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Abstract: Open-sourced, user-friendly tools form the bedrock of scientific ad-1

vancement across disciplines. The widespread adoption of data-driven learning2

has led to remarkable progress in multi-fingered dexterity, bimanual manipulation,3

and applications ranging from logistics to home robotics. However, existing data4

collection platforms are often proprietary, costly, or tailored to specific robotic5

morphologies. We present OPEN TEACH, a new teleoperation system leveraging6

VR headsets to immerse users in mixed reality for intuitive robot control. Built on7

the affordable Meta Quest 3, which costs $500, OPEN TEACH enables real-time8

control of various robots, including multi-fingered hands, bimanual arms, and mo-9

bile manipulators, through an easy-to-use app. Using natural hand gestures and10

movements, users can manipulate robots at up to 90Hz with smooth visual feed-11

back and interface widgets offering closeup environment views.12

Keywords: Low Cost Teleoperation, Data Collection, Imitation learning13

1 Introduction14

The integration of learning-based methods has sparked a revolution in robotics, significantly enhanc-15

ing capabilities in manipulation [1, 2, 3, 4], locomotion [5, 6, 7, 8], and aerial robotics [9, 10, 11].16

More recent work has been making advancements in complex single-task behavior learning [12,17

13, 2], multitask scenarios [14, 15], multimodal behavior learning [16, 17, 18, 19], and efficient18

fine-tuning of pretrained behavior models [20, 21, 22]. A fundamental requirement across all these19

threads of research is the need to collect data in the form of task demonstrations.20

Commonly used teleoperation systems include devices such as joysticks and 3D spacemouses [23,21

24], commercial VR headsets [25, 26, 27, 13, 28, 29], kinesthetic teaching [30], and phone tele-22

operation [31]. Recently proposed exoskeleton-based teleoperation frameworks like ALOHA [2],23

GELLO [32], and AirExo [33] attempt to alleviate this problem by having the human teleopera-24

tor directly control a kinematically isomorphic version of the same robot arm. These frameworks25

directly impose the kinematic constraints of the robot arm during teleoperation making it more com-26

patible and intuitive to control the robot. Although highly effective, these systems can require an27

additional robot for each robot being controlled, have high initial setup costs, and are designed for28

specific robot morphologies.The challenge of easy-to-use teleoperation devices is more apparent29

in dexterous manipulation problems [34, 35, 27, 13], owing to the high dimensional action space.30

Such frameworks typically involve the use of expensive gloves [36, 37, 38], extensive calibration31

processes [34, 27], or are susceptible to monocular occlusions [27].32

In this work, we present OPEN TEACH, an open-source framework for robot teleoperation that sup-33

ports a variety of robots, including bimanual and multi-finger manipulation, all at a price of $500.34

OPEN TEACH uses a VR headset (e.g. Quest 3) to put users / teachers in an immersive virtual world35

where they can view a robotic scene both through their eyes, via visual passthrough, as well as re-36

altime streams from the robot’s cameras. To control the robot, users can simply use hand gestures,37

which are detected using onboard hand-pose estimators at 90Hz. We experimentally evaluate OPEN38

TEACH on 38 tasks across single arm, bimanual, multi-fingered, and mobile manipulation robot se-39

tups in both simulation and the real world. The tasks span from tabletop manipulation to contact-rich40
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dexterous manipulation. cross different robot morphologies, we find that users can provide demon-41

strations at speeds on par with robot-specific teleoperation systems and significantly faster than42

general-purpose systems like AnyTeleop [35]. Importantly, policies trained on the data collected43

achieve an average success rate of 86% on 10 tasks in simulation and the real world, validating44

the utility of policy learning using OPEN TEACH. The contributions of this work is summarized as45

follows:46

1. We present OPEN TEACH, an open-source system for plug-and-play teleoperation frame-47

work suitable for collecting demonstrations across different robot morphologies in both48

simulation and the real world.49

2. We experimentally show that the demonstrations collected by OPEN TEACH can be used to50

train effective, general-purpose manipulation behaviors.51

3. Our user study on 15 new users highlights the efficacy of OPEN TEACH for both experi-52

enced and new users.53

OPEN TEACH will be fully open-sourced with mixed reality API, policy training code, and demon-54

strations collected using OPEN TEACH available at https://anon-open-teach.github.io/.55

