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Abstract

Training segmentation models for CT scans in the absence of input data is a challenging
problem. Methods based on generative adversarial networks translate images from other
modalities but still require additional data and training. Synthesizing images directly from
segmentation masks using heuristics can overcome this limitation. However, capabilities
for model generalization remain underexplored for these methods. In this study, we gen-
erate synthetic data for liver segmentation using organ labels and prior CT knowledge.
Ground truth labels serve as a source of information about global structures and are filled
with artificial textures in various settings. Segmentation models trained on synthetic data
demonstrate sufficient generalization to real CT data, highlighting a perspective of a simple
yet powerful approach to data bootstrapping.
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1. Introduction

Paired datasets of CT images and ground truth (GT) segmentations are not always available
prohibiting training of deep neural networks (DNN). To address the issue of data scarcity,
labeled data from other imaging modalities can be used. For instance, using cycle generative
adversarial network CT values can be estimated from MRI data (Zhang et al., 2018; Huo
et al., 2019). Alternatively, a dataset can be extended using mask-to-image translation
approaches based on conditional generative adversarial models (Gheorghita et al., 2022).
The label-driven approach allows to apply augmentations to labels and obtain a paired
input. Both methods rely on an additional generative network for image synthesis, which
in turn requires data and can be cumbersome to train.

Synthesizing images directly from segmentation masks using heuristics (imperative ap-
proaches) can be sufficient for a DNN to generalize to the target domain. Billot et al. (2020,
2023) employed a Gaussian mixture model and extensive augmentations for image synthe-
sis. Varying parameters of the Gaussian distribution for each tissue, the authors generated
a multi-contrast and cross-modal dataset for brain and cardiac segmentation. The trained
segmentation models could generalize to variable MRI contrasts, CT and PET data. Based
on this method, Hoopes et al. (2022) proposed a segmentation model for skull-stripping.
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Hoffmann et al. (2022) successfully trained a DNN for contrast-invariant MRI registration
using randomly generated and post-processed structures within brain masks.

In this paper, we introduce several imperative methods for generating synthetic CT data
for semantic segmentation derived from labels. We consider the problem of liver segmen-
tation as a benchmark for the proposed methods. The results indicate that segmentation
models trained on the synthetic data generalize to real CT scans, demonstrating perfor-
mance comparable with that of the model trained on real data. This study highlights a new
perspective for data generation in the anatomical segmentation of CT images.

2. Materials and methods

Our study is based on the TotalSegmentator dataset (Wasserthal et al., 2023) for segmen-
tation of human organs on CT images. We consider only abdomen CT scans with full-body
coverage and large FOV acquired in full-dose setting which results in 64 training, 17 valida-
tion and 44 test cases (see Appendix A). Using segmentation labels and prior CT-specific
knowledge, we generate three synthetic training and validation datasets with different num-
ber of included labels and texture variability.

Synthetic data #1: single label. A cylinder resembling the human body with a
random radius is filled with a histogram-matched video from the Inter4K (Stergiou and
Poppe, 2021) dataset providing diverse backgrounds. The video is reflection-padded along
the time dimension to fit the target volume. Histogram matching is performed with the
body region of a reference CT scan. Voxels from the liver mask are filled with a random
constant value drawn from the Gaussian distribution and pasted into the generated cylinder.
The distribution parameters are estimated using CT data from the train set. Unlike Billot
et al. (2020, 2023), we do not randomize the distribution parameters as the problem of
variable contrast is less pronounced in CT images and the values can be well described
using a single distribution.

Synthetic data #2: labels filled with random constant values. This option
requires each voxel to be segmented, and since the TotalSegmentator leaves a few structures
unsegmented, the rest of the CT volume is first filtered with a threshold to segment air and
then clustered into two classes using the K-means algorithm. A similar approach was
proposed in Billot et al. (2020, 2023) where the clustering was used not only to complement
the given labels but also to subdivide the foreground into multiple subclasses. We assign
constant values to voxels from the resulting 3 classes and fill back voxels segmented by
the TotalSegmentator with a random value assigned to each organ, similar to the previous
approach. The resulting CT volume represents a piecewise constant CT image.

