
In-Context Learning for Esoteric Programming
Languages: Evaluating and Enhancing LLM

Reasoning Without Fine-Tuning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Language Models (LLMs) have revolutionized mainstream software develop-1

ment, yet their ability to generalize to esoteric languages — who may have small or2

no representation in the training corpus —remains poor. Programming in esoteric3

languages tests a model’s capacity to infer novel grammar and leverage nontrivial4

reasoning capabilities in utilizing the documentation. To quantify these effects,5

we evaluate both open and closed-source LLMs on code generation and language6

identification tasks across four esoteric languages—Minipy, Pyth, Rhokell, and7

0815—and compare traditional prompt-based methods to agentic coding IDEs. Our8

findings reveal that LLMs can now generate some correct code in these languages9

when provided with documentation and sparse examples; however, performance10

remains far below that of similar models in common programming languages.11

Furthermore, we introduce a novel in-context augmentation strategy in which12

LLMs first generate solutions, which are then manually verified and re-inserted as13

examples into subsequent prompts. Our results indicate that strategically embed-14

ding just a few analogous problems can yield large accuracy improvements without15

any model retraining. Our findings show that this “self-scaffolding” approach can16

boost performance on coding benchmarks: inserting Deepseek’s verified EsoEval17

solutions raised EsoEval accuracy on Pyth from 16.67% to 30.82 %, while Hu-18

manEval accuracy on Minipy jumped from 51% to 65%. We offer this as a flexible19

alternative to costly fine-tuning, paving the way for rapid adaptation of LLMs to20

highly specialized, emerging, or other low data domains.21

1 Introduction22

Large Language Models (LLMs) pretrained on massive amounts of text and code data have demon-23

strated promising performance across various code generation tasks. As these models become24

increasingly prevalent, a key application area is the generation of code in specialized domains. New25

languages are constantly being developed to better address things like performance, security, or ease26

of writing specific types of programs. Given the high cost of fine-tuning LLMs, in-context learn-27

ing—leveraging instructions and examples provided within prompts—has emerged as the preferred28

method for adapting these models to tasks and domains that were not encountered during training.29

Previous studies have employed in-context demonstrations to prompt LLMs to generate code that30

interfaces with external, task-specific library functions [Gupta and Kembhavi, 2023]. Additionally,31

[Patel et al., 2024] observed that LLMs exhibit a strong capability to understand and utilize novel32

*Equal contribution

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



code libraries based solely on in-context information and showed that LLMs could learn an entirely33

unfamiliar programming language known as Isabelle despite minimal available data.34

Unlike mainstream programming languages, which benefit from extensive online documentation and35

training data, esoteric programming languages present a challenging test bed where models have36

had far less data to learn from but can rely on full documentation provided at run-time. Building on37

the preliminary observation that LLMs can learn new programming languages using only in-context38

demonstrations, we aim to explore several key questions. Specifically, we investigate: which esoteric39

languages can LLMs effectively handle? How far can these languages deviate from conventional40

programming paradigms while still being learned effectively? Do smaller, open-source models exhibit41

similar capabilities?42

Whereas previous studies focus on a single API or language, we evaluate LLMs across a diverse43

range of esoteric languages (Minipy, Pyth, Rhokell, 0815) that vary in syntax and online footprint,44

and under two benchmarks (HumanEval, EsoEval) of differing complexity. We introduce a self-45

scaffolding procedure: model-generated solutions are manually verified and then re-inserted as46

in-context examples, to boost performance without retraining, providing a lightweight adaptation47

method that complements these prior techniques.48

2 Methodology49

2.1 Model Familiarity50

We conducted an assessment of our model’s familiarity with our chosen esolangs by asking the models51

to describe the language and to identify code examples. We evaluated the model’s descriptions of the52

programming languages by hand, as summarized in Figure 1. For the code identification task none of53

the models were able to correctly identify the programming language from the code examples.54

2.2 Measuring Esolang Obscurity55

We first quantify how obscure these esoteric languages are by gathering data on two key indicators:56

(1) the number of search engine results containing references to each language and (2) the number of57

publicly available GitHub repositories referencing this language.58

To estimate the prevalence of each esolang in search engine results, we queried the phrase “X”59

“programming language” (where X is the language name) To assess the extent to which each60

esolang is actively used in coding projects, we performed a GitHub search using the same query61

format (“X” “programming language”) to identify repositories mentioning the language. Figure 262

Figure 1: Level of familiarity each tested
model has with our Esolang dataset.
/ = Attempted definition of the language, but
vague—could likely be guessed just from
context of the name of esolang
× = No familiarity with the language
✓ = Clear understanding of the language

Figure 2: Obscurity of our esoteric programming
languages, along with Python as a reference. We
see the selected languages being orders of magni-
tude less common than Python.

