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ABSTRACT

Recently, the global average pooling is believed to be losing the local information
that saturates the performance of neural networks. In this lossy pooling opera-
tion, we propose a new interpretation, termed over-concentration, to explain the
real reason why it degrades network performance. We argue that the problem of
global average pooling is disregarding the local patterns by relying solely on the
overly concentrated activation. Global average pooling enforces the network to
learn objects regardless of their location, so features tend to be activated only in
specific regions. To support this claim, we provide a novel analysis of the prob-
lems that over-concentration brings about in the network with extensive experi-
ments. We analyze the over-concentration through problems arising from feature
variance and dead neurons that are not activated. Based on our analysis, we in-
troduce a multi-token and multi-scale class attention pooling layer to alleviate
the over-concentration problem. The proposed attention pooling method captures
rich, localized patterns with an efficient network design using multiple scales and
tokens. Our method is highly applicable to downstream task and network architec-
tures such as CNN, ViT, and MLP-Mixer. In our experiment, the proposed method
improves MLP-Mixer, ViT, and CNN architectures with little additional resources,
and a network employing our pooling method works well compared to even state-
of-the-art networks. We will opensource the proposed pooling method.

1 INTRODUCTION

This paper presents a new analysis of the global average pooling (GAP) method that significantly
impacts the learning process. Since gradients are backpropagated, generating discriminant features
in last pooling layer is a critical stage in deep neural networks. For this reason, the lossy GAP, the
last layer of a network, prevents entire networks from learning particular local information. Despite
its importance in the learning process, the insufficient study has been conducted to establish why this
information loss occurs and how it affects the learned network. Therefore, in this paper, we present
a new analysis that the performance degradation stems from the inability to learn local patterns
properly due to the over-concentration problem.

Since GAP over-concentrates the activated neurons into the most discriminant small region (i.e.,
center of an object), the localized patterns disappear in the pooled feature (Christlein et al., 2019).
We call this drawback of GAP as ‘over-concentration’ and point to it as the cause of the degradation
of network performance. We empirically show that the over-concentrated feature map from GAP
decreases the spatial and channel variance, which deteriorates the feature representation power of
neural networks. The feature representation power grows when the variance of the feature map is
high; however, GAP reduces the feature variance by over-concentrating only the specific region,
which negatively affects the performance of the network. We analyze this over-concentration prob-
lem of GAP through extensive experiments from various perspectives in Sec.4.

Motivated by the analysis of the over-concentration problem, we introduce a multi-scale and multi-
token class attention pooling (MMCAP) method. The proposed MMCAP use efficient attention
architecture to learn the local spatial patterns, which does not concentrate on a specific region in the
pooling layer. In order to maximize the capability of learning local patterns, we offer 1) multi-token
to learn various patterns and 2) multi-scale to have broad-sight information on the pooled feature
map. We also propose token-distillation to boost the performance of the MMCAP and architecture
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suitable for dense prediction to increase its applicability. Existing class attention pooling cannot
directly use tokens for dense prediction tasks such as pyramid networks, whereas we propose a new
architecture in which encoded features of class tokens can be directly used in a dense prediction.

In summary, we give an analysis of the over-concentration problem owing to global average pooling,
which provides the justification for creating the proposed MMCAP. We show that the proposed MM-
CAP improves the baseline backbone networks by 1.7% ResNet50, 1.6% PiT-S and 0.3% ResMLP-
S24 with minimal overhead. We also conduct various experiments on downstream tasks and ablation
studies to validate the proposed method. We condense the contribution of this paper as follows:

• We present a new analysis that the global average pooling degrades the performance of the
network due to the over-concentration problem. We observe that global average pooling
over-concentrate on the subtle region that disturbs a network to learn diverse local patterns.

• We, in accordance with the analysis, propose the MMCAP method that efficiently pools the
local spatial patterns, which uses the multi-token and multi-scale strategy.

• We show the proposed MMCAP performs well compared to existing pooling layers and
state-of-the-art networks. We also demonstrate that a network with our MMCAP achieves
competitive performance on fine-tuning and downstream tasks.

2 RELATED WORK

Traditional Pooling Layer. The fully connect (FC) layer is employed as the final aggregating
method in early CNN architecture(LeCun et al., 1998), AlexNet(Krizhevsky et al., 2012) and VG-
GNet(Simonyan & Zisserman, 2014). FC layer is straightforward and effective in encoding fine-
grained local features, but it requires a large number of parameters and is weak in translation in-
variance property. To improve the translation invariance property, the global average pooling (GAP)
layer is introduced in modern CNN architectures (Szegedy et al., 2015; He et al., 2016). Although
GAP has been the de facto standard pooling method, there have been numerous attempts to replace
it with cutting-edge methods such as orderless (Gong et al., 2014), bilinear (Lin et al., 2015; Gao
et al., 2016; Cui et al., 2017), and DFT pooling(Ryu et al., 2018; Xu & Nakayama, 2019). None
of these methods, however, is able to exceed GAP in terms of throughput and model performance
because GAP uses superfast average down operation layer while ensuring the translational invari-
ance property. Therefore, GAP is still being used as last pooling layer in current state-of-the-art
architectures(Brock et al., 2021; Tan & Le, 2021; Tu et al., 2022).

