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Abstract

Large Language Models (LLMs) have revolutionized mainstream software develop-
ment, yet their ability to generalize to esoteric languages — who may have small or
no representation in the training corpus —remains poor. Programming in esoteric
languages tests a model’s capacity to infer novel grammar and leverage nontrivial
reasoning capabilities in utilizing the documentation. To quantify these effects,
we evaluate both open and closed-source LLMs on code generation and language
identification tasks across four esoteric languages—Minipy, Pyth, Rhokell, and
0815—and compare traditional prompt-based methods to agentic coding IDEs. Our
findings reveal that LLMs can now generate some correct code in these languages
when provided with documentation and sparse examples; however, performance
remains far below that of similar models in common programming languages.
Furthermore, we introduce a novel in-context augmentation strategy in which
LLMs first generate solutions, which are then manually verified and re-inserted as
examples into subsequent prompts. Our results indicate that strategically embed-
ding just a few analogous problems can yield large accuracy improvements without
any model retraining. Our findings show that this “self-scaffolding” approach can
boost performance on coding benchmarks: inserting Deepseek’s verified EsoEval
solutions raised EsoEval accuracy on Pyth from 16.67% to 30.82 %, while Hu-
manEval accuracy on Minipy jumped from 51% to 65%. We offer this as a flexible
alternative to costly fine-tuning, paving the way for rapid adaptation of LLMs to
highly specialized, emerging, or other low data domains.

1 Introduction

Large Language Models (LLMs) pretrained on massive amounts of text and code data have demon-
strated promising performance across various code generation tasks. As these models become
increasingly prevalent, a key application area is the generation of code in specialized domains. New
languages are constantly being developed to better address things like performance, security, or ease
of writing specific types of programs. Given the high cost of fine-tuning LLMs, in-context learn-
ing—Ileveraging instructions and examples provided within prompts—has emerged as the preferred
method for adapting these models to tasks and domains that were not encountered during training.

Previous studies have employed in-context demonstrations to prompt LLMs to generate code that
interfaces with external, task-specific library functions [|Gupta and Kembhavi, 2023]]. Additionally,
[Patel et al., 2024] observed that LLMs exhibit a strong capability to understand and utilize novel
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code libraries based solely on in-context information and showed that LLMs could learn an entirely
unfamiliar programming language known as Isabelle despite minimal available data.

Unlike mainstream programming languages, which benefit from extensive online documentation and
training data, esoteric programming languages present a challenging test bed where models have
had far less data to learn from but can rely on full documentation provided at run-time. Building on
the preliminary observation that LLMs can learn new programming languages using only in-context
demonstrations, we aim to explore several key questions. Specifically, we investigate: which esoteric
languages can LLMs effectively handle? How far can these languages deviate from conventional
programming paradigms while still being learned effectively? Do smaller, open-source models exhibit
similar capabilities?

Whereas previous studies focus on a single API or language, we evaluate LLMs across a diverse
range of esoteric languages (Minipy, Pyth, Rhokell, 0815) that vary in syntax and online footprint,
and under two benchmarks (HumanEval, EsoEval) of differing complexity. We introduce a self-
scaffolding procedure: model-generated solutions are manually verified and then re-inserted as
in-context examples, to boost performance without retraining, providing a lightweight adaptation
method that complements these prior techniques.

2 Methodology

2.1 Model Familiarity

We conducted an assessment of our model’s familiarity with our chosen esolangs by asking the models
to describe the language and to identify code examples. We evaluated the model’s descriptions of the
programming languages by hand, as summarized in Figure[I] For the code identification task none of
the models were able to correctly identify the programming language from the code examples.

2.2 Measuring Esolang Obscurity

We first quantify how obscure these esoteric languages are by gathering data on two key indicators:
(1) the number of search engine results containing references to each language and (2) the number of
publicly available GitHub repositories referencing this language.

