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Abstract

Large Language Models (LLMs) have revolutionized mainstream software develop-
ment, yet their ability to generalize to esoteric languages — who may have small or
no representation in the training corpus —remains poor. Programming in esoteric
languages tests a model’s capacity to infer novel grammar and leverage nontrivial
reasoning capabilities in utilizing the documentation. To quantify these effects,
we evaluate both open and closed-source LLMs on code generation and language
identification tasks across four esoteric languages—Minipy, Pyth, Rhokell, and
0815—and compare traditional prompt-based methods to agentic coding IDEs. Our
findings reveal that LLMs can now generate some correct code in these languages
when provided with documentation and sparse examples; however, performance
remains far below that of similar models in common programming languages.
Furthermore, we introduce a novel in-context augmentation strategy in which
LLMs first generate solutions, which are then manually verified and re-inserted as
examples into subsequent prompts. Our results indicate that strategically embed-
ding just a few analogous problems can yield large accuracy improvements without
any model retraining. Our findings show that this “self-scaffolding” approach can
boost performance on coding benchmarks: inserting Deepseek’s verified EsoEval
solutions raised EsoEval accuracy on Pyth from 16.67% to 30.82 %, while Hu-
manEval accuracy on Minipy jumped from 51% to 65%. We offer this as a flexible
alternative to costly fine-tuning, paving the way for rapid adaptation of LLMs to
highly specialized, emerging, or other low data domains.

1 Introduction

Large Language Models (LLMs) pretrained on massive amounts of text and code data have demon-
strated promising performance across various code generation tasks. As these models become
increasingly prevalent, a key application area is the generation of code in specialized domains. New
languages are constantly being developed to better address things like performance, security, or ease
of writing specific types of programs. Translation and maintenance of legacy code can also drive the
need for expertise in more obscure programming languages. Given the high cost of fine-tuning LLMs,
in-context learning—Ileveraging instructions and examples provided within prompts—has emerged
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as the preferred method for adapting these models to tasks and domains that were not encountered
during training. Previous studies have employed in-context demonstrations to prompt LLMs to
generate code that interfaces with external, task-specific library functions |Gupta and Kembhavi
[2023b]], ?. Additionally, Patel et al. observed that LLMs exhibit a strong capability to understand and
utilize novel code libraries based solely on in-context information. Remarkably, their work showed
that LLMs could learn an entirely unfamiliar programming language—the Isabelle language—even
though there is minimal available data on it online. This indicates that LLMs are capable of combining
non-trivial reasoning skills with the syntax of a new language learned entirely through contextual
examples.

Building on the preliminary observation that LLMs can learn new programming languages from
scratch using only in-context demonstrations, we aim to explore several key questions about this
phenomenon. Specifically, we investigate: which esoteric languages can LLMs effectively handle?
How far can these languages deviate from conventional programming paradigms while still being
learned effectively? Do smaller, open-source models exhibit similar capabilities? In this work, we
outline our evaluation framework and present our findings addressing these questions.

Beyond assessing LLMs’ ability to learn esoteric languages (esolangs), our investigation provides
broader insights into their generalization capabilities in low-resource code generation settings. Unlike
mainstream programming languages, which benefit from extensive online documentation and training
data, esolangs present a challenging test bed where models have had far less data to learn from
but can rely on full documentation provided at run-time. Understanding how LLMs navigate these
constraints can inform strategies for improving in-context learning in practical scenarios; by probing
the limits of LLMs in such unconventional domains, our study sheds light on both their strengths and
potential failure modes, contributing to a deeper understanding of their inner workings and future
improvements in code generation models.

2 Related Work

Recent studies have made significant progress in enabling large language models (LLMs) to generate
code from in-context prompts, even when using unfamiliar libraries or syntaxes.

One prominent direction is retrieval-augmented code generation, where external documentation or
code is provided as part of the prompt. For example, DocPrompting by Zhou et al.| [2023] retrieves
relevant API documentation and adds it to the model’s prompt, helping LLMs adapt to unseen
libraries without retraining. Similarly/Hsieh et al.[[2023]] show that supplying tool documentation can
enable zero-shot tool use, matching or exceeding few-shot performance without requiring explicit
demonstrations.