Class Attention Pooling. In the visual recognition task, the class token was first introduced by
vision transformer (ViT) architecture Dosovitskiy et al. (2020). Touvron et al. (2021c) found that
the class attention pooling can be improved when inserting it into the last multi-head self-attention
(MHSA) layer in a network. As a result of this funding, class attention pooling has now been ex-
ploited in numerous vision transformer architectures(Yuan et al., 2021; Yu et al., 2022; Touvron
et al., 2021c). In addition, there have been a few attempts to apply class attention pooling in CNN
architectures(Touvron et al., 2021b; Ridnik et al., 2021b). However, these methods are difficult to
be used generally for reasons such as tailoring the backbone architecture to a specific condition.

Feature Aggregation. Fusing multi-scale features has been extensively studied in dense predic-
tion tasks such as object detection (Lin et al., 2017) and semantic segmentation (Long et al., 2015).
Also, in the image classification task, there have been studies using various levels of features (Sun
et al., 2018; Huang et al., 2017; Anonymous, 2022). Aggregating multi-token has been considered
in recent network architectures(Xu et al., 2022; Ridnik et al., 2021b). Xu et al. (2022) uses multi-
tokens to better capture class-specific attention in a semantic map for the weakly supervised semantic
segmentation task. While previous studies employed multi-tokens for the class-specific task, we dis-
cover that using multi-tokens is valid even in a single task. Therefore, we design the generalized
architecture with multi-tokens that are effective for any backbones and tasks.

3 BACKGROUND: CLASS ATTENTION POOLING

We compare GAP with class attention pooling (CAP) to address the over-concentration problem.
Since the CAP applies the class tokens to local pixels separately, locality remains in the pooled
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features, thus avoiding the over-centralization problem. In this part, we introduce the CAP method
before comparing it to GAP for the over-concentration problem in Sec.4.

CAP(Touvron et al., 2021c) aggregates image features ximg ∈ Rn×c into class token xclass ∈ R1×c

by using multi-head class attention (MHCA) as:

Q = Wqxclass + bq ∈ R1×c, K = Wkz + bk ∈ R(1+n)×c, V = Wvz + bv ∈ R(1+n)×c

where z = [xclass, ximg] ∈ R(1+n)×c
(1)

where [Wq,Wk,Wv,Wo] denote embedding matrix, [bq, bk, bv, bo] are the corresponding bias, and
images features and class tokens are represented as xclass and ximg . The pooled feature F of CAP
is, then, generated by multiplying class attention map C with value V as:

F = WoCV + bo ∈ R1×c where C = Softmax(QKT /
√

d/h) ∈ R1×(1+n). (2)

Complexity of CAP, as in Eq. 1 and 2, is much lower compared to the vanilla self-attention method.
Since only class tokens are used as the query, which is much smaller than image features, the com-
plexity of CAP is O(N), which is proportional to the number of spatial pixels of image features
N . In contrast, the complexity of vanilla self-attention, which uses image features for both querying
and keying, is O(N2). Therefore, we are able to exploit CAP that maximizes local information using
only manageable computational complexity.

4 ANALYSIS
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Figure 1: Experimental study on the channel and spatial
variance(Park & Kim, 2022). We use ResNet (left plots)
and DeiT-S/16 (right plots) as backbone networks. In all
cases, CAP achieves higher variance compared to GAP.

In this section, we analyze the GAP in
terms of over-concentration by comparing it
with the CAP. First, we tackle the over-
concentration problem by the feature variance
in Sec.4.1. To explore the problem in more
detail, we investigate the dead neurons that
express the degree of activation in a network
depending on the over-concentration problem
in Sec. 4.2. Consequently, we study the non-
salient object recognition task (Naseer et al.,
2021) in Sec. 4.3. For the empirical study,
we compare both pooling layers to ResNet-
50 and DeiT-S/16 networks to show consistent
results.

4.1 FEATURE VARIANCE

Feature over-centralization entails that seman-
tically similar features span an entire spa-
tial area, resulting in the extinction of minor
but discriminant local features in a network.
The over-centralization is primarily caused by
GAP, which focuses only on the small re-
gional information due to its spatially average
down operation. This issue can also be found in network visualization studies where they found
them the class activation map (CAM) resides in small regions. (Zhou et al., 2016; Kim et al., 2017;
Li et al., 2018) To overcome this problem, they diversify the input (Wei et al., 2017; Jiang et al.,
2022) and network architecture (Wang et al., 2020) to expand the activated regions in a feature map.
These studies focus mostly on segmentation tasks in which CAM results are employed as weak
labels by expanding the activation map to cover the entire object. We assume that the reason for
this problem that activated neurons are concentrated in a narrow region is due to the GAP’s average
down operation. GAP recognizes objects regardless of their location, so only the specific location is
activated, and the rest of the patterns are discarded(Qiu, 2018).

