) based on gradient ascent of Equation (1) must suffice. Our theoretical results
in Section 4 reveal the challenges of Bayesian optimization with gradient-based policy updates. As
a remedy to accelerate convergence, we cast Thompson sampling as fine-tuning of LLMs.

3 THOMPSON SAMPLING VIA FINE-TUNING

We introduce Thompson Sampling via Fine-Tuning (TOSFIT), a scalable variant of Thompson sam-
pling that leverages strong priors from generative pre-training and task-dependent in-context con-
ditioning. TOSFIT does not maximize an acquisition function, but rather parameterizes the PoM
with a pre-trained prompt-conditioned large language model (see Figure 1). By considering model
generations as samples from the PoM, we avoid expensive acquisition function maximization. To
stay consistent with the posterior PoM and achieve sublinear cumulative regret, we initialize the pol-
icy according to the pre-training and then cautiously adapt the model parameters using the VBOS
objective. This algorithmic design is guided by the theoretical analysis in Section 4.

Algorithm 1 TOSFIT with Gaussian Process Reward Model

Require: pre-trained policy πθ, GP feature map ϕ
Sample x1, . . . , xm ∼ πθ and observe y1, . . . , ym
Conduct GP marginal likelihood maximization
while budget not exhausted do

µϕ,Kϕ ← closed-form Gaussian posterior
for j = 1, . . . , c do

Generate x1, . . . , xB ∼ πθ
Estimate d

dθVµϕ,Kϕ(πθ) using x1, . . . , xB
Fine-tune πθ toward VBOS with learning rate η

end for
Observe y1, . . . , yb associated with x1, . . . , xb
Conduct GP marginal likelihood maximization

end while
return (xargmaxi yi ,maxi yi)

Hyperparameters m ∈ N denotes a
burn-in period to find prior parameters
of the GP and allow the closed-form so-
lution π̃t of the VBOS objective to ap-
proach the generative policy πθ from
pre-training (more on that in Section 4).
c ∈ N is the number of steps of gradient
ascent per step of Bayesian optimization
and trades off sample efficiency with
computational efficiency. B ∈ N is the
generation batch size: a large batch size
improves GPU utilization and leads to
more stable gradients. b ∈ {1, . . . , B}
denotes the batch size of Bayesian opti-
mization. η is the global learning rate.

3.1 SCALING GAUSSIAN PROCESSES

The Moore–Aronszajn theorem states that any kernel K can be expressed as an inner product in a
reproducing kernel Hilbert space H, i.e., K(x, z) = ⟨ϕ(x), ϕ(z)⟩H for a feature map ϕ : X → H.
Thus we assume, without loss of generality, a linear kernel in H, enabling scalable Gaussian process
inference. Flexibility is retained through the choice of feature map ϕ, which can be obtained from
fixed embedding models (Ranković & Schwaller, 2023; Wei et al., 2022), learned adaptively during
optimization (Ranković & Schwaller, 2025), or designed for the task at hand (Greenhill et al., 2020).

Furthermore, as detailed in Appendix D, we leverage a formulation of linear Gaussian processes that
enables conditioning on observations, computing the reward posterior, and performing marginal
likelihood maximization—all in closed form. As a result, both the computational and memory
complexity scale in Θ(dim(H)2), independently of the number of observations, and has negligible
overhead (see Table 2 in Section A.1 of the Appendix).

3.2 GRADIENTS OF VARIATIONAL BAYESIAN OPTIMISTIC SAMPLING

We derive explicit gradients of the VBOS objective, offering new insights into its optimization
landscape. All proofs are in Appendix E. Note that the score trick (Williams, 1992) cannot be
applied blindly, since the reward surrogate r̂x := µx +

√
−2 ln(πθx) · σx depends on the policy πθ.
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Proposition 1. Consider the VBOS objective V(πθ) := Ex∼πθ [µx +
√
2 ln(1/πθx) · σx]. The

VBOS objective V is concave (strictly if σx > 0 ∀x) and its gradients are
d
dθV(π

θ) = Ex∼πθ
[(
µx−ξ − v-1(πθx) · σx︸ ︷︷ ︸

−µθx for ξ=κ

)
· ddθ lnπ

θ
x

]
.

ξ ∈ R is an arbitrary baseline and -v-1(u) =
√

-2 ln(u)− 1/
√

-2 ln(u) ∼
√

-2 ln(u) as u→ 0.

Interpretation as Energy-Based Model For a given reward uncertainty σx and (parametrized)
probability of maximality πθx there is, according to Equation (2) and up to κ ∈ R, exactly one
consistent expected reward given by µθx := κ + v-1(πθx) · σx. Gradient ascent on V thus pushes
up the probability of sample generation if and only if µθx underestimates the true µx. In this light,
VBOS can be considered an energy-based model (LeCun et al., 2006).

3.3 STABILIZING GRADIENTS OF VBOS

To ensure vanishing regret according to Theorem 1 of Section 4, we must fine-tune the prompt-
conditioned pre-trained policy πθ toward the posterior PoM using gradient ascent on the VBOS
objective. Define the pseudo reward ˆ̂rθx := µx − v−1(πθx) · σx that occurs in Proposition 1. Then

d
dθV(π

θ) ≈ 1
B

∑
i(
ˆ̂rθxi − ξi) ·

d
dθ lnπ

θ
xi with xi ∼ πθ.

Here, ˆ̂rθxi − ξi is referred to as the advantage function. In practice, this estimator can suffer from
high variance, depending on the choice of baselines ξi ∈ R. To address this, we adopt the Reinforce
Leave-One-Out (RLOO) baseline (Kool et al., 2019), where each ξi is set to the average of the other
surrogates in the batch: ξi = 1

B−1

∑
j ̸=i

ˆ̂rθxj . This technique has been demonstrated to outperform
more complex alternatives like Proximal Policy Optimization (Schulman et al., 2017) in fine-tuning
large language models (Ahmadian et al., 2024). To further stabilize learning, we normalize the
advantage function by its empirical standard deviation, derived from the empirical second moments:

̂advantage std =
√

1
B

∑
h(
ˆ̂rθxh − ξh)2, which amounts to a variance-adaptive learning rate. As

shown in Proposition 3 of Appendix C, standardized RLOO is mathematically equivalent to the
advantage function used in Group Relative Policy Optimization (Shao et al., 2024).

4 THEORY

Given that one cannot exactly maximize VBOS in practice without incurring prohibitive computa-
tional cost, how close is any policy to the maximizer? Geometrically, the divergence of a policy π
from the exact VBOS policy π̃ is measured by the suboptimality gap in the VBOS objective:

Proposition 2. Let σ ∈ R|X|
+ . For the convex f(p) := −

∑
x pxσx

√
−2 ln px, define the Bregman

divergence Dσ(p, q) = f(p) − f(q) − ⟨∇f(q), p − q⟩. Then the Bregman divergence of any π ∈
∆|X|−1 from the maximizer π̃ := argmaxp∈∆|X|−1 V(p) is given by Dσ(π, π̃) = V(π̃)− V(π).

Even the exact VBOS policy π̃ only conducts approximate Thompson sampling. Nevertheless,
O’Donoghue & Lattimore (2021) prove an upper bound on the cumulative regret incurred when
sampling a bandit according to exact VBOS, i.e., for xt∼ π̃t. The bound reads E[

∑
tR

∗ −Rxt ] ≤√
2|X|T ln |X|(1+lnT ). Note that the structure of the kernel is not taken into account, i.e., the

worst-case bandit with independent arms is assumed. In Theorem 1, we demonstrate a significantly
tighter regret bound for VBOS, matching the strong regret bounds of Thompson sampling (Russo
& Van Roy, 2014) and GP-UCB (Srinivas et al., 2010), regardless of the kernel.
Theorem 1. Let R ∼ N (µ,K) with Kx,x ≤ 1 ∀x ∈ X and additive observation noise N (0, σ2

n).
2

If R is observed at xt ∼ πt for a policy πt depending on historyHt, then

E[
∑T
t=1R

∗ −Rxt ] ≤
√
CσnHTγ

T + E
∑T
t=1Dσt(π

t, π̃t).

Cσn := 4/ln(1 + σ−2
n ) is a constant, H := 1

T

∑
tH[πt|Ht] is the expected average entropy of the

policy and hence upper bounded by ln |X|, γT := maxLT I(YLT ;R) is the maximum information
gain for T observation locations LT , and π̃t is the unconstrained maximizer of VBOS givenHt.

2The theorem also holds for heteroscedastic additive Gaussian noise by replacing σn with maxx∈X σn(x).
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For exact VBOS, we have improved the cumulative regret bound from Õ(
√
T |X|) to Õ(

√
TγT ).