2



shows the stark contrast between mainstream programming languages and esoteric ones in terms of63

online presence. As a reference point, Python has approximately 42 million adjusted Google search64

results and 16,500 GitHub repositories, whereas Pyth, our best known language, has only 16,20065

Google results and 6 repositories (1000-10000x fewer examples), underscoring how unlikely LLMs66

are to encounter these esolangs in their training data.67

2.3 Evaluation Setup68

We form a benchmark that is language agnostic, Esoeval. While numerous benchmarks exist to69

evaluate the general code generation abilities of language models, we do not use popular benchmarks70

like SWE-bench Verified or MBPP, which are not language agnostic, instead, focusing on HumanEval71

and our novel EsoEval benchmark.72

HumanEval is a hand-written evaluation set consists of 164 programming problems, each including73

a function signature, docstring, function body, and several unit tests (an average of 7.7 tests per74

problem). The HumanEval dataset was quite challenging for LLMs to code in, so we generated an75

additional simpler baseline for comparison. We present EsoEval—a simplified set of 100 problems.76

EsoEval includes tasks ranging from basic output statements (e.g., printing "Hello world") to more77

complex logic problems (e.g., computing factorials, evaluating prime numbers, and performing string78

manipulations). Despite the complexity variations, these tasks remain relatively simple, OpenAI’s79

gpt-4o-mini achieved a 100.0% accuracy rate.80

We experimented with a range of open and closed source models, including GPT-4o-mini, GPT-4o81

OpenAI [2024],LLAMA-3.3-70B-Instruct-Turbo Grattafiori et al. [2024], Deepseek V3 Liu et al.82

[2024], and agentic IDEs, e.g. Codeium’s Windsurf Codeium [2025].83

We standardized the prompt format as follows: Write a function in [esoteric language], an esoteric84

programming language. The function should perform the following: [prompt]. The documentation for85

[esoteric language] is provided here: [documentation] The standardized prompt and documentation86

are sent to the model to generate candidate code, which is extracted, saved, and executed using the87

esoteric language’s interpreter. Using HumanEval test cases, the code’s outputs are compared to88

expected results (with minor formatting tolerance), providing a robust framework for evaluating89

models’ ability to generate and run esoteric programs.90

For MiniPy, which is fully compatable with Python code the prompt included instructions that Minipy91

specific code must be used and the displayed results are for correct programs that use at least one92

Minipy specific function or syntax.93

3 Results94

We find that providing code examples and documentation allows at least some improvement in95

all languages, even in some cases where no correct programs were generated without the context.96

Figures 3 and 4 show accuracies with and without this additional information. Although some gains97

were present, the near zero success on HumanEval shows that current LLMs have limited ability to98

utilize documentation to program in esoteric languages.99

Our findings show that augmenting model prompts with in-context examples generated by the100

LLMs themselves can improve subsequent performance on difficult code-generation benchmarks, see101

Figure 5. Gains plateau after a few examples, suggesting that a few well-chosen examples suffices102

to saturate the model’s context-driven learning capacity. For example, when tackling complex or103

specialized problems, strategically embedding a few similar examples within the context window can104

potentially lead to enhanced accuracy without the need for extensive retraining, offering a lightweight,105

resource-efficient alternative to fine-tuning for adapting models to specialized tasks.106

3



Figure 3: EsoEval Accuracy With & Without Contextual Examples/Documentation

Figure 4: HumanEval Accuracy With & Without Contextual Examples/Documentation

Figure 5: Accuracy after iteratively adding correct model generated examples to the context.

Experiments show that syntactic similarity to Python strongly influences performance: languages like107

Minipy and Pyth achieve higher accuracy, while more divergent ones such as 0815 elicit near-zero108

accuracy on complex tasks. Incorporating documentation into prompts further improves validity,109

highlighting the value of context in guiding code generation.110

4 Future Work111

We evaluated four esolangs—Minipy, Pyth, 0815, and Rhokell—but hundreds remain. Future work112

should extend our framework to more languages and broaden model comparisons beyond GPT-113

4o/mini and a few open-source baselines, testing scaling laws across sizes and architectures. In114

addition to better understanding scaling behavior both with model size and context; a large sample of115

esoteric languages could help disentangle what makes a programming language easier or harder for116

LLMs to use successfully and how large of a factor obscurity plays.117

4



References118

Codeium. Windsurf editor. https://codeium.com/windsurf, 2025. Accessed: 2025-05-01.119

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad120

Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of121

models. arXiv preprint arXiv:2407.21783, 2024.122

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning123

without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern124

Recognition (CVPR), 2023. URL https://arxiv.org/abs/2211.11559.125

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander Ratner, Chen-Yu Lee,126

Ranjay Krishna, and Tomas Pfister. Tool documentation enables zero-shot tool-usage with large127

language models. arXiv preprint arXiv:2308.00675, 2023. URL https://arxiv.org/abs/128

2308.00675.129

Jia Li, Ge Li, Chongyang Tao, Huangzhao Zhang, Fang Liu, and Zhi Jin. Large language model-130

aware in-context learning for code generation. arXiv preprint arXiv:2310.09748, 2023. URL131

https://arxiv.org/abs/2310.09748.132

Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin. AceCoder: An effective prompting technique133

specialized in code generation. ACM Transactions on Software Engineering and Methodology134

(TOSEM), 33(8), 2024. doi: 10.1145/3675395. URL https://arxiv.org/abs/2303.17780.135

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,136

Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint137

arXiv:2412.19437, 2024.138

Federico Mora, Justin Wong, Haley Lepe, Sahil Bhatia, Karim Elmaaroufi, George Varghese, Joseph E.139

Gonzalez, Elizabeth Polgreen, and Sanjit A. Seshia. Synthetic programming elicitation for text-to-140

code in very low-resource programming and formal languages. In Advances in Neural Informa-141

tion Processing Systems (NeurIPS) 2024, 2024. URL https://openreview.net/forum?id=142

kQPzFiwVIu.143

OpenAI. Gpt-4o system card. https://arxiv.org/abs/2410.21276, 2024. Accessed: 2025-05-144