Synthetic data #3: labels filled with natural videos. In the last setting, we
follow the same steps from the second dataset but fill the labels with histogram-matched
videos, providing both rich structural and versatile textural information.

As an augmentation, for all three datasets with a 50% chance a label is not pasted
back to the volume. For each case from the training set, we generate 4 synthetic scans.
Finally, we simulate CT-specific noise by forward-projecting volumes onto helical geometry,
converting the projections into photon counts, and sampling new photon counts from the
Poisson distribution. After the noise simulation, the projection data are reconstructed using
the Aperture Weighted Wedge Filtered Backprojection algorithm (Koken and Grass, 2006).



The results of data generation for all three methods are shown in Fig. 1 where for the
last method (Fig. 1(c¢)) the liver is not pasted back, corresponding to a synthetic patient
without the liver. Although for this study we used a dataset of real C'T scans, the proposed
strategies remain applicable if labels come from another image modality. Histograms and
distribution parameters for each organ can be considered as prior knowledge.

(a) Single label. (b) Labels filled with ran- (¢) Labels filled with nat-
dom constant values. ural videos.

Figure 1: Examples of synthetically generated CT images.

For each dataset, we trained a segmentation model using the nnU-Net framework
(Isensee et al., 2021). Pre-processing parameters were re-used from the original dataset,
i.e., normalization parameters. The model was set up for high image resolution in 3D and
trained using a single split into training and validation for 4000 epochs.

The resulting models are assessed on real CT scans from the test set. We filter the
largest connected component as a post-processing step for the resulting segmentations. The
quality of segmentation results is estimated using averaged Dice scores for the target organ.

3. Results and Conclusion

Table 1 shows averaged Dice scores for models trained on the considered synthetic datasets
and a model trained on real CT scans from the training set. As the models demonstrate com-
parable performance, the ones trained on synthetic data, with less information employed,
successfully generalize to real CT data. Moreover, the model trained using only information
about the shape of the liver (Synthetic data #1) is on par with the others, meaning higher
importance of the shape than the surrounding in the case of liver segmentation.

Table 1: Dice scores

Dataset Clinical data Synthetic data #1 Synthetic data #2 Synthetic data #3
Dice score 0.947 0.951 0.971 0.967

In this study, we proposed several strategies to generate synthetic CT segmentation
datasets that rely on segmentation labels and prior knowledge about CT images. We trained
segmentation models on synthetic data to segment the liver and showed that the models
can generalize to real CT scans. The results indicate a promising approach to bootstrap CT
segmentation data as it does not require actual images and employs an imperative strat-
egy without the need to train proxy-models. Future work should assess the segmentation
performance of other organs and potentially lesions.
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Appendix A. Cases selected from the TotalSegmentator dataset

In this work, we consider the following cases from the TotalSegmentator dataset:

e Training cases:
s0472, s0091, s0796, s0763, s0649, s0507, s0467, s1208, s0456, s1006, s0196, s1369,
51230, s0644, s0662, s1099, s1247, s0617, s0916, s0896, s0913, s0790, s0628, s1404,
51336, s0835, s1319, s0970, s0028, s0950, s0447, s1070, s1145, s0578, s1224, s0429,
s1314, s0945, s0358, s0334, s0612, s0899, s0591, s0836, s0484, s0076, s1120, s0362,
s0878, s1082, s0939, s1085, s1061, s0553, s0549, s1159, s0519, s0863, s1012, s1350,
s0065, s0765, s1063, s0903.

e Validation cases:
s0961, s0669, s0476, s0369, s0461, s0992, s1111, s1044, s1210, s1348, s0797, s1031,
s0592, s1089, s0957, s0764, s0983.

e Test cases:
s0013, s0029, s0038, s0040, s0045, s0119, s0235, s0236, s0244, s0291, s0308, s0311,
s0423, s0440, s0441, s0450, s0458, s0499, s0505, s0543, s0546, s0561, s0607, s0625,
s0650, s0667, s0687, s0794, s0918, s0923, s0933, s0991, s0994, s1046, s1152, s1161,
s1174, s1223, s1233, s1238, 51249, s1276, s1287, s1377.
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