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Abstract

Explaining deep models for time-series data is
crucial for identifying key patterns in sensitive
domains, such as healthcare and finance. How-
ever, due to the lack of a unified optimization
criterion, existing explanation methods often suf-
fer from redundancy and incompleteness, where
irrelevant patterns are included or key patterns are
missed in explanations. To address this challenge,
we propose the Optimal Information Retention
Principle, where conditional mutual information
defines minimizing redundancy and maximizing
completeness as optimization objectives. We then
derive the corresponding objective function the-
oretically. As a practical framework, we intro-
duce an explanation framework ORTE, learning
a binary mask to eliminate redundant informa-
tion while mining temporal patterns of explana-
tions. We decouple the discrete mapping process
to ensure the stability of gradient propagation,
while employing contrastive learning to achieve
precise filtering of explanatory patterns through
the mask, thereby realizing a trade-off between
low redundancy and high completeness. Exten-
sive quantitative and qualitative experiments on
synthetic and real-world datasets demonstrate that
the proposed principle significantly improves the
accuracy and completeness of explanations com-
pared to baseline methods. The code is available
at https://github.com/moon2yue/ORTE public.
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1. Introduction
The rapid advancements in deep learning have greatly im-
proved the analysis of time-series data, excelling particu-
larly in capturing intricate temporal patterns and managing
high-throughput datasets. However, their inherently multi-
layered and nonlinear architecture often renders them black-
box, prompting significant concerns regarding interpretabil-
ity and reliability in sensitive domains, such as healthcare
(Alqaraawi et al., 2020) and finance (Mokhtari et al., 2019).
For instance, explaining the temporal patterns and complex
dynamics underpinning deep model predictions is essential
for understanding the physiological representation of dis-
eases and enabling effective early warning systems (Di Mar-
tino & Delmastro, 2023).

Research on improving the interpretability of deep models
for time series signals primarily focuses on local explana-
tions, aiming to identify critical temporal patterns by lo-
cating significant positions in time series signals. These
approaches have attracted considerable interest due to their
ability to provide intuitive, data-driven insights, highlighting
which features are essential or irrelevant for specific down-
stream tasks. Some existing local explanation methods are
adaptations of approaches originally developed for computer
vision (CV) and natural language processing (NLP). How-
ever, Ismail et al. (2020) illustrates that saliency-based meth-
ods, such as Integrated Gradients (Baehrens et al., 2010),
Deep SHAP (Scott et al., 2017), and Feature Occlusion
(Zeiler & Fergus, 2014), fail to reliably and accurately iden-
tify the temporal variation in feature importance within time
series data. Others are tailored specifically for time-series
data. For example, Dynamask (Crabbé & Van Der Schaar,
2021) incorporates temporal dependencies by learning the
effects of perturbation operators, enabling it to generate
instance-specific importance scores for each feature at every
time step. TIMEX (Queen et al., 2024) trains a surrogate
model to replicate the predictive behavior of a black-box
model, enabling the identification of important positions
and temporal patterns. However, these heuristic methods
lack a unified optimization framework and often overlook
the requirements for explanation completeness or low redun-
dancy, posing challenges for identifying critical temporal
patterns. As illustrated in Figure 1, the mixing of redundant
patterns makes critical patterns unable to be highlighted,
while incompleteness may cause missing patterns or even
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Figure 1. The Venn Diagram of information retention. I(X;Y ) is defined as task-relevant effective information. (a) Ideal case: Xm

only contains the same information as I(X;Y ). (b) Incompleteness case: The information of Xm is a proper subset of I(X;Y ). (c)
Redundant case: The information of Xm contains not only I(X;Y ), but also other information irrelevant to Y . (d) Mixed case: A
mixture of incompleteness and redundant cases.

pointing to wrong patterns.

Information theory provides a novel perspective for explain-
ing the complex dynamics of deep models. Representative
approaches, such as the Information Bottleneck (IB) (Tishby
& Zaslavsky, 2015), focus on minimizing the mutual in-
formation I(X;Z) between the input X and the learned
representation Z, while maximizing the mutual information
I(Y ;Z) between Z and the labels Y . The IB framework
structurally characterizes the learning process as a trade-off
between compact representations and informational utility.
TIMEX++ (Liu et al., 2024) highlights that many existing
interpretability metrics for time-series data are prone to triv-
ial solutions and issues arising from distribution shifts. To
address these challenges, an optimization objective for in-
terpretability is derived from IB. Contrastive learning, on
the other hand, centers on minimizing the distance between
positive pairs in the embedding space while maximizing the
distance between negative pairs (Dosovitskiy et al., 2014;
Khosla et al., 2020; Tian et al., 2020). For instance, train-
ing models to maximize the mutual information of positive
pairs and minimize that of negative pairs aligns well with
this framework (He et al., 2020). Rate reduction focuses
on compressing intra-class informational bits, ensuring that
representations of different classes occupy highly uncorre-
lated linear subspaces (Yu et al., 2020; Chan et al., 2022).
CRATE (Yu et al., 2023) interprets the Transformer model
as a multi-layer stack of information compression and dis-
cretization processes, and introduces a simplified, white-box
version of the Transformer model. While these methods pro-
vide insights into the learning process or objectives of deep
models from various perspectives, they are not designed to
directly guide the optimization of local explanations. Due to
the dynamic nature of time series, redundant or incomplete
local segments may represent different temporal patterns.
Additionally, the heterogeneity of data poses challenges

for heuristic methods in generalizing to time series signals.
Therefore, uniform optimization principles and practical
frameworks for time series signals are needed to be directly
applied to improve the local interpretation of deep models.

To address the above challenges, we propose the Optimal
Information Retention Principle grounded in information
theory for precisely identifying explanatory temporal pat-
terns within time series. This principle encompasses three
criteria to guide the optimization of local explanations: i)
Semantic Information Retention, which aligns the predic-
tion distribution of the interpreter with the black-box model
to ensure fidelity of explanations; ii) Minimum Redundant
Information Retention, which minimizes the mutual infor-
mation between the input and the explanation under condi-
tions unrelated to downstream tasks, thereby avoiding the
inclusion of redundant information; iii) Maximum Effective
Information Retention, which ensures that after removing
the explanatory temporal patterns, the mutual information
between the input and the label is minimized. This im-
plies that the input loses its predictive capability, thereby
guaranteeing the completeness of the explanation.

Based on the Optimal Information Retention Principle, we
have derived objective functions for distribution alignment,
redundancy elimination, and information completeness, re-
spectively. Furthermore, we propose an Optimal Informa-
tion Retention for Time-Series Explanations (ORTE) as
a practical framework. Specifically, we first construct a
parametric network to learn a binary mask for filtering re-
dundant information from the input. We decouple the for-
ward mapping and backward gradient propagation processes
to mitigate the issue of gradient instability in binary mask
learning. Then, we utilize the binary mask to construct
positive and negative sample pairs and employ contrastive
learning to achieve a trade-off between low redundancy and
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high completeness in the explanations. Additionally, we
align the prediction distribution of the explanations with the
black-box model to ensure the fidelity of the explanations.
Our contributions are summarized as follows:

• We propose the Optimal Information Retention Prin-
ciple grounded in information theory to address the
issues of redundancy and incompleteness in time series
interpretation, and theoretically derive the correspond-
ing objective functions.

• We propose ORTE as a practical framework, which
achieves a trade-off between low redundancy and high
completeness in explanations by decoupling discrete
mapping, contrastive learning, and distribution align-
ment.

• We achieve state-of-the-art performance on eight syn-
thetic and real-world time series datasets compared to
the latest competitive baselines and validate the utility
of each component.

2. Optimal Information Retention Principle
In this section, we first formally describe the formulation of
time-series explanations based on classification task. Then,
we present a unified optimization principle for time-series
explanations, namely the principle of optimal information
retention. This principle comprises three criteria: semantic
information retention, minimal redundant information reten-
tion, and maximal effective information retention. Based on
these criteria, we theoretically derive objective functions for
optimizing time-series explanations.

2.1. Problem Formulation

Time Series Classification. Given a time series dataset
D = (X,Y ) = {(xi, yi)}N1 containing N pairs, X are
multivariate or univariate time series instances, and Y are
the corresponding labels. Each time series instance xi ∈
RT×D is composed of vectors collected by one (e.g., D =
1) or multiple sensors (e.g., D > 1), where T denotes the
length of time steps and D represents the number of sensors.
Each label yi belongs to one class of {1, 2, . . . , C}. A pre-
trained deep neural network (DNN) f is trained to classify
the input instance xi into the maximum probability class,
e.g., ŷi = argmax(f (xi)) ∈ C.