01.145

Arkil Patel, Siva Reddy, Dzmitry Bahdanau, and Pradeep Dasigi. Evaluating in-context learning146

of libraries for code generation. In Proceedings of the 2024 Conference of the North American147

Chapter of the Association for Computational Linguistics (NAACL-HLT), 2024. URL https:148

//arxiv.org/abs/2311.09635.149

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, Boao Shi, Che Liu, Qian Liu, and Tao Yu.150

EVOR: Evolving retrieval for code generation. In Findings of the Association for Computational151

Linguistics: EMNLP 2024, 2024. URL https://arxiv.org/abs/2402.12317.152

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. DocPrompting:153

Generating code by retrieving the docs. In International Conference on Learning Representations154

(ICLR), 2023. URL https://arxiv.org/abs/2207.05987.155

5

https://codeium.com/windsurf
https://arxiv.org/abs/2211.11559
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2310.09748
https://arxiv.org/abs/2303.17780
https://openreview.net/forum?id=kQPzFiwVIu
https://openreview.net/forum?id=kQPzFiwVIu
https://openreview.net/forum?id=kQPzFiwVIu
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2311.09635
https://arxiv.org/abs/2311.09635
https://arxiv.org/abs/2311.09635
https://arxiv.org/abs/2402.12317
https://arxiv.org/abs/2207.05987


A Related Work156

Recent studies have made significant progress in enabling large language models (LLMs) to generate157

code from in-context prompts, even when using unfamiliar libraries or syntaxes.158

One prominent direction is retrieval-augmented code generation, where external documentation or159

code is provided as part of the prompt. For example, DocPrompting by Zhou et al. [2023] retrieves160

relevant API documentation and adds it to the model’s prompt, helping LLMs adapt to unseen161

libraries without retraining. Similarly,Hsieh et al. [2023] show that supplying tool documentation can162

enable zero-shot tool use, matching or exceeding few-shot performance without requiring explicit163

demonstrations.164

Another important line of work focuses on optimizing which examples to include in few-shot prompts.165

Li et al. [2023] propose Large Language Model-Aware In-Context Learning, a technique that selects166

in-context examples based on how much they boost the model’s likelihood of solving the task. This167

leads to substantial gains over traditional retrieval strategies. Complementary to this, Li et al. [2024]168

introduce AceCoder, a staged prompting approach where LLMs are asked to first generate a high-level169

problem analysis before writing code, further improving code generation accuracy across multiple170

benchmarks.171

In addition to static prompts, dynamic retrieval strategies have been explored. Su et al. [2024]172

propose EVOR, an evolving retrieval framework where the model iteratively refines its retrievals173

based on generated partial code and execution feedback. EVOR demonstrates significant gains174

on tasks involving frequently updated libraries and obscure programming languages compared to175

traditional static retrieval methods.176

The question of whether LLMs can learn novel libraries and programming languages purely from177

in-context information has been explicitly studied by Patel et al. [2024]. Their evaluation shows that178

LLMs can effectively understand and use previously unseen APIs when provided with either usage179

examples or plain text descriptions. However, they focus on domain specific tasks testing vision180

recognition libraries and the language Isabella for automated theorem proving. We are interested in181

broad programming abilities and examine multiple programming languages with differing properties.182

Similarly, Gupta and Kembhavi [2023] demonstrate that LLMs can generate compositional programs183

by observing a new vision-language API without any task-specific fine-tuning.184

Finally, Mora et al. [2024] explore a different setting: enabling LLMs to handle very low-resource and185

formal languages through synthetic intermediate representations. Their method, SPEAC, improves186

LLM performance by constraining generation to a repairable pseudo-language that can later be187

compiled into the target formalism.188

B Additional Language Obscurity Information and Analysis189

B.1 Model Familiarity Discussion190

Here we provide more detail on the responses summarized in Figure 1. ChatGPT-4o and its mini191

variant both correctly identified Pyth as a Python-inspired golfing language but showed no genuine192

familiarity with Rhokell or 0815 and only minimal awareness of Minipy. Deepseek V3 properly193

classified Pyth and Rhokell while offering only generic or erroneous descriptions for 0815 and Minipy.194

LLAMA-3.3-70B accurately labeled Pyth and Minipy but failed to provide substantive information on195

Rhokell or 0815. When presented with five representative code snippets for each language, all models196

misclassified every example. We observed some common mistakes were interpreting Minipy as buggy197

Python, labeling Rhokell as Unlambda or vague “functional logic,” and giving only superficial labels198

for Pyth and 0815—thereby demonstrating a marked inability to recognize these esoteric languages199

from source code alone.200

6



C In Context Examples201

Figure 6: Distribution of common examples provided during in-context learning across the different
esoteric programming languages.