Another important line of work focuses on optimizing which examples to include in few-shot prompts.
Li et al.|[2023]] propose Large Language Model-Aware In-Context Learning, a technique that selects
in-context examples based on how much they boost the model’s likelihood of solving the task. This
leads to substantial gains over traditional retrieval strategies. Complementary to this, [L1 et al.|[2024]]
introduce AceCoder, a staged prompting approach where LLMs are asked to first generate a high-level
problem analysis before writing code, further improving code generation accuracy across multiple
benchmarks.

In addition to static prompts, dynamic retrieval strategies have been explored. |Su et al| [2024]
propose EVOR, an evolving retrieval framework where the model iteratively refines its retrievals
based on generated partial code and execution feedback. EVOR demonstrates significant gains
on tasks involving frequently updated libraries and obscure programming languages compared to
traditional static retrieval methods.

The question of whether LLMs can learn novel libraries and programming languages purely from
in-context information has been explicitly studied by [Patel et al.|[2024]]. Their evaluation shows that
LLMs can effectively understand and use previously unseen APIs when provided with either usage
examples or plain text descriptions. However, they focus on domain specific tasks testing vision
recognition libraries and the language Isabella for automated theorem proving. We are interested in
broad programming abilities and examine multiple programming languages with differing properties.
Similarly, Gupta and Kembhavi|[[2023a] demonstrate that LLMs can generate compositional programs
by observing a new vision-language API without any task-specific fine-tuning.



Finally, Mora et al.|[2024] explore a different setting: enabling LLMs to handle very low-resource and
formal languages through synthetic intermediate representations. Their method, SPEAC, improves
LLM performance by constraining generation to a repairable pseudo-language that can later be
compiled into the target formalism.

Whereas previous studies focus on a single API or language, we evaluate LLMs across a diverse
range of esoteric languages (Minipy, Pyth, Rhokell, 0815) that vary in syntax and online footprint,
and under two benchmarks (HumanEval, EsoEval) of differing complexity. We introduce a self-
scaffolding procedure: model-generated solutions are manually verified and then re-inserted as
in-context examples, to boost performance without retraining, providing a lightweight adaptation
method that complements these prior techniques.

3 Methodology

3.1 Model Familiarity

We conducted an assessment of our model’s familiarity with our chosen esolangs by asking the models
to describe the language and to identify code examples. We evaluated the model’s descriptions of the
programming languages by hand, as summarized in Figure[I] For the code identification task none of
the models were able to correctly identify the programming language from the code examples.

3.2 Measuring Esolang Obscurity

To better understand the challenge posed by evaluating LLMs on esoteric programming languages,
we first quantify how obscure these languages are. Esoteric languages vary significantly in online
presence, documentation, and community adoption. To assess their obscurity, we gathered data on
two key indicators: (1) the number of search engine results containing references to each language
and (2) the number of publicly available GitHub repositories referencing this language.

Search Engine Presence To estimate the prevalence of each esolang in search engine results,
we queried the phrase ‘X’ ‘‘programming language’’ (where X is the language name). Since
raw search result counts can be unreliable due to noise, we refined our approach by examining
a random sample of approximately 50 pages from the top 100 results. Each sampled page was
manually classified to determine whether it was genuinely about the given programming language or
an unrelated topic. We then used the proportion of relevant results to extrapolate an adjusted estimate
of the total number of valid search hits. This likely gives an overestimate as earlier search hits are
more likely to be relevant.

Esolang Obscurity
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GitHub Presence To assess the extent to which each esolang is actively used in coding projects,
we performed a GitHub search using the same query format (‘X’’ ‘‘programming language’’)
to identify repositories mentioning the language. While GitHub does not provide precise counts
of repositories containing code in pit esolangs, we believe this still provides a useful estimate of
community engagement and adoption.

Obscurity Measurements Figure [2| show the stark contrast between mainstream programming lan-
guages and esoteric ones in terms of online presence. As a reference point, Python has approximately
42 million adjusted Google search results and 16,500 GitHub repositories, whereas Pyth, our best
known language, has only 16,200 Google results and 6 repositories (1000-10000x fewer examples).
This disparity underscores how infrequently LLMs are likely to encounter these esolangs in their
training data.