2 OPEN TEACH56

In OPEN TEACH, a user wears a Virtual Reality (VR) headset to provide demonstrations to a robot.57

This involves creating a virtual world for teaching, retargeting the teacher’s hand and wrist pose to58

the robot joints, and finally controlling the robot. We compare OPEN TEACH with various other59

teleoperation systems across a variety of robot types and observe that OPEN TEACH is the only60

framework that enables controlling multiple arms, hands, and mobile manipulators, is calibration-61

free, and is completely open-source.62

2.1 Placing an Operator in a Virtual World63

We use the Meta Quest 3 VR headset to place the human teacher in a virtual world. The headset64

surrounds the human in a virtual environment at a resolution of 2064 × 2208 and a native refresh65

rate of 90Hz. The base version of this headset is affordable at $499 and is relatively light at 513g.66

Compared to the Meta Quest 2 VR headset used in prior work [13], the Quest 3 provides a full-color67

passthrough allowing the human to get a direct view of the robot setup during teleoperation. These68

features, especially the full-color passthrough, allow for a comfortable and intuitive operation by the69

user. Additionally, similar to Arunachalam et al. [13], the Quest 3 API interface allows for creating70

custom mixed reality worlds that visualize the robotic system along with diagnostic panels in VR. It71

is important to highlight the exceptional clarity of the scene passthrough visible in Quest 3.72

2.2 Pose Estimation with VR Headsets73

Similar to Arunachalam et al. [13], we directly use the in-built hand pose estimator [39] of the74

Quest 3 using 2 monochrome cameras. This is significantly more robust compared to single camera75

alternatives [40]. Further, since the cameras are internally calibrated, they do not require specialized76

calibration routines that are needed in prior multi-camera teleoperation frameworks [34, 35]. Also,77

since the hand-pose estimator is integrated into the device, it can stream real-time hand poses at78

90Hz.79

2.3 Human to Robot Pose Retargeting80

The inbuilt hand pose estimate from the VR headset provides us with the joint positions of all the81

fingers of the human hand and the wrist. With this information, we can design wrappers that use82

combinations of these joint positions to map the human hand poses to the robot poses for any given83

robot morphology. In this work, we use a variety of robot arms, each with either a 2-fingered gripper84

or a multi-fingered robot hand.85
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Figure 1: The demonstration collection process as viewed from within the VR application. Shown here is one
task being performed for each real-world setup. High resolution images streamed at 90 Hz to the VR application
allow for an immersive experience and enable reactive control by the user.

Robot Arm: We establish a 3D coordinate system using the wrist keypoint and knuckle points of the86

index and pinky fingers to define a 2D plane along the palm and a perpendicular third axis. The wrist87

position maps to the robot end effector position. Changes in the orientation of this hand coordinate88

system over time map to adjustments in end effector orientation.89

Robot Hand: We use the teacher’s hand pose obtained from the VR to compute the individual joint90

angles in the teacher’s hand. Given these joint angles, a straightforward method of retargeting is91

to directly command the robot’s joints to the corresponding angles. In practice, this works well for92

all fingers except the thumb. To address this, we improve upon Arunachalam et al. [13], where the93

spatial coordinate of the teacher’s thumb tip is mapped to that of the robot hand and then an inverse94

kinematics solver is used to compute the joint angles of the thumb.95

Two-fingered gripper: To detect the opening and closing of the two-fingered gripper, we utilize the96

pinch between the pinky finger and the thumb. We use a toggle mechanism for opening and closing97

the gripper where each pinch indicates toggling to the alternate state of the gripper.98