Whereas the former is vacuous in combinatorially large discrete domains X , the latter is not. E.g.,
with a linear kernel in d dimensions, we have γT ∈ O(d log T ), yielding a regret bound that scales
gracefully with the problem size (Srinivas et al., 2010).

For inexact VBOS, we provide the first regret bound. It depends on a Bregman divergence between
the exact solver π̃t of VBOS, and the sampling policy πt. As Proposition 2 establishes, this Bregman
divergence directly captures to what extent πt maximizes the variational objective V .

4.1 INSIGHTS: POLICY INITIALIZATION VIA PRE-TRAINING & CONTEXT
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Figure 3: Left: Inexact gradient-based VBOS struggles to
find the best arm in very high-dimensional probability sim-
plices. Right: TOSFIT starts in the right region of the sim-
plex. Still, careful adaptation towards VBOS is paramount
to retain the prior knowledge necessary to find the best arm.

The approximation error Dσt(π
t, π̃t)

risks dominating the regret bound,
since gradient-based optimization of
the VBOS objective V yields a policy
πt that lags behind the exact VBOS
policy π̃t. To mitigate this source of
cumulative regret, πt must be initial-
ized and maintained within a high-
probability neighborhood of π̃t, es-
pecially for large t, when π̃t tends to
concentrate near the pre-trained pol-
icy. To support this, TOSFIT initial-
izes πt via pre-training and prompt-
conditioning, and adapts it cautiously
toward the posterior PoM π̃t using small learning rates. These insights are illustrated in Figure 3 for
a three-armed bandit and experimentally verified in Section 5.6. Note that Theorem 1 holds even if
the pre-training prior π0 is biased toward suboptimal regions. In that case, more compute effort in
the form of gradient steps are required to ensure a vanishing Dσt(π

t, π̃t).

5 EXPERIMENTS

We empirically evaluate TOSFIT across three diverse domains for language models between 0.6B
and 8B parameters. We report the mean and standard error of the best-seen reward using 25 random
seeds, defined as the maximum reward observed up to step t, i.e., maxt≤n rxt . This metric cap-
tures the best solution found so far and is often used in black-box optimization benchmarks. Details
are in Appendix B. Within a collection of methods covering Bayesian optimization, reinforcement
learning, and evolutionary search, TOSFIT exhibits state-of-the-art sample efficiency and computa-
tional efficiency. TOSFIT can naturally be applied in batched settings, and sample efficiency can be
further improved by adjusting the computational effort per round of Bayesian optimization.

5.1 SETTINGS

FAQ Refinement is a natural language task that tests the algorithm’s ability to optimize text based
on semantic alignment. We ask a Qwen3-1.7B/Qwen3-8B model (Yang et al., 2025) to write a
frequently-asked-questions (FAQ) response. The reward is modeled as the alignment to an unknown
ground-truth, judged by the Qwen3-Embedding-0.6B model (Zhang et al., 2025). As a deep kernel,
we adopt a linear kernel over the first 256 entries of the embeddings of Qwen3-Embedding-0.6B.
The search space consists of all token sequences, which is exponentially large in the response length.

Protein Search explores the challenge of designing thermally stable proteins—a task with
significant implications for drug development and industrial biotechnology. The goal is to identify
amino acid sequences that exhibit high thermal stability, a property that enhances protein robustness
and shelf life. Note that with 20 standard amino acids in the human body and sequence lengths of
100 and above, the search space exceeds the number of atoms in the observable universe. We sample
amino acid sequences from ProtGPT2 (Ferruz et al., 2022) (0.738B parameters) and score them
according to their negative thermal instability index (Guruprasad et al., 1990). Two baselines, FIBO
and EVOLUTIONARY SEARCH (LLM), require instruction-tuned models. There, we use a Qwen3-
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0.6B/Qwen3-8B model. To predict the thermal stability and assess epistemic uncertainty, we adopt a
GP with linear kernel over the mean token embeddings from ProtGPT2 projected to the unit sphere.

Quantum Circuit Design is the task of designing quantum circuits that prepare low-energy quan-
tum states in unknown environments. The challenge lies in navigating a vast, discrete space of valid
quantum programs, where entanglement and gate structure critically influence performance. To gen-
erate Qiskit circuits (Javadi-Abhari et al., 2024), we use a Qwen2.5-Coder-1.5B/Qwen2.5-Coder-7B
model (Hui et al., 2024) prompted to fill-in-the-middle (Bavarian et al., 2022) after initializing six
disentangled qubits in the zero state. The baselines FIBO and EVOLUTIONARY SEARCH (LLM)
require instruction-tuned models, for which we use Qwen2.5-Coder-1.5B-Instruct/Qwen2.5-Coder-
7B-Instruct. As reward, we consider the negative energy of the prepared state under an unknown
Hamiltonian with strong interaction terms, requiring entanglement for optimal performance. The
feature map for the linear Gaussian process over rewards consists of a code validity bit as well as all
two-qubit Pauli observables, which can be efficiently simulated using quantum computers.

5.2 BASELINES

We compare against seven baselines. For fair comparison, the reward model (if present) is always
a Gaussian process over the same (deep) embeddings. As in Li et al. (2022), UNGUIDED GEN-
ERATION samples directly from the pre-trained LLM without feedback, serving as a non-adaptive
baseline. As in Kristiadi et al. (2024) and Ranković & Schwaller (2025), POST-GENERATION TS
performs Thompson sampling over a fixed subset of candidates (of size 1000), here generated by the
LLM prior to optimization. ACTOR CRITIC (Barto et al., 1983) maximizes Ex∼πθ [µx] rather than
V , and SOFT ACTOR CRITIC (Haarnoja et al., 2018) additionally adds entropy regularization, i.e.,
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(c) Quantum Circuit Design
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(e) Protein Search
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(f) Quantum Circuit Design
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Figure 4: Across three tasks and within a collection of methods covering Bayesian optimization, re-
inforcement learning, as well as evolutionary search, TOSFIT exhibits state-of-the-art performance.
In (b) and (e) EVOLUTIONARY SEARCH (LLM) and FIBO use Qwen for instruction following.
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maximizes Ex∼πθ [µx − α lnπθx]. EVOLUTIONARY SEARCH (CHARACTER) (Holland, 1975) treats
solutions as sequences of text characters and applies biology inspired crossover and mutation opera-
tors. EVOLUTIONARY SEARCH (LLM) (Romera-Paredes et al., 2024) prompts a language model to
conduct crossover and mutation of solutions. Finally, FIBO (Sutter et al., 2025) performs Thompson
sampling fully in-context of an LLM by attending to a list of evaluated candidate solutions.

5.3 TOSFIT OBTAINS STATE-OF-THE-ART SAMPLE EFFICIENCY
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Figure 5: TOSFIT balances explo-
ration with exploitation leading to
stable policy diversity. Shown on
Quantum Circuit Design, for other
settings, see Section A.2.

Consider Figure 4. In all three tasks—FAQ Response Refine-
ment, Protein Search, and Quantum Circuit Design—TOSFIT
obtains state-of-the-art sample efficiency. Indeed, the best-seen
reward of UNGUIDED GENERATION quickly saturates at a sub-
optimal level. Classical Bayesian optimization over a fixed
subset of generated candidates (POST-GENERATION TS) iden-
tifies a good solution more efficiently, but remains confined to
the initial sample pool. EVOLUTIONARY SEARCH as well as
ACTOR CRITICS conduct undirected exploration without opti-
mism in the face of uncertainty, i.e., an exploration bias guided
by the reward potential of unexplored regions. As confirmed
in Figure 5, the optimism of TOSFIT results in a more stable
exploration-exploitation tradeoff than that of ACTOR CRITICS.
FIBO is closest to TOSFIT in spirit, but relies on in-context
learning instead of parameter updates. As can be seen from
the result, this leads to significantly lower performance than
TOSFIT. As FIBO keeps the generated candidate solutions as
generation context, it quickly runs out of memory and compute scales quadratically with the number
of rounds, forcing us to compare against a top-10 truncated version of FIBO in Figure 4d.

Exploits
Promising
Regions

Explores
using

Entropy

Explores
using

Optimism

Conditions
Model

Generation

Instruction
Following
Agnostic

UNGUIDED GENERATION no no no no yes
POST-GENERATION TS yes yes yes no yes

EVOLUTIONARY SEARCH yes no no yes no
ACTOR CRITIC yes no no yes yes

SOFT ACTOR CRITIC yes yes no yes yes
FIBO yes yes yes yes no

TOSFIT yes yes yes yes yes

Table 1: Among all LLM-based methods considered for optimization, only TOSFIT explores using
optimism, conditions model generation for improved efficiency, and does not require the LLM to
execute complex procedures via instruction following which sets requirements on the model size.