We verify our analysis of the over-centralization by feature variance. Each channel of the feature
map represents the pattern of an object. If the channel variance is high, neurons are activated at
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various spatial positions. Both channel and spatial variance indicate the diversity of information
possessed by the feature map, and the more monotonic features, the lower the variance. There-
fore, over-concentrated features are spatially monotonic, and thus the variance is inevitably low.
We compare the feature variances of networks with GAP and CAP as shown in Fig.1. Unsurpris-
ingly, the CAP, which pools each local pixel independently, achieve much higher variance on both
CNN and ViT architecture. This finding of feature variances supports that the GAP leads to the
over-centralization problem of entire layers of a network.

4.2 DEAD NEURON
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Figure 2: Experimental study on the dead
neurons. We measure the ratio of non-activated
neurons in each layer. In this result, CAP acti-
vates more neurons compared to GAP.

Over-centralization problems exacerbate the dead neu-
ron(Lu et al., 2019) problem in deep neural networks.
Due to over-centralization, local spatial patterns outside
the central position are not activated even though they
have information that can identify objects. A spatial po-
sition that is ignored in GAP at the end of a network
loses the opportunity to be learned in all layers during
backpropagation. Therefore, as shown in Fig. 2, a net-
work trained with GAP generates much more dead neu-
rons than CAP. These differences greatly affect the net-
work performance, and we believe that a network with
CAP learns richer local patterns and thus alleviates the
dead neuron problem.

4.3 NON-SALIENT RECOGNITION

We point out that GAP is vulnerable to the disappear-
ance of salient regions due to over-concentration problems. Since GAP recognizes objects by con-
centrating on a narrow local region, if the region is occluded, the problem of not recognizing objects
occurs well. As shown in Fig.3, as the disappeared salient region becomes larger, the performance
of the GAP decreases rapidly. This is because the over-concentrated region of GAP is too narrow,
so GAP does not activate features on the salient but outside the over-concentration region. However,
the CAP that independently pools all local pixels has a broad concentration region, so it recognizes
the occluded object better than the GAP.

5 METHOD

On the basis of our analysis, we propose multi-token and multi-scale class attention pooling (MM-
CAP) that learns enhanced local patterns with a minimal computational budget. Our design principle
is to 1) learn richer localities while 2) use fewer resources compared to the vanilla CAP method. As
shown in Fig. 4 vanilla CAP performs attention operation on a single-scale feature map with a sin-
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Figure 3: Experimental study on non-salient object recognition. We measure image classification
accuracy after artificially removing the object’s salient area using a self-supervised ViT model DINO
(Caron et al., 2021; Naseer et al., 2021).
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Figure 4: Schematic illustration of GAP, CAP, and MMCAP methods. The proposed MMCAP exploit the
multi-tokens and multi-scale features in a network.

C

pyramid structure feature multi-scale feature

D

D

U

(𝐶𝐶3,𝐻𝐻3,𝑊𝑊3)

(𝐶𝐶𝑖𝑖 ,𝐻𝐻3,𝑊𝑊3)

multi-class token

C

FC
1

FC
2

1x1
conv

(𝐶𝐶𝑚𝑚,𝐻𝐻3,𝑊𝑊3)

𝐿𝐿𝑠𝑠.𝑡𝑡.𝑑𝑑.( �𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎, �𝑦𝑦)

𝐿𝐿𝑐𝑐.𝑒𝑒.( �𝑦𝑦,𝑦𝑦)

token distillation

�𝑦𝑦

�𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎

avg of tokens

class attn.

U : up sample
D : down sample

C : concat

(𝑇𝑇,𝐶𝐶𝑚𝑚)

(1,𝐶𝐶𝑚𝑚)

class tokens

spatially aligned feature

multi-scale feature

(# 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
logit

: stop gradient

Figure 5: Workflow of the proposed MMCAP. We combine multi-scale features (blue region), apply multi-
tokens (red region), and then train a network by token-distillation (yellow region).

gle token; it is limited in learning local patterns and also has the disadvantage of rapidly increasing
parameters in a specific architecture. Single-level feature learning has a drawback in that it does not
fully leverage the expressive feature representation of deep neural networks; we address this issue
with efficient multi-token and multi-scale approaches. Also, while the parameters of vanilla CAP
significantly increase according to the dimension of its input channel (e.g., 2048 of ResNet), our
MMCAP reduce it greatly reduce due to the efficient architecture design as shown in Fig.5. In the
appendix, we explore the applicability of the proposed MMCAP to the fine-tuning and dense pre-
diction of the downstream tasks. Therefore, the proposed MMCAP extends the vanilla CAP method
with better performance, faster, and fewer resources. For a better understanding, each component of
the MMCAP is detailed, along with our design choices according to the analysis in Sec.4.