Local explanation for time series. In this paper, we aim
to propose a mask generator g(f, x) to learn a binary mask
matrix M ∈ {0, 1}T×D, which can retain the important
pieces of x, e.g., Xm = X ⊙M , where ⊙ is an element-
wise multiplication. In other words, Xm are considered
more important than X ⊙ (1 − M) for the classification
task. Naturally, the ideal sub-features Xm are expected to
retain the most relevant information to the downstream task.

The probability distribution of M can also be regarded as a
salient map (attribution map or importance map).

2.2. Optimal Information Retention

For a task T whose goal is to predict label Y from the input
X , the optimal sub-feature Xm ∈ X should contain min-
imal irrelevant and maximum effective information to the
mapping f : X → Y . In order to introduce the optimal
explanations Xm, we first investigate the possible cases of
information retention within Xm as shown in Figure 1. Ide-
ally, the optimal explanation Xm exclusively and entirely
contains the task-relevant information within X , denoted
as Figure 1(a). Figure 1(b) shows the incompleteness in-
formation case, where Xm is a subset of I(X;Y ), failing
to fully explain the predictive behavior of f(X). This may
manifest in the explanation as only highlighting partial frag-
ments of the effective series. On the other hand, a redundant
information case occurs when Xm not only includes the
necessary explanatory information but also incorporates ir-
relevant information, as shown in Figure 1(c). This may
lead to the mixing of irrelevant patterns, causing critical tem-
poral patterns to fail to be highlighted. Figure 1(d) involves
a combination of incompleteness and redundant information
within a single context, which may be a more challenging
case. Both the inclusion of redundant information and the
absence of effective information can alter critical temporal
patterns, which is a key challenge in time-series explana-
tions. Furthermore, explanations should remain faithful to
the pre-trained black-box model. To this end, we propose
the optimal information retention principle containing three
criteria: Semantic Information Retention, Minimum Re-
dundant Information Retention, and Maximum Effective
Information Retention, as outlined below.

Criteria 2.1. (Semantic Information Retention) To faith-
fully reflect the predictive behavior f(X), Xm should per-
form similar task-specific semantic consistency, as follows:

minLJS (f(X), f (Xm)) , (1)

where LJS denotes the Jensen-Shannon divergence.

Criteria 2.1 ensures the fidelity of the explanation by align-
ing the distributions of f(X) and f(Xm). This avoids spuri-
ous correlations between the interpreter and the pre-trained
model, meaning that the identified key temporal patterns
are indeed the basis for the black-box model’s predictions.
Furthermore, Semantic Information Retention also aligns
with the advantages of prediction consistency emphasized in
TIMEX (Queen et al., 2024) and the signal issue addressed
in TIMEX++ (Liu et al., 2024).

Criteria 2.2. (Minimum Redundant Information Retention)
The optimal sub-features Xm should only contain the mu-
tual information shared by I(X;Y ), and include as little
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information of X no relation to Y , as follows:

min I (X;Xm | Y ) . (2)

Although Criteria 2.2 provides an ideal direction for mini-
mizing redundant information, computing the conditional
mutual information remains difficult for:

I (X;Xm | Y ) = Ep(x,y)

[
Ep(xm|x,y)

[
log

p (xm | x, y)
p (xm | y)

]]
,

(3)
where p (xm | x, y) and p (xm | y) are intractable in DNN.
Considering Xm = X ⊙M , I (X;M | Y ) is served as the
simplified form of I (X;Xm | Y ). Furthermore, by relating
it to the Kullback-Leibler divergence, there are

I (X;M | Y ) = Ep(x,y) [DKL(p(m | x, y)||p(m | y))] ,
(4)

where I (X;Xm | Y ) ∝ DKL(p(m | x, y)∥p(m | y)).
Referring to the variational approaches (Miao et al.,
2022; Queen et al., 2024), M can be sampled following
Bernoulli distribution at each time step, i.e., p(m | x) =∏

t,d Bern(pt,d), where pt,d denotes the probability that the
value of x at time t and dimension d is retained. Assuming
the desired distribution of p is p(m) =

∏
t,d Bern(r), the

derived objective function can be expressed as:

Lmask = E[DKL(p(m | x)∥q(m))]

=
∑
t,d

[pt,d log
pt,d
r

+ (1− pt,d) log
1− pt,d
1− r

], (5)

where r as the desired probability of q(m = 1) is a hyper-
parameter in practice. The detailed proof of (5) is provided
in Appendix B.1.

Intuitively, the optimal Xm should contain all the in-
formation relevant to Y . Assuming Xm is removed,
I (X;Y | Xm) → 0 indicates that H(X | Xm) completely
loses the information required to predict Y . To this end,
the formal definition of maximum effective information
retention is as follows.

Criteria 2.3. (Maximum Effective Information Retention)
The optimal retention of sub-features Xm should encom-
pass as much task-relevant information from X as possible,
minimizing the risk of information omission, as follows:

min I (X;Y | Xm) . (6)

We pad the masked parts of Xm to obtain X̂ , ensur-
ing consistency in dimensions while avoiding the Out-of-
Distribution (OOD). Furthermore, (6) can be decomposed
as:

I (X;Y | Xm) ⇒

I
(
X;Y | X̂

)
= I

(
X;Y, X̂

)
− I

(
X; X̂

)
.

(7)

To minimize I (X;Y | Xm), we minimize the first term
I
(
X;Y, X̂

)
, while maximize the second term I(X; X̂).

For the first term, when X̂ serves as the input generated
by Xm, the mutual information I(X; X̂) should ideally
include only the information contained in I(X;Y ). Other-
wise, redundant information may be introduced. Assuming
X̂ has no overlap with the portions of H(X | Y ), then
I
(
X;Y, X̂

)
= I (X;Y ), which is a constant independent

of X̂ .

For the second term, since X and X̂ share effective informa-
tion in Xm, they can naturally regarded as the anchor sam-
ples and the positive samples, respectively, in contrastive
learning. Therefore, we employ contrastive loss to maxi-
mize the mutual information between X and X̂:

Lct = − 1

N

N∑
i=1

{log[exp (f (xi) · f (x̂i))]

− log[exp (f (xi) · f (x̂i)) +

K∑
j=1

exp
(
f (xi) · f

(
x̂−
j

))
]},

(8)
where x̂−

j denotes the negative sample, which can be gener-
ated by h(X −XM ), i.e., Gaussian noise imputation. The
detailed proof of (8) is provided in Appendix B.2.

3. ORTE Method
We now present the Optimal Information Retention for
Time-Series Explanations (ORTE), whose overview frame-
work is illustrated in Figure 2. Based on the analysis in
the previous section, ORTE describes a practical framework
for time-series explanations from the optimal information
retention principle. ORTE includes three main blocks like
Adaptive Mask Generator (AMG), Contrastive Explanation
Separator (CES), and Predictive Distribution Aligner (PDA).
Specifically, AMG learns a 0-1 occlusion matrix to mask
redundant information so that achieves the Minimum Re-
dundant Information Retention. CES employs contrastive
learning to trade off low redundancy and high complete-
ness in the explanations, thereby achieving the Maximum
Effective Information Retention. PDA aligns the prediction
distribution of the explanations with the black-box model to
ensure the Semantic Information Retention.

3.1. Adaptive Mask Generator

According to the Minimum Redundant Information Reten-
tion, the binary mask M ∈ {0, 1}T×D reveals the inter-
pretability of the time series, i.e., important segments are
assigned {1} to be retained. The explanation generator
is performed through two steps to learn M : Probabilistic
Generation Process and Discrete Mapping Process.
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Figure 2. Overview of ORTE method including three main blocks: Adaptive Mask Generator (AMG), Contrastive Explanation Separator
(CES), and Predictive Distribution Aligner (PDA).

