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ABSTRACT

While Foundation Models provide a general tool for rapid content creation, they
regularly require task-specific adaptation. Traditionally, this exercise involves
careful curation of datasets and repeated fine-tuning of the underlying model.
Fine-tuning techniques enable practitioners to adapt foundation models for many
new applications but require expensive and lengthy training while being notably
sensitive to hyper-parameter choices. To overcome these limitations, we introduce
Text-to-LoRA (T2L), a model capable of adapting Large Language Models on
the fly solely based on a natural language description of the target task. T2L is a
hypernetwork trained to construct LoRAs in a single inexpensive forward pass.
After training T2L on a suite of 9 pre-trained LoRA adapters (GSM8K, Arc, etc.),
we show that the ad-hoc reconstructed LoRA instances match the performance
of task-specific adapters across the corresponding test sets. Furthermore, T2L
can compress hundreds of LoRA instances and zero-shot generalize to entirely
unseen tasks. This approach provides a significant step towards democratizing
the specialization of foundation models and enables language-based adaptation
with minimal compute requirements. Our code and pre-trained checkpoints will be
available through GitHub and HuggingFace upon publication.

1 INTRODUCTION

Biological systems are capable of rapid adaptation, given limited sensory cues. For example, the
human visual system can tune its light sensitivity and focus through neuromodulation of the fovea and
rod cells (Wurtz et al., 2011; Digre & Brennan, 2012). While recent Large language models (LLMs)
exhibit a wide variety of capabilities and knowledge, they remain rigid when adding task-specific
capabilities. In such cases, practitioners often resort to re-training parts of the model (Gururangan
et al., 2020; Wei et al., 2021; Dettmers et al., 2022; Tay et al., 2021) using parameter-efficient fine-
tuning techniques, e.g., Low-Rank Adaptation (LoRA, Hu et al., 2022). Typically, a LoRA adapter
has to be optimized for each downstream task and requires task-specific dataset and hyperparameter
setting. This fine-tuning scheme for adaptation significantly limits the possibility of transferring
knowledge between tasks and induces engineering overhead.

Recently, it has been observed that by inducing structural constraints, the low-rank matrices learned
by LoRA adapters can be further compressed. For example, one can train lossy versions of the
original adapter while maintaining downstream performance (Brüel-Gabrielsson et al., 2024; Kim
et al., 2024; Kopiczko et al., 2024). Furthermore, multiple LoRAs can be combined for new tasks
at inference time (Ostapenko et al., 2024). At the core of these approaches lies the explicit use of
decomposition or dimensionality reduction techniques (e.g., SVD or routing) for better compression
and online composition of existing LoRAs. This raises the following questions:

1. Can we end-to-end train a neural network to compress many pre-trained LoRAs?
2. Can we decode new task-specific LoRA adapters from this network solely based on

natural-language instructions for an unseen task at test time?

We hypothesize that different LoRA adapters share the same underlying adaptation mechanism and
can be optimized simultaneously without any explicit structure or recipe for combining them. To
explicitly test this hypothesis, we propose T2L (see Section 1), a hypernetwork (Ha et al., 2016) that
compresses task-specific LoRAs and generates new LoRA adapters zero-shot at inference time. T2L
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Figure 1: Left: Conceptual overview of T2L training routine. Given a set of task description
embeddings, we train a hypernetwork to generate LoRA adaptation matrices (∆W ) for various
tasks. The weights of T2L are either optimized to distill pre-trained LoRA weights or via multi-task
supervised fine-tuning on downstream tasks. Blue and Orange arrows refer to forward and backward
propagation. Right, Top: Relative performance to the oracles on training SNI tasks with varying
compression ratios. Right, Bottom: Zero-shot LoRA generation performance on 10 benchmark
tasks. As we increase the number of pre-training datasets, the performance of T2L increases for three
different T2L architectures.

is trained to compress LoRAs on a diverse task distribution from the Super Natural Instruction (SNI)
dataset (Wang et al., 2022). Importantly, T2L takes a natural language description of the target task
as an input, allowing zero-shot LoRA generation to unseen tasks. Empirically, we show that T2L
can effectively be trained either to reconstruct pre-trained adapters or via supervised fine-tuning on
distribution of downstream tasks (see Fig. 1, top left). After training, T2L outperforms a multi-task
LoRA baseline and Arrow Routing (Ostapenko et al., 2024), a state-of-the-art zero-shot LoRA routing
method, on various benchmark tasks. Furthermore, we show that T2L can generate LoRA adapters
for previously unseen tasks solely using the language-based task description. This result highlights
the generalization capabilities and applicability of our proposed indirect adaptation encoding. Our
contributions are summarized as follows:

1. We introduce hypernetwork-based architectures for producing LoRA adapters with a single
forward pass (Section 3) based on text descriptions. T2L architectures can be trained using
both distillation of pre-trained adapters and supervised multi-task fine-tuning.