To estimate the prevalence of each esolang in search engine results, we queried the phrase ‘X’
‘“‘programming language’’ (where X is the language name) To assess the extent to which each
esolang is actively used in coding projects, we performed a GitHub search using the same query
format (““X** “‘programming language’’) to identify repositories mentioning the language. Figure|2]

Esolang Obscurity

Minipy 0815 Rhokell Pyth Github Repositories
gpt-4o-mini / x x o
gpt-d0 yd X X -
Deepseek- &
Va X g
LLAMA-3.3- 0
70B x x 8 1
Agentic 40 x x x
: o
cme | X | X | X
0815 Rhokell Minipy Pyth Python
Language
Figure 1: Level of familiarity each tested Figure 2: Obscurity of our esoteric programming
model has with our Esolang dataset. languages, along with Python as a reference. We
/ = Attempted definition of the language, but see the selected languages being orders of magni-
vague—could likely be guessed just from tude less common than Python.

context of the name of esolang
x = No familiarity with the language
v" = Clear understanding of the language
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shows the stark contrast between mainstream programming languages and esoteric ones in terms of
online presence. As a reference point, Python has approximately 42 million adjusted Google search
results and 16,500 GitHub repositories, whereas Pyth, our best known language, has only 16,200
Google results and 6 repositories (1000-10000x fewer examples), underscoring how unlikely LLMs
are to encounter these esolangs in their training data.

2.3 Evaluation Setup

We form a benchmark that is language agnostic, Esoeval. While numerous benchmarks exist to
evaluate the general code generation abilities of language models, we do not use popular benchmarks
like SWE-bench Verified or MBPP, which are not language agnostic, instead, focusing on HumanEval
and our novel EsoEval benchmark.

HumanEval is a hand-written evaluation set consists of 164 programming problems, each including
a function signature, docstring, function body, and several unit tests (an average of 7.7 tests per
problem). The HumanEval dataset was quite challenging for LLMs to code in, so we generated an
additional simpler baseline for comparison. We present EsoEval—a simplified set of 100 problems.
EsoEval includes tasks ranging from basic output statements (e.g., printing "Hello world") to more
complex logic problems (e.g., computing factorials, evaluating prime numbers, and performing string
manipulations). Despite the complexity variations, these tasks remain relatively simple, OpenAl’s
gpt-4o-mini achieved a 100.0% accuracy rate.

We experimented with a range of open and closed source models, including GPT-40-mini, GPT-40
OpenAll [2024], LLAMA-3.3-70B-Instruct-Turbo |Grattafiori et al.[[2024]], Deepseek V3 |Liu et al.
[2024]], and agentic IDEs, e.g. Codeium’s Windsurf|Codeium| [2025].

We standardized the prompt format as follows: Write a function in [esoteric language], an esoteric
programming language. The function should perform the following: [prompt]. The documentation for

is provided here: The standardized prompt and documentation
are sent to the model to generate candidate code, which is extracted, saved, and executed using the
esoteric language’s interpreter. Using HumanEval test cases, the code’s outputs are compared to
expected results (with minor formatting tolerance), providing a robust framework for evaluating
models’ ability to generate and run esoteric programs.

For MiniPy, which is fully compatable with Python code the prompt included instructions that Minipy
specific code must be used and the displayed results are for correct programs that use at least one
Minipy specific function or syntax.

3 Results

We find that providing code examples and documentation allows at least some improvement in
all languages, even in some cases where no correct programs were generated without the context.
Figures [3|and ] show accuracies with and without this additional information. Although some gains
were present, the near zero success on HumanEval shows that current LLMs have limited ability to
utilize documentation to program in esoteric languages.