3.3 Benchmarks

We form a benchmark that is language agnostic, Esoeval. While numerous benchmarks exist to
evaluate the general code generation abilities of language models, we do not use popular benchmarks
like SWE-bench Verified, which is currently favored but limited to Python, or MBPP, which also
targets only Python and contains mostly simple synthesis tasks. Both of these benchmarks involve
fixing or completing code already written in Python or explicitly asks for Python code. These
benchmarks are not language-agnostic, making them less suitable for evaluating model performance
across diverse or obscure programming languages—our primary focus. Thus, we focus on HumanEval
and our novel EsoEval benchmark.

HumanEval This hand-written evaluation set consists of 164 programming problems, each
including a function signature, docstring, function body, and several unit tests (an average of 7.7 tests
per problem).

EsoEval The HumanEval dataset was quite challenging for LLMs to code in, so we generated
an additional baseline for comparison. We present EsoEval—a simplified set of 100 problems.
EsoEval includes tasks ranging from basic output statements (e.g., printing "Hello world") to more
complex logic problems (e.g., computing factorials, evaluating prime numbers, and performing string
manipulations). Despite the complexity variations, these tasks remain relatively simple. To establish
a baseline, we evaluated EsoEval in Python using OpenAlI’s gpt-40-mini, which achieved a 100%
accuracy rate, confirming that these tasks are suitable for standard benchmarking.

3.4 Models

We experimented with a range of models, including GPT-40-mini, GPT-40 OpenAl| [2024], LLAMA-
3.3-70B-Instruct-Turbo |Grattafiori et al.|[2024], Deepseek V3 |Liu et al.|[2024], and agentic IDEs,
e.g. Codeium’s Windsurf|Codeium|[2025[]. We evaluated a range of open and closed source models.

3.5 Prompting

We standardized the prompt format as follows:

Write a function in [esoteric language], an esoteric programming language. The function should
perform the following: [prompt].
The documentation for is provided here:

In-Context Examples.

3.6 Documentation/In-Context Examples

Online documentation was assessed by hand and then reformatted if needed. In addition, we provided
between five and thirteen in-context examples per esoteric language—drawn from simple, common



tasks (e.g. factorial, Fibonacci, parity checks) and sourced from public GitHub repositories under
verified fair-use.

3.7 Evaluation

Evaluation Workflow for Standard LLMs:

1. Prompt Augmentation. The standardized prompt, augmented with the relevant documen-
tation, is sent to the chosen code-generation API or language model to produce candidate
code in the specified esoteric language.

2. Code Extraction. The response is parsed to extract the candidate esoteric code.

3. Execution. The extracted code is saved to a temporary file and executed using the esoteric
language’s interpreter via a subprocess call.

4. Testing. Input arguments and expected outputs are derived from the HumanEval test cases.
The candidate code is executed with the provided inputs, and its output is compared against
the expected output, allowing for minor formatting differences.

This methodology provides a robust framework for evaluating the ability of various models to generate
and execute code in esoteric programming languages.

For the agentic IDE evaluation, ( i.e. Codeium’s Windsurf|Codeium|[2025])), the setup only differs in
the code generation step where programs were instead generated sequentially in a separate context to
prevent cross-reference.

4 Results

A series of experiments were conducted to investigate the capability of several LLMs to generate code
in esoteric programming languages. Four primary esolangs were selected for evaluation—Minipy,
0815, Pyth, Rhokell each tested on two different benchmarks: the standard HumanEval dataset and a
newly created simplified benchmark, EsoEval. Figure [3a|provides a visual overview of the accuracy
rates for each language—model pairing on EsoEval. Figure [3b| provides a visual overview of the
accuracy rates for each language—model pairing on Humaneval.

We originally thought that a model’s ability to produce code that compiles an unfamiliar esoteric
language would serve as a rough proxy for its underlying “grasp” of that language’s syntax and seman-
tics—and that higher compilability would therefore translate into higher accuracy. The scatter-and-fit
lines above in Figure ], however, show almost little relationship: slopes are near zero in three of the
four languages, and even in Pyth (where the slope is greatest) a rise in compilability from 20% to 80%
yields only a 15-point boost in correctness. Models will occasionally learn just enough grammar to
compile correctly—matching parentheses, using valid tokens, and so on—yet still produce algorithms
that don’t solve the target problem.