Probabilistic Generation Process. The first process en-
codes the input X as a probabilistic matrix P (M | X),
where pt1,d1

> pt2,d2
indicates xt1,d1

is more important
than xt2,d2

. As discussed by Queen et al. (2024), we em-
ploy an autoregressive transformer decoder and softmax
activations to output the probability of each temporal sen-
sor pair. Additionally, to optimize the continuity of the
distribution, we also introduce a continuous loss:

Lcon =
1

T ×D

D∑
d=1

T−1∑
t=1

√
(pt,d − pt+1,d)

2
. (9)

So the objective function for minimal redundant informa-
tion retention can be expressed as Lmrir = Lmask + Lcon.
Discrete Mapping Process. Mapping P from the contin-
uous space to the discrete binary space M suffers from
non-differentiable gradients. Queen et al. (2024) introduces
the Straight-Through Gumbel-Softmax (ST-GS) estimator
(Jang et al., 2016) to bridge the gap between the forward
propagation mapping discrete distribution and the backward
derivation being non-differentiable. Let l denotes the unnor-
malized logits of encoder outputs, the forward pass can be
summarized as:

forward: p = softmax

(
l

τ
+ g

)
m = argmax(p),

(10)

where τ represents the temperature parameter that controls
the entropy of p, and g is randomly sampled noise from
Gumbel (0,1). Giving L as the loss function, the backward

pass is:

backward:
∂L
∂l

=
∂L
∂m

∂m

∂p

∂p

∂l
≈ ∂L

∂m

∂p

∂l
, (11)

where Straight-Through Estimator (STE) (Bengio et al.,
2013) is applied to allow gradients to propagate through the
logits, such as ∂m

∂p ≈ 1. Although ST-GS solves the prob-
lem of non-differentiable gradients in the discrete mapping
process, it ignores the difference between forward and back-
ward propagation. Specifically, the forward propagation
requires the distribution of p to be sharp with the training
process so that extreme values are taken without signifi-
cant bias. However, as discussed in Shah et al. (2024) the
backpropagation process of the fixed gradient limits the
ability to model the data distribution. We propose adaptive
STE (adapt-STE) to alleviate the asymmetry of forward and
backward propagation:

τf = clip (τf − η · σ(l), τmin, τmax)

τb = clip (τf + η · σ(l), τmin, τmax) ,
(12)

where τf and τb represent the temperature parameter of
the forward propagation and backward propagation, respec-
tively. clip() restricts the upper and lower bound hyper-
parameters of τf and τb to be τmax and τmin, and η is the
updating rate and σ(l) is the standard deviation of l. A small
τf ensures the sharpness of p in the forward propagation,
while a large τb ensures the faithfulness to l in the backward
propagation. The pseudocode of adapt-STE is summarized
in Appendix C
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3.2. Contrastive Explanation Separator

As discussed in Section 2.3, maximizing the task-relevant
information shared by positive samples X̂ with input X , and
minimizing the retention of valid information by negative
samples X̂− is key to interpretation. To this end, we intro-
duce how to generate positive and negative sample pairs. As
discussed in TIMEX++ (Liu et al., 2024), it is essential to
ensure the integrity of effective information while avoiding
out-of-distribution (OOD) issues. Therefore, we adopt the
same generation strategy:

X̂ = MLP(M,X), (13)

where X̂ ∈ RT×D. Lsim = mse(X, X̂) is employed to
ensure generalization and avoid overfitting. For negative
samples X̂−, we filter out effective information through
reverse masking, while the masked portions are then filled
with Gaussian noise:

X̂− = (1−M)⊙X +M ⊙ pad, (14)

where pad ∼ N
(
µ, σ2

)
. This effectively enhances the

discrepancy between positive and negative samples, thereby
facilitating a clearer distinction in the feature space. So
the objective function for maximum effective information
retention can be expressed as Lmeir = αLct+βLsim, where
α and β are hyperparameters.

3.3. Objective Function

Predictive Distribution Aligner. The explanation should
be faithful to the predictions of the black-box model. For
this purpose, we align the explained predictive distribution
with the pre-trained black-box model predictive distribution.
Referring to 1, the Jensen-Shannon divergence is minimized
as the loss function to reduce the distribution difference.

The overall objective function for the learning process con-
sists of four terms. First, LJS aligns the explanation with the
predictions of the black-box model, ensuring the retention
of semantic information. Second, Lmire filters redundant
information by learning a masking matrix. Third, Lmeir de-
composes the original data into positive and negative sample
pairs, where contrastive learning is used to preserve effec-
tive information. Additionally, to enforce sparsity in the
masking, we introduce Lspr = ∥M∥1 as a regularization
term. The overall objective function is as follows:

L = LJS + Lmrir + Lmeir + γLspr, (15)

where γ is a hyperparameter.

4. Experiments
In this section, we conduct experiments to study the per-
formance of our proposed ORTE method on four synthetic

datasets and four real-world datasets. Without loss of gener-
ality, we employ the vanilla Transformer (Vaswani, 2017) as
a black-box classifier. Our goal is to explain this black-box
model. Here we first introduce the experimental settings
including Datasets, Metrics, and Comparison Methods.
Then the performance of the proposed method is compared
with baseline methods and an ablation study is conducted
to validate the effectiveness of individual modules. Finally,
the ability of the optimal information retention principle to
distinguish valid information from redundant information is
experimentally verified. Refer to the Appendix D for more
experimental details.

4.1. Experimental Settings

Datasets. We evaluate our method on four carefully de-
signed synthetic datasets with ground-truth annotations:
FreqShapes, SeqComb-UV, SeqComb-MV, and LowVar
(Queen et al., 2024). These datasets, encompassing both
univariate and multivariate time series, inherently contain
complex temporal dynamics. The goal of the explanation is
to identify key segments that represent critical patterns in
the data. Additionally, we test on four real-world datasets:
ECG - ECG arrhythmia detection (Moody & Mark, 2001);
PAM - human activity recognition (Reiss & Stricker, 2012);
Epilepsy - EEG seizure detection (Andrzejak et al., 2001);
and Boiler - mechanical fault detection (Shohet et al., 2019).
For the ECG dataset, we define the ground-truth explanation
as the QRS intervals associated with arrhythmia detection.
Makowski et al. (2021) provides standard reference points
for the detection of R, P, and T waves in ECG signals.

Metrics. We employ two evaluation approaches. For expla-
nations with ground truth annotations, we use the labeled
explanations as a reference and quantify the results using
Area Under Precision (AUP), Area Under Recall (AUR),
and Area Under Precision-Recall Curve (AUPRC), which
combines AUP and AUR. For all three metrics, higher val-
ues indicate better performance. For explanations without
ground truth annotations, we follow an approach similar to
Queen et al. (2024), where the bottom p-percentile of fea-
tures identified by the explainer is masked, and the change
in predictive Area Under Receiver Operating Characteristic
Curve (AUROC) is measured.

Comparison Methods. We have compared the proposed
method with seven explainability methods, as follows: In-
tegrated gradients (IG) (Baehrens et al., 2010) is widely
used for general interpretation; Dynamask (Crabbé & Van
Der Schaar, 2021) and WinIT (Leung et al., 2021) are the
time-series specific explanation methods; CoRTX (Chuang
et al., 2023) is an explanation method based on contrastive
learning; SGT + Grad (Ismail et al., 2021) is an in-hoc inter-
preter for time-series data; TIMEX (Queen et al., 2024) em-
ploys a white-box model as an interpreter; and TIMEX++
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Table 1. Attribution explanation performance on univariate and multivariate synthetic datasets.

FREQSHAPES SEQCOMB-UV
METHOD AUPRC AUP AUR AUPRC AUP AUR

IG 0.7516±0.0032 0.6912±0.0028 0.5975±0.0020 0.5760±0.0022 0.8157±0.0023 0.2868±0.0023
DYNAMASK 0.2201±0.0013 0.2952±0.0037 0.5037±0.0015 0.4421±0.0016 0.8782±0.0039 0.1029±0.0007
WINIT 0.5071±0.0021 0.5546±0.0026 0.4557±0.0016 0.4568±0.0017 0.7872±0.0027 0.2253±0.0016
CORTX 0.6978±0.0156 0.4938±0.0004 0.3261±0.0012 0.5643±0.0024 0.8241±0.0025 0.1749±0.0007
SGT + GRAD 0.5312±0.0019 0.4138±0.0011 0.3931±0.0015 0.5731±0.0021 0.7828±0.0013 0.2136±0.0008
TIMEX 0.8324±0.0034 0.7219±0.0031 0.6381±0.0022 0.7124±0.0017 0.9411±0.0006 0.3380±0.0014
TIMEX++ 0.8905±0.0018 0.7805±0.0014 0.6618±0.0019 0.8468±0.0014 0.9069±0.0003 0.4064±0.0011

ORTE 0.9998±0.0001 0.8269±0.0014 0.8298±0.0020 0.9001±0.0025 0.9711±0.0006 0.4503±0.0031

SEQCOMB-MV LOWVAR
METHOD AUPRC AUP AUR AUPRC AUP AUR

IG 0.3298±0.0015 0.7483±0.0027 0.2581±0.0028 0.8691±0.0035 0.4827±0.0029 0.8165±0.0016
DYNAMASK 0.3136±0.0019 0.5481±0.0053 0.1953±0.0025 0.1391±0.0012 0.1640±0.0028 0.2106±0.0018
WINIT 0.2809±0.0018 0.7594±0.0024 0.2077±0.0021 0.1667±0.0015 0.1140±0.0022 0.3842±0.0017
CORTX 0.3629±0.0021 0.5625±0.0006 0.3457±0.0017 0.4983±0.0014 0.3281±0.0027 0.4711±0.0013
SGT + GRAD 0.4893±0.0005 0.4970±0.0005 0.4289±0.0018 0.3449±0.0010 0.2133±0.0029 0.3528±0.0015
TIMEX 0.6878±0.0021 0.8326±0.0008 0.3872±0.0015 0.8673±0.0033 0.5451±0.0028 0.9004±0.0024
TIMEX++ 0.7589±0.0014 0.8783±0.0007 0.3906±0.0011 0.9466±0.0015 0.8057±0.0016 0.8332±0.0016