Scaling to Larger Models Contrast the top row of experiments in Figure 4 with the bottom row
(in Protein Search ProtGPT-2 is used twice for TOSFIT as well as all baselines without instruction
following due to the absence of larger variants thereof). While increasing the model size is highly
beneficial to FAQ Response Refinement, a natural language task, the tasks of Protein Search and
Quantum Circuit Design profit far less. This matches the observations by Romera-Paredes et al.
(2024) for code discovery. Indeed, novel discovery often requires leaving the training data manifold,
i.e., the generative policy does not have to be tightly concentrated on the most promising solutions.

5.4 TOSFIT REMAINS EFFECTIVE IN BATCHED BAYESIAN OPTIMIZATION

So far, we have focused on sequential Bayesian optimization, setting b = 1 in Algorithm 1. How-
ever, when observations are delayed or time-consuming, batched Bayesian optimization becomes
preferable. Figure 6 considers a setting where up to 16 proteins can be synthesized and tested in
parallel. While batching reduces sample efficiency—requiring more evaluations to reach a given
reward—it improves iteration efficiency, achieving target performance in fewer rounds.
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Figure 6: Protein Search with batched TOSFIT. The number to the right indicates the batch size b.
Larger batches improve the iteration efficiency (left) with slightly lower sample efficiency (right).

5.5 TOSFIT TRADES OFF COMPUTATIONAL EFFICIENCY WITH SAMPLE EFFICIENCY
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(a) Latency on fully batched (B =
b = 16) Protein Search. FIBO and
EVOLUTIONARY SEARCH (LLM)
are each tested with Qwen3-0.6B
(fast) and Qwen3-8B (slow).
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(b) The sample efficiency of TOSFIT
on Protein Search is improved by in-
creasing the number of steps of gradi-
ent ascent per round (denoted by c).

Figure 7: TOSFIT has state-of-the-art computational efficiency (a)
and can trade off computational efficiency with sample efficiency (b).

Consider Figure 7a,
which explores the com-
putational efficiency of
TOSFIT. We do not plot
the ACTOR CRITICS and
POST-GENERATION TS,
as their computational
cost matches, respectively,
TOSFIT and UNGUIDED
GENERATION with strictly
worse reward. For 10′000
rounds FIBO runs out of
memory in its standard
implementation, thus we
once again implement
FIBO attending only to the
top-10 candidate solutions
and their scores. This also
decreases its compute costs
drastically at the cost of
limiting its sample efficiency. Note that the strong sample efficiency of TOSFIT compensates for the
additional compute cost introduced by model fine-tuning, resulting in state-of-the-art computational
efficiency. Next, consider Figure 7b. By investing additional compute through multiple steps of
gradient ascent per round, the sample efficiency of TOSFIT can be further improved if needed.

5.6 TOSFIT BENEFITS FROM STRONG PRIORS AND REQUIRES CAREFUL FINE-TUNING

Lastly, we validate our theoretical insights. Theorem 1 highlights the importance of initializing the
sampling policy with strong prior knowledge. Figure 8 provides empirical support: masking the
number of qubits in the prompt (TOSFIT weak context) leads to a significantly worse reward than
using the full prior context (TOSFIT). Note that uniform initialization fails to produce valid code.
The theorem further suggests cautious adaptation to avoid drifting too far from the initialization.
As shown in Figure 9, a large learning rate may initially improve performance by closely following
VBOS, but eventually leads to forgetting the prior and stagnating as optimization becomes harder.

6 RELATED WORK

As a remedy for the intractable maximization of acquisition functions over combinatorially large
discrete domains, Bal et al. (2025) assume a factorization into the cartesian product of much smaller
domains. They then identify local maxima as configurations where changing any of the factors
individually decreases the acquisition function, and query the black-box function with the highest
scoring game equilibrium. In contrast to TOSFIT, the domain must be structured to admit a factor-
ization into cartesian products, and their optimization strategy does not leverage priors from LLMs.
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Figure 8: TOSFIT benefits markedly from a
strong initial policy. On Quantum Circuit De-
sign, using the most informative initial policy
yields much better performance.
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Figure 9: Careful adaptation to VBOS is essen-
tial to retain prior knowledge, here demonstrated
for FAQ Refinement. The learning rate (η) is in-
dicated to the right.

In a similar vein, Swersky et al. (2020) propose maximization of acquisition functions over discrete
spaces through local mutations of a candidate solution. To conduct directed mutations, they learn a
policy. In contrast to TOSFIT, their policy must be repeatedly applied to maximize the acquisition
function, which quickly becomes expensive by itself, and shares similar limitations to Bal et al.
(2025), such as the need for structured domains and lack of integration with pre-trained models.

There is extensive prior work on relaxing Bayesian optimization over discrete space to continuous
space using variational autoencoders (Kusner et al., 2017; Lu et al., 2018; Griffiths & Hernández-
Lobato, 2020; Notin et al., 2021; Lee et al., 2025). Acquisition function maximization is then
tractably performed via gradient ascent in the continuous latent space. However, these methods
require a task-specific pre-training phase for the autoencoder, whereas TOSFIT can be applied zero-
shot through prompt-conditioning, thus benefiting from large-scale industrial LLM pretraining.

Finally, Ranković & Schwaller (2025) learn deep kernel features for Bayesian optimization with
Gaussian processes. By treating the neural feature map as a hyperparameter, they use gradient ascent
to maximize the marginal likelihood of observations during Bayesian optimization in a fully online
fashion. Experimentally, they find much better optimization trajectories compared to fixed feature
maps. That said, they do not address the intractability of acquisition function maximization. Their
method is complementary to TOSFIT and could be integrated to learn task-specific embeddings.

7 CONCLUSION

We demonstrate that Thompson sampling can be efficiently scaled to large unstructured discrete
domains by parameterizing the probability of maximality with a generative policy. Our theoreti-
cal analysis reveals that VBOS already leverages the kernel structure of Gaussian processes and
achieves the strong regret bound of standard Thompson sampling and GP-UCB. Extending these
results to approximate VBOS highlights the importance of initializing the sampling policy accord-
ing to strong priors from pre-training and adapting it cautiously to maintain prior knowledge. These
insights are supported by empirical results across three diverse tasks. Within a collection of meth-
ods covering Bayesian optimization, reinforcement learning, as well as evolutionary search, and
to statistical significance, TOSFIT exhibits simultaneously state-of-the-art sample efficiency and
computational efficiency. Together, our findings demonstrate the potential of combining foundation
models with principled Bayesian optimization to tackle complex, discrete search problems.

7.1 LIMITATIONS AND FUTURE WORK

To ensure controlled comparisons, we evaluate TOSFIT under fixed feature maps—either derived
from pre-trained embeddings or manually designed. A promising direction for future work is to
learn deep, task-adaptive embeddings jointly with the Gaussian process, as in Ranković & Schwaller
(2025), or replace the GP with more expressive reward models such as Bayesian neural networks
or ensembles (Lakshminarayanan et al., 2017). Moreover, to reduce the computational and memory
overhead introduced by fine-tuning, one could restrict updates to the last few layers of the gener-
ator. Finally, alternative strategies for optimizing the VBOS objective V(π)—such as in-context
conditioning—may offer a lightweight alternative to weight adaptation.
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All experiments were conducted using publicly available models. The proposed method, TOSFIT,
is intended for research in optimization over discrete domains and is evaluated in controlled settings.
We emphasize that TOSFIT is not intended for deployment in high-stakes decision-making without
appropriate human oversight and domain-specific validation. As TOSFIT avoids the costly max-
imization of acquisition functions, environmental impact was a central consideration. No known
conflicts of interest are associated with this work.

REPRODUCIBILITY STATEMENT

Apart from the code provided in the supplementary materials, pseudocode for TOSFIT is given in
Algorithm 1. The baselines are also implemented in the code in a self-contained manner. The ex-
perimental environments for the three tasks considered is also provided in the code. Moreover, the
provided README.md gives a step-by-step tutorial to reproduce all results in the paper. The hard-
ware and software for running the experiments is described in detail in Section B of the Appendix.
Furthermore, Section B.3 details the hyperparameter sweep conducted during development of this
paper. In the evaluation, statistical significance is indicated via mean and standard error under 25
seeds, set to 0, . . . , 24. All theoretical statements are self-contained and include the complete set
of assumptions. Both detailed proofs as well as proof sketches for the main results are provided in
Section E of the Appendix. We distinguish between novel claims and prior statements by citing the
appropriate works.
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APPENDIX

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 COMPUTATIONAL COST OF TOSFIT

Bayesian optimization is designed to trade the number of evaluations of an expensive reward func-
tion against the computationally demanding computation of the reward posterior. In this spirit, we
emphasize sample efficiency as the main consideration. Nevertheless, as measured in wall-clock
time in Table 2, model fine-tuning only incurs a minor latency overhead (here 19%). As a result,
despite more cost per round TOSFIT reaches higher reward scores at a fixed computational budget,
i.e., it is computationally more efficient than all baselines (see Figure 7a).