5.1 MULTI-TOKEN CLASS ATTENTION POOLING

Output features ideally have as many local patterns as the number of multi-tokens (Xu et al., 2022;
Ridnik et al., 2021b) compared to vanilla CAP. As described in Sec.4, class tokens effectively capture
local spatial patterns; hence, increasing the number of class tokens used in CAP ensures a rich
representation of the feature localization. To investigate this further, we conduct experiments to
determine how the learned model changed as the number of class tokens grew. As shown in Fig.6,
the number of class tokens, the degree of channel variance, and the dead neurons are close to a linear
relationship. Also, in Fig.7, the performance of the image classification task improves as the number
of tokens increases. These results support the use of multiple tokens to more efficiently learn local
information. In spite of its efficiency, the multi-token approach has the downside of increasing the
output feature’s size by a factor of t. Since the output feature of MMCAP is connected to the FC
layer, the number of parameters increases substantially when the dimension rises. We overcome this
issue by decreasing the channel dimension c in the following multi-scale feature method.

5.2 MULTI-SCALE FEATURE

In deep neural networks, multi-scale features are beneficent for learning local patterns of varying
sizes. Pyramid aggregation architectures(Lin et al., 2017) have been widely used to learn multi-scale
features, but they are difficult to employ with attention pooling due to their complex connectivity.
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Figure 6: Experimental study on the feature variance and dead neurons for the proposed MMCAP. The net-
works used in this comparison are trained for 100 epochs on the ImageNet-1k dataset. (a) and (b): MMCAP
increases channel and spatial variation. (c): MMCAP reduces dead neurons.
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Figure 7: Experimental study on the feature res-
olution for MMCAP. We confirm that the higher
feature resolution gives better performance with
sufficient tokens.

Therefore, we adopt light-weight multi-level feature
aggregation method from (Anonymous, 2022) for
our pooling method. In the case of ResNet, the four-
stage output features of 56 × 56, 28 × 28, 14 × 14,
and 7 × 7 resolution are interpolated to have the
same resolution, and then the four feature maps are
concatenated. To produce the final multi-scale fea-
tures, the channel dimension of the concatenated fea-
tures is decreased by the MLP layer. This straight-
forward procedure (Anonymous, 2022) is suitable
for our pooling approach since it uses a limited re-
source budget for the multi-scale feature aggregation
and also controls the resolution and channel dimen-
sion of features that are fed to MMCAP. The optimal
number of class tokens is dependent on the feature
resolution, so we empirically find the balanced res-
olution and channel dimension. As shown in Fig.7,
when the feature resolution is 7×7, the performance
reaches to plateau at four tokens, while features of 14× 14 further improve the performance at more
tokens. This result indicates that the higher the resolution of the feature map, the more local patterns
it has, so more tokens are needed.

5.3 TOKEN DISTILLATION

We introduce the self token distillation that reduces the Kullback-Leibler divergence between the
prediction of the multiple class tokens and the average of them. We pass the average class token
through the MMCAP together with the original multi-tokens and then connect each FC layer to
each output token of MMCAP to obtain the probability of each output token. The probability of
the average-token is then distilled with the predicted probability of the original multi-tokens. In this
way, the average-token learns common knowledge from the multi-tokens and the performance of
the network improves when the average-token is removed during inference. Also, even if only one
average-token is used, it shows quite good performance compared to a network trained with a single
token without our token distillation.

We borrow the mathematical definition for the proposed token-distillation from (Touvron et al.,
2021a) as:

Lglobal = (1− λ)LCE(σ(Zmulti), y) + λT 2KL(σ(Zavg/T ), σ(Zmulti/T )), (3)

where Zmulti denotes the logits of multiple class tokens, Zavg average of them, T the distillation
temperature, λ the balancing constant ratio between the Kullback-Leibler divergence (KL) and the
cross-entropy loss(LCE) , y the ground truth labels and σ the softmax function. For simplicity, we fix
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(a) Comparison on the performance of GAP, CAP, and MMCAP with regard to the latency and input image
resolution.
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(b) Comparison on the performance of ResNet50+MMCAP, ResNet101, and ResNet152 with regard to the
latency and input image resolution.