0815202

A total of 13 sample programs were provided alongside the 0815 documentation to reinforce model203

understanding. These included basic outputs like "Hello World!" and Cat, computational tasks such204

as odd/even checks, binary representation, factorial sequences, arithmetic mean, Fibonacci, and205

summing squares. More complex problems included "99 Bottles of Beer", prime numbers, the206

Hailstone sequence, a simple randomizer, and truth machines (numeric and ASCII). There is no207

overlap between the examples provided and HumanEvaltest set but there is minor overlap between208

the examples given and those in EsoEval. There is overlap between the in-context examples and209

EsoEval for the following 4 examples: printing "Hello World!", even/odd number function, factorial,210

and Fibonacci.211

Pyth212

For Pyth, a total of 7 examples were provided, with a strong focus on factorial computation. This213

included three factorial-related sub-examples: Factorial 3.1.1, Factorial 3.1.3 (The Iterative Factorial),214

and the Recursive Factorial. Additionally, there were examples showcasing memoization (subsets215

function), functional programming with reduce, Fibonacci sequence generation, and solving the216

Collatz sequence. There is no overlap between the examples provided and HumanEvaltest set but217

there is minor overlap between the examples given and those in EsoEval. There is overlap between218

the in-context examples and EsoEval for the following 2 examples: factorial and fibonacci.219

Rhokell220

For Rhokell, a total of 11 examples were provided, covering a range of algorithmic and computational221

topics. Several examples focus on mathematical sequences, such as computing factorials, Fibonacci222

numbers, primes, and the Kolakoski sequence. Sorting and list manipulation are also demonstrated,223

with a quicksort implementation and a general lists example. Additional examples explore syntax224

and functional programming concepts, including Peano arithmetic, binary arithmetic, and a quine225

program. There is no overlap between the examples provided and HumanEvaltest set but there is226

minor overlap between the examples given and those in EsoEval. There is overlap between the227

in-context examples and EsoEval for the following 3 examples: printing "Hello World!", factorial,228

and Fibonacci.229

7



Minipy230

For Minipy, no examples were provided for EsoEval. However, among the code generated by231

Deepseek V3 for EsoEval—which compiled correctly only in the Minipy interpreter and not in the232

standard Python interpreter—the resulting examples were collected and subsequently used for testing233

on HumanEval. There is no overlap between the examples provided and those in HumanEval.234

D Language Specific Observations235

Minipy occupies a unique position among our esoteric languages: although it extends Python with236

concise shorthand constructs, most HumanEval tasks do not require those extensions, so a model237

can “cheat” by emitting plain Python and still pass the tests. To prevent this shortcut, we enforced a238

non-Python compilability requirement in our EsoEval metric: any submission that successfully ran239

under a standard Python interpreter were excluded, regardless of functional accuracy.240

When evaluated on HumanEval, GPT-4o-mini invariably fell back on plain Python, yielding 0% of241

solutions that failed to compile under a standard Python interpreter. Llama-3.3-70B-Instruct-Turbo242

exhibited the same tendency, with only 10 % (HumanEval) and 7.7% (HumanEval subset) of its243

outputs producing non-compilable code. By contrast, on the simpler EsoEval benchmark—where244

true Minipy syntax is required—both models showed dramatic gains in non-Python compilability245

accuracy: GPT-4o-mini reached 54% non-compilable submissions, Llama-3.3-70B-Instruct-Turbo246

54%, and DeepSeek V3 51%.247

These results suggest that, when confronted with complex tasks, models prefer the safety of familiar248

Python constructs rather than leverage Minipy’s shorthand features. However, on more straightforward249

problems, they are capable of nontrivially applying the documented Minipy extensions. By measuring250

non-compilability in Python, we ensure that high EsoEval accuracy truly reflects understanding of251

Minipy’s specialized syntax rather than a fallback to Python.252

Across the other three esoteric languages—0815, Pyth, and Rhokell—and two evaluation frameworks253

(HumanEval, 10 tasks; EsoEval, 30 tasks), we observed that the degree of syntactic divergence is254

correlated with LLM performance. For example, the hexadecimal-only, comment-filtering 0815255

language, GPT-4o-mini scored 0% on HumanEval but 11% on the simpler EsoEval benchmark,256

whereas LLAMA-3.3-70B achieved 0% and Deepseek V3 12% on EsoEval. In Pyth—a Python-257

inspired golfing language—GPT-4o-mini again scored 0% on HumanEval but attained 10% on258

EsoEval, with LLAMA-3.3-70B and Deepseek V3 reaching 13% and 32%, respectively. Finally,259

for Rhokell, which fuses ρ calculus with Haskell-style syntax, GPT-4o-mini produced 0% accuracy260

on HumanEval but 3% on EsoEval, while LLAMA-3.3-70B remained at 0% and Deepseek V3261

achieved 10%. These results suggest that moderate syntactic departures—such as Pyth’s concise,262

Python-derived abbreviations—permit some transfer of existing knowledge, but more unusual syntax263

like those of 0815 and Rhokell inhibit code generation.264

E Agentic AI Framework Evaluation265

For the second part of our evaluation, we turned to agentic AI frameworks. Specifically, we evaluated266

tools such as Windsurf and Cursor by prompting their respective agents to write the code for both the267

HumanEval and EsoEval datasets.268

E.1 Language Parsing269

One additional challenge arose from the need to adapt our testing harness to the specifications of270

each language and the structure of the HumanEval benchmark. Because HumanEval’s reference271

implementations use Python-style assert statements, any candidate solution needed a a Python-callable272

function. In practice, many esoteric-language programs required input-output wrappers to conform to273

the HumanEval harness, and some languages lacked any built-in notion of user-defined functions.274