Autoregressive Generation Model Fine-Tuning GP Update TOSFIT
1.08± 0.05 s 0.21± 0.01 s 0.33± 0.06 ms 1.29± 0.05 s

Table 2: Wall-clock time per step of fully-batched TOSFIT (b = B = 16) on an A100 GPU for
Protein Search. The majority of the runtime is spent on candidate generation.

Note that in the fully-batched setting considered here all generations are both used to estimate
VBOS gradients and to provide observational feedback to the reward model. The 19% overhead
observed in Table 2 stems from the additional non-auto-regressive backward pass during model
fine-tuning. This computational overhead results in fewer generated candidates at a fixed budget.

A.2 GENERATION DIVERSITY

A common failure point of reward-based fine-tuning is diversity collapse of the policy. As can be ob-
served in Figure 10, ACTOR CRITIC (Barto et al., 1983) is strongly at risk. In contrast, SOFT ACTOR
CRITIC (Haarnoja et al., 2018) retains diversity by directly regularizing the loss with an additional
entropy term. Similarly, the objective of TOSFIT contains the additional term

√
−2 lnπθx · σx,

which can be understood as entropy regularization targeted toward underexplored regions where σx
is large. As shown in Figure 10, this results in highly robust diversity trajectories. Moreover, in con-
trast to constant entropy regularization, such an uncertainty-aware exploration-exploitation tradeoff
increases diversity in case of large uncertainty, and decreases diversity given sufficient observations.

(a) FAQ Response Refinement (b) Protein Search (c) Quantum Circuit Design

Figure 10: TOSFIT directs exploration by incorporating uncertainty-aware entropy regularization
via Ex∼πθ [

√
−2 lnπθx · σx]. It avoids the diversity collapse of ACTOR CRITIC and is more stable

than SOFT ACTOR CRITIC (see Subfigure 10c). Moreover, by steering generation diversity with the
reward uncertainty σx, TOSFIT enables both phases of exploration and phases of exploitation. Note
that the behavior of each method yields distinct observation histories on top of loss discrepancies.
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A.3 LOSS AND RISK OF OVERFITTING

Figure 11: Evolution of the VBOS ob-
jective during Quantum Circuit Design
using a Qwen2.5-Coder-1.5B.

The loss function in TOSFIT is set to the negative VBOS
objective, i.e., is a lower bound on −maxx∈X Rx. In
contrast to training on a fixed dataset, the loss function
evolves during optimization as more data is observed.
Thus, the optimization dynamics typically do not lead to
a monotonous increase in the objective, see Figure 11.
Such non-stationarity leads to incorrect gradient statistics
for optimizers like Adam (Kingma & Ba, 2015). Thus,
we adopt vanilla stochastic gradient descent. Moreover,
in contrast to a fixed dataset, there is no risk of overfitting
the policy: the optimal policy is the one that maximizes
the VBOS objective, as proven in Theorem 1. Indeed,
both entropy regularization and uncertainty in the reward
function are directly integrated into the loss. Overfitting
of the reward surrogate µx±σx may still occur, but can be
mitigated by adopting ensembles or Gaussian processes.

B EXPERIMENTAL DETAILS

To ensure reproducibility, we provide the setup for each of the experiments in Section 5. All experi-
ments were conducted on compute nodes with an AMD EPYC 7763 64-Core CPU, 2TB RAM, and
an NVIDIA A100-SXM4 GPU (80GB), running on Red Hat Enterprise Linux 9.4 with CUDA 12.4.
Our Pytorch-based code (Paszke et al., 2019) is provided in Supplementary Materials, including
experimental configuration files and an environment file specifying the necessary Python packages
and their versions.

B.1 BASELINES

For UNGUIDED GENERATION, we simply generate and evaluate candidates according to the
hyperparameters detailed in Section B.2.

For POST-GENERATION TS, we first generate a fixed candidate pool using the large lan-
guage model with the same hyperparameters, where the pool size is set to the number of steps of
Bayesian optimization. Then, we conduct standard Thompson sampling on the candidate subset
using a Gaussian process surrogate model derived from the (deep) task-dependent embeddings.

For TOSFIT, we generate and evaluate candidates according to the same hyperparameters,
but additionally follow Algorithm 1 to perform weight updates for consistency between the policy
and the surrogate reward model, the same Gaussian process as in POST-GENERATION TS.

The ACTOR CRITIC baseline follows TOSFIT, but maximizes Ex∼πθ [µx] rather than V .

SOFT ACTOR CRITIC additionally adds entropy regularization to ACTOR CRITIC, i.e., maximizes
Ex∼πθ [µx − α lnπθx]. The hyperparameter α is swept for each experimental setting.

For the EVOLUTIONARY SEARCH baselines, we generate new candidates by selecting two
parents in each round independently via tournament selection with tournament size 3 and applying
a crossover and mutation operation. We only let the 10 fittest members of the population survive.
The initial population has one entry that acts as an example for the desired format. For the three
tasks considered, the initial entry is set to

FAQ: How do I reset my password?
Q: How do I reset my password?
A: To reset your password, follow these steps:
Log in to your account (if you have access to the platform or
service you’re using).
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Locate the ’Forgot Password’ or ’Reset Password’ link, usually
found in the login form or menu.
Enter your email address or username associated with your account.
Follow the instructions sent to your email (or the confirmation
screen).
Complete the password reset process by entering a new password
and confirming it.
Submit the form to finalize the reset.
If you’re unable to locate the "Forgot Password" option,
contact the support team for assistance.

MINDLLDISRIISGKMTLDRAEVNLTAIARQVVEEQRQAAEAKSIQLLCSTPDTNHYVFG
DFDRLKQTLWNLLSNAVKFTPSGGTVELELGYNAEGMEVYVKDSGIGIDPAFLPYVFDRF
RQSDAADSRNYGGLGLGLAIVKHLLDLHEGNVSAQSEGFGKGATFTVLLPLKPLKRELAA
VNRHTAVQQSAPLNDNLAGMKILIVEDRPDTNEMVSYILEEAGAIVETAESGAAALTSLK
SYSPDLVLSDIGMPMMDGYEMIEYIREWKTTKGG

qc.cx(0, 1)

EVOLUTIONARY SEARCH (CHARACTER) applies crossover by cutting each parent in half at a
uniformly chosen location and stitching the pieces together. Mutation is performed through random
substitution (at rate 0.05 per position) of the characters of the candidate solution with a letter from
the vocabulary ACDEFGHIKLMNOPQRSTUVWY for Protein Search and one of the 95 printable
ASCII characters for FAQ Response Refinement and Quantum Circuit Design. After substitution,
random insertion & deletion of characters (at rate 0.01) is performed.

EVOLUTIONARY SEARCH (LLM) performs crossover and mutation in context through
instruction following of the subsequent system prompt

You are conducting evolutionary search in context. You are
provided two candidate solutions. Propose a new distinct solution
by combining the candidate solutions and mutating the result.
Your novel candidate solution must be enclosed by
<candidate> </candidate>. Never repeat previous solutions. Your
search space is over FAQ responses to the question "How do I reset
my password?". /no_think

[...] Your search space is over amino acid sequences, with each
amino acid represented as a single-letter code./no_think

[...] Your search space is over 6-qubit Qiskit quantum circuits,
already prepared with ‘qc = QuantumCircuit(6)‘.

Finally, FIBO implements Thompson sampling fully in context by attending to a list of evalu-
ated candidate solutions, initially set to the same examples provided to EVOLUTIONARY SEARCH
(LLM). The algorithm implements Thompson sampling by adopting the following system prompt:

You are conducting Bayesian optimization (Thompson sampling) fully
in context. You are provided a list of candidate solutions and the
rewards achieved by these solutions. Propose a new distinct
solution that maximizes the reward. Your novel candidate solution
must be enclosed by <candidate> </candidate>. Never repeat
previous solutions. Your search space is over FAQ responses to the
question "How do I reset my password?". /no_think

[...] Your search space is over amino acid sequences, with each
amino acid represented as a single-letter code./no_think

[...] Your search space is over 6-qubit Qiskit quantum circuits,
already prepared with ‘qc = QuantumCircuit(6)‘.
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B.2 EXPERIMENTAL DETAILS SHARED ACROSS EXPERIMENTS

TOSFIT requires minimal task-specific hyperparameter tuning. Across all experiments with a Gaus-
sian process reward model, a burn-in period of m = 16 steps is adopted and an exploration bonus
of 4.0 is applied to the prior amplitude inferred via MLM. The noise-to-amplitude ratio σnar is al-
ways set to 0.01, reflecting the absence of noise in the measurements, but ensuring stable inversion
of the observation covariance matrix. Unless stated otherwise, the number of steps of gradient as-
cent per step of Bayesian optimization, c, is fixed at 1 to maximize computational efficiency. To
ensure stable estimation of VBOS gradients, the generation batch size B is always set to 16 with
temperature set to 1.0. We conduct unbatched Bayesian optimization (b = 1) unless otherwise spec-
ified. Learning rates are the only hyperparameters tuned per task: 1.0 × 10−7 for FAQ refinement,
1.0 × 10−5 for Protein Search, and 5.0 × 10−6 for Quantum Circuit Design. The baseline SOFT
ACTOR CRITIC requires an additional entropy regularization coefficient as hyperparameter and is
swept across {0.01, 0.1, 1.0, 10.0} for each experiment. We report on the best configuration.