Figure 8: Experimental study of extensive comparison of the proposed MMCAP with other pooling methods
and networks. In the left figures, larger points signify that high input resolution is employed. (a) We confirm
that, compared to GAP and CAP, MMCAP achieves much higher performance while using fewer resources. (b)
MMCAP-ResNet50 shows better performance compared to vanilla ResNet with deeper layers, and in particular,
as the resolution increases, MMCAP performs better.

distillation hyper-parameters as λ = 0.5 and T = 1.0. It is confirmed that MMCAP, to which token-
distillation is applied along with multi-token and multi-scale, shows significantly better performance
in various aspects compared to GAP and CAP, as shown in Fig.8.

6 EXPERIMENT

In this section, we perform extensive experiments to validate the proposed method on four visual
recognition tasks: image classification, object detection, semantic segmentation, and instance seg-
mentation. In the image classification task, we investigate the effectiveness of the proposed MMCAP
in four sub-experiments. In the appendix, the network is also transferred to a dense prediction archi-
tecture, demonstrating the applicability of the downstream tasks.

6.1 IMAGE CLASSIFICATION

In this section, we evaluate the proposed MMCAP using two sub-experiments such as 1) ablation
study, 2) SOTA comparison. To train our model, we use ImageNet-1k dataset (Russakovsky et al.,
2015) with 300 epochs. For a fair comparison, we do not use any external dataset. The details of
training hyperparameters can be found in the appendix.
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#Token M-scale Res. T-distill #Epoch Top-1
(Acc. %)

Throughput
(img/s)

Params
(M)

FLOPs
(G)

0 - 7 - 100 77.05 3414.7 25.6 4.1

1 - 7 - 100 78.51 (+1.5) 3163.9 59.1 4.5
4 - 7 - 100 79.12 (+0.6) 3094.5 65.3 4.6
4 ✓ 7 - 100 79.51 (+0.4) 2944.3 73.3 5.0
4 ✓ 14 - 100 79.36 (- 0.2) 2735.8 40.0 5.3
8 ✓ 14 - 100 79.75 (+0.4) 2706.2 44.1 5.4
8 ✓ 14 ✓ 100 80.02 (+0.3) 2693.4 45.1 5.4

8 ✓ 14 ✓ 300 81.43 (+1.4) 2693.4 45.1 5.4

Table 1: Ablation study on the proposed MMCAP. We use ResNet-50 as a backbone network. M-scale and T-
distill denote the multi-scale and token-distillation, and the column of Res. indicates the input feature resolution
for the MMCAP.

Model Method Top-1 acc.(%) Throughput
(img/s)

Param
(M)

FLOPs
(G)

ResNet50

GAP 79.8 3400.7 25.6 4.1
CAP 80.6(+0.8) 3176.0 59.1 4.5
MMCAP-light 80.8(+1.0) 2821.7 36.9 5.3
MMCAP 81.5(+1.7) 2757.6 45.1 5.4

PiT-S
GAP 79.8 2709.6 23.3 2.4
CAP 81.3 (+1.5) 2667.1 25.9 2.4
MMCAP 81.4 (+1.6) 2543.0 28.6 2.6

MLP-Mixer
GAP 79.4 2186.9 30.0 6.0
CAP 78.5(-0.9) 1996.6 31.2 6.0
MCAP 79.7(+0.3) 1989.7 32.7 6.0

Table 2: Experimental study on the proposed method for CNN, ViT, and MLP-Mixer architecture. In all three
architectures, the proposed MMCAP performs well with the manageable resource overhead. MMCAP-light is
a result of using only the average distillation token, so it has the advantage of reducing the parameters in FC
layers.

6.1.1 ABLATION STUDY

Table 1, 2, and 3 demonstrates that the proposed MMCAP improves performance in various set-
tings. Each element (e.g., multi-token, multi-scale, and token-distillation) of the proposed method
performs better than its respective baseline in Table 1. We further evaluate GAP, CAP, and MMCAP
on CNN (i.e., ResNet50), ViT (i.e., PiT-S), MLP-Mixer architectures in Table 2. The proposed MM-
CAP outperforms GAP and CAP in all three architectures by a significant margin. Specifically, the
suggested MMCAP exhibits little delay across all architectures, and the increase in parameters and
FLOPs of the PiT-S and MLP-Mixer is likewise insignificant. We also compare them on scale-up
architectures in Table 3. The proposed MMCAP performs consistently better than CAP, particu-
larly in bigger architectures with large input sizes. This demonstrates that MMCAP has excellent
scalability; specifics are explained in Sec. A.3.