We translated between string, list, or integer representations —to ensure that each candidate program275

could be tested uniformly by the test runner. At the same time, we strove to respect each language’s276

native syntax and execution model, providing only the smallest necessary adaptation rather than277

rewriting the core logic. As a result, every testing harness is slightly different; in the remainder of278

this section, we describe those per-language adjustments in detail279

8



E.1.1 MiniPy280

MiniPy was the most straightforward language to work with due to its similarity with Python as281

a coding language. For this language, the outputed code was directly executable using a Python282

compiler with a list of shorthands appended to the beginning of each program.283

E.1.2 Pyth284

Architecture Overview We developed a systematic approach to testing Pyth code using Python’s285

testing infrastructure, focusing on three key components. The first component was our Code Transla-286

tion Layer, which implemented get_pyth_translation to capture Python translations from the287

Pyth interpreter’s stderr output. This was important since our testing dataset contained our tests using288

Python assert statements. Therefore, parsing the translation in the stderr output was the simplest289

solution.290

The second component, our Test Execution Environment, centered around the test_pyth_function291

which dynamically executed Pyth code with arbitrary inputs. Since the output of the Pyth program only292

existed withint the context of the interpreter, we set up an environment to manage variables through293

a global environment dictionary and handled return value propagation via environment[’K’],294

ensuring consistent state management between Pyth and Python contexts.295

The execution flow is shown in the following workflow:296

def workflow(pyth_code , input_value):297

translation = get_pyth_translation(pyth_code)298

python_func = create_python_function(translation)299

result = test_pyth_function(python_func , input_value)300

return result301

E.1.3 0815302

Architecture Overview For the 0815 esoteric language implementation, modified the testing303

framework to address the differences with working with a register-based hexadecimal language. The304

first component was our Register Management System, which handled the language’s three 64-bit305

registers: X (write-only), Y (helper), and Z (read-only). This involved state tracking and hexadecimal306

conversions for all numeric operations.307

For Test Case Integration, we implemented a system that bridged between decimal test inputs and308

0815’s hexadecimal requirements. This included automatic conversion of test inputs to hexadecimal309

format and proper interpretation of hexadecimal outputs back to decimal for test validation. This310

was especially important when figuring out representations for lists and other unique data structures.311

We also refactored the assert statements within the HumanEval test cases to generate text files with312

the test cases written out instead. They were then parsed and converted using the process described313

above to test each program.314

E.1.4 Rhokell315

Architecture Overview For the Rhokell language implementation, we developed a testing frame-316

work that integrated with Rust’s cargo build system while providing a Python-based test harness.317

The first component was our Rust Integration Layer, which managed the compilation and execution318

of Rhokell code through cargo. This required careful handling of build processes and proper path319

management to ensure reliable interpreter access.320

The second component was our Execution Environment, which utilized a robust subprocess manage-321

ment system to handle both compilation and runtime phases. This dual-phase approach was necessary322

due to Rhokell’s compiled nature, distinguishing it from interpreted languages like Pyth and 0815.323

The environment tracked compilation success separately from execution results, providing detailed324

feedback for both phases.325

For Test Case Management, we implemented a dataclass-based statistics tracking system that moni-326

tored multiple aspects of test execution. This included tracking total problems attempted, successful327

compilations, passed tests, and aggregate test counts, providing comprehensive metrics for evaluation.328

9



Key Technical Challenges and Solutions The implementation presented several unique technical329

challenges. The primary challenge was managing the Rust-based interpreter’s build process. Unlike330

the other esolangs we tested, Rhokell was not implemented with Python-based interpreters. We331

resolved this by implementing a pre-execution build check system that verified the interpreter’s332

availability and triggered compilation when necessary.333

This also involved delving into the process management, especially with testing. The solution334

involved implementing a timeout-aware execution system that properly handled both compilation335

and runtime errors while maintaining clean state. The test cases were treated similarly to previous336

esolangs, being written into a text file and then parsed into a form recognizable by the language.337

10



NeurIPS Paper Checklist338

The checklist is designed to encourage best practices for responsible machine learning research,339

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove340

the checklist: The papers not including the checklist will be desk rejected. The checklist should341

follow the references and follow the (optional) supplemental material. The checklist does NOT count342

towards the page limit.343

Please read the checklist guidelines carefully for information on how to answer these questions. For344

each question in the checklist:345

• You should answer [Yes] , [No] , or [NA] .346

• [NA] means either that the question is Not Applicable for that particular paper or the347

relevant information is Not Available.348

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).349

The checklist answers are an integral part of your paper submission. They are visible to the350

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it351

(after eventual revisions) with the final version of your paper, and its final version will be published352

with the paper.353

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.354

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a355

proper justification is given (e.g., "error bars are not reported because it would be too computationally356

expensive" or "we were unable to find the license for the dataset we used"). In general, answering357

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we358

acknowledge that the true answer is often more nuanced, so please just use your best judgment and359

write a justification to elaborate. All supporting evidence can appear either in the main paper or the360

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification361

please point to the section(s) where related material for the question can be found.362

IMPORTANT, please:363

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",364

• Keep the checklist subsection headings, questions/answers and guidelines below.365

• Do not modify the questions and only use the provided macros for your answers.366

1. Claims367

Question: Do the main claims made in the abstract and introduction accurately reflect the368

paper’s contributions and scope?369

Answer: [Yes]370

Justification: The claims of testing in-context learning and in-context learning with verifica-371

tion of esoteric programming languages is mentioned in the abstract and intro and supported372

in the results section.373

Guidelines:374

• The answer NA means that the abstract and introduction do not include the claims375

made in the paper.376

• The abstract and/or introduction should clearly state the claims made, including the377

contributions made in the paper and important assumptions and limitations. A No or378