2. We show that T2L can efficiently encode hundreds of LoRA adapters (Section 4). While
the compression is lossy, T2L maintains the performance of task-specifically tuned LoRA
adapters. Furthermore, T2L can generalize to unseen tasks given suitable natural language
descriptions of the tasks.

3. We provide rigorous ablations (Section 5) including T2L scaling with datasets (see Fig. 1,
bottom right), the impact of different task description embeddings, the training routines, and
text-based task descriptions.

4. Finally, we provide various efforts to analyze the nature of T2L generations (Section 6).
We study the relationship between LoRA adapters and find compelling evidence why
reconstruction-trained T2L cannot generalize. Furthermore, we find semantically meaningful
LoRA clusters when visualizing the generated LoRAs in a dimensionality-reduced space.
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2 PRELIMINARIES

We utilize multiple fine-tuning datasets D = {D1, . . . ,DT }, which correspond to different tasks
T = {t1, . . . , tT }. For the purpose of training T2L, we assume that each fine-tuning dataset has
a set of natural language task descriptions (Zi = {zi1, . . . , zim}): Di = {Xi, Y i, Zi}. The task
descriptions do not need to be specific to each sample but rather a general description of the dataset.
For a single task ti, the fine-tuning objective of an LLM with pre-trained weights (Ψ) is given by

∆W i = argmin
∆W i

LSFT(Di,Ψ,∆W i), (1)

where LSFT gives the supervised fine-tuning loss and ∆W i is the fine-tuning adaption for task ti to
the base weights. For the multi-task setting, we train a single adapter ∆W to minimize the expected
loss over the union of all datasets D:

∆W = argmin
∆W

EDi∼D LSFT(Di,Ψ,∆W ). (2)

Low-Rank Adaptation (LoRA, Hu et al., 2022): LoRA is a parameter-efficient fine-tuning method
that freezes the pre-trained weights of a base model and only learns low-rank weight matrices, which
serve as an adapter to the base model. For each selected linear transformation h = W0x, the
fine-tuned transformation is given by h = W0x+∆Wx = W0x+BTAx, where A,B ∈ Rr×d

are weight matrices of rank r < d. We drop the layer index and module type of the LoRA weights
when referring to all LoRA weights simultaneously. Otherwise, we use subscripts to represent the
layer index and module type, e.g., ∆Wm,l, where m is the module type (e.g., query projection) and l
is the layer index.

Hypernetworks: A hypernetwork is a neural network that generates parameters for another ‘base’
network (Ha et al., 2016). It serves as an indirect encoding (Schmidhuber, 1997; Stanley & Miikku-
lainen, 2003; Zhang et al., 2018; Schug et al., 2024) of the base network, given that the parameter
count of the hypernetwork is much smaller. This compression is achieved by learning to share
parameters indirectly. More specifically, given a layer-specific descriptor vector ϕl, a hypernetwork
with parameters θ generates the parameters of the base model at layer l ∈ {1, . . . L} as follows:
Wl = hθ(ϕl). Traditionally, the layer descriptors are either one-hot or learned vectors. The weights
θ are then trained via end-to-end optimization on a downstream task.

3 TEXT-TO-LORA: LEARNING TO COMPRESS AND GENERATE LORAS

In this work, we utilize a hypernetwork to generate LoRA adapters for task-specific adaptation. For
each target module (m) and layer index (l), a hypernetwork generates the two low-rank matrices
A,B based on a task description zi ∈ Zi of a task ti as follows:

∆W i
m,l = hθ(ϕ

i
m,l), with ϕi

m,l = concat
[
f(zi), E[m], E[l]]

]
, (3)

where f gives a vector representation of a text description, typically represented by a CLS token of
a bidirectional transformer model or last token activation of an LLM. E is a learnable embedding
dictionary indexed by either a module type m or a layer index l. For legibility, we introduce a
shorthand notation for T2L’s output ∆W i := hθ(ϕ

i) := hθ({ϕi
m,l}). Then, a supervised fine-tuning

training objective for T2L is

θ = argmin
θ

EDi∼D,zi∼Zi LSFT(Di,Ψ, hθ(ϕ
i)), (4)

Note that values of m and l can be batched, which allows T2L to generate ∆W for all the modules
and layer indices efficiently within a single forward pass.