ORTE 0.8314±0.0019 0.9011±0.0005 0.5632±0.0028 0.9637±0.0016 0.7390±0.0023 0.9057±0.0013

Table 2. (Left) Attribution explanation performance on the ECG dataset. (Right) Results of ablation analysis.
ECG ORTE ECG

METHOD AUPRC AUP AUR ABLATIONS AUPRC AUP AUR

IG 0.4182±0.0014 0.5949±0.0023 0.3204±0.0012 FULL 0.7183±0.0019 0.8222±0.0021 0.5133±0.0016
DYNAMASK 0.3280±0.0011 0.5249±0.0030 0.1082±0.0080 replace STE 0.6152±0.0007 0.7468±0.0008 0.4023±0.0012
WINIT 0.3049±0.0011 0.4431±0.0026 0.3474±0.0011 w/o LJS 0.6946±0.0040 0.7941±0.0045 0.5208±0.0036
CORTX 0.3735±0.0008 0.4968±0.0024 0.3031±0.0008 w/o Lct 0.5421±0.0032 0.7195±0.0028 0.4143±0.0019
SGT + GRAD 0.3144±0.0010 0.4241±0.0024 0.2639±0.0013 w/o Lcon 0.7130±0.0037 0.8019±0.0037 0.4244±0.0021
TIMEX 0.4721±0.0018 0.5663±0.0025 0.4457±0.0018 w/o Lsim 0.7017±0.0040 0.7951±0.0043 0.5187±0.0035
TIMEX++ 0.6599±0.0009 0.7260±0.0010 0.4595±0.0007 w/o Lspr 0.6907±0.0051 0.3507±0.0037 0.8185±0.0044

ORTE 0.7183±0.0019 0.8222±0.0021 0.5133±0.0016

(Liu et al., 2024) is an improved version of TIMEX based
on the information bottleneck principle.

4.2. Performance on Synthetic and Real-world Datasets

Synthetic datasets. As shown in Table 1, we compare
ORTE with existing competitive interpreters on both uni-
variate and multivariate datasets. ORTE achieves the best
performance in 10/12 cases (3 metrics across 4 datasets).
Compared to the strongest baseline TIMEX++, ORTE im-
proves AUPRC by an average of 7.48%, AUP by 1.84%,
and AUR by 22.27%. Compared to the second strongest
baseline TIMEX, ORTE improves AUPRC by an average of
19.61%, AUP by 15.38%, and AUR by 22.33%. Previous
methods prioritized the precision of temporal pattern local-
ization but overlooked the completeness of explanations,
resulting in higher AUP but lower AUR. In contrast, ORTE

achieves an optimal trade-off between low redundancy and
high completeness. When considering the global metric
AUPRC, ORTE significantly improves ground-truth expla-
nations over TIMEX++, with improvements of 12.27% on
FreqShapes, 6.29% on SeqComb-UV, 9.55% on SeqComb-
MV, and 1.81% on LowVar. This aligns with our empha-
sized principle of optimal information retention. We also
provide experimental results on CNN and LSTM in Ap-
pendix E and visualizations in Appendix H.

Occlusion experiments on real-world datasets. To evalu-
ate the explanations of ORTE on real-world datasets lacking
ground-truth, we follow the approach of TIMEX (Queen
et al., 2024) and TIMEX++ (Liu et al., 2024) by masking the
bottom p-percentile of the salient features and measuring
the change in prediction AUROC. As shown in Figure 3,
ORTE outperforms other methods on the PAM and Boiler
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Figure 3. Occlusion experiments on real-world datasets. Higher values indicate better performance.
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Figure 4. Insertion experiments on real-world datasets. Higher values indicate better performance.
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Figure 5. Comparison performance of AUP between adapt-STE
and STE.

datasets, and performs comparably to the strongest base-
line TIMEX++ on the Epilepsy dataset, both maintaining
a high and stable level. Notably, ORTE demonstrates ex-
ceptional stability on the Boiler dataset, retaining a high
AUROC even after masking 97.5% of the bottom features.
Furthermore, compared to other baseline methods, ORTE ex-
hibits narrower error bars, indicating that the ORTE method,
guided by the principle of optimal information retention,
also achieves outstanding stability.

Insertion experiments on real-world datasets. As a com-
plement to the occlusion experiments, the insertion experi-
ment inserts features from bottom to top, as shown in Figure

4. The results show that ORTE achieves a lower AUPROC
when inserting the bottom 75% of the salient features. As
the insertion percentage increases, the predicted AUROC
gradually improves. When the insertion ratio reaches 97.5%,
ORTE attains the highest AUPROC. This indicates that the
most interpretable or informative features are concentrated
in the high-saliency features, further validating the claims
of low redundancy and high completeness. In addition, the
Random baseline always maintains a high AUROC, which
is because the random selection of features does not dis-
tinguish the salient or importance of features and contains
informative time points or segments.

4.3. Ablation and Contrast Experiments

Results and Ablation Experiments on ECG Data. To di-
rectly demonstrate ORTE’s performance on real-world data,
we compared it with baseline methods in the application of
arrhythmia detection using electrocardiogram (ECG) data.
As shown in Table 2, the attribution maps of ORTE exhibit
state-of-the-art performance in identifying the relevant QRS
intervals driving arrhythmia diagnosis, outperforming the
strongest baseline TIMEX++ by 8.85% (AUPRC), 13.25%
(AUP), and 11.71% (AUR). Notably, ORTE achieves an
overall improvement in both AUP and AUR, ensuring the
identification of larger segments of the QRS interval rather
than individual time steps.
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To validate the contribution of each component in the ORTE
method, we conducted ablation experiments, as shown on
the right side of Table 2, where ”w/o” indicates the ab-
sence of the relevant component. The results demonstrate
that adapt-STE improves AUPRC by 7.27% and AUR by
14.22%, proving the effectiveness of adapt-STE. We also
compared the performance of every term of the objective
function. Compared to the full model, the absence of other
loss functions leads to inferior explanations. The proposed
ORTE effectively compensates for the limitations of individ-
ual components, achieving an overall optimal explanation.

Contrast Experiments of adapt-STE. We compare the
performance of adapt-STE with STE on univariate and mul-
tivariate datasets, as shown in Figure 5. The AUP values of
the four datasets show that adapt-STE is significantly better
than STE. Moreover, AUP is considered to be the more im-
portant evaluation metric. Especially in SeqComb-UV and
SeqComb-MV, adapt-STE can detect the key time patterns
more accurately, which also verifies the better adaptation
of adapt-STE to data diversity. The complete experiment
results are provided in Appendix G.

5. Conclusion
This paper proposes an information-theoretic principle of
optimal information retention to guide the discovery of ex-
planatory temporal patterns in time series. It defines se-
mantic information, redundant information, and effective
information, and derives corresponding objective functions.
Furthermore, we introduce ORTE as a practical implemen-
tation of this principle. Experiments on synthetic and real-
world datasets demonstrate that the proposed method signif-
icantly outperforms competitive baseline approaches. We
also believe that the optimal information retention principle
proposed in this paper is applicable to the optimization and
improvement of future interpretability methods.