Model GAP MMCAP

Top-1
Acc.(%)

Throughput
(img/s)

Param
(M)

FLOPs
(G)

Top-1
Acc.(%)

Throughput
(img/s)∗

Param
(M)

FLOPs
(G)

ResNetD-T 81.1 1470.1 25.6 8.8 82.9(+1.8) 1233.4 45.2 11.3
ResNetD-S 82.7 866.2 50.8 17.0 83.5(+0.8) 734.8 78.9 20.8
ResNetD-B 83.4 486.2 72.6 27.8 83.9(+0.5) 431.4 103.4 32.2
ConvNext 82.4 1030.4 28.6 9.1 83.0(+0.6) 988.2 33.1 9.5

Table 3: Experimental study of the comprehensive comparison on GAP and MMCAP. Configuration of
ResNetD-T, S, B are shown Table 6.
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6.1.2 SOTA COMPARISON

We compare the proposed method with the current SOTA networks as shwo in Table ??. We apply
MMCAP to the ResNet-D(He et al., 2019) and ConvNextliu2022convnet backbones in compari-
son with the SOTA networks such as ResMLP(Touvron et al., 2022), DeiT(Touvron et al., 2021a),
SwinTransformer(Liu et al., 2021), CaiT(Touvron et al., 2021c), ResNet(He et al., 2016), Efficient-
Net(Tan & Le, 2019), ResNest(Zhang et al., 2022), ConViTd2021convit, and TResNet(Ridnik et al.,
2021a). Although we only replace the pooling layer with the proposed MMCAP, we achieve consid-
erably better performance than the SOTA methods. In addition, its validity is verified in important
architectures such as MLP-Mixer, ViT, CNN, and hybrid.

Architecture Network Train
(px)

Test
(px)

Top-1
Acc.(%)

Throughput
(img/s)

Params
(M)

FLOPs
(G)

MLP-Mixer

ResMLP-S12 224 224 76.6 4255.5 15.4 3.0
ResMLP-S24 224 224 79.4 2144.0 30.0 6.0
ResMLP-S36 224 224 79.8 1414.7 44.7 8.9
MMCAP-ResMLP-S24 224 224 79.7 1989.7 32.7 6.0

Transformer

DeiT-S 224 224 79.8 2664.1 22.0 4.2
Swin-T 224 224 81.3 1710.7 28.3 4.4
CaiT-XXS-36 224 224 79.1 1024.1 17.3 3.8
MMCAP-PiT-S 224 224 81.4 2543.0 28.6 2.6

CNN
(Hybrid)

ResNet50 224 224 79.8 3400.7 25.6 4.1
EfficientNet-B3 300 300 81.6 1951.6 12.0 1.8
CrossViT-15 224 240 81.5 1594.5 27.5 5.2
MMCAP-ResNetD-T 224 224 81.8 2557.1 45.2 5.6
MMCAP-ConvNext-T 224 224 82.3 2006.8 33.1 4.6

ResNet152 224 224 81.8 1446.1 60.2 11.5
ConViT-S 224 240 81.3 1288.6 27.8 5.4
TResNet-M 224 224 80.8 1223.8 31.4 5.7
EfficientNet-B4 380 380 82.9 932.9 19.0 4.4
CrossViT-18 224 224 82.5 921.3 43.3 8.2
MMCAP-ResNetD-T 224 320 82.9 1233.4 45.2 11.3
MMCAP-ResNetD-TΥ 224 320 83.7 1222.6 53.4 11.3
MMCAP-ConvNext-S 224 224 83.3 1223.2 62.3 9.2

ResNest101 224 224 83.0 678.2 48.3 10.2
ConViT-B 224 224 82.4 627.1 86.5 16.8
EfficientNet-B5 456 456 83.6 444.3 30.4 10.3
TResNet-M 448 448 83.2 301.3 31.4 22.9
MMCAP-ResNetD-S 224 320 83.5 771.5 78.9 20.8
MMCAP-ResNetD-SΥ 224 320 84.3 742.5 89.2 20.8
MMCAP-ConvNext-S 224 320 83.8 602.4 62.3 18.7

Table 4: Experimental study on the comparison between the proposed method with SOTA networks. We only
include networks that are trained without extra data. Υ indicates that the knowledge distillation is utilized.
We do not fine-tune the model on high resolutions. Throughput is measured on RTX 3090 GPU device using
TIMM library (Wightman, 2019). Results of ResNet (He et al., 2016) and RegNet (Radosavovic et al., 2020)
are imported from (Wightman et al., 2021; Touvron et al., 2021a).

7 CONCLUSION

In this paper, we present a new analysis of the global average pooling that leads to the problem
of over-concentration. We analyze the consequences of the over-concentration problem on network
learning via feature variance, dead neurons, and salient object recognition. This analysis serves as
the basis for our MMCAP method, which focuses on the acquisition of abundant local patterns. With
our MMCAP layer, we also offer token-distillation for the efficient usage of the multi-tokens and
multi-scales. Moreover, the suggested MMCAP is readily applicable to downstream tasks, such as
object detection and segmentation. Despite the fact that we replace the pooling layer with MMCAP,
it exhibits significantly better performance than SOTA networks, and we anticipate that these results
will serve as a groundwork for future research.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Anonymous. Learning less-correlated features in network aggregation. OpenReview Preprint,
anonymous preprint under review, 2022.