Implementation Details of TOSFIT To reduce the memory overhead of TOSFIT compared to
UNGUIDED GENERATION (and in light of Section A.3), we do not adopt parameter-wise optimiza-
tion statistics (Kingma & Ba, 2015). Instead, we use vanilla stochastic gradient descent with a fixed
learning rate and without momentum. We do not store the gradients, but instead apply them di-
rectly during the backward pass. Also, while we perform fully-batched auto-regressive generation,
the forward & backward passes to compute d

dθ lnπθ(xi) are performed in unbatched fashion with
checkpointing. This crucially brings down memory consumption with little impact on runtime. All
experiments were run on a single NVIDIA A100 GPU with 80 Gigabytes of VRAM.

B.3 CHOICE OF HYPERPARAMETERS

As mentioned above, TOSFIT requires minimal task-specific hyperparameter tuning. Indeed, only
the learning rate is tuned for each task, based on one-dimensional grid search with search loca-
tions {5.0× 10−5, 1.0× 10−5, 5.0× 10−6, 1.0× 10−6, 5.0× 10−7, 2.0× 10−7, 1.0× 10−7, 5.0×
10−8}. Burn-in periods of m ∈ {4, 8, 16} were tried out with 16 being sufficiently large to en-
sure stable marginal likelihood maximization, yet small enough to not significantly impact sam-
ple efficiency due to delayed optimization. The exploration bonus was sweeped across the set
{1.0, 2.0, 4.0, 8.0, 16.0} on a toy task. A bonus of 4.0 provided the best trade-off between ex-
ploration and exploitation, and generalized to strong performance on the reported experiments. The
number of steps of gradient ascent per step of Bayesian optimization, c, was kept to 1 in order to
minimize the computational overhead compared to UNGUIDED GENERATION. For the generation
batch size B, the values {4, 8, 16, 32, 64} were tried out. 16 was the smallest size where GPU uti-
lization became acceptably large during auto-regressive generation. However, empirically B did
not significantly impact the simple regret trajectories during Bayesian optimization, suggesting that
it could possibly be lowered for alternative models and/or hardware. The baseline SOFT ACTOR
CRITIC requires an additional entropy regularization coefficient as hyperparameter and is swept
across {0.01, 0.1, 1.0, 10.0} for each experimental setup.

B.4 FAQ REFINEMENT

For TOSFIT, the ACTOR CRITICS, UNGUIDED GENERATION, and POST-GENERATION TS, we use
the Qwen3-1.7B/Qwen3-8B model with the system prompt You are a helpful assistant. followed by
the prompt Write an FAQ response to the question "How do I reset my password?". /no_think. We
adopt a learning rate of 1.0E-7/2.0E-7. As kernel features, we extract the first 256 entries of the
Qwen3-Embedding-0.6B model (Zhang et al., 2025) with input set to the concatenation of prompt
and response. We normalize the result to the unit sphere and add an additional constant 1 entry to
act as a bias. The reward is modeled as the alignment to the unknown ground-truth response To reset
your password, go to the login page and click the “Forgot Password” link. Enter your registered
email address, and we’ll send you instructions to create a new password. Make sure to check your
spam folder if you don’t see the email within a few minutes., computed through the cosine similarity
between the full Qwen3-Embedding-0.6B embeddings of the candidate and the ground-truth.
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B.5 PROTEIN SEARCH

For TOSFIT, the ACTOR CRITICS, UNGUIDED GENERATION, and POST-GENERATION TS, we
use the ProtGPT2 model (Ferruz et al., 2022) with initial token <|endoftext|> and a learning rate of
1.0E-5. As kernel features, we normalize each 1280 dimensional token embedding of the generated
sequence to the unit sphere, average across the sequence length, normalize the result to the unit
sphere, and add an additional constant 1 entry to act as a bias. The reward is set to the negative
thermal instability index (Guruprasad et al., 1990) implemented in the BioPython library (Cock
et al., 2009).

B.6 QUANTUM CIRCUIT DESIGN

For TOSFIT, the ACTOR CRITICS, UNGUIDED GENERATION, and POST-GENERATION TS, we
use the Qwen2.5-Coder-1.5B/Qwen2.5-Coder-7B model (Hui et al., 2024) prompted with fill-in-
the-middle (Bavarian et al., 2022) to generate a Qiskit circuit (Javadi-Abhari et al., 2024):

<|fim_prefix|>
def circuit():

qc = QuantumCircuit(6)
<|fim_suffix|>

return qc
qc = circuit()
state = Statevector.from_instruction(qc)
<|fim_middle|>}.

We adopt a learning rate of 5.0E-6/1.0E-5. As kernel features, we take all 210 two-qubit Pauli
observables, which are efficiently simulated by quantum computers, and concatenate an additional
code invalidity bit. If the code invalidity bit is set to 1, all other features are set to zero. Finally,
we add a constant 1 entry to act as a bias. The reward is set to the negative energy of the prepared
state according to an unknown Hamiltonian. The Hamiltonian is constructed through the following
weighted linear combination of Pauli terms:

(ZIIIIII, -1.0)
(IZIIIII, 1.0)
(IIXIIII, -1.0)
(IIIYIII, -1.0)
(IIIIZZI, -1.0)
(IIIIXXI, -1.0)
(IZZIIII, -1.0)
(YIIIIIX, -0.5)
(IIZIIIX, -0.5).

Note that the Hamiltonian heavily features superposition-inducing X and Y operators and pair-wise
interaction terms, necessitating entanglement to reach the lowest energy state.

C STANDARDIZED RLOO IS GRPO

TOSFIT crucially relies on the score trick (Williams, 1992) for unbiased gradient estimation of the
VBOS objective (see Proposition 1). The generalized score trick states that for xi

i.i.d.∼ πθ

d
dθEx∼πθ [r(x, θ)] = Ex∼πθ

[(
r̂(x, θ) + ξ

)
d
dθ lnπ

θ(x)
]
≈ 1

B

∑
i(r̂(xi, θ) + ξi)

d
dθ lnπ

θ(xi),

where r̂(x, θ) = d
dθ r(x, θ)/

d
dθ lnπ

θ(x) + r(x, θ). Note that for unbiased estimation the free base-
line ξ ∈ R can be chosen differently for each i ∈ {1, . . . , B} as long as it does not depend on
xi. One effective baseline that greatly reduces the variance is to set ξi = 1

B−1

∑
j ̸=i r̂(xj , θ)

(Kool et al., 2019), resulting in the ‘Reinforce Leave One Out‘ (RLOO) advantage function
r̂j − 1

B−1

∑
j ̸=i r̂(xj , θ). As we show in Proposition 3, standardization of RLOO recovers the

advantage function introduced by Shao et al. (2024) for Group Relative Policy Optimization.
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Proposition 3. Consider the ‘Reinforce Leave One Out‘ (Kool et al., 2019) advantage function given
by r̂i− 1

B−1

∑
j ̸=i r̂j for i.i.d. samples r̂j with j ∈ {1, . . . , B}. Then the expected advantage is zero

and an unbiased estimator of the variance is 1
B

∑
h(r̂h −

1
B−1

∑
l ̸=h r̂l)

2. Moreover, standardizing
RLOO results precisely in the advantage function employed by Shao et al. (2024) for ‘Group Relative
Policy Optimization‘ (GRPO):

r̂i − 1
B−1

∑
j ̸=i r̂j√

1
B

∑
h(r̂h −

1
B−1

∑
l ̸=h r̂l)

2︸ ︷︷ ︸
standardized RLOO

=
r̂i − 1

B

∑
j r̂j√

1
B

∑
h(r̂h −

1
B

∑
l r̂l)

2︸ ︷︷ ︸
GRPO

D CONSTANT-TIME GP INFERENCE

To ensure efficient runtime in large-scale settings and to integrate with deep neural features ϕ : X →
Rd, we consider Gaussian processes (GPs) with linear kernels over Rd (Rasmussen & Williams,
2006). As we explain in the following, our implementation requires a constant Θ(d2) memory
and compute for conditioning on an observation, inferring posterior mean & variance at a point, and
even conducting marginal likelihood maximization. In contrast to a straightforward implementation,
it does not increase with the number of past observations.