Limitations. This study has two main limitations. First, the
control of hyperparameters can affect instance-level expla-
nations, requiring trial and adjustment based on the type and
characteristics of the data. Second, the practical application
of the optimal information retention principle to guide other
interpretability methods requires further research. Extend-
ing it to gradient-based or mask-based explanation methods
could be an interesting direction.
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A. Related Work
Deep Model Interpretability. Current efforts to enhance the interpretability of deep models primarily focus on exploring
the relationship between inputs and predictions or making the prediction process more transparent (Räuker et al., 2023).
Specifically, these research endeavors can be categorized into four primary directions: i) Employing visualization techniques
to reveal the response relationship between feature maps at any layer of the model and the input (Yosinski et al., 2015; Zeiler
& Fergus, 2014). ii) Extracting rules or feature interactions, such as leveraging attention mechanisms to understand the role
of each variable in predictions and identifying the main features driving the model (Choi et al., 2016; Qin et al., 2017). iii)
Simulating the predictive behavior of deep models with interpretable models, such as approximating the decision surface of
the model in the neighborhood of samples (Bhatt et al., 2020; Ribeiro et al., 2016; Guidotti et al., 2019). iv) Scoring the
importance of input data and visualizing attribution maps (saliency maps or importance maps), which is currently the most
active area of interpretability research, with representative methods like Integrated Gradients (IG) (Baehrens et al., 2010),
Grad-CAM (Selvaraju et al., 2017), and SHAP (Lundberg, 2017). v) Mask-based methods are devoted to learning a mask
matrix M , and the Hadamard products of the input and M are represented as the salient features (Dabkowski & Gal, 2017;
Chen et al., 2018; Fong et al., 2019). Jethani et al. point out that explanation methods suffer from computational efficiency,
inaccuracy, or lack of faithfulness. The lack of robustness of the underlying black-box models, especially to the erasure of
unimportant distractor features in the input is a key reason why certain attributions lack faithfulness (Bhalla et al., 2023).
ROAR (Hooker et al., 2019) points out that many popular interpretability methods produce feature importance estimates that
are no better than randomly assigned feature importance, and proposes an empirical measure of the approximate accuracy
of feature importance estimates in deep neural networks. Although various interpretation methods have been applied to
Computer Vision (CV) and Natural Language Processing (NLP), their application to time series often overlooks the modal
heterogeneity. For instance, redundancy or incompleteness in time series interpretation may represent different temporal
patterns.

Time Series Interpretability. Discriminative information in time series is often distributed across combinations of variables
or multiple time steps. Designing specialized interpretation methods based on these characteristics of time series signals is
the focus of current efforts (Doddaiah et al., 2022; Bento et al., 2021; Guidotti et al., 2020; Mujkanovic et al., 2020). A
representative approach employs attention maps as references for interpreting deep models of time series. For example,
WinIT (Leung et al., 2021) employs attention maps as references for feature importance, while Dynamask (Crabbé & Van
Der Schaar, 2021) applies regularization constraints to attention maps to achieve smooth temporal patterns. However,
these methods use zero-padding as a baseline for perturbation, which may generate out-of-distribution temporal patterns
(Tonekaboni et al., 2020). The recent application of multiple instance learning to time series tasks has provided new insights
for interpretability, i.e., Early et al. propose multiple instance learning for locally explainable time series classification,
which guarantees the intrinsic interpretability of the deep model without compromising the predictive performance. Chen
et al. have explored the feasibility of introducing multiple instance learning into time series tasks from the perspective
of information theory and weakly supervised learning. Another category of methods involves using surrogate models to
interpret pre-trained black-box models, such as TIMEX (Queen et al., 2024) and TIMEX++ (Liu et al., 2024). However,
TIMEX is limited by the out-of-distribution shifts of the surrogate model, while TIMEX++ overlooks the completeness of
temporal patterns, thus failing to capture the full temporal dynamics.

Explanations of Information Theory. Information theory provides a novel perspective for explaining the complex dynamics
of deep models. Representative methods include information bottleneck (Tishby & Zaslavsky, 2015), contrastive learning
(Dosovitskiy et al., 2014; Khosla et al., 2020; Tian et al., 2020), and rate reduction (Yu et al., 2020; Chan et al., 2022).
Among these, the information bottleneck is used to interpret the learning process of deep models, describing it structurally
as a trade-off between compact representation and information utility. Contrastive learning formalizes the pre-training
objective as minimizing the distance between positive pairs in the embedding space while maximizing the distance between
negative pairs, such as maximizing mutual information for positive samples and minimizing it for negative samples. Rate
reduction posits that deep models are stacks of information compression and discretization (Yu et al., 2023). Although these
methods offer insights into the foundational dynamics of deep models, they lack intuitive interpretability at the data level,
meaning they cannot directly guide the optimization of local explanations.

B. Technical Details from Section 2
We wish to reiterate the core contributions of our method from a technical perspective. Compared to heuristic interpretability
methods, we first propose an optimal information retention principle from an information theory perspective and then
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construct a practical framework based on the principle. The principle provides optimization directions for explanations
across three levels: fidelity, low redundancy, and high completeness. The specific contributions of the principle are
three-fold:

• We align the prediction distributions of the original time series and explanations within the pre-trained black-box model
to ensure the fidelity of the explanation.

• We employ variational methods to learn a mask matrix that follows Bernoulli distributions, masking task-irrelevant
information to ensure low redundancy in the explanation.

• We deconstruct the time series signal into positive and negative samples pairs, employing contrastive learning to
ensure that positive samples contain task-relevant effective information while negative samples contain only irrelevant
information, thereby ensuring the completeness of the explanation.

The second and third terms can naturally derive objective functions from the explicit conditional mutual information in the
optimal information retention principle, and we provide the corresponding proofs below.

B.1. Proof of Theorem 1

Minimum Redundant Information Retention. The optimal sub-features Xm should only contain the mutual information
shared by I(X;Y ), and include as little information of X no relation to Y , as follows:

min I (X;Xm | Y ) . (16)

We aim to derive from I (X;Xm | Y ) the objective function for optimizing time-series explanations:

Lmask = E[DKL(p(m | x)∥q(m))]

=
∑
t,d

[pt,d log
pt,d
r

+ (1− pt,d) log
1− pt,d
1− r

]. (17)

Proof.

I (X;Xm | Y ) =

∫
Y

(∫
XM

∫
X
log

(
p (x, xm | y)

p(x | y)p (xm | y)

)
p (x, xm | y) dxdxm

)
p(y)dy

=

∫
Y

(∫
XM

∫
X
log

(
p (xm | x, y)
p (xm | y)

)
p (x, xm | y) dxdxm

)
p(y)dy

=

∫
Y

∫
XM

∫
X
log

(
p (xm | x, y)
p (xm | y)

)
p (x, xm, y) dxdxmdy

= Ep(x,xm,y)

[
log

p (xm | x, y)
p (xm | y)

]
= Ep(x,y)

[
Ep(xm|x,y)

[
log

p (xm | x, y)
p (xm | y)

]]
,

(18)

and we can view Ep(xm|x,y)

[
log p(xm|x,y)

p(xm|y)

]
as the Kullback-Leibler divergence of p(xm | x, y) and p(xm | y). So

I
(
X;XM | Y

)
can be rewritten as:

I
(
X;XM | Y

)
= Ep(x,y) [DKL(p(x

m | x, y)||p(xm | y))] (19)

where xm = x⊙m and (19) can be redefined as:

I (X;M | Y ) = Ep(x,y) [DKL(p(m | x, y)||p(m | y))] . (20)

So there are
min I

(
X;XM | Y

)
∝ minDKL(p(m | x, y)||p(m | y)). (21)
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Since p(m | y) is intractable, we introduce a variational approximation q(m | y) for this problem. We now proceed in two
steps. First, we deal with the DKL minimization problem without y as a conditional constraint. Considering that any point
mi,j ∈ RT×D on M follows a Bernoulli distribution with value v = {0, 1}, so the distribution of M can be assumed as:

q(m) =
∏
t,d

Bern(r), (22)

where r as the desired probability of v = 1 is a hyperparameter in practice. Similarly, we parameterize the learnable multiple
Bernoulli distribution of p(m | x) as:

p(m | x) =
∏
t,d

Bern(pt,d), (23)

where pt,d denotes the learned probability of xt,d is preserved.

Second, given the condition constraint y, the expected distribution q(m | y) or p(m | x, y) should implement the conditional
probability with y as a known term. We approximate the conditional constraint by considering the distributional consistency
of (y, ŷ) as a complement to the conditional probability, as follows:

LJS (f(x), f (xm)) = E [DJS (f(x)∥f (xm))] , (24)

where DJS represents the Jensen-Shannon (JS) divergence. And LJS (f(x), f (xm)) ≈ 0 is the ideal case. Combined with
the analysis in the first step, the objective function derived from min I (X;M | Y ) can be described as:

minE[DKL(p(m | x)∥q(m))], s.t. ,LLC (f(x), f (xm)) ≈ 0. (25)

Since LJS (f(x), f (xm)) ≥ 0, so the constraint term combined in one function:

min{E[DKL(p(m | x)∥q(m))] + LLC (f(x), f (xm))}, (26)

where

E[DKL(p(m | x)∥q(m))] =
∑
t,d

[pt,d log
pt,d
r

+ (1− pt,d) log
1− pt,d
1− r

]. (27)

Furthermore, considering that the second term is the objective function corresponding to Semantic Information Retention,
(26) can be further simplified to the minimization of the objective function:

Lmask = E[DKL(p(m | x)∥q(m))]

=
∑
t,d

[pt,d log
pt,d
r

+ (1− pt,d) log
1− pt,d
1− r

]. (28)

Summary. We have shown the objective function (17) derived from min I
(
X;XM | Y

)
. This completes the proof of

definition.