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization. In International Conference on Machine Learning, pp.
1059–1071. PMLR, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A APPENDIX

A.1 REPRODUCABILITY: IMPLEMENTATION DETAILS

Table 5 provides our training hyper-parameters used to train multiple backbone architectures on
different datasets. Except for ResNet, we adhere to the original train design used to train backbone
networks for the ILSVRC-2012 pretraining task. Hyperparameters of ResNet training reference an
A2 configuration in (Wightman et al., 2021). In the A2 configuration, we decrease the batch size
to accommodate our computational capabilities (2 RTX 3090 24GB GPU) and adjust the learning
rate correspondingly. We exploit the standard fine-tuning receipt for downstream tasks, which comes
from the (Touvron et al., 2021a).

configuration ResNet ConvNext DeiT(PiT) ResMLP
reference work Wightman et al. Liu et al. Touvron et al. Touvron et al.

train res. 224 224 224 224
test res. 224 224 224 224
test crop ratio 0.95 0.95 0.95 0.95
epoch 300 300 300 350

batch size 512 512 512 512
criterion BCE CE CE CE
optimizer LAMB AdamW AdamW LAMB
lr 3.5e-3 4e-3 7e-3 3.5e-3
lr decay cosine cosine cosine cosine
weight decay 0.02 0.05 0.05 0.2
warmup epochs 5 20 5 5

h.flip ✓ ✓ ✓ ✓
rand augmentation 7/0.5 9/0.5 9/0.5 9/0.5
cutmix alpha 1.0 1.0 1.0 1.0
mixup alpha 0.1 0.8 0.8 0.8
erasing prob. 0.0 0.25 0.25 0.25

ema - ✓ - -

Table 5: Summary of ILSVRC-2012 training hyper-parameters.

Stage No. Tiny Small Base

# Layers # Channels # Layers # Channels # Layers # Channels

1 3 64 4 64 4 84
2 4 128 5 128 5 168
3 6 256 13 320 21 336
4 3 512 3 640 3 672

Table 6: Model configurations used for scaling up baseline ResNet50D(Tiny) model. This series of models are
used to compare proposed method with SOTA network in Table 4

A.2 DOWNSTREAM TASK WITH MMCAP

In this subsection, we propose architecture tweaks for dense prediction tasks, including object de-
tection and segmentation. In the previous work(Touvron et al., 2021c;b; Ridnik et al., 2021b), CAP
could not be used directly for dense prediction; therefore, CAP is removed, and only the backbone
should be used for dense prediction. The inability of their architecture to fine-tune the CAP prevents
it from taking advantage of attention pooling; hence its performance is even worse than that of a
network that has been trained with GAP. Therefore, we tweak a network architecture to have the
connectivity between MMCAP and output layers in a dense prediction backbone network.
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MMCAP

input
class token

pyramid structure feature global context augmented feature

+

+
+

output
class token

c c c c

c1x1 convolution
+element-wise sum

+

Figure 9: Workflow of the proposed dense predic-
tion network. We distribute the output tokens to each
backbone layer.

In the proposed dense prediction network, we di-
vide the output features of MMCAP by the num-
ber of stages and add them to each stage, as
shown in Fig.9. We broadcast the output features
of MMCAP to the features of each stage. In this
way, after the multi-scale feature passes the MM-
CAP, the divided tokens are fed back to each
scale, resulting in diversifying the connectivity of
the network. Thus, each stage of a network will
be able to enjoy the benefits of MMCAP for the
dense prediction tasks.

Experimental result. We validate the applica-
bility of the proposed MMCAP to the downstream task by evaluating its performance in three dense
prediction experiments. Unlike existing CAP methods, a network employing MMCAP may directly
use out features of the pooling layer for the dense prediction. Therefore, we confirm that MMCAP
outperforms GAP and CAP in terms of object detection, semantic segmentation, and instance seg-
mentation in Table 7, 8, 9, and 10. In all experiments, our MMCAP uses a modest amount of more
resources while obtaining much better performance.

Downstream
task

GAP
cls. acc:77.0(%)

CAP
cls. acc:78.5(%)

w/o tweak w/ tweak

Detection
mAP(%) 38.1 37.7(-0.3) 39.2(+1.1)

Segmentation
mIOU(%) 37.1 36.6(-0.5) 37.7(+0.6)

Table 7: Experimental study on the dense prediction task. The performance is greatly increased when our
architectural tweak for dense prediction is used.