NA answer to this question will not be perceived well by the reviewers.379

• The claims made should match theoretical and experimental results, and reflect how380

much the results can be expected to generalize to other settings.381

• It is fine to include aspirational goals as motivation as long as it is clear that these goals382

are not attained by the paper.383

2. Limitations384

Question: Does the paper discuss the limitations of the work performed by the authors?385

Answer: [Yes]386

11



Justification: Limitations of our study are discussed throughout the text and especially in the387

Future Work section.388

Guidelines:389

• The answer NA means that the paper has no limitation while the answer No means that390

the paper has limitations, but those are not discussed in the paper.391

• The authors are encouraged to create a separate "Limitations" section in their paper.392

• The paper should point out any strong assumptions and how robust the results are to393

violations of these assumptions (e.g., independence assumptions, noiseless settings,394

model well-specification, asymptotic approximations only holding locally). The authors395

should reflect on how these assumptions might be violated in practice and what the396

implications would be.397

• The authors should reflect on the scope of the claims made, e.g., if the approach was398

only tested on a few datasets or with a few runs. In general, empirical results often399

depend on implicit assumptions, which should be articulated.400

• The authors should reflect on the factors that influence the performance of the approach.401

For example, a facial recognition algorithm may perform poorly when image resolution402

is low or images are taken in low lighting. Or a speech-to-text system might not be403

used reliably to provide closed captions for online lectures because it fails to handle404

technical jargon.405

• The authors should discuss the computational efficiency of the proposed algorithms406

and how they scale with dataset size.407

• If applicable, the authors should discuss possible limitations of their approach to408

address problems of privacy and fairness.409

• While the authors might fear that complete honesty about limitations might be used by410

reviewers as grounds for rejection, a worse outcome might be that reviewers discover411

limitations that aren’t acknowledged in the paper. The authors should use their best412

judgment and recognize that individual actions in favor of transparency play an impor-413

tant role in developing norms that preserve the integrity of the community. Reviewers414

will be specifically instructed to not penalize honesty concerning limitations.415

3. Theory assumptions and proofs416

Question: For each theoretical result, does the paper provide the full set of assumptions and417

a complete (and correct) proof?418

Answer: [NA]419

Justification: We do not have any theoretical claims.420

Guidelines:421

• The answer NA means that the paper does not include theoretical results.422

• All the theorems, formulas, and proofs in the paper should be numbered and cross-423

referenced.424

• All assumptions should be clearly stated or referenced in the statement of any theorems.425

• The proofs can either appear in the main paper or the supplemental material, but if426

they appear in the supplemental material, the authors are encouraged to provide a short427

proof sketch to provide intuition.428

• Inversely, any informal proof provided in the core of the paper should be complemented429

by formal proofs provided in appendix or supplemental material.430

• Theorems and Lemmas that the proof relies upon should be properly referenced.431

4. Experimental result reproducibility432

Question: Does the paper fully disclose all the information needed to reproduce the main ex-433

perimental results of the paper to the extent that it affects the main claims and/or conclusions434

of the paper (regardless of whether the code and data are provided or not)?435

Answer: [Yes]436

Justification: We include details on models and prompts used as well as how we analyze the437

data. We believe this is sufficient to perform an equivalent experiment and we further intend438

to release code used in this project. However, the instability and incomplete documentation439

of non-open source LLMs may hamper the reproducibility for those cases.440

12



Guidelines:441

• The answer NA means that the paper does not include experiments.442

• If the paper includes experiments, a No answer to this question will not be perceived443

well by the reviewers: Making the paper reproducible is important, regardless of444

whether the code and data are provided or not.445

• If the contribution is a dataset and/or model, the authors should describe the steps taken446

to make their results reproducible or verifiable.447

• Depending on the contribution, reproducibility can be accomplished in various ways.448

For example, if the contribution is a novel architecture, describing the architecture fully449

might suffice, or if the contribution is a specific model and empirical evaluation, it may450

be necessary to either make it possible for others to replicate the model with the same451

dataset, or provide access to the model. In general. releasing code and data is often452

one good way to accomplish this, but reproducibility can also be provided via detailed453

instructions for how to replicate the results, access to a hosted model (e.g., in the case454

of a large language model), releasing of a model checkpoint, or other means that are455

appropriate to the research performed.456

• While NeurIPS does not require releasing code, the conference does require all submis-457

sions to provide some reasonable avenue for reproducibility, which may depend on the458

nature of the contribution. For example459

(a) If the contribution is primarily a new algorithm, the paper should make it clear how460

to reproduce that algorithm.461

(b) If the contribution is primarily a new model architecture, the paper should describe462

the architecture clearly and fully.463

(c) If the contribution is a new model (e.g., a large language model), then there should464

either be a way to access this model for reproducing the results or a way to reproduce465

the model (e.g., with an open-source dataset or instructions for how to construct466

the dataset).467

(d) We recognize that reproducibility may be tricky in some cases, in which case468

authors are welcome to describe the particular way they provide for reproducibility.469

In the case of closed-source models, it may be that access to the model is limited in470

some way (e.g., to registered users), but it should be possible for other researchers471

to have some path to reproducing or verifying the results.472

5. Open access to data and code473

Question: Does the paper provide open access to the data and code, with sufficient instruc-474

tions to faithfully reproduce the main experimental results, as described in supplemental475

material?476

Answer: [Yes]477

Justification: We intend to make the code for our experiments and analysis publicly available.478