Mobile manipulator: The same 3D coordinate system established for controlling robot arms is used99

for mapping the wrist’s movements to actions of the mobile robot. When the wrist moves forward,100

it extends the robot’s arm, enabling it to reach farther. Vertical wrist movements adjust the robot’s101

height, while lateral wrist movements cause the robot to move sideways by controlling its wheels.102

3 Experiments103

We demonstrate the usefulness of the collected data by training visual and visuotactile policies using104

behavior cloning [41] and inverse RL [42, 43].105

3.1 Imitation Learning with OPEN TEACH Data106

Here, we describe the algorithms used for learning policies on data collected through OPEN TEACH.107

1. Franka-Allegro: We record both visual and tactile data for this setup. The policies are108

trained using TAVI [44], a demonstration-guided residual RL algorithm that collects a few109

expert demonstrations and learns a robot policy using both visual and tactile data.110

2. Allegro Sim: We only record visual data for this setup and train policies using FISH [21].111

3. LIBERO Sim [23]: We only record visual data for this setup. The policies are trained112

using transformer-based BC with a GMM head [45] and action chunking [2].113
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Table 1: Teleoperation Frequency across all robots.

Domain Robot Setup Stream
Frequency (in Hz)

Arm End Effector
Real Franka-Allegro 60 60

Kinova-Allegro 60 60
Bimanual 90 90

Stretch 5 5
Sim Allegro Sim 60 60

LIBERO Sim 20 20

Table 2: Performance of policies learned on data collected through OPEN TEACH. For
Franka-Allegro, Allegro Sim, and Libero Sim, TAVI [44], FISH [21] and BC were re-
spectively used to train policies.

Robot Setup Task Number of
Demos

Success
Rate

Franka-Allegro Open Box 3 9/10
Grasp Sponge 6 7/10

Pick Up Tea Sachet 4 7/10
Grasp Object and Twist 6 8/10

Allegro Sim Flip Cube 6 10/10
Flip Sponge 6 10/10
Pinch Grasp 6 7/10

Libero Sim Close Top Drawer of Cabinet 10 10/10
Turn on Stove 10 9/10

Pick and Place Soup
into Basket 50 9/10

Table 3: User study comparing OPEN TEACH with baselines when used by experts and new users.

Task Success Rate Median completion time for
successful demonstrations (in s)

New User Expert New User Expert
Holo-Dex AnyTeleop Open Teach Open Teach Holo-Dex AnyTeleop Open Teach Open Teach

Flip cube 1 1 1 1 6.58 13.71 5.5 2.85
Pinch Grasp 0 0.2 0.8 1 17.49 18.94 18.72 3.71
Pour N/A N/A 0.4 0.8 N/A N/A 40.97 14.83
Pick and Place N/A N/A 0.8 0.8 N/A N/A 23.57 11.875
Open box of mints N/A N/A 0.5 1 N/A N/A 32.21 20.45

3.2 How versatile is OPEN TEACH across robotic setups?114

The primary idea behind OPEN TEACH is that given any robotic setup, a user can purchase an115

affordable off-the-shelf VR headset (in this case, Quest 3) and plug the headset and robot setup into116

the proposed framework to start teleoperating the robot without any additional hardware setup cost.117

To investigate its versatility, we use OPEN TEACH to teleoperate four different real world robotic118

setups, each having a different combination of a robot arm and end effector type — Franka Allegro,119

Kinova Allegro, a Bimanual setup with 2 xArm7 robots, and Hello Stretch for mobile manipulation.120

We also exhibit the applicability of OPEN TEACH in simulation through evaluations on 2 simulated121

environment suites — Allegro Sim and LIBERO Sim [23]. The frequency of teleoperation for each122

of the setups has been provided in Table 1.123

3.3 How successful are policies trained with OPEN TEACH?124

Table 2 provides the success rates of policies learned using imitation learning across both the real-125

world and simulated setups. We use TAVI [44] to learn visuotactile policies on Franka-Allegro, and126