Our findings show that augmenting model prompts with in-context examples generated by the
LLMs themselves can improve subsequent performance on difficult code-generation benchmarks, see
Figure[5] Gains plateau after a few examples, suggesting that a few well-chosen examples suffices
to saturate the model’s context-driven learning capacity. For example, when tackling complex or
specialized problems, strategically embedding a few similar examples within the context window can
potentially lead to enhanced accuracy without the need for extensive retraining, offering a lightweight,
resource-efficient alternative to fine-tuning for adapting models to specialized tasks.
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Figure 3: EsoEval Accuracy With & Without Contextual Examples/Documentation
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Figure 4: HumanEval Accuracy With & Without Contextual Examples/Documentation
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Figure 5: Accuracy after iteratively adding correct model generated examples to the context.

Percentage (%)

Experiments show that syntactic similarity to Python strongly influences performance: languages like
Minipy and Pyth achieve higher accuracy, while more divergent ones such as 0815 elicit near-zero
accuracy on complex tasks. Incorporating documentation into prompts further improves validity,
highlighting the value of context in guiding code generation.

4 Future Work

We evaluated four esolangs—Minipy, Pyth, 0815, and Rhokell—but hundreds remain. Future work
should extend our framework to more languages and broaden model comparisons beyond GPT-
4o/mini and a few open-source baselines, testing scaling laws across sizes and architectures. In
addition to better understanding scaling behavior both with model size and context; a large sample of
esoteric languages could help disentangle what makes a programming language easier or harder for
LLMs to use successfully and how large of a factor obscurity plays.
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A Related Work

Recent studies have made significant progress in enabling large language models (LLMs) to generate
code from in-context prompts, even when using unfamiliar libraries or syntaxes.

One prominent direction is retrieval-augmented code generation, where external documentation or
code is provided as part of the prompt. For example, DocPrompting by Zhou et al.| [2023] retrieves
relevant API documentation and adds it to the model’s prompt, helping LLMs adapt to unseen
libraries without retraining. Similarly/Hsieh et al.[[2023]] show that supplying tool documentation can
enable zero-shot tool use, matching or exceeding few-shot performance without requiring explicit
demonstrations.

Another important line of work focuses on optimizing which examples to include in few-shot prompts.
Li et al.|[2023]] propose Large Language Model-Aware In-Context Learning, a technique that selects
in-context examples based on how much they boost the model’s likelihood of solving the task. This
leads to substantial gains over traditional retrieval strategies. Complementary to this, [L1 et al.|[2024]
introduce AceCoder, a staged prompting approach where LLMs are asked to first generate a high-level
problem analysis before writing code, further improving code generation accuracy across multiple
benchmarks.

In addition to static prompts, dynamic retrieval strategies have been explored. |Su et al| [2024]
propose EVOR, an evolving retrieval framework where the model iteratively refines its retrievals
based on generated partial code and execution feedback. EVOR demonstrates significant gains
on tasks involving frequently updated libraries and obscure programming languages compared to
traditional static retrieval methods.

The question of whether LLMs can learn novel libraries and programming languages purely from
in-context information has been explicitly studied by [Patel et al.|[2024]]. Their evaluation shows that
LLMs can effectively understand and use previously unseen APIs when provided with either usage
examples or plain text descriptions. However, they focus on domain specific tasks testing vision
recognition libraries and the language Isabella for automated theorem proving. We are interested in
broad programming abilities and examine multiple programming languages with differing properties.
Similarly, Gupta and Kembhavil [2023]] demonstrate that LLMs can generate compositional programs
by observing a new vision-language API without any task-specific fine-tuning.

Finally, Mora et al.|[2024] explore a different setting: enabling LLMs to handle very low-resource and
formal languages through synthetic intermediate representations. Their method, SPEAC, improves
LLM performance by constraining generation to a repairable pseudo-language that can later be
compiled into the target formalism.