Guidelines:479

• The answer NA means that paper does not include experiments requiring code.480

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/481

public/guides/CodeSubmissionPolicy) for more details.482

• While we encourage the release of code and data, we understand that this might not be483

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not484

including code, unless this is central to the contribution (e.g., for a new open-source485

benchmark).486

• The instructions should contain the exact command and environment needed to run to487

reproduce the results. See the NeurIPS code and data submission guidelines (https:488

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.489

• The authors should provide instructions on data access and preparation, including how490

to access the raw data, preprocessed data, intermediate data, and generated data, etc.491

• The authors should provide scripts to reproduce all experimental results for the new492

proposed method and baselines. If only a subset of experiments are reproducible, they493

should state which ones are omitted from the script and why.494

13

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• At submission time, to preserve anonymity, the authors should release anonymized495

versions (if applicable).496

• Providing as much information as possible in supplemental material (appended to the497

paper) is recommended, but including URLs to data and code is permitted.498

6. Experimental setting/details499

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-500

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the501

results?502

Answer: [Yes]503

Justification: No training was performed. Experiments are described in the paper and we504

plan to provide code.505

Guidelines:506

• The answer NA means that the paper does not include experiments.507

• The experimental setting should be presented in the core of the paper to a level of detail508

that is necessary to appreciate the results and make sense of them.509

• The full details can be provided either with the code, in appendix, or as supplemental510

material.511

7. Experiment statistical significance512

Question: Does the paper report error bars suitably and correctly defined or other appropriate513

information about the statistical significance of the experiments?514

Answer: [Yes]515

Justification: All regressions and correlations are reported with statistical significance.516

Guidelines:517

• The answer NA means that the paper does not include experiments.518

• The authors should answer "Yes" if the results are accompanied by error bars, confi-519

dence intervals, or statistical significance tests, at least for the experiments that support520

the main claims of the paper.521

• The factors of variability that the error bars are capturing should be clearly stated (for522

example, train/test split, initialization, random drawing of some parameter, or overall523

run with given experimental conditions).524

• The method for calculating the error bars should be explained (closed form formula,525

call to a library function, bootstrap, etc.)526

• The assumptions made should be given (e.g., Normally distributed errors).527

• It should be clear whether the error bar is the standard deviation or the standard error528

of the mean.529

• It is OK to report 1-sigma error bars, but one should state it. The authors should530

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis531

of Normality of errors is not verified.532

• For asymmetric distributions, the authors should be careful not to show in tables or533

figures symmetric error bars that would yield results that are out of range (e.g. negative534

error rates).535

• If error bars are reported in tables or plots, The authors should explain in the text how536

they were calculated and reference the corresponding figures or tables in the text.537

8. Experiments compute resources538

Question: For each experiment, does the paper provide sufficient information on the com-539

puter resources (type of compute workers, memory, time of execution) needed to reproduce540

the experiments?541

Answer: [No]542

Justification: Compute resources used were not uniform (different computers used to run543

them and different model providers) and not carefully tracked. Experiments were run544

primarily on personal laptops or with API’s for closed source providers. We believe a few545

hundred dollars were allocated across subscription and compute purchases.546

14



Guidelines:547

• The answer NA means that the paper does not include experiments.548

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,549

or cloud provider, including relevant memory and storage.550

• The paper should provide the amount of compute required for each of the individual551

experimental runs as well as estimate the total compute.552

• The paper should disclose whether the full research project required more compute553

than the experiments reported in the paper (e.g., preliminary or failed experiments that554

didn’t make it into the paper).555

9. Code of ethics556

Question: Does the research conducted in the paper conform, in every respect, with the557

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?558

Answer: [Yes]559

Justification: I have read the Code of Ethics and believe our work complies completely.560

Guidelines:561

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.562

• If the authors answer No, they should explain the special circumstances that require a563

deviation from the Code of Ethics.564

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-565

eration due to laws or regulations in their jurisdiction).566

10. Broader impacts567

Question: Does the paper discuss both potential positive societal impacts and negative568

societal impacts of the work performed?569

Answer: [Yes]570

Justification: This is primarily discussed in the Introduction and Future Works sections.571

Guidelines:572

• The answer NA means that there is no societal impact of the work performed.573

• If the authors answer NA or No, they should explain why their work has no societal574

impact or why the paper does not address societal impact.575

• Examples of negative societal impacts include potential malicious or unintended uses576

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations577

(e.g., deployment of technologies that could make decisions that unfairly impact specific578

groups), privacy considerations, and security considerations.579

• The conference expects that many papers will be foundational research and not tied580

to particular applications, let alone deployments. However, if there is a direct path to581

any negative applications, the authors should point it out. For example, it is legitimate582

to point out that an improvement in the quality of generative models could be used to583

generate deepfakes for disinformation. On the other hand, it is not needed to point out584

that a generic algorithm for optimizing neural networks could enable people to train585

models that generate Deepfakes faster.586

• The authors should consider possible harms that could arise when the technology is587

being used as intended and functioning correctly, harms that could arise when the588

technology is being used as intended but gives incorrect results, and harms following589

from (intentional or unintentional) misuse of the technology.590

• If there are negative societal impacts, the authors could also discuss possible mitigation591

strategies (e.g., gated release of models, providing defenses in addition to attacks,592