FISH [21] to learn visual policies on Allegro Sim. Similar to prior work [44, 21], these policies were127

learned within 20 minutes and achieved an average success rate of 82%, validating the high quality128

of the collected observation data. Behavior cloning policies on LIBERO Sim achieve an average129

success rate of 93%, confirming the high quality of the collected action data. Overall, the learned130

policies achieve an average success rate of 86% across all tasks and robot morphologies.131

4 Conclusion132

In this work, we introduce OPEN TEACH, an open-source unified framework designed to facilitate133

low-latency, high-frequency robot teleoperation. This versatile framework is tailored to accommo-134

date diverse tasks and is compatible with a range of robot morphologies. However, we recognize135

a few limitations in this work: (a) OPEN TEACH relies on the accuracy of the in-built hand pose136

detection in the VR headset. Inaccuracies, particularly when fingers are occluded from view, can137

diminish the quality of hand tracking, posing challenges to teleoperation. (b) In specific instances,138

the pose detector on the Oculus board may misconstrue finger positions, leading to difficulties in139

executing gestures like gripper closing, which relies on precise pinches between fingers. Addressing140

these challenges through future research on hand pose detection and tracking holds the potential to141

enhance the ease and intuitiveness of teleoperation using VR headsets.142
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5 Appendix270

Open Teach

271

Figure 2: We present OPEN TEACH, a unified robot teleoperation framework that supports multiple arms
and hands, allows mobile manipulation, is calibration-free, and works across both simulation and real-world
environments. OPEN TEACH uses a VR headset for teleoperation, offers low latency and high-frequency visual
feedback. This high-frequency operation allows human users to correct for robot errors in real time, facilitating
the execution of intricate and long-horizon tasks. From making a sandwich and ironing cloth to placing items
in a basket and lifting it and approaching a cabinet and opening it, OPEN TEACH delivers a comprehensive,
user-friendly teleoperation experience for a wide range of applications. OPEN TEACH is fully open-source.

5.1 Framework details272

5.1.1 Structure of the framework273

We use ZeroMQ for networking between nodes. The OPEN TEACH framework is divided into two274

parts - teleoperation and data collection.275

Teleoperation: The teleoperator is divided into 5 components - Detector, Keypoint Transformer,276

Operator, Controller, and Visualizer. A brief description of each has been provided below.277

1. Detector: Receives the hand keypoints from the Meta Quest 3 and publishes them to ZMQ278

sockets.279

2. Keypoint Transformer: Subscribes the keypoints published by the detector and maps280

them to the robot pose.281

3. Operator: Receives the robot pose from the keypoint transformer and the current robot282

state from the controller. The operator computes the robot’s actions which are published to283

a ZMQ socket.284
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Figure 3: Thumb retargeting difference

4. Controller: Subscribes an action from the operator and takes an action in the real or simu-285

lated environment. After taking the action, the controller publishes the current states of the286

environment for use by the operator.287

5. Visualizer: Subscribes the RGB images from the camera process (or the environment in288

case of simulations) and puts it on the screen inside the VR app for visualization during289

teleoperation.290

Data Collection: A data recorder process subscribes sensor information (RGB and Depth images,291

tactile readings, timestamps) and robot-specific information (joint states, gripper states, timestamps)292

from the corresponding sockets and logs them in corresponding files. The data is then compiled293

together by matching the timestamps between the sensor information and robot-specific data.294

5.1.2 Thumb Retargeting for Robot Hand295

Section 2.3 provides details about the design of the OPEN TEACH wrapper for the robot hand. To296

recap, given the individual joint angles in the teacher’s hand from the VR headset, the joint angles297

for the robot hand can be computed by directly commanding the robot’s joints to the corresponding298

angles. This works well for all fingers except the thumb. Holo-Dex[13] deals with this by mapping299

the spatial coordinate of the teacher’s thumb tip to that of the robot hand. Then an inverse kinematics300

solver is used to compute the joint angles of the thumb. In this case, the retargeting of the thumb301

is done in 2D space. These bounds, depicted in Fig. 3(a), define the thumb’s reach limits. During302

retargeting, the thumb tip’s zone on the 2D palm plane is detected, and a perspective transform from303

the human hand to the robot hand is applied, aligning the human thumb tip with the robot thumb304

tip on the 2D plane. However, using three separate bounds introduces jitters when the thumb tip305

transitions between zones and results in stagnancy when outside the bounds. Further, in Holo-Dex,306

the height of the robot thumb tip is fixed, allowing it to only move along the 2D space.307