B Additional Language Obscurity Information and Analysis

B.1 Model Familiarity Discussion

Here we provide more detail on the responses summarized in Figure[I] ChatGPT-40 and its mini
variant both correctly identified Pyth as a Python-inspired golfing language but showed no genuine
familiarity with Rhokell or 0815 and only minimal awareness of Minipy. Deepseek V3 properly
classified Pyth and Rhokell while offering only generic or erroneous descriptions for 0815 and Minipy.
LLAMA-3.3-70B accurately labeled Pyth and Minipy but failed to provide substantive information on
Rhokell or 0815. When presented with five representative code snippets for each language, all models
misclassified every example. We observed some common mistakes were interpreting Minipy as buggy
Python, labeling Rhokell as Unlambda or vague “functional logic,” and giving only superficial labels
for Pyth and 0815—thereby demonstrating a marked inability to recognize these esoteric languages
from source code alone.
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Figure 6: Distribution of common examples provided during in-context learning across the different
esoteric programming languages.

0815

A total of 13 sample programs were provided alongside the 0815 documentation to reinforce model
understanding. These included basic outputs like "Hello World!" and Cat, computational tasks such
as odd/even checks, binary representation, factorial sequences, arithmetic mean, Fibonacci, and
summing squares. More complex problems included "99 Bottles of Beer", prime numbers, the
Hailstone sequence, a simple randomizer, and truth machines (numeric and ASCII). There is no
overlap between the examples provided and HumanEvaltest set but there is minor overlap between
the examples given and those in EsoEval. There is overlap between the in-context examples and
EsoEval for the following 4 examples: printing "Hello World!", even/odd number function, factorial,
and Fibonacci.

Pyth

For Pyth, a total of 7 examples were provided, with a strong focus on factorial computation. This
included three factorial-related sub-examples: Factorial 3.1.1, Factorial 3.1.3 (The Iterative Factorial),
and the Recursive Factorial. Additionally, there were examples showcasing memoization (subsets
function), functional programming with reduce, Fibonacci sequence generation, and solving the
Collatz sequence. There is no overlap between the examples provided and HumanEvaltest set but
there is minor overlap between the examples given and those in EsoEval. There is overlap between
the in-context examples and EsoEval for the following 2 examples: factorial and fibonacci.

Rhokell

For Rhokell, a total of 11 examples were provided, covering a range of algorithmic and computational
topics. Several examples focus on mathematical sequences, such as computing factorials, Fibonacci
numbers, primes, and the Kolakoski sequence. Sorting and list manipulation are also demonstrated,
with a quicksort implementation and a general lists example. Additional examples explore syntax
and functional programming concepts, including Peano arithmetic, binary arithmetic, and a quine
program. There is no overlap between the examples provided and HumanEvaltest set but there is
minor overlap between the examples given and those in EsoEval. There is overlap between the
in-context examples and EsoEval for the following 3 examples: printing "Hello World!", factorial,
and Fibonacci.
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Minipy

For Minipy, no examples were provided for EsoEval. However, among the code generated by
Deepseek V3 for EsoEval—which compiled correctly only in the Minipy interpreter and not in the
standard Python interpreter—the resulting examples were collected and subsequently used for testing
on HumanEval. There is no overlap between the examples provided and those in HumanEval.

D Language Specific Observations

Minipy occupies a unique position among our esoteric languages: although it extends Python with
concise shorthand constructs, most HumanEval tasks do not require those extensions, so a model
can “cheat” by emitting plain Python and still pass the tests. To prevent this shortcut, we enforced a
non-Python compilability requirement in our EsoEval metric: any submission that successfully ran
under a standard Python interpreter were excluded, regardless of functional accuracy.

When evaluated on HumanEval, GPT-40-mini invariably fell back on plain Python, yielding 0% of
solutions that failed to compile under a standard Python interpreter. Llama-3.3-70B-Instruct-Turbo
exhibited the same tendency, with only 10 % (HumanEval) and 7.7% (HumanEval subset) of its
outputs producing non-compilable code. By contrast, on the simpler EsoEval benchmark—where
true Minipy syntax is required—both models showed dramatic gains in non-Python compilability
accuracy: GPT-40-mini reached 54% non-compilable submissions, Llama-3.3-70B-Instruct-Turbo
54%, and DeepSeek V3 51%.