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from593

feedback over time, improving the efficiency and accessibility of ML).594

11. Safeguards595

Question: Does the paper describe safeguards that have been put in place for responsible596

release of data or models that have a high risk for misuse (e.g., pretrained language models,597

image generators, or scraped datasets)?598

15

https://neurips.cc/public/EthicsGuidelines


Answer: [NA]599

Justification: We do not foresee any significant risk of misuse.600

Guidelines:601

• The answer NA means that the paper poses no such risks.602

• Released models that have a high risk for misuse or dual-use should be released with603

necessary safeguards to allow for controlled use of the model, for example by requiring604

that users adhere to usage guidelines or restrictions to access the model or implementing605

safety filters.606

• Datasets that have been scraped from the Internet could pose safety risks. The authors607

should describe how they avoided releasing unsafe images.608

• We recognize that providing effective safeguards is challenging, and many papers do609

not require this, but we encourage authors to take this into account and make a best610

faith effort.611

12. Licenses for existing assets612

Question: Are the creators or original owners of assets (e.g., code, data, models), used in613

the paper, properly credited and are the license and terms of use explicitly mentioned and614

properly respected?615

Answer: [Yes]616

Justification: No other assets were used in the paper. We will annotate all code and617

documentation as appropriate. The language documentation and code examples used in our618

testing were checked and we believe are all being used in accordance to their licenses.619

Guidelines:620

• The answer NA means that the paper does not use existing assets.621

• The authors should cite the original paper that produced the code package or dataset.622

• The authors should state which version of the asset is used and, if possible, include a623

URL.624

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.625

• For scraped data from a particular source (e.g., website), the copyright and terms of626

service of that source should be provided.627

• If assets are released, the license, copyright information, and terms of use in the628

package should be provided. For popular datasets, paperswithcode.com/datasets629

has curated licenses for some datasets. Their licensing guide can help determine the630

license of a dataset.631

• For existing datasets that are re-packaged, both the original license and the license of632

the derived asset (if it has changed) should be provided.633

• If this information is not available online, the authors are encouraged to reach out to634

the asset’s creators.635

13. New assets636

Question: Are new assets introduced in the paper well documented and is the documentation637

provided alongside the assets?638

Answer: [Yes]639

Justification: We plan to release the paper under CC-BY 4.0 if accepted in accordance with640

this conference’s standards and plan to release our code under a similar license.641

Guidelines:642

• The answer NA means that the paper does not release new assets.643

• Researchers should communicate the details of the dataset/code/model as part of their644

submissions via structured templates. This includes details about training, license,645

limitations, etc.646

• The paper should discuss whether and how consent was obtained from people whose647

asset is used.648

• At submission time, remember to anonymize your assets (if applicable). You can either649

create an anonymized URL or include an anonymized zip file.650

16

paperswithcode.com/datasets


14. Crowdsourcing and research with human subjects651

Question: For crowdsourcing experiments and research with human subjects, does the paper652

include the full text of instructions given to participants and screenshots, if applicable, as653

well as details about compensation (if any)?654

Answer: [NA]655

Justification: There were no human experiments or crowdsourcing of data.656

Guidelines:657

• The answer NA means that the paper does not involve crowdsourcing nor research with658

human subjects.659

• Including this information in the supplemental material is fine, but if the main contribu-660

tion of the paper involves human subjects, then as much detail as possible should be661

included in the main paper.662

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,663

or other labor should be paid at least the minimum wage in the country of the data664

collector.665

15. Institutional review board (IRB) approvals or equivalent for research with human666

subjects667

Question: Does the paper describe potential risks incurred by study participants, whether668

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)669

approvals (or an equivalent approval/review based on the requirements of your country or670

institution) were obtained?671

Answer: [NA]672

Justification: There were no human experiments or crowdsourcing of data.673

Guidelines:674

• The answer NA means that the paper does not involve crowdsourcing nor research with675

human subjects.676

• Depending on the country in which research is conducted, IRB approval (or equivalent)677

may be required for any human subjects research. If you obtained IRB approval, you678

should clearly state this in the paper.679

• We recognize that the procedures for this may vary significantly between institutions680

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the681

guidelines for their institution.682

• For initial submissions, do not include any information that would break anonymity (if683

applicable), such as the institution conducting the review.684

16. Declaration of LLM usage685

Question: Does the paper describe the usage of LLMs if it is an important, original, or686

non-standard component of the core methods in this research? Note that if the LLM is used687

only for writing, editing, or formatting purposes and does not impact the core methodology,688

scientific rigorousness, or originality of the research, declaration is not required.689

Answer: [Yes]690

Justification: Evaluation of LLM capabilities is the core question of this research. This type691

of evaluation is a standard line of research inquiry. We have also used LLMs for assistance692

in code generation, editing, and background research but none of this is original or of core693

importance to the research.694

Guidelines:695

• The answer NA means that the core method development in this research does not696

involve LLMs as any important, original, or non-standard components.697

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)698

for what should or should not be described.699

17

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methodology
	Model Familiarity
	Measuring Esolang Obscurity
	Evaluation Setup

	Results
	Future Work
	Related Work
	Additional Language Obscurity Information and Analysis
	Model Familiarity Discussion

	In Context Examples
	Language Specific Observations
	Agentic AI Framework Evaluation
	Language Parsing
	MiniPy
	Pyth
	0815
	Rhokell