To address these challenges, OPEN TEACH employs a single, large zone spanning the entire thumb’s308

workspace in 2D space(refer to Fig. 3(b)). When the thumb is within bounds, a perspective trans-309

formation retargets the human thumb tip to the robot thumb tip. In cases where the thumb goes out310

of bounds, the closest point within the bound is estimated and used for retargeting, avoiding stagna-311

tion. Additionally, instead of a fixed height, the thumb is allowed to move perpendicular to the 2D312

surface along the palm, mapping the height of the human thumb tip to the robot thumb tip based on313

maximum and minimum height bounds. This approach ensures smoother thumb motion and enables314

the performance of more complex tasks compared to Holo-Dex [13].315

6 Baseline Comparisons316

Table 4 provides a comparison between OPEN TEACH and prior teleoperation systems considering317

features such as being calibration-free, compatible with multi-fingered hands, bimanual arms, and318

mobile manipulators, and being open-sourced.319
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Table 4: Comparison of OPEN TEACH’s capabilities with prior teleoperation systems on features such as being
calibration-free, compatible with multi-fingered hands, bimanual arms, and mobile manipulators, and being
open-sourced.

Calibration Free Hands Arms Bimanual Mobile Manipulation Open-source
Joystick ✓ ✗ ✓ ✗ ✗ ✓
Spacemouse ✓ ✗ ✓ ✗ ✗ ✓
Phone Teloperation [31] ✓ ✗ ✓ ✗ ✗ ✗
DexPilot [34] ✗ ✓ ✓ ✗ ✗ ✗
Holo-Dex [13] ✓ ✓ ✗ ✗ ✗ ✓
DIME [27] ✗ ✓ ✗ ✗ ✗ ✓
TeachNet [46] ✓ ✓ ✗ ✗ ✗ ✓
Telekinesis [47] ✓ ✓ ✓ ✗ ✗ ✗
Qin et al. [48] ✓ ✓ ✗ ✓ ✗ ✓
MVP-Real [28] ✗ ✓ ✓ ✗ ✗ ✗
Transteleop [49] ✗ ✓ ✓ ✗ ✗ ✗
Mosbach et al. [50] ✗ ✓ ✓ ✗ ✗ ✓
AnyTeleop [35] ✓ ✓ ✓ ✗ ✗ ✗
ALOHA [2] ✓ ✗ ✓ ✓ ✗ ✓
Mobile ALOHA [51] ✓ ✗ ✓ ✓ ✓ ✓
GELLO [32] ✓ ✗ ✓ ✓ ✗ ✓
AirExo [33] ✓ ✗ ✓ ✓ ✗ ✓
Dobb-E [4] ✓ ✗ ✓ ✗ ✓ ✓
OPEN TEACH ✓ ✓ ✓ ✓ ✓ ✓

7 Experimental Setup320

We evaluate the versatility of OPEN TEACH by using it to collect demonstrations on six different321

setups — four in the real world and two in simulation. Each setup is a combination of a variant of a322

robot arm with either an Allegro Hand or a 2-fingered gripper. The real-world setups include:323

1. Franka-Allegro: A Franka Arm with an Allegro Hand having the Xela tactile sensors.324

2. Kinova-Allegro: A Kinova Jaco Arm with an Allegro Hand with the Xela tactile sensors.325

3. Bimanual: 2 xArm7 robot arms with 2-fingered grippers.326

4. Stretch: Hello Stretch mobile manipulator with a 2-fingered gripper.327

The Franka-Allegro and Kinova-Allegro comprise a single Intel Realsense camera for data collec-328

tion, whereas the Bimanual setup collects data from 5 different cameras. The Stretch has an iPhone329

attached to the wrist for data collection [4]. The simulated environments include:330