These results suggest that, when confronted with complex tasks, models prefer the safety of familiar
Python constructs rather than leverage Minipy’s shorthand features. However, on more straightforward
problems, they are capable of nontrivially applying the documented Minipy extensions. By measuring
non-compilability in Python, we ensure that high EsoEval accuracy truly reflects understanding of
Minipy’s specialized syntax rather than a fallback to Python.

Across the other three esoteric languages—O0815, Pyth, and Rhokell—and two evaluation frameworks
(HumanEval, 10 tasks; EsoEval, 30 tasks), we observed that the degree of syntactic divergence is
correlated with LLM performance. For example, the hexadecimal-only, comment-filtering 0815
language, GPT-40-mini scored 0% on HumanEval but 11% on the simpler EsoEval benchmark,
whereas LLAMA-3.3-70B achieved 0% and Deepseek V3 12% on EsoEval. In Pyth—a Python-
inspired golfing language—GPT-40-mini again scored 0% on HumanEval but attained 10% on
EsoEval, with LLAMA-3.3-70B and Deepseek V3 reaching 13% and 32%, respectively. Finally,
for Rhokell, which fuses p calculus with Haskell-style syntax, GPT-40-mini produced 0% accuracy
on HumanEval but 3% on EsoEval, while LLAMA-3.3-70B remained at 0% and Deepseek V3
achieved 10%. These results suggest that moderate syntactic departures—such as Pyth’s concise,
Python-derived abbreviations—permit some transfer of existing knowledge, but more unusual syntax
like those of 0815 and Rhokell inhibit code generation.

E Agentic AI Framework Evaluation

For the second part of our evaluation, we turned to agentic Al frameworks. Specifically, we evaluated
tools such as Windsurf and Cursor by prompting their respective agents to write the code for both the
HumanEval and EsoEval datasets.

E.1 Language Parsing

One additional challenge arose from the need to adapt our testing harness to the specifications of
each language and the structure of the HumanEval benchmark. Because HumanEval’s reference
implementations use Python-style assert statements, any candidate solution needed a a Python-callable
function. In practice, many esoteric-language programs required input-output wrappers to conform to
the HumanEval harness, and some languages lacked any built-in notion of user-defined functions.
We translated between string, list, or integer representations —to ensure that each candidate program
could be tested uniformly by the test runner. At the same time, we strove to respect each language’s
native syntax and execution model, providing only the smallest necessary adaptation rather than
rewriting the core logic. As a result, every testing harness is slightly different; in the remainder of
this section, we describe those per-language adjustments in detail
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E.1.1 MiniPy

MiniPy was the most straightforward language to work with due to its similarity with Python as
a coding language. For this language, the outputed code was directly executable using a Python
compiler with a list of shorthands appended to the beginning of each program.

E.12 Pyth

Architecture Overview We developed a systematic approach to testing Pyth code using Python’s
testing infrastructure, focusing on three key components. The first component was our Code Transla-
tion Layer, which implemented get_pyth_translation to capture Python translations from the
Pyth interpreter’s stderr output. This was important since our testing dataset contained our tests using
Python assert statements. Therefore, parsing the translation in the stderr output was the simplest
solution.

The second component, our Test Execution Environment, centered around the test_pyth_function
which dynamically executed Pyth code with arbitrary inputs. Since the output of the Pyth program only
existed withint the context of the interpreter, we set up an environment to manage variables through
a global environment dictionary and handled return value propagation via environment [’K’],
ensuring consistent state management between Pyth and Python contexts.