B.2. Proof of Theorem 2

Maximum Effective Information Retention. The optimal retention of sub-features Xm should encompass as much
task-relevant information from X as possible, minimizing the risk of information omission, as follows:

min I (X;Y | Xm) . (29)

We aim to derive from I (X;Y | Xm) the objective function for optimizing time-series explanations:

Lcont = − 1

N

N∑
i=1

log
exp (f (xi) · f (x̂i))

exp (f (xi) · f (x̂i)) + exp
(
f (xi) · f

(
x̂−
j

)) . (30)
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Proof.

I (X;Y | Xm) =

∫
Xm

(∫
y

∫
X
log

(
p (x, y | xm)

p (x | xm) p (y | xm)

)
p (x, y | xm) dxdy

)
p (xm) dxm

=

∫
Xm

∫
y

∫
X
log

(
p (x, y, xm) p(x)p (xm)

p(x)p (y, xm) p (x, xm)

)
p (x, y, xm) dxdydxm

=

∫
Xm

∫
y

∫
X

[
log

p (x, y, xm)

p(x)p (y, xm)
− log

p (x, xm)

p(x)p (xm)

]
p (x, y, xm) dxdydxm

=

∫
Xm

∫
y

∫
X
log

p (x, y, xm)

p(x)p (y, xm)
p (x, y, xm) dxdydxm −

∫
Xm

∫
X
log

p (x, xm)

p(x)p (xm)
p (x, xm) dxdxm

= I
(
X;Y,XM

)
− I

(
X;XM

)
,

(31)
and since Xm, as a sub-segment of X , cannot be directly used as input to f(·) for the different shapes. Therefore, X̂ =
g(Xm) is used as new input to quantify the conditional mutual information I (X;Y | Xm), assuming distribution(X̂) ∼
distribution(X). g is the generator function, i.e., one layer of MLP. Then, there are

I (X;Y | Xm) ⇒ I
(
X;Y | X̂

)
= I

(
X;Y, X̂

)
− I

(
X; X̂

)
. (32)

To minimize I (X;Y | Xm), we minimize the first term I
(
X;Y, X̂

)
, while maximize the second term I(X; X̂). When

X̂ serves as the input generated by Xm, the mutual information I(X; X̂) should ideally include only the information
contained in I(X;Y ). Otherwise, redundant information may be introduced. Assuming X̂ has no overlap with the portions
of H(X | Y ), then I

(
X;Y, X̂

)
= I (X;Y ), which is a constant independent of X̂ .

For I(X; X̂), since X and X̂ share the effective information in Xm, they can naturally regarded as the anchor sample
and the positive sample, respectively, in contrastive learning. Therefore, we employ the contrastive loss including three to
maximize the mutual information between X and X̂:

Lcont = − 1

N

N∑
i=1

log
exp (f (xi) · f (x̂i))

exp (f (xi) · f (x̂i)) + exp
(
f (xi) · f

(
x̂−
j

)) , (33)

where x̂−
j denotes the negative sample, which can be generated by h(X −Xm), i.e., Gaussian noise imputation.

Summary. We have shown the objective function (30) derived from min I (X;Y | Xm). This completes the proof of
definition.

C. Pseudocode of adapt-STE

Algorithm 1 adapt-STE Estimator
1: Input: Logits l, Forward temperature τf , Backward temperature τ b, Updating rate η, Standard deviation σ, Upper

bound of temperature τmax, Lower bound of temperature τmin

2: Forward Pass:
3: Sample Gumbel noise: g ∼ Gumbel(0, 1)
4: Update forward temperature: τf = clip (τf − η · σ(l), τmin, τmax)
5: Compute relaxed logits for forward pass: p = softmax

(
l
τf + g

)
6: Compute discrete mask: m = argmax(p)
7: Backward Pass:
8: Update backward temperature: τb = clip (τb + η · σ(l), τmin, τmax)
9: Compute relaxed logits for backward pass using same Gumbel noise sample: pb = softmax

(
l
τb + g

)
10: Compute gradient using pb instead of p
11: Perform backpropagation using the relaxed gradients
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D. Exprimental Details
D.1. Description of Datasets

We evaluate our method on four carefully designed synthetic datasets with ground-truth annotations and four real-world
datasets. The number of samples, length, dimension, number of categories and tasks for all datasets are summarized in Table
3.

Synthetic Datasets. We employ four synthetic datasets with known ground-truth explanations proposed by Queen et al.
(2024) to investigate the ability to identify interpretable time patterns.

• FreqShapes is a dataset designed for discerning the frequency of anomalous signal occurrences. It comprises four
classes: Class 0 presents a downward pulse every 10 steps, Category 1 presents an upward pulse every 10 steps, Class 2
presents a downward pulse every 17 steps, and Class 3 presents an upward pulse every 17 steps. The ground truth is
explained by the positions of the ascending and descending peaks.

• SeqComb-UV is a dataset tailored for distinguishing signal trends. It consists of four classes: Class 0 has no trend,
Class 1 includes subsequences with an upward trend, Class 2 contains subsequences with a downward trend, and Class
3 simultaneously encompasses both upward and downward subsequences. The ground truth is explained by identifying
the locations of the subsequences that exhibit trends.

• SeqComb-MV represents the multivariate version of SeqComb-UV. Subsequences with trends are randomly injected
into the sensors. The ground truth is also explained by pinpointing the positions of the subsequences that exhibit trends.

• LowVar is a dataset aimed at identifying regions of low variance that change over time within multivariate time
series samples. It is divided into four classes: Class 0 identifies discriminant subsequences with a mean of -1.5 on
sensor 0; Class 1 identifies discriminant subsequences with a mean of 1.5 on sensor 0; Class 2 identifies discriminant
subsequences with a mean of -1.5 on sensor 1; and Class 3 identifies discriminant subsequences with a mean of 1.5 on
sensor 1. The ground truth is explained by determining the locations of the discriminant subsequences.

Real-world Datasets. We employed four real-world datasets, among which only the ECG dataset has generated ground-truth
explanations.

• ECG (Moody & Mark, 2001) is a dataset used for classifying cardiac arrhythmias. It includes three classes: normal
readings (N), left bundle branch block beats (L), and right bundle branch block beats (R). The original dataset was
segmented into 92,511 samples by windowing, each containing 360 time steps. We selected these because it is known
that the L and R diagnoses depend on the QRS interval, which will serve as our ground-truth interpretation.

• PAM (Reiss & Stricker, 2012) is a dataset utilized for discerning human activities. It encompasses 8 classes, each
representing a different daily life activity. Every sample comprises 17 sensors with 600 consecutive observations,
sampled at a frequency of 100 Hz, and the samples are roughly balanced across all 8 classes.

• Epilepsy (Andrzejak et al., 2001) is an electroencephalogram (EEG) dataset designed to distinguish epileptic seizures.
It contains two categories: seizure and non-seizure. Each sample lasts for 1 second and is sampled at a frequency of
178 Hz.

• Boiler (Shohet et al., 2019) is a dataset from an industrial setting. The learning task involves detecting mechanical
failures in the blowdown valves of boilers. This dataset is particularly challenging due to its large dimensionality ratio,
unlike other datasets that contain more time steps than sensors.

D.2. Description of Baselines

• IG. (Baehrens et al., 2010) Integrated Gradients (IG) utilizes the gradients of a model to derive attribution maps
for explanation. This method compares gradients to a baseline value and performs Riemann integration. Although
Integrated Gradients is a classical explanation method, it does not incorporate inductive biases specific to time series.

• SGT + Grad. (Ismail et al., 2021) This method employs Saliency Guided Training. During the training process,
features with low gradients are masked to guide the model to focus on more significant regions for prediction.
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Table 3. The description of synthetic and real-world datasets.

DATASET # OF SAMPLES LENGTH DIMENSION CLASSES TASK

FREQSHAPES 6,100 50 1 4 MULTI-CLASSIFICATION
SEQCOMB-UV 6,100 200 1 4 MULTI-CLASSIFICATION
SEQCOMB-MV 6,100 200 4 4 MULTI-CLASSIFICATION

LOWVAR 6,100 200 2 4 MULTI-CLASSIFICATION

ECG 92,511 360 1 5 ECG CLASSIFICATION
PAM 5,333 600 17 8 ACTION RECOGNITION

EPILEPSY 11,500 178 1 2 EEG CLASSIFICATION
BOILER 160,719 36 20 2 MECHANICAL FAULT DETECTION

• Dynamask. (Crabbé & Van Der Schaar, 2021) This explainer is specifically constructed for time series and generates
explanations using perturbation-based iterations. The method iteratively occludes each sample to learn a continuous
mask. The goal is to morph the input time series into a carefully determined baseline value, thereby highlighting
important temporal patterns.