1. Allegro Sim: A floating Allegro Hand capable of performing static and dynamic tasks.331

2. LIBERO Sim [23]: A Franka Arm with a 2-fingered gripper placed in varied scenes.332

8 Task Details333

8.1 Demo Collections times334

Table 5 provides the average times required to collect a demonstration for 16 tasks across 3 real-335

world setups (Franka-Allegro, Kinova-Allegro, Bimanual) and 2 simulated environments(Allegro336

sim, LIBERO sim).337

8.2 Task Descriptions338

Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9 provide rollouts of all the tasks performed both in the339

real world and in simulated environments. Each task rollout is labeled with the name of the task and340

a task description.341

8.3 Task Details342

8.3.1 Demo Collections times343

Table 5 provides the average times required to collect a demonstration for 16 tasks across 3 real-344

world setups (Franka-Allegro, Kinova-Allegro, Bimanual) and 2 simulated environments(Allegro345

sim, LIBERO sim).346
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Table 5: Time

Robot Setup Task
Average time to
collect a demo

(in s)
Franka-Allegro Open box 45

Grasp sponge 60
Pick up tea satchet 60
Grasp object and twist 35

Kinova-Allegro Unfold towel 40
Open a pack of cream 10
Open ketchup bottle 40

Bimanual Uncap marker 60
Sweep table 60
Pour sprinkles in a bowl 40

Allegro Sim Flip cube 3
Flip sponge 20
Pinch Grasp 15

LIBERO Sim Close top drawer of cabinet 10
Turn on stove 25
Pick up and put soup
can in the basket 30

8.3.2 Task Descriptions347

Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9 provide rollouts of all the tasks performed both in the348

real world and in simulated environments. Each task rollout is labeled with the name of the task and349

a task description.350

8.4 User Study351

Following up from Section ??, we provide the success rate and average completion times for all 15352

users for each task performed in Table 6 and Table 7 respectively. Each user roughly performed 3353

tasks on average, with 5 trials for each task. As mentioned in Section ??, since the Holo-Dex [13]354

and AnyTeleop [35] baselines lack open-source code for arm retargeting, we were unable to evaluate355

them on tasks involving arm movements. We observe a wide range of differences in success rates356

and average completion times demonstrating the inherent variations across users.357
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Table 6: Success rates for the user study conducted across 15 individuals. Each user roughly performs 3 tasks
on average.

User Method Success Rate (in 5 trials)
Flip Cube Pinch Grasp Pour Pick and Place Open Box of Mints