Method Top-1
Acc.(%)

boxAP
(%)

AP@50
(%)

AP@75
(%)

Params
(M)

FLOPs
(G)

Troughput
(img/s)

Faster R-CNN
GAP 79.8 39.4 60.9 42.8 41.8 216.7 28.1
CAP 80.5 40.0 61.9 43.1 79.5 225.6 27.0
MMCAP 81.4 40.7 62.5 44.4 58.1 242.4 26.7

Cascade
Faster R-CNN

GAP 79.8 42.9 61.4 46.9 69.4 244.3 24.8
CAP 80.5 43.6 63.2 47.1 107.2 253.2 22.5
MMCAP 81.4 44.1 63.5 47.8 85.7 270.1 22.3

Table 8: Experimental study of the object detection task on MSCOCO-2017 dataset. We use Mask R-CNN as
the backbone network.

Method Top-1
Acc.(%)

mIOU
(%)

mACC
(%)

Params
(M)

FLOPs
(G)

Troughput
(img/s)

ResNet50
GAP 79.8 37.3 47.9 28.5 177.9 38.6
CAP 80.5 36.4(-0.9) 45.8 66.3 186.6 35.8
MMCAP 81.4 39.2(+1.9) 49.7 44.8 203.0 34.6

Table 9: Experimental study of the semantic segmentation task on ADE20K dataset. We use FPN architecture
as the backbone network.

A.3 SCALABILITY ON INPUT RESOLUTION

The proposed MMCAP works well with scale-up methods for high-resolution input images. Since
scalability is one of the most significant aspects of the recent visual recognition task, it is the subject
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Method Top-1
Acc.(%)

boxAP
(%)

MaskAP
(%)

Params
(M)

FLOPs
(G)

Troughput
(img/s)

ResNet50
GAP 79.8 40.2 36.8 44.4 269.8 21.8
CAP 80.5 41.0(+0.8) 37.7(+0.9) 82.2 278.6 19.8
MMCAP 81.4 41.5(+1.3) 38.1(+1.3) 60.7 295.5 18.7

Table 10: Experimental study on the instance segmentation task using MSCOCO-2017 dataset.

of our experimental studies. As shown in the ‘accuracy vs. resolution’ plots of Fig.8, the proposed
method delivers more performance gains as the input image’s resolution increases. We assume that
the reason for these results is that as the input resolution grows, there is more local information, but
the current GAP is unable to learn it well.

A.4 TRANSFER LEARNING

Transfer learning is used to examine the generalization ability by fine-tuning pre-trained networks
to other small datasets. We use four datasets for this transfer learning task such as CIFAR10, CI-
FAR100, Flowers102, and Stanford-Car. ResNet50 (He et al., 2016) and PiT-S (Heo et al., 2021) are
used as the pretrained backbone networks. In table 11, the proposed MMCAP improves the accu-
racy of image classification in all transfer learning datasets. ResNet50 with MMCAP outperforms
the baseline by about 0.5% and 1.5% in CIFAR10 and CIFAR100 datasets. We observe a similar per-
formance improvement in PiT network for all datasets. This finding verifies that substituting GAP
with MMCAP improves generalization ability.

Model Method Throughput
(img/s)

ImageNet
(%)

CIFAR10
(%)

CIFAR100
(%)

Cars
(%)

ResNet50
GAP 3400.7 79.8 98.2 88.7 87.8
CAP 3008.4 80.6 98.6 89.6 91.3
MMCAP 2752.1 81.5 98.7(+0.5) 90.3(+1.5) 91.5(+3.7)

PiT-S
GAP 2709.6 79.8 98.8 90.1 90.4
CAP 2667.1 81.3 99.0(+0.2) 91.0(+0.9) 90.2
MMCAP 2543.0 81.4 99.0(+0.2) 91.3(+1.2) 90.5(+0.1)

Table 11: Experimental study on the fine-tuning task. We transfer our networks pre-trained on
ImageNet-1k to small datasets.

A.5 CNN DISTILLATION FROM VIT

Most previous studies (Touvron et al., 2021a;c; Graham et al., 2021) distill ViT from CNN model
using the distillation token. Initially, network learning utilizing tokens was developed in ViT; there-
fore the distillation direction (CNN → ViT) has been a prevalent strategy. However, the proposed
MMCAP uses class tokens on the last pooling layer, so we apply the distillation method in which
ViT teaches CNN, as shown in Table.12.

Model ImageNet Top-1 acc. (%) Throughput (img/s) FLOPs (G)

224 320 224Υ 320Υ 224 320 224 320

ResNetD-T 81.8 82.9 82.5 83.7 2557.1 1233.4 5.6 11.3
ResNetD-S 82.5 83.5 83.4 84.3 1587.0 771.5 10.3 20.8
ResNetD-B 82.9 83.9 83.7 84.4 935.3 454.2 15.8 32.2

Table 12: Experimental study on knowledge distillation and scale-up architectures with the proposed MM-
CAP. Υ denotes a network trained by knowledge distillation from VOLO-D1(Yuan et al., 2021).
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