• WinIT. (Leung et al., 2021) Similar to Dynamask, this method is designed for time series and learns a mask matrix
to achieve explanations. WinIT removes segments of the time series to measure the impact of features on the
final prediction value. It considers feature dependencies across time steps and uses a generative model to alleviate
Out-of-Distribution (OOD) issues.

• CoRTX. (Chuang et al., 2023) This method is an explainer that leverages contrastive learning to approximate SHAP
values. Originally developed for computer vision, we adopted a custom version implemented in A, aiming for the time
series encoder and explanation generator to work in concert.

• TIMEX. (Queen et al., 2024) This method trains an interpretable surrogate to mimic the behavior of a pre-trained
time series model. It addresses the model fidelity issue by introducing model behavior consistency. It preserves the
relationships in the latent space induced by the pre-trained model and those induced by TIMEX, learning a discrete
mask matrix to explain time series.

• TIMEX++. (Liu et al., 2024) This method investigates from an information-theoretic perspective how existing
interpretability methods may be affected by trivial solutions and distribution shift problems. To tackle these issues,
TIMEX++ employs the information bottleneck principle to revise the objective function of TIMEX. This method is
currently the most competitive baseline approach.

D.3. Description of Metrics

As described by Crabbé & Van Der Schaar (2021), we employ AUP and AUR to evaluate the efficacy of explanation methods.
As described above, let the binary mask matrix M ∈ {0, 1}T×D be the explanation of any black-box models for time series,
and let Q ∈ {0, 1}T×D be the ground-truth mask matrix. If Qt,d = 1, then the feature of xt,d is salient; Otherwise Qt,d = 0,
then the feature of xt,d is task-irrelevant. We aim to convert the mask into an estimator as follows:

Q̂t,d(τ) =

{
1 if Mt,d ≥ τ

0 else.
(34)

Consider the saliency index obtained by the truth value and explanation method separately:

A = {(t, d) ∈ [1 : T ]× [1 : D] | Qt,d = 1},
Â(τ) = {(t, d) ∈ [1 : T ]× [1 : D] | Q̂t,d(τ) = 1}.

(35)
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The precision and recall curves that map each threshold to precision and recall scores are as follows:

P : (0, 1) −→ [0, 1] : τ 7−→ |A ∩ Â(τ)|
|Â(τ)|

,

R : (0, 1) −→ [0, 1] : τ 7−→ |A ∩ Â(τ)|
|A|

.

(36)

So AUP and AUR can be derived by:

AUP =

∫ 1

0

P(τ)dτ,

AUR =

∫ 1

0

R(τ)dτ.

(37)

D.4. Description of Black-box Hyperparameters

In order to fairly compare the effectiveness of interpretation methods, it is necessary to ensure that the parameters of the
pre-trained black-box models are consistent. To this end, we refer to the parameter settings of Liu et al. (2024) as shown in
Table 4.

Table 4. Training parameters for transformer-based predictors across all ground-truth and real-world datasets.
PARAMETER FREQSHAPE SEQCOMB-UV SEQCOMB-MV LOWVAR ECG PAM EPILEPSY BOILER WAFER FREEZERREGULAR WATER

LEARNING RATE 0.001 0.001 0.0005 0.001 0.002 0.001 0.0001 0.001 0.0001 0.0001 0.002
WEIGHT DECAY 0.1 0.01 0.001 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001

EPOCHS 100 200 1000 120 500 100 300 500 200 300 500

NUM. LAYERS 1 2 2 1 1 1 1 1 1 1 1
dh 16 64 128 32 64 72 16 32 16 16 64

DROPOUT 0.1 0.25 0.25 0.25 0.1 0.25 0.1 0.25 0.1 0.1 0.1
NORM. EMBEDDING NO NO NO YES YES NO NO YES NO NO YES

D.5. Description of ORTE Hyperparameters

Table 5 summarizes the parameter settings for ORTE, where α is utilized to regulate the impact of contrastive learning
on the interpretability effect. When α is optimized, it preserves more complete interpretable temporal patterns, avoiding
the loss of valuable information. β is employed to prevent overfitting and enhance generalization capabilities on test data.
γ ensures the sparsity of explanations while also serving as a supplement to low redundancy. η, τmax and τmin are the
hyperparameters corresponding to adapt-STE, where we adopted the same parameter settings to ensure applicability to
different datasets. All the experiments are performed on Ubuntu 18.04.6 LTS and 4 GPU NVIDIA GeForce RTX 2080.

Table 5. Training parameters for ORTE across all ground-truth and real-world experiments.

PARAMETER FREQSHAPE SEQCOMB-UV SEQCOMB-MV LOWVAR ECG PAM EPILEPSY BOILER

LEARNING RATE 0.001 0.001 0.002 0.005 0.0005 0.0005 0.0005 0.0001
BATCH SIZE 64 64 64 64 16 32 32 32

WEIGHT DECAY 0.001 0.001 0.001 0.0001 0.0001 0.001 0.001 0.001
SCHEDULER YES YES NO NO NO NO YES YES

EPOCHS 50 50 100 100 5 100 50 50

r 0.5 0.5 0.5 0.5 0.5 0.1 0.5 0.5
η 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

τmax 3 3 3 3 3 3 3 3
τmin 1 1 1 1 1 1 1 1
α 10.0 5.0 10.0 1.0 10.0 10.0 2.0 10.0
β 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0
γ 0.05 0.05 0.05 0.05 0.05 0.01 0.005 0.001

18



Optimal Information Retention for Time-Series Explanations

D.6. Description of classification Performance

Excellent classification performance is a necessary guarantee for evaluating the effectiveness of explanations. To objectively
compare interpretation methods, we employ the vanilla Transformer (Vaswani, 2017) as the black-box classifier. Table 6
summarizes the classification performance of the Transformer on four synthetic datasets and four real-world datasets. The
results show outstanding performance on all datasets except for dataset Boiler, with both AUP and AUR exceeding 0.9. The
reason is that dataset Boiler is more challenging due to its larger dimension-to-length ratio, unlike the other datasets, which
contain more time steps than sensors.

Table 6. The performance of transformer-based predictors for time series classification.

DATASET F1 AUPRC AUROC

FREQSHAPES 0.9692±0.0055 0.9936±0.0026 0.9980±0.0008
SEQCOMB-UV 0.9412±0.0057 0.9789±0.0034 0.9923±0.0011
SEQCOMB-MV 0.9270±0.0548 0.9445±0.0510 0.9792±0.0194
LOWVAR 0.9854±0.0044 0.9978±0.0006 0.9992±0.0003

ECG 0.9211±0.0311 0.9463±0.0320 0.9709±0.0165
PAM 0.8876±0.0064 0.9312±0.0044 0.9785±0.0015
EPILEPSY 0.9260±0.0114 0.9383±0.0079 0.9630±0.0135
BOILER 0.8363±0.0178 0.8214±0.0263 0.8901±0.0348

E. Additional Experiments on CNN and LSTM
We now study the applicability of ORTE across different black-box model architectures. Specifically, we conducted
experiments on both convolutional neural networks (CNN) and long-short term memory (LSTM) networks, which are
specifically structured as follows:

• CNN: 3 layer CNN + MLP + meanpool.

• LSTM: 3 layer bidirectional LSTM + MLP + mean of last hidden states.

The classification Performance of CNN and LSTM are summarized in Table 7 and Table 8, respectively.

Table 7. The performance of CNN-based predictors for time series classification.

DATASET F1 AUPRC AUROC

FREQSHAPES 0.9910±0.0071 0.9997±0.0007 0.9999±0.0002
SEQCOMB-MV 0.9833±0.0171 0.9981±0.0024 0.9993±0.0009
ECG 0.9178±0.0119 0.9466±0.0136 0.9682±0.0052

Table 8. The performance of LSTM-based predictors for time series classification.