User 1 Holo-Dex 1 0 - - -
AnyTeleop 0.8 0.2 - - -
Open Teach 1 0.8 0.2 - -

User 2 Holo-Dex - 0.2 - - -
AnyTeleop - 0.2 - - -
Open Teach - 0.8 - 0.8 0.8

User 3 Holo-Dex 1 0 - - -
AnyTeleop 1 0.2 - - -
Open Teach 1 0.8 - - 0.2

User 4 Holo-Dex 1 0 - - -
AnyTeleop 1 0.2 - - -
Open Teach 1 0.8 - 0.6 0.4

User 5 Holo-Dex - 0 - - -
AnyTeleop - 0.6 - - -
Open Teach - 0.2 0.4 1 -

User 6 Holo-Dex - 0 - - -
AnyTeleop - 0.6 - - -
Open Teach - 0.8 - 0.2 -

User 7 Holo-Dex - 0 - - -
AnyTeleop - 0 - - -
Open Teach - 0.6 0.8 0.8 0.4

User 8 Holo-Dex 1 - - - -
AnyTeleop 1 - - - -
Open Teach 1 - - - -

User 9 Holo-Dex - 0 - - -
AnyTeleop - 0.4 - - -
Open Teach - 0.8 0 - 0.6

User 10 Holo-Dex - 0 - - -
AnyTeleop - 0.2 - - -
Open Teach - 0.6 0.4 1 1

User 11 Holo-Dex 1 - - - -
AnyTeleop 1 - - - -
Open Teach 1 - - 0.8 0.4

User 12 Holo-Dex 1 - - - -
AnyTeleop 1 - - - -
Open Teach 1 - - - -

User 13 Holo-Dex 1 - - - -
AnyTeleop 1 - - - -
Open Teach 1 - 0.6 - -

User 14 Holo-Dex - 0 - - -
AnyTeleop - 0.4 - - -
Open Teach - 0.6 - - 0.8

User 15 Holo-Dex 1 - - - -
AnyTeleop 1 - - - -
Open Teach 1 - 0.4 - -
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Table 7: Average completion times for successful trials for the user study conducted across 15 individuals.
Each user roughly performs 3 tasks on average. NS denotes cases where no successes were achieved.

User Method Average completion time for successful demonstrations (in s)
Flip Cube Pinch Grasp Pour Pick and Place Open Box of Mints

User 1 Holo-Dex 4.6 NS - - -
AnyTeleop 20.2 22.5 - - -
Open Teach 5.4 18.6 66 - -

User 2 Holo-Dex - 17.5 - - -
AnyTeleop - 18.9 - - -
Open Teach - 20.6 - 29.7 12.2

User 3 Holo-Dex 5.4 NS - - -
AnyTeleop 18.3 7.8 - - -
Open Teach 5.1 12.6 - - 11.3

User 4 Holo-Dex 11 NS - - -
AnyTeleop 13.2 31.4 - - -
Open Teach 6.2 7.5 - 16.9 48.4

User 5 Holo-Dex - NS - - -
AnyTeleop - 11.4 - - -
Open Teach - 10.9 41.6 12.4 -

User 6 Holo-Dex - NS - - -
AnyTeleop - 12.7 - - -
Open Teach - 10.5 - 23.57 -

User 7 Holo-Dex - NS - - -
AnyTeleop - NS - - -
Open Teach - 19.1 21.49 49 37.8

User 8 Holo-Dex 6.5 - - - -
AnyTeleop 5.4 - - - -
Open Teach 4.7 - - - -

User 9 Holo-Dex - NS - - -
AnyTeleop - 49.9 - - -
Open Teach - 65.3 NS - 32.21

User 10 Holo-Dex - NS - - -
AnyTeleop - 48 - - -
Open Teach - 30.8 40.3 48.7 21.3

User 11 Holo-Dex 6.7 - - - -
AnyTeleop 11.5 - - - -
Open Teach 5.6 - - 21.8 15.7

User 12 Holo-Dex 6.2 - - - -
AnyTeleop 11 - - - -
Open Teach 3.8 - - - -

User 13 Holo-Dex 8.9 - - - -
AnyTeleop 14.2 - - - -
Open Teach 5.8 - 18.1 - -

User 14 Holo-Dex - NS - - -
AnyTeleop - 49.9 - - -
Open Teach - 65.3 - - 132.5

User 15 Holo-Dex 13.2 - - - -
AnyTeleop 14.6 - - - -
Open Teach 6.3 - 53.1 - -
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Slice Cucumber: Stabilize the cucumber with one arm and use a knife for cutting a slice with the other arm. 

Make Sandwich: Make a sandwich by sequentially adding the ingredients placed on a table.
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Insert USB: Insert a USB charging cable into the adapter.

Toast Bread: Place two slices of bread in the toaster oven.

Sweep Dirt Off the Table: Sweep dirt off the table using a brush and a dustpan. 

Unfold Cloth: Unfold the cloth and place it on the table.

Uncap Marker: Lift the marker with one arm and uncap it with the other.

Figure 4: Real world task rollouts demonstrating the ability of OPEN TEACH to perform intricate, long-horizon
tasks.
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Handover can: Pick up the can with one arm and hand it over to the other arm. 

Pour Sprinkles: Pour sprinkles into a bowl.
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Undo latch and open box: Undo the latch and open the box.