3.1 HYPERLORA ARCHITECTURES

Most of a hypernetwork’s parameters come from the output layer, which scales linearly with the
size of the target weights (Von Oswald et al., 2019). To explore the complexity-performance trade-
off, we propose three variants of T2L: L , M , and S . We impose different output spaces on
the hypernetwork that represent different inductive biases and parameter counts (see Fig. 2). We
note that all variants use the same backbone architecture and only differ in their output heads and
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Figure 2: Overview of T2L architectural variations. The dashed box at the bottom shows the output
size of a single forward pass of T2L. Blue boxes are trainable modules. Cyan Boxes are trainable
embedding layers. Components in dashed boxes are only used with their corresponding architectures.
r is the rank of a LoRA adapter and d is the size of the input and the output dimension.

learnable embeddings. The L architecture is the largest variant. Its final linear layer outputs
low-rank A and B matrices simultaneously with the number of weight connections to the output head
|θhead| = dout × 2× r × d, where dout is the output size of the last MLP block. M architecture is
the medium-size model with a shared output layer between the low-rank A and B matrices. That is,
the head outputs a low-rank matrix, either A or B, depending on the learnable embedding. The size
of the output head is |θhead| = dout × r × d. Finally, S architecture is the most parameter-efficient
model with the strongest inductive biases, where the hypernetwork outputs only one rank of a low-
rank matrix at a time. This output space makes the size of the head much smaller: |θhead| = demb × d.
For reference, a LoRA adapter has r× d× 2×L× |M | trainable parameters, where L is the number
of layers and |M | is the number of target modules. The default value of dout is 512. We note that
every architecture can generate the entirety of low-rank matrices A and B in a single forward pass
by batching all the input embeddings. We provide more details of the architectures in Appendix B
and the weight initialization method that leads to stable training in Appendix C.

3.2 TRAINING HYPERLORA VIA LORA RECONSTRUCTION (DISTILLATION)

The most straightforward way to train T2L is to reconstruct pre-trained task-specific LoRAs. This
setup allows us to utilize publicly available libraries of LoRAs (Brüel-Gabrielsson et al., 2024;
Zhao et al., 2024). Alternatively, one can also use a two-stage procedure, in which a library of
LoRAs is pre-trained in the first stage and then train T2L to reconstruct them. For the sole purpose
of compressing LoRAs, we can train T2L using one-hot or learnable vectors as task embeddings.
However, these embeddings do not allow zero-shot LoRA generation for unseen tasks. To enable
zero-shot LoRA generation, we additionally condition T2L with embeddings of natural language
task descriptions, which allows T2L to generate LoRA adapters for various tasks—including unseen
ones—given corresponding task descriptions. Given a suitable library of LoRA adapters Ω, the
reconstruction loss for T2L can be written as

L(Ω, θ) = E∆W i∼Ω |∆W i − hθ(ϕ
i)|. (5)

3.3 TRAINING HYPERLORA VIA SUPERVISED FINE-TUNING

Alternatively, T2L can be directly optimized on fine-tuning datasets. Training T2L with SFT sidesteps
the need for intermediate target LoRA adapters and allows for end-to-end training of the hypernetwork.
This training scheme is preferred if existing trained LoRAs are not naturally clustered by their
functionalities or downstream tasks. For instance, t1 and t2 could be two related tasks requiring a
similar LLM capability, but ∆W 1 and ∆W 2 could be in different minima. Thus, T2L trained via
reconstruction training would have to compress numerically different ∆W 1 and ∆W 2, making it
less likely to generalize. In fact, we empirically find that a T2L trained via reconstruction fails to
generalize to unseen tasks (Section 5.6). In contrast, an SFT-trained T2L can implicitly learn to cluster
tasks, which has been shown to improve zero-shot LoRA routing performance (Ostapenko et al.,
2024). The SFT loss for T2L is given by Eq. (4).
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4 EXPERIMENTS

We investigate the effectiveness of the different T2L architectures and training schemes in terms of the
compression of adapters (Section 4.1) and zero-shot LoRA generation for unseen tasks (Section 4.2).
As baselines, we consider task-specific LoRAs, element-wise averaged LoRA, and multi-task LoRA—
a LoRA adapter trained on all training tasks. We also implement Hyperdecoders (Ivison & Peters,
2022)—a hypernetwork that generates LoRAs on a per-sequence basis—based on our proposed
architectures. To boost the performance of