D.1 SETTING

Let R ∼ GP(ν, λ2k̄) with linear kernel k̄x,z = ϕ(x)Tϕ(z) for ϕ : X → Rd. Here, λ ∈ R+ and
ν ∈ R denote parameters of the prior. We assume that observations yx of rx come with i.i.d. additive
Gaussian noise, i.e., Yx ∼ Rx + λ ε for ε ∼ N (0, σ2

noise) independent across observations. Then,
given a batch of observations (xO, yO), the posterior GP takes the closed form

µx = ν + k̄Tx,xO (k̄xO,xO + σ2
narIs)

-1(yO − ν), (3)

kx,z/λ
2 = k̄x,z − k̄Tx,xO (k̄xO,xO + σ2

narIs︸ ︷︷ ︸
Σ=ΣYO/λ

2

)-1k̄z,xO , (4)

where σnar = σnoise/λ denotes the noise to amplitude ratio and ΣYO = λ2Σ the observation
covariance matrix.

D.2 CLOSED-FORM MLM

In our setup, the only free parameters are the global scale λ ∈ R+ and the global offset ν ∈ R. We
avoid optimizing σnar ∈ R+ due to (1) its dual use for numerical stability of the inverse of Σ and (2)
analytical intractability of general marginal likelihood maximization. As we prove in Proposition 4,
in this setting the marginal data likelihood can be maximized efficiently in closed form.

Proposition 4. Let Y ∼ N (ν, λ2Σ). Then for y ∈ Rs, the (marginal) likelihood p(Y = y) is
maximized if

νopt = yTΣ-11

1TΣ-11
and λopt =

√
(y−νopt1)TΣ-1(y−νopt1)

s .

D.3 BYPASSING THE COVARIANCE MATRIX

The conditioning on observations in Equations (3) and (4) as well as the closed-form marginal
likelihood maximization outlined in Proposition 4 both rely on computing, storing, and inverting
the unscaled prior data covariance matrix Σ. Since Σ grows in s, trivial application of the closed
formulas would prevent constant-time GP inference. However, for linear kernels, a computationally
much more efficient form can be exploited instead. Define Φ := [ϕ(x1) . . . ϕ(xs)] ∈ Rd×s.
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Then, per the Sherman-Morrison-Woodbury formula

Σ-1 = (ΦTΦ+ σ2
narIs)

-1 =
1

σ2
nar

(Is − ΦT (ΦΦT + σ2
narId)

-1Φ),

ΦΣ-1 = (ΦΦT + σ2
narId︸ ︷︷ ︸

=:Ψ

)-1Φ, and (5)

Id − ΦΣ-1ΦT = Id −Ψ-1ΦΦT = σ2
narΨ

-1. (6)

Note that the expression to the left of Equation (5) underlies the conditioning of the mean in Equa-
tion (3) and that the left-hand expression of Equation (6) is used to condition the kernel in Equa-
tion (4). Therefore, given Ψ-1 ∈ Rd×d, and ΦyO,Φ1 ∈ Rd, computing µx and kx,z according to
Equations (3) and (4) can be performed in Θ(d2) steps for any prior parameter-pair (ν, λ). Further-
more, having additionally access to yTOyO,1

T1, yTO1 ∈ Rn allows performing closed-from marginal
likelihood maximization according to Proposition 4, also in Θ(d2) steps. So, to avoid scaling in the
number of past observations s, we only need to keep track of Ψ-1, ΦyO, Φ1, yTOyO, 1T1 and yTO1
during Bayesian optimization, i.e., while we add columns to Φ and new entries to yO and 1. For
most of these terms, this is trivial. Only Ψ-1 requires again relying on Sherman-Morrison-Woodbury,
i.e.,

Ψ−1
new =(ΦΦT + σ2

narI + ϕ(x)ϕ(x)T )-1

=Ψ-1 −Ψ-1ϕ(x) 1
1+ϕ(x)TΨ-1ϕ(x)

ϕ(x)TΨ-1.

Keeping track of these quantities requires Θ(d2) memory with each additional observation demand-
ing Θ(d2) compute, validating our complexity claims.

E PROOFS

Before diving into the individual proofs of the theorems and propositions introduced in the paper,
we take the opportunity to present proof sketches for the main results.

E.1 PROOF SKETCHES

Proposition 1 We show concavity by deriving the Hessian of the VBOS objective, which is a
diagonal matrix with non-positive entries. To derive the unbiased estimator of the gradients, we
apply the generalized score trick for reward functions that depend on the model parameters θ.

Proposition 2 After verifying convexity of f , we simply expand the definition of the Bregman
divergence and use that∇f(π̃) = µ− c1 for a Lagrange multiplier c, since π̃ is known to maximize
the VBOS objective on the probability simplex and known to lie in the relative interior.

Theorem 1 We first use linearity of expectation and the law of total expectation to individ-
ually consider the expected instantaneous regret E[E[R∗ − Rxt |Ht]] at each time step. Next,
we leverage the technical result from Corollary 2, established by prior work, to upper bound
E[R∗|Ht] with V(π̃t|Ht). In contrast to previous analysis by Tarbouriech et al. (2024), we in-
corporate practical limitations of gradient-based objective maximization by replacing V(π̃t) with
Dσt(π

t, π̃t)+V(πt). Since xt follows πt in practice, and not π̃t, it is essential to have V(πt) instead
of V(π̃t) as an upper bound. Now, following previous analysis, we simplify V(πt|Ht)−E[Rxt |Ht]
to E[σxt

√
−2 lnπt(xt)|Ht] and apply the Cauchy-Schwarz inequality to arrive at the product of a

term that scales in
√
T and

√∑
t E[σ2

xt ]. Whereas Tarbouriech et al. (2024) bound the latter based

on the pigeon-hole principle, we instead bound it by the maximal information gain γT , a technique
introduced by Srinivas et al. (2010) to analyze multi-armed bandits with correlated rewards.
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E.2 FORMAL PROOFS

Proposition 1. Consider the VBOS objective V(πθ) := Ex∼πθ [µx +
√
2 ln(1/πθx) · σx]. The

VBOS objective V is concave (strictly if σx > 0 ∀x) and its gradients are
d
dθV(π

θ) = Ex∼πθ
[(
µx−ξ − v-1(πθx) · σx︸ ︷︷ ︸

−µθx for ξ=κ

)
· d lnπ

θ
x

dθ

]
.

ξ ∈ R is an arbitrary baseline and -v-1(u) =
√

-2 ln(u)− 1/
√

-2 ln(u) ∼
√

-2 ln(u) as u→ 0.

Proof of Proposition 1. To show concavity, we follow the proof of Proposition 4 in Menet et al.
(2025) by noting that v′ > 0 and considering the (diagonal) Hessian of V , where

∂

∂rx
V(r) = µx + σx(

√
2 ln(1/rx)−

1√
2 ln(1/rx)

) = µx − σxv-1(rx), and

∂2

∂rx∂rz
V(r) = −σx1x=z

1

v′(v-1(rx))

{
≤ 0 x = z

= 0 x ̸= z
.

Note the use of the inverse function rule d
dav

-1(a) = 1/ ddbv(b)|b=v-1(a). In case σx > 0 ∀x, strict
concavity is even ensured. So, we only need to show the formula for gradients. We make use of the
score trick, which states that

d
dθEx∼πθ [f(x, π

θ(x))] = Ex∼πθ [
(
f(x, y) + y d

dyf(x, y)
)∣∣
y=πθ(x)

d lnπθ(x)
dθ ].

Plugging in and using that Ex∼πθ [ξ
d lnπθx
dθ ] = 0 for any constant ξ ∈ R (that neither depends on θ

nor x) results in the desired expression:

d
dθV(π

θ) =Ex∼πθ
[(
µx +

√
-2 ln(πθx) · σx − 1√

-2 ln(πθx)
· σx

)d lnπθx
dθ

]
=Ex∼πθ

[(
µx − v-1(πθx) · σx

)d lnπθx
dθ

]
=Ex∼πθ

[(
µx − ξ − v-1(πθx) · σx

)d lnπθx
dθ

]
.

Proposition 2. Let σ ∈ R|X|
+ . For the convex f(p) := −

∑
x pxσx

√
−2 ln px, define the Bregman

divergence Dσ(p, q) = f(p) − f(q) − ⟨∇f(q), p − q⟩. Then the Bregman divergence of any π ∈
∆|X|−1 from the maximizer π̃ := argmaxp∈∆|X|−1 V(p) is given by Dσ(π, π̃) = V(π̃)− V(π).