This pronounced disconnect is striking when compared to mainstream benchmarks—take Python, for
example—where a model’s ability to compile is almost always a reliable indicator of its solution’s
correctness. In our own experiments on standard Python benchmarks, we found that nearly all
generated solutions that compiled also passed all provided unit tests for EsoEval, making compilation
success a robust proxy for functional correctness. In addition, most language models tend to perform
similarly when tested on Python, demonstrating predictable trends in compilation and execution
accuracy. This is likely due to well-documented syntax, extensive training data, and consistent
execution environment. In contrast, our results on esoteric languages reveal no clear “winner”—each
model’s strengths vary sharply from one language to another.

4.1 In Context Augmented Learning

Our findings show that augmenting model prompts with in-context examples generated by the
LLMs themselves can improve subsequent performance on difficult code-generation benchmarks, see
Figure[5] By inserting correct EsoEval solutions into the context for EsoEval and HumanEval tasks,
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Figure 3: Accuracy of six language models on EsoEval and HumanEval across four esoteric languages,
comparing performance with and without contextual examples/documentation. For Minipy we
additionally required the use of some Minipy feature to be counted as correct.

we observed DeepSeek’s EsoEval accuracy on Pyth rise from 32% to 41 % and HumanEval accuracy
on Minipy jump from 16.46 % to 30.82 %. None of the examples added to the HumanEval prompts
overlapped with the EsoEval generated examples — demonstrating that our gains stem from the
contextual scaffolding provided by similar, but not identical, problems. Similarily, we observed gains
in GPT 4o with a noteable jump from 54% to 63% in Minipy on EsoEval and a jump from 32.92%
to 39.02% in HumanEval. Subsequent rounds of example insertion produced diminishing returns,
this plateau may suggest that a relatively small number of well-chosen examples suffices to saturate
the model’s context-driven learning capacity. For example, when tackling complex or specialized
problems, strategically embedding a few similar examples within the context window can potentially
lead to enhanced accuracy without the need for extensive retraining. This approach offers a flexible,
resource-efficient alternative to traditional fine-tuning, making it a valuable tool for adapting models
to highly specialized tasks. This strategy offers a lightweight, adaptable pathway for extending large
language models to highly specialized or emerging domains without costly retraining—a promising
direction for resource-efficient model adaptation.

4.2 Language Specific Observations

Minipy occupies a unique position among our esoteric languages: although it extends Python with
concise shorthand constructs, most HumanEval tasks do not require those extensions, so a model
can “cheat” by emitting plain Python and still pass the tests. To prevent this shortcut, we enforced a
non-Python compilability requirement in our EsoEval metric: any submission that successfully ran
under a standard Python interpreter were excluded, regardless of functional accuracy.

When evaluated on HumanEval, GPT-40-mini invariably fell back on plain Python, yielding 0% of
solutions that failed to compile under a standard Python interpreter. Llama-3.3-70B-Instruct-Turbo
exhibited the same tendency, with only 10 % (HumanEval) and 7.7% (HumanEval subset) of its
outputs producing non-compilable code. By contrast, on the simpler EsoEval benchmark—where
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Figure 5: Accuracy after iteratively adding correct model generated examples to the context. This
was repeated until there was no additional benchmark improvement. For Minipy we additionally
required the use of some Minipy feature to be counted as correct.

true Minipy syntax is required—both models showed dramatic gains in non-Python compilability
accuracy: GPT-4o0-mini reached 54% non-compilable submissions, Llama-3.3-70B-Instruct-Turbo
54%, and DeepSeek V3 51%.

These results suggest that, when confronted with complex tasks, models prefer the safety of familiar
Python constructs rather than leverage Minipy’s shorthand features. However, on more straightforward
problems, they are capable of nontrivially applying the documented Minipy extensions. By measuring
non-compilability in Python, we ensure that high EsoEval accuracy truly reflects understanding of
Minipy’s specialized syntax rather than a fallback to Python.