DATASET F1 AUPRC AUROC

FREQSHAPES 0.9798±0.0141 0.9976±0.0018 0.9992±0.0007
SEQCOMB-MV 0.9332±0.1052 0.9473±0.1057 0.9824±0.0348
ECG 0.7907±0.1594 0.8095±0.1362 0.8303±0.1389

We compared ORTE with five competitive baseline methods: IG, Dynamask, WinIT, TIMEX, and TIMEX++. Table
9 summarizes the experimental performance of ORTE for explaining CNN models on both univariate and multivariate
synthetic datasets. Table 10 summarizes the experimental performance of ORTE for explaining CNN models on ECG
datasets as real-world applications. Overall, the interpretation effectiveness of ORTE shows significant improvement
compared to competitive baseline methods. Specifically, relative to the currently most competitive interpretation method
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TIMEX++, the AUP of ORTE increases by 36.86%, 0.31%, and 13.62% on datasets FreqShapes, Seqcomb-MV, and C,
respectively. Furthermore, AUPRC respectively improved by 9.46%, 0.51%, and 26.23%, which aligns with the trade-off
between low redundancy and high completeness advocated in this paper.

Table 9. Explainer results with CNN predictor on FREQSHAPES and SEQCOMB-MV synthetic datasets.

FREQSHAPES SEQCOMB-MV
METHOD AUPRC AUP AUR AUPRC AUP AUR

IG 0.9905±0.0007 0.8777±0.0009 0.7056±0.0017 0.5979±0.0027 0.8858±0.0014 0.2294±0.0013
DYNAMASK 0.2574±0.0008 0.4432±0.0032 0.5257±0.0015 0.4550±0.0016 0.7308±0.0025 0.3135±0.0019
WINIT 0.5321±0.0018 0.6020±0.0025 0.3966±0.0017 0.5334±0.0011 0.8324±0.0020 0.2259±0.0020
TIMEX 0.7489±0.0046 0.4966±0.0033 0.7916±0.0021 0.7016±0.0019 0.7670±0.0012 0.4689±0.0016
TIMEX++ 0.9134±0.0014 0.6066±0.0011 0.7952±0.0014 0.7822±0.0012 0.8896±0.0005 0.3434±0.0012

ORTE 0.9998±0.0001 0.8302±0.0013 0.9997±0.0001 0.7862±0.0023 0.8924±0.0005 0.3928±0.0020

Table 10. Explainer results with CNN predictor on ECG dataset.
ECG

METHOD AUPRC AUP AUR

IG 0.4949±0.0010 0.5374±0.0012 0.5306±0.0010
DYNAMASK 0.4598±0.0010 0.7216±0.0027 0.1314±0.0008
WINIT 0.3963±0.0011 0.3292±0.0020 0.3518±0.0012
TIMEX 0.6401±0.0010 0.7458±0.0011 0.4161±0.0008
TIMEX++ 0.6726±0.0010 0.7570±0.0011 0.4319±0.0012

ORTE 0.8490±0.0018 0.8601±0.0016 0.4079±0.0012

Similarly, Table 11 summarizes the experimental performance of ORTE for explaining LSTM models on both univariate and
multivariate synthetic datasets. Table 12 summarizes the experimental performance of ORTE for explaining LSTM models
on ECG datasets as real-world applications. The experimental results for LSTM are also outstanding, especially on the
multivariate dataset Seqcomb-MV, where AUPRC improved by 92%, AUP by 23.85%, and AUR by 27.25%, respectively.

Table 11. Explainer results with LSTM predictor on FREQSHAPES and SEQCOMB-MV synthetic datasets.

FREQSHAPES SEQCOMB-MV
METHOD AUPRC AUP AUR AUPRC AUP AUR

IG 0.9282±0.0016 0.7775±0.0010 0.6926±0.0017 0.2369±0.0020 0.5150±0.0048 0.3211±0.0032
DYNAMASK 0.2290±0.0012 0.3422±0.0037 0.5170±0.0013 0.2836±0.0021 0.6369±0.0047 0.1816±0.0015
WINIT 0.4171±0.0016 0.5106±0.0026 0.3909±0.0017 0.3515±0.0014 0.6547±0.0026 0.3423±0.0021
TIMEX 0.9903±0.0002 0.7887±0.0008 0.7963±0.0013 0.1298±0.0017 0.1307±0.0022 0.4751±0.0015
TIMEX++ 0.9939±0.0002 0.7413±0.0009 0.8428±0.0008 0.4052±0.0038 0.6804±0.0052 0.3519±0.0021

ORTE 0.9999±0.0000 0.8573±0.0011 0.9993±0.0003 0.7780±0.0019 0.8427±0.0004 0.4478±0.0015

Table 12. Explainer results with LSTM predictor on ECG dataset.
ECG

METHOD AUPRC AUP AUR

IG 0.5037±0.0018 0.6129±0.0026 0.4026±0.0015
DYNAMASK 0.3730±0.0012 0.6299±0.0030 0.1102±0.0007
WINIT 0.3628±0.0013 0.3805±0.0022 0.4055±0.0009
TIMEX 0.6057±0.0018 0.6416±0.0024 0.4436±0.0017
TIMEX++ 0.6512±0.0011 0.7432±0.0011 0.4451±0.0008

ORTE 0.7372±0.0019 0.7817±0.0020 0.5672±0.0018
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F. Computation Cost
We evaluated the computation cost of interpretability methods on two real-world datasets (PAM and Epilepsy), as detailed in
Table 13. Table 13 compares our method (ORTE) with four baseline approaches (IG, Dynamask, TIMEX, and TIMEX++)
in terms of parameters (M), FLOPs (G), and Inference Runtime (s). Compared with TIMEX and Timex++, our inference
time is slightly longer due to the double-STE to implement the regulation of discrete maps, but all three are in the same rank,
i.e., less than 1 second. IG and Dynamask require longer inference time, which is consistent with expectations since both
methods operate recursively on a single sample, while our method requires only one forward propagation.

Table 13. Comparison of computational costs.
Method PAM Epilepsy

Param(M) FLOPS(G) Inference runtime(s) Param(M) FLOPS(G) Inference runtime(s)

IG - - 8.7837 ± 0.1862 - - 23.9806 ± 1.5245
Dynamask - - 458.4144 ± 32.5353 - - 979.5168 ± 2.8082
TimeX 0.0620 6.5404 0.2475 ± 0.1072 0.0169 0.3546 0.2545 ± 0.1162
TimeX++ 2.7012 8.6530 0.2451 ± 0.1013 0.0601 0.4487 0.2586 ± 0.1176
ORTE 2.7097 6.7700 0.4914 ± 0.0053 0.0645 0.3585 0.5858 ± 0.0439

G. Contrast Experiments of adapt-STE
To further validate the effectiveness of adapt-STE, we compared the performance of adapt-STE and STE on four datasets:
FreqShapes, SeqComb-UV, SeqComb-MV, and LowVar. As shown in Figure 6, adapt-STE significantly outperforms STE in
metrics of AUPRC, AUP, and AUR. Particularly in AUP, adapt-STE demonstrates higher explanation accuracy, which is
considered a more critical metric. Compared to STE, adapt-STE exhibits a lower AUR on dataset FreqShapes, which may
be attributed to an imbalance between low redundancy and high completeness, resulting in the omission of some effective
information.
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Figure 6. Comparison performance between adapt-STE and STE. (a) Comparison performance of AUPRC. (b) Comparison performance
of AUP. (c) Comparison performance of AUR.

H. Visual Comparison and Analysis
To facilitate a more intuitive comparison of various explanation methods, we have visualized the saliency maps of these
methods. We randomly selected three samples from four datasets, each accompanied by ground truth explanations, to
qualitatively analyze the effectiveness of the explanation methods through comparison with the ground truth. As shown in
Figures 7-10, the results on datasets FreqShapes, SeqComb-UV, SeqComb-MV, and LowVar are visualized respectively.
Each column represents a sample, and each row corresponds to an explanation method, with the bottom row representing the
ground truth explanation. In the figures, darker colors indicate more significant features, with the ground truth explanation
being the ideal result. As shown in Figure 7, our method accurately highlights the downward spikes, which are fundamental
to category judgment. In contrast, baseline methods suffer from issues of redundancy or incompleteness. For instance,
TIMEX highlights too many time steps, causing irrelevant information to mix with explanatory temporal patterns, thereby
failing to achieve effective interpretation. Conversely, Dynamask omits a significant amount of valid information, failing
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to meet the requirement for completeness and resulting in the absence of critical temporal patterns. Similarly, in Figure
8, our method accurately highlights sub-segments with distinct trends. IG and TIMEX++ include excessive redundant
background information, while Dynamask and TIMEX miss important trend segments. Figures 9 and 10 demonstrate the
performance of the explanation methods on multivariate data. Notably, complex coupling relationships between variables
make interpretation more challenging. Our method shows greater adaptability, further validating the advantages of the
optimal information retention principle.
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Figure 7. Visualization of explanations on FreqShapes dataset.
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Figure 8. Visualization of explanations on SeqComb-UV dataset.
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Figure 9. Visualization of explanations on SeqComb-MV dataset.
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Figure 10. Visualization of explanations on LowVar dataset.
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