Proof of Proposition 2. We follow parts of the proof of Lemma 5 by Tarbouriech et al. (2024). First,
recall from Equation (2) the closed-form expression for π̃ = v(µx−κ

∗

σx
), where v is a cumulative

distribution function with v-1(u) = 1/
√
−2 lnu −

√
−2 lnu. Next, notice that due to v being a

cumulative distribution function one has − d2

dp2x
px
√
−2 ln px = d

dpx
v-1(px) = 1/(v′(v-1(px)) > 0.

As such, f(p) is continuously-differentiable and strictly convex (positive definite Hessian), i.e., the
Bregman divergence is well-defined. Next, recall that V(p) =

∑
x pxµx + σxpx

√
−2 ln px, and

thus V(p) = ⟨µ, p⟩ − f(p). Since π̃ maximizes V and is in the relative interior of the simplex (the
objective is concave and at the border its derivatives blow up), the Karush-Kuhn-Tucker conditions
give c1 = ∇V(π̃) = µ − ∇f(π̃) for some c ∈ R, i.e., ∇f(π̃) = µ − c1 and thus V(π) =
⟨∇f(π̃), π⟩− f(π)+ c. Plugging into V(π̃)−V(π) then gives precisely the definition of Dσ(π, π̃).

Theorem 1. Let R ∼ N (µ,K) with Kx,x ≤ 1 ∀x ∈ X and additive observation noise N (0, σ2
n).

3

If R is observed at xt ∼ πt for a policy πt depending on historyHt, then

E[
∑T
t=1R

∗ −Rxt ] ≤
√
CσnHTγ

T + E
∑T
t=1Dσt(π

t, π̃t).

Cσn := 4/ln(1 + σ−2
n ) is a constant, H := 1

T

∑
tH[πt|Ht] is the expected average entropy of the

policy and hence upper bounded by ln |X|, γT := maxLT I(YLT ;R) is the maximum information
gain for T observation locations LT , and π̃t is the unconstrained maximizer of VBOS givenHt.

3The theorem also holds for heteroscedastic additive Gaussian noise by replacing σn with maxx∈X σn(x).
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Proof of Theorem 1. First, note that if R is a multivariate Gaussian, then for Ht the history of ob-
servations at step t, Rt := R|Ht, is also a multivariate Gaussian ∀t. Next, we leverage Corollary 2
to upper bound the regret

E[
∑
tR

∗ −Rxt ] =
∑
t E[E[R∗ −Rxt |Ht]]

≤
∑
t E[V(π̃t|Ht)− Ext∼πt [µxt |Ht]]

=
∑
t E[V(πt|Ht) +Dσt(π

t, π̃t)− Ext∼πt [µxt |Ht]]
=
∑
t E[Ext∼πt [σxt

√
−2 lnπt(xt)|Ht] +Dσt(π

t, π̃t)].

Note the application of Proposition 2, which allows us to bound the cumulative regret even if the
policy πt differs from the one suggested by VBOS, i.e., π̃t. Next, we use the Cauchy-Schwarz
inequality as well as Lemma 4 to uncover the dependency on maximum information gain, a measure
of the complexity of the kernel. We get∑

t E[Ext∼πt [σxt
√
−2 lnπt(xt)|Ht]] ≤

√∑
t E[Ext∼πt [− ln(πt(xt))|Ht]]

√∑
t E[E[2σ2

xt |Ht]]

≤
√∑

tH[πt|Ht]
√
Cσnγ

T .

Lemma 1 (Donsker-Varadhan variational representation). Fix two probability distributions p : Σ→
[0, 1] and q : Σ→ [0, 1] over the measurable space (Ω,Σ) such that p is absolutely continuous with
respect to q (p≪ q). Then

DKL[p||q] = sup
X
{Ep[X]− lnEq[expX]},

where the supremum is taken over all measurable X : Ω → R such that Ep[X] and Eq[expX] are
well-defined.

Proof. The provided proof is a generalization of Theorem 3.2 by Gray (2011) from discrete spaces
to arbitrary probability spaces. Since p≪ q, there exists a Radon-Nykodym derivative dp

dq (ω), i.e., it

holds p(A) =
∫
A
dp
dq (ω)dq(ω) for a function dp

dq (ω) uniquely defined up to a set of q-measure zero.
Now, letX : Ω→ R be any random variable such that Ep[X] and Eq[expX] are well-defined. Then

DKL[p||q]− (Ep[X]− ln(Eq[expX])) =Ep[ln
dp

dq
(ω)]− Ep[ln

expX

Eq[expX]
]

=Ep[ln
(
dp

dq
(ω)

Eq[expX]

exp(X)

)
]

=Ep[ln
dp

dλ
] = DKL[p||λ] ≥ 0,

where we defined the probability measure λ(A) =
∫
A exp(X(ω))/Eq[expX]dq(ω), substituted

Eq [expX]
exp(X) = 1/dλdq = dq

dλ , and simplified the derivatives.

Lemma 2 (Conditioned KL-divergence). Consider the probability space (Ω,Σ,P) and an event
B ∈ Σ of non-zero probability, i.e. P[B] > 0. Then

DKL[P[ · |B] || P] = − lnP[B].

Proof. The proof follows Menet et al. (2025). According to the definition of conditional expectation
it holds

P[A |B] = P[A ∩ B]
P[B]

=

∫
A

1ω∈B

P[B]
dP(ω) ∀A ∈ Σ,

where we recognize absolute continuity P[ · |B] ≪ P and identify the Radon-Nykodym derivative
dP[ · |B]
dP (ω) = 1ω∈B

P[B] . Plugging the derivative into the definition of Kullback-Leibler divergence
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results in the desired term:

DKL[P[ · |B] || P] :=
∫
Ω

ln
dP[ · |B]
dP

dP[ · |B]

=

∫
Ω

ln(
dP[ · |B]
dP

)
dP[ · |B]
dP

dP

=

∫
Ω

ln(
1ω∈B

P[B]
)
1ω∈B

P[B]
dP

=− lnP[B].

Definition 1. The (Cramér) rate function Λ∗ of a random variable X : Ω → R is defined as the
convex conjugate of the cumulant generating function Λ, i.e.,

Λ∗(α) := sup
β>0

αβ − Λ(β) where Λ(β) := lnE[eβ(X−E[X])].

Lemma 3 (Upper bound on conditional expectation). Let X : Ω → R be a random variable
on (Ω,Σ,P) such that the (restricted) cumulant generating function Λ : R+ → [0,∞) β 7→
lnE[exp(β(X−E[X]))] exists. Assume further that P[B] > 0 such that P[·|B] is well-defined. Then
with Λ∗ the Cramer rate function of X (see Definition 1) it holds that

E[X|B] ≤ E[X] + (Λ∗)-1(− lnP[B]).

Proof. The provided proof is an adaptation of Lemma 11 by Tarbouriech et al. (2024). We apply
Lemma 1 with p(E) = P[E|B] and q(E) = P[E ], and restrict the supremum over just the random
variables {λ(X − EX)}λ∈R+ . This gives

DKL[P[·|B]||P] ≥ sup
λ∈R+

{λE[X − E[X] | B]− lnE[exp(λ(X − EX))]}

= sup{λ(E[X|B]− E[X])− Λ(λ) : λ ∈ R+}
= Λ∗(E[X|B]− E[X])

Furthermore, since λ ∈ R+ it follows that Λ∗ is strictly increasing and thus admits a strictly increas-
ing inverse, i.e.,

(Λ∗)-1(DKL[P[·|B] || P]) ≥ E[X|B]− E[X].

As a final step, we use Lemma 2, which states that DKL[P[·|B] || P] = − lnP[B].

Corollary 1 (Upper bound on Gaussian conditional expectation). LetX ∼ N (µ, σ2) and P[B] > 0.
Then

E[X|B] ≤ µ+ σ
√
−2 lnP[B].

Proof. Since X ∼ N (µ, σ2), it has a cumulant generating function Λ(β) = σ2β2/2 and a (Cramér)
rate function Λ∗(s) = s2/(2σ2) with inverse (Λ∗)-1(t) = σ

√
2t. Plugging into Lemma 3 results in

the desired expression.

Corollary 2. Let R ∼ N (µ,K) with σx :=
√
Kx,x. Define R∗ := maxxRx and p∗ := P[Rx =

R∗]. Then
E[R∗] ≤ V(p∗) ≤ max

p∈∆|X|−1
V(p).