Slot battery: Slot a battery into the battery holder.

Shell Game: Play the shell game with 2 cups and a ball.

Pack and Lift a Basket: Place the honey bottle and soda can inside the basket, lift the handles and pick up the basket.

Put Muffin to the Oven: Place a muffin inside the oven and close the door. 
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Figure 5: Real world task rollouts demonstrating the ability of OPEN TEACH to perform intricate, long-horizon
tasks.
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Open box: Lift the lid of the box. 

Grasp object and twist: Grasp the lemon on the table and rotate the hand to face upwards.

Stack Blocks: Stack blocks on top of each other.

Open Ketchup Bottle: Open the cap of a ketchup bottle.

Open Drawer: Slide the drawer and open it.

Grasp Sponge: Grasp sponge placed on the table.

Pick Up Tea Sachet: Slide the tea sachet and pick it up. 
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Figure 6: Real world task rollouts demonstrating the ability of OPEN TEACH to perform intricate, long-horizon
tasks.
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Iron Towel: Move the hand to the iron and iron the towel. 

Hit Hammer: Hit a nail with the hammer.

Undo Latch and Open Box: Undo the latch and open the box.

Write Alphabet: Write the alphabet “A” on a paper placed on the table.

Flip Sponge: Flip the sponge on the table.

Unfold Towel: Unfold the tower placed on the table. 
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Laptop Opening: Open the lid of a laptop. The passthrough of the VR app is being streamed on the laptop’s screen. 

Figure 7: Real world task rollouts demonstrating the ability of OPEN TEACH to perform intricate, long-horizon
tasks.
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Pinch Grasp: Grasp the block with a pinch and lift it. 

Flip Cube: Flip the cube in-hand.

Put pan on stove and turn it on: Pick up the pan and put it on the stove. Then turn on the stove.

Organize basket: Pick up everything placed on the table and put it in the basket.

Close top drawer of cabinet: Approach the top drawer of the cabinet and put it to close it.

Place white mug on left plate: Pick up the white mug and place it on the left white plate. 
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Turn on Stove: Turn on the stove. 

Figure 8: Real world task rollouts demonstrating the ability of OPEN TEACH to perform intricate, long-horizon
tasks.

18



Open Door: Move close to the cabinet door and open it. 

Put plastic bag in garbage can: Pick up the plastic bag from the counter and put it in the garbage can.

Open Drawer: Move close to the drawer and open it.
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Figure 9: Real world task rollouts demonstrating the ability of OPEN TEACH to perform intricate, long-horizon
tasks.

Table 8: Performance of policies learned on data collected through OPEN TEACH. FISH and BC were used to
train policies for Allegro Sim and Libero Sim respectively. We report the mean and standard deviation for 25
evaluation trials across 3 seeds for each task.

Robot Setup Task Number of
Demos

Success Rate
(25 trials)

Allegro Sim Flip Cube 6 0.97 ± 0.03
Flip Sponge 6 0.79 ± 0.05
Pinch Grasp 6 0.75 ± 0.07

Libero Sim Close Top Drawer of Cabinet 10 0.96 ± 0.03
Turn on Stove 10 0.95 ± 0.04

Pick and Place Soup
into Basket 50 0.77 ± 0.02
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Figure 10: Success rates for the user study conducted across 15 individuals on 2 tasks - Flip Cube and Pinch
Grasp. We report the mean and standard deviation for 3 methods - Holo-Dex, AnyTeleop, and Open Teach
(Ours).
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Figure 11: Average completion times for successful trials for the user study conducted across 15 individuals
for 2 tasks - Flip Cube and Pinch Grasp. We report the mean and standard deviation for 3 methods - Holo-Dex,
AnyTeleop, and Open Teach (Ours).
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Figure 12: We compare the (a) success rate, and (b) average completion time (in seconds) for using OPEN
TEACH between an expert and 15 individuals participating in a user study. We report this comparison for 3
tasks - Pour, Pick and Place, and Open Box of Mints.
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