The execution flow is shown in the following workflow:

def workflow(pyth_code, input_value):
translation = get_pyth_translation(pyth_code)
python_func = create_python_function(translation)
result = test_pyth_function(python_func, input_value)
return result

E.1.3 0815

Architecture Overview For the 0815 esoteric language implementation, modified the testing
framework to address the differences with working with a register-based hexadecimal language. The
first component was our Register Management System, which handled the language’s three 64-bit
registers: X (write-only), Y (helper), and Z (read-only). This involved state tracking and hexadecimal
conversions for all numeric operations.

For Test Case Integration, we implemented a system that bridged between decimal test inputs and
0815’s hexadecimal requirements. This included automatic conversion of test inputs to hexadecimal
format and proper interpretation of hexadecimal outputs back to decimal for test validation. This
was especially important when figuring out representations for lists and other unique data structures.
We also refactored the assert statements within the HumanEval test cases to generate text files with
the test cases written out instead. They were then parsed and converted using the process described
above to test each program.

E.1.4 Rhokell

Architecture Overview For the Rhokell language implementation, we developed a testing frame-
work that integrated with Rust’s cargo build system while providing a Python-based test harness.
The first component was our Rust Integration Layer, which managed the compilation and execution
of Rhokell code through cargo. This required careful handling of build processes and proper path
management to ensure reliable interpreter access.

The second component was our Execution Environment, which utilized a robust subprocess manage-
ment system to handle both compilation and runtime phases. This dual-phase approach was necessary
due to Rhokell’s compiled nature, distinguishing it from interpreted languages like Pyth and 0815.
The environment tracked compilation success separately from execution results, providing detailed
feedback for both phases.

For Test Case Management, we implemented a dataclass-based statistics tracking system that moni-
tored multiple aspects of test execution. This included tracking total problems attempted, successful
compilations, passed tests, and aggregate test counts, providing comprehensive metrics for evaluation.
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Key Technical Challenges and Solutions The implementation presented several unique technical
challenges. The primary challenge was managing the Rust-based interpreter’s build process. Unlike
the other esolangs we tested, Rhokell was not implemented with Python-based interpreters. We
resolved this by implementing a pre-execution build check system that verified the interpreter’s
availability and triggered compilation when necessary.

This also involved delving into the process management, especially with testing. The solution
involved implementing a timeout-aware execution system that properly handled both compilation
and runtime errors while maintaining clean state. The test cases were treated similarly to previous
esolangs, being written into a text file and then parsed into a form recognizable by the language.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims of testing in-context learning and in-context learning with verifica-
tion of esoteric programming languages is mentioned in the abstract and intro and supported
in the results section.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Limitations of our study are discussed throughout the text and especially in the
Future Work section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not have any theoretical claims.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include details on models and prompts used as well as how we analyze the
data. We believe this is sufficient to perform an equivalent experiment and we further intend
to release code used in this project. However, the instability and incomplete documentation
of non-open source LLMs may hamper the reproducibility for those cases.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We intend to make the code for our experiments and analysis publicly available.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: No training was performed. Experiments are described in the paper and we
plan to provide code.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All regressions and correlations are reported with statistical significance.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Compute resources used were not uniform (different computers used to run
them and different model providers) and not carefully tracked. Experiments were run
primarily on personal laptops or with API’s for closed source providers. We believe a few
hundred dollars were allocated across subscription and compute purchases.
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9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: I have read the Code of Ethics and believe our work complies completely.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: This is primarily discussed in the Introduction and Future Works sections.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: We do not foresee any significant risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: No other assets were used in the paper. We will annotate all code and

documentation as appropriate. The language documentation and code examples used in our
testing were checked and we believe are all being used in accordance to their licenses.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We plan to release the paper under CC-BY 4.0 if accepted in accordance with
this conference’s standards and plan to release our code under a similar license.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: There were no human experiments or crowdsourcing of data.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: There were no human experiments or crowdsourcing of data.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Evaluation of LLM capabilities is the core question of this research. This type
of evaluation is a standard line of research inquiry. We have also used LLMs for assistance
in code generation, editing, and background research but none of this is original or of core
importance to the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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