Proof. The proof is a direct consequence of Corollary 1:

E[R∗] =
∑
x p

∗
x E[Rx|Rx = R∗] ≤

∑
x p

∗
x(µx + σx

√
−2 ln p∗x).
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Lemma 4. Let R : Ω → R|X| be a multivariate Gaussian with σRx ≤ 1 ∀x ∈ X that is consec-
utively evaluated at locations LT := (xt)Tt=1 with observations Yx = Rx + ϵx. The independent
noise is distributed as ϵx ∼ N (0, σ2

n(x)) for σn(x) ≤ σn ∀x ∈ X . Then the maximum information
gain γT upper bounds the aggregated predictive variances at the locations, i.e.,

γT := max
LT

I(YLT ;R) ≥ 2
ln(1+σ-2

n )
4︸ ︷︷ ︸

=:1/Cσn

T∑
t=1

σ2
Rt−1

xt
.

Proof. The proof generalizes that of Srinivas et al. (2010) from homoscedastic to heteroscedastic
noise. First, note that the expression on the right hand side is well-defined, because σRt−1

xt
only

depends on the observation locations LT , but not on the observed value. Next, note that YLT |R is a
multivariate normal with independent components of variance σ2

n(x
1), . . . , σ2

n(x
T ), thus

I(YLT ;R) = H[YLT ]−H[YLT |R]

= H[YLT ]− 1
2

∑T
t=1 ln(2πeσ

2
n(x

t)).

Furthermore, one may decompose

H[YLT ] = H[YLT -1 ] +H[YxT |YLT -1 ]

= H[YLT -1 ] + 1
2 ln(2πe(σ

2
n(x

T ) + σ2
RT -1
xT

)),

using that YxT |YLT -1 is Gaussian with variance σ2
n(x

T )+σ2
RT -1
xT

. Recursively expanding then results

in
I(YLT ;R) =

1
2

∑T
t=1 ln(1 + σ-2

n (x
t)σ2

Rt-1
xt
).

Finally, by assumption σRt-1
xt
∈ [0, 1], allowing to lower bound each summand

σ2
Rt-1
xt
≤ 1

2 ln(1 + σ-2
n (x

t)σ2
Rt-1
xt
) 12

4
ln(1+σ-2

n (xt))︸ ︷︷ ︸
=:Cσn(xt)

.

Indeed, the inequality is tight for σRt-1
xt
∈ {0, 1} and holds in-between due to concavity of

σ2
Rt-1
xt
7→ ln(1 + σ-2

n (x
t)σ2

Rt-1
xt
)− σ2

Rt-1
xt

ln(1 + σ-2
n (x

t)).

Proposition 3. Consider the ‘Reinforce Leave One Out‘ (Kool et al., 2019) advantage function given
by r̂i− 1

B−1

∑
j ̸=i r̂j for i.i.d. samples r̂j with j ∈ {1, . . . , B}. Then the expected advantage is zero

and an unbiased estimator of the variance is 1
B

∑
h(r̂h −

1
B−1

∑
l ̸=h r̂l)

2. Moreover, standardizing
RLOO results precisely in the advantage function employed by Shao et al. (2024) for ‘Group Relative
Policy Optimization‘ (GRPO):

r̂i − 1
B−1

∑
j ̸=i r̂j√

1
B

∑
h(r̂h −

1
B−1

∑
l ̸=h r̂l)

2︸ ︷︷ ︸
standardized RLOO

=
r̂i − 1

B

∑
j r̂j√

1
B

∑
h(r̂h −

1
B

∑
l r̂l)

2︸ ︷︷ ︸
GRPO

Proof of Proposition 3. With linearity of the expectation and r̂i
i.i.d.∼ p(r̂), the expected advantage

is
E[r̂i − 1

B−1

∑
j ̸=i r̂j ] = E[r̂]− 1

B−1

∑
j ̸=i E[r̂] = 0 ∀i.

From the same two properties, an unbiased estimator of the variance of the advantage also follows:

E[ 1B
∑
h(r̂h −

1
B−1

∑
l ̸=h r̂l)

2] =E[(r̂h − 1
B−1

∑
l ̸=h r̂l)

2]− 02

=Var[r̂i − 1
B−1

∑
j ̸=i r̂j ].
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Finally, simple algebra results in equivalence between variance-regularized RLOO and GRPO:

r̂i − 1
B−1

∑
j ̸=i r̂j√

1
B

∑
h(r̂h −

1
B−1

∑
l ̸=h r̂l)

2
=

(Br̂i −
∑
j r̂j)/(B − 1)√

1
B

∑
h((Br̂h −

∑
l r̂l)/(B − 1))2

=
B
B−1 (r̂i −

1
B

∑
j r̂j)√

( B
B−1 )

2 1
B

∑
h(r̂h −

1
B

∑
l r̂l)

2

=
r̂i − 1

B

∑
j r̂j√

1
B

∑
h(r̂h −

1
B

∑
l r̂l)

2
.

Proposition 4. Let Y ∼ N (ν, λ2Σ) and 1 = (1, . . . , 1)T ∈ Rs. Then for y ∈ Rs, the (marginal)
likelihood p(Y = y) is maximized if

νopt = yTΣ-11

1TΣ-11
and λopt =

√
(y−νopt1)TΣ-1(y−νopt1)

s .

Proof of Proposition 4. For y = α1, we get νopt = α and λopt = 0, i.e., Y = α1 and P[Y =
y] = 1, which is clearly optimal. So, w.l.o.g. assume y ̸∝ 1. Since p(y) is a smooth function of
ν ∈ R, λ ∈ R+, and because for any y ̸∝ 1 it holds that p(y) → 0 as ν → ±∞ or λ → {0,∞}, it
suffices to consider the first-order conditions to find the maximizers. With Lemma 5 providing the
gradients, the closed-form solutions follow swiftly. For ν we have

d
dν − 2 ln p(y) = −2(y − ν1)T 1

λ2Σ
-11 = 0.

Likewise, for λ we get
d
dλ − 2 ln p(y) = 2

λTr((
1
λ2Σ

-1 − 1
λ2Σ

-1(y − ν1)( 1
λ2Σ

-1(y − ν1))T )λ2Σ)
= 2
λTr(I −

1
λ2Σ

-1(y − ν1)(y − ν1)T )
= 2
λ (s− (y − ν1)TΣ-1(y − ν1)/λ2) = 0.

Lemma 5. Let Y ∼ N (µϕ,Σψ) with ϕ = (ϕ1, . . . , ϕm) and ψ = (ψ1, . . . , ψn). Then

-2 ln p(y) = ln |Σψ|+ (y-µϕ)TΣ-1
ψ (y-µϕ) + const. (7)

Moreover, its gradients with respect to ϕi are

−2(y − µϕ)TΣ-1
ψ

d

dϕ i
µϕ (8)

and its gradients with respect to ψi are

Tr((Σ-1
ψ − Σ-1

ψ (y − µϕ)(Σ-1
ψ (y − µϕ))T )

d

dψi
Σψ). (9)

Proof of Lemma 5. Equation (7) follows immediately by taking the logarithm of the multivariate
normal probability density function, given by

p(y) = 1√
(2π)d|Σψ|

exp(−(Y − µϕ)TΣ-1
ψ (Y − µϕ)/2).

Equation (8) follows from Equation (7) since

d

dϕi
− 2 ln p(y) = Tr(Σ-1

ψ

d

dϕi
(y − µϕ)(y − µϕ)T )

= −2Tr(Σ-1
ψ (y − µϕ)

d

dϕ i
µTϕ )

= −2(y − µϕ)TΣ-1
ψ

d

dϕ i
µϕ,
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where we have used symmetry of Σ-1
ψ in the last step. Likewise, Equation (9) results from Equa-

tion (7) through the following chain of equalities:

d

dψi
− 2 ln p(y) =Tr(Σ-1

ψ

d

dψi
Σψ) + Tr(

d

dψi
Σ-1
ψ (y − µϕ)(y − µϕ)T )

=Tr(Σ-1
ψ

d

dψi
Σψ − Σ-1

ψ

dΣψ
dψi

Σ-1
ψ (y − µϕ)(y − µϕ)T )

=Tr(Σ-1
ψ

d

dψi
Σψ − Σ-1

ψ (y − µϕ)(y − µϕ)TΣ-1
ψ

dΣψ
dψi

)

=Tr((Σ-1
ψ − Σ-1

ψ (y − µϕ)(Σ-1
ψ (y − µϕ))T )

d

dψi
Σψ),

where we have used that d
dx |M | = |M | · Tr(M

-1 d
dxM) and that d

dxM
-1 = −M -1 dM

dx M
-1 for M a

matrix-valued function of x, as well as symmetry of Σ-1
ψ .

F USE OF LARGE LANGUAGE MODELS

Large language models were used to aid and polish writing, in particular by giving feedback on the
clarity of this paper, and to a minor extent for retrieval and discovery (i.e., finding related work). No
large language model generated content was directly included without further adjustments.
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