Across the other three esoteric languages—0815, Pyth, and Rhokell—and two evaluation frameworks
(HumanEval, 10 tasks; EsoEval, 30 tasks), we observed that the degree of syntactic divergence is
correlated with LLM performance. For example, the hexadecimal-only, comment-filtering 0815



language, GPT-40-mini scored 0% on HumanEval but 11% on the simpler EsoEval benchmark,
whereas LLAMA-3.3-70B achieved 0% and Deepseek V3 12% on EsoEval. In Pyth—a Python-
inspired golfing language—GPT-40-mini again scored 0% on HumanEval but attained 10% on
EsoEval, with LLAMA-3.3-70B and Deepseek V3 reaching 13% and 32%, respectively. Finally,
for Rhokell, which fuses p calculus with Haskell-style syntax, GPT-40-mini produced 0% accuracy
on HumanEval but 3% on EsoEval, while LLAMA-3.3-70B remained at 0% and Deepseek V3
achieved 10%. These results suggest that moderate syntactic departures—such as Pyth’s concise,
Python-derived abbreviations—permit some transfer of existing knowledge, but more unusual syntax
like those of 0815 and Rhokell inhibit code generation.

4.3 Without Context:

We evaluated the EsoEval problems across four languages: Pyth, 0815, and Minipy—without
providing any accompanying documentation or examples. By mandating non-Python compilability
we show the context-dependence of their performance for most models. However, the relatively
high accuracy observed for Pyth is concerning and may be attributed to the language’s lower level
of esotericism. When a model, such as gpt-4o-mini, achieves the same accuracy with and without
context for Pyth, it is likely due to exposure to similar samples in its training data, thereby diminishing
the extent of true in-context learning.

4.4 Relationship Between Obscurity and Performance
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Figure 6: Correlation Between Obscurity and Performance

The experiments indicate that closer syntactic parallels to Python lead to higher accuracy rates, as
evidenced by Minipy and, to a lesser extent, Pyth. Non-standard languages such as 0815, which
substantially differs from standard languages, elicited near-zero accuracy on more complex tasks.
Incorporating relevant documentation within the prompt proved to be an effective strategy for
improving the models’ ability to generate valid esolang code. It appears that obscurity—measured
here as the log of Google result counts—has little bearing on a model’s ability to generate correct
esoteric-language code. As shown in Figure[6] there is no clear downward trend in EsoEval accuracy
as language obscurity increases, indicating that factors other than raw online prevalence (for example,
syntactic similarity to familiar languages or the inclusion of documentation in the prompt) are far
more predictive of a model’s success.

The lack of a strong correlation between obscurity and model performance implies the difficulty of
code generation in these languages is not primarily driven by their rarity or the amount of publicly
available information. This finding is somewhat surprising, as one might expect that languages
with fewer online resources—such as documentation, tutorials, and example programs—would pose
greater challenges for large language models trained on publicly available code.

Unlike widely used languages such as Python, which appear extensively in open-source code reposi-
tories, educational materials, and programming discussions, esolangs are mostly confined to niche
communities. The lack of formal, structured learning resources in training thus limits the ability of
models to generalize from available examples.



5 Future Work

We evaluated four esoteric programming languages — Minipy, Pyth, 0815, and Rhokell—but there are
hundreds more. Future work should extend our framework to include additional esoteric programming
languages to verify whether our in-context iterative improvement generalizes across the a broader
spectrum of esolangs.

Likewise, our model comparison was limited to two parameter scales of the same family—GPT-40
and GPT-4o0-mini—and a handful of open-source counterparts. A more thorough investigation should
chart performance across a wider range of model sizes, architectures, and pretraining corpora to
uncover any scaling laws specific to esoteric code generation. For example, do larger models show
proportionally greater gains on highly unconventional languages, or is there a point of diminishing
returns? How do model families with different pretraining objectives (e.g., code-focused versus
general-purpose) compare?

Our in context augmented learning strategy relies on manual verification to ensure example correct-
ness. Automating that verification could close the loop and enable continual in-context learning,
where the model’s own outputs are iteratively vetted and fed back without human intervention.
Combining this with reinforcement-learning-style reward signals (e.g., pass/fail on test cases) may
further boost performance while reducing manual overhead.

While we demonstrated that a handful of well-chosen examples can saturate the model’s context-
driven gains, we did not optimize which examples to include or how to order them. Future work
should explore adaptive retrieval mechanisms that dynamically select the most relevant examples
based on the structure and complexity of the target problem Perhaps starting with very simple,
canonical exercises and gradually increasing difficulty—may further enhance the model’s ability to
generalize to specialized domains.

We want to highlight the benefit of extending these optimizations beyond code generation to other
low-resource domains, such as symbolic reasoning, formal verification, and theorem proving, which
could offer broader insights into the principles governing in-context learning across different tasks.
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A Additional Language Obscurity Information and Analysis

A.1 Model Familiarity Discussion

Here we provide more detail on the responses summarized in Figure [T} ChatGPT-40 and its mini
variant both correctly identified Pyth as a Python-inspired golfing language but showed no genuine
familiarity with Rhokell or 0815 and only minimal awareness of Minipy. Deepseek V3 properly
classified Pyth and Rhokell while offering only generic or erroneous descriptions for 0815 and Minipy.
LLAMA-3.3-70B accurately labeled Pyth and Minipy but failed to provide substantive information on
Rhokell or 0815. When presented with five representative code snippets for each language, all models
misclassified every example. We observed some common mistakes were interpreting Minipy as buggy
Python, labeling Rhokell as Unlambda or vague “functional logic,” and giving only superficial labels
for Pyth and 0815—thereby demonstrating a marked inability to recognize these esoteric languages
from source code alone.

A.2 Additional Figures on Obscurity Regressions
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B In Context Examples
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Figure 7: Distribution of common examples provided during in-context learning across the different
esoteric programming languages.
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For the Esolang n0815 (13 examples) we included “Hello, World!,” parity testing, factorial, Fi-
bonacci, sum of squares, “99 Bottles,” primes, Hailstone, a randomizer, and truth machines (nu-
meric/ASCII)—four overlap EsoEval, none overlap HumanEval. Pyth (7 examples) featured three
factorial variants, subsets memoization, reduce, Fibonacci, and Collatz—two overlap EsoEval.
Rhokell (11 examples) covered factorial, Fibonacci, primes, Kolakoski, quicksort, list ops, Peano and
binary arithmetic, and a quine—three overlap EsoEval. The examples were gathered from available
open-source software examples.

0815

A total of 13 sample programs were provided alongside the 0815 documentation to reinforce model
understanding. These included basic outputs like "Hello World!" and Cat, computational tasks such
as odd/even checks, binary representation, factorial sequences, arithmetic mean, Fibonacci, and
summing squares. More complex problems included "99 Bottles of Beer", prime numbers, the
Hailstone sequence, a simple randomizer, and truth machines (numeric and ASCII). There is no
overlap between the examples provided and HumanEvaltest set but there is minor overlap between
the examples given and those in EsoEval. There is overlap between the in-context examples and
EsoEval for the following 4 examples: printing "Hello World!", even/odd number function, factorial,
and Fibonacci.

Pyth

For Pyth, a total of 7 examples were provided, with a strong focus on factorial computation. This
included three factorial-related sub-examples: Factorial 3.1.1, Factorial 3.1.3 (The Iterative Factorial),
and the Recursive Factorial. Additionally, there were examples showcasing memoization (subsets
function), functional programming with reduce, Fibonacci sequence generation, and solving the
Collatz sequence. There is no overlap between the examples provided and HumanEvaltest set but
there is minor overlap between the examples given and those in EsoEval. There is overlap between
the in-context examples and EsoEval for the following 2 examples: factorial and fibonacci.

Rhokell

For Rhokell, a total of 11 examples were provided, covering a range of algorithmic and computational
topics. Several examples focus on mathematical sequences, such as computing factorials, Fibonacci
numbers, primes, and the Kolakoski sequence. Sorting and list manipulation are also demonstrated,
with a quicksort implementation and a general lists example. Additional examples explore syntax
and functional programming concepts, including Peano arithmetic, binary arithmetic, and a quine
program. There is no overlap between the examples provided and HumanEvaltest set but there is
minor overlap between the examples given and those in EsoEval. There is overlap between the
in-context examples and EsoEval for the following 3 examples: printing "Hello World!", factorial,
and Fibonacci.

Minipy

For Minipy, no examples were provided for EsoEval. However, among the code generated by
Deepseek V3 for EsoEval—which compiled correctly only in the Minipy interpreter and not in the
standard Python interpreter—the resulting examples were collected and subsequently used for testing
on HumanEval. There is no overlap between the examples provided and those in HumanEval.

C Agentic AI Framework Evaluation

For the second part of our evaluation, we turned to agentic Al frameworks. Specifically, we evaluated
tools such as Windsurf and Cursor by prompting their respective agents to write the code for both the
HumanEval and EsoEval datasets.

C.1 Language Parsing

One additional challenge arose from the need to adapt our testing harness to the specifications of
each language and the structure of the HumanEval benchmark. Because HumanEval’s reference
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implementations use Python-style assert statements, any candidate solution needed a a Python-callable
function. In practice, many esoteric-language programs required input-output wrappers to conform to
the HumanEval harness, and some languages lacked any built-in notion of user-defined functions.
We translated between string, list, or integer representations —to ensure that each candidate program
could be tested uniformly by the test runner. At the same time, we strove to respect each language’s
native syntax and execution model, providing only the smallest necessary adaptation rather than
rewriting the core logic. As a result, every testing harness is slightly different; in the remainder of
this section, we describe those per-language adjustments in detail

C.1.1 MiniPy

MiniPy was the most straightforward language to work with due to its similarity with Python as
a coding language. For this language, the outputed code was directly executable using a Python
compiler with a list of shorthands appended to the beginning of each program.

C.1.2 Pyth

Architecture Overview We developed a systematic approach to testing Pyth code using Python’s
testing infrastructure, focusing on three key components. The first component was our Code Transla-
tion Layer, which implemented get_pyth_translation to capture Python translations from the
Pyth interpreter’s stderr output. This was important since our testing dataset contained our tests using
Python assert statements. Therefore, parsing the translation in the stderr output was the simplest
solution.

The second component, our Test Execution Environment, centered around the test_pyth_function
which dynamically executed Pyth code with arbitrary inputs. Since the output of the Pyth program only
existed withint the context of the interpreter, we set up an environment to manage variables through
a global environment dictionary and handled return value propagation via environment [’K’],
ensuring consistent state management between Pyth and Python contexts.

The execution flow is shown in the following workflow:

def workflow(pyth_code, input_value):
translation = get_pyth_translation(pyth_code)
python_func = create_python_function(translation)
result = test_pyth_function(python_func, input_value)
return result

C.1.3 0815

Architecture Overview For the 0815 esoteric language implementation, modified the testing
framework to address the differences with working with a register-based hexadecimal language. The
first component was our Register Management System, which handled the language’s three 64-bit
registers: X (write-only), Y (helper), and Z (read-only). This involved state tracking and hexadecimal
conversions for all numeric operations.

For Test Case Integration, we implemented a system that bridged between decimal test inputs and
0815’s hexadecimal requirements. This included automatic conversion of test inputs to hexadecimal
format and proper interpretation of hexadecimal outputs back to decimal for test validation. This
was especially important when figuring out representations for lists and other unique data structures.
We also refactored the assert statements within the HumanEwval test cases to generate text files with
the test cases written out instead. They were then parsed and converted using the process described
above to test each program.

C.14 Rhokell

Architecture Overview For the Rhokell language implementation, we developed a testing frame-
work that integrated with Rust’s cargo build system while providing a Python-based test harness.
The first component was our Rust Integration Layer, which managed the compilation and execution
of Rhokell code through cargo. This required careful handling of build processes and proper path
management to ensure reliable interpreter access.
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The second component was our Execution Environment, which utilized a robust subprocess manage-
ment system to handle both compilation and runtime phases. This dual-phase approach was necessary
due to Rhokell’s compiled nature, distinguishing it from interpreted languages like Pyth and 0815.
The environment tracked compilation success separately from execution results, providing detailed
feedback for both phases.

For Test Case Management, we implemented a dataclass-based statistics tracking system that moni-
tored multiple aspects of test execution. This included tracking total problems attempted, successful
compilations, passed tests, and aggregate test counts, providing comprehensive metrics for evaluation.

Key Technical Challenges and Solutions The implementation presented several unique technical
challenges. The primary challenge was managing the Rust-based interpreter’s build process. Unlike
the other esolangs we tested, Rhokell was not implemented with Python-based interpreters. We
resolved this by implementing a pre-execution build check system that verified the interpreter’s
availability and triggered compilation when necessary.

This also involved delving into the process management, especially with testing. The solution
involved implementing a timeout-aware execution system that properly handled both compilation
and runtime errors while maintaining clean state. The test cases were treated similarly to previous
esolangs, being written into a text file and then parsed into a form recognizable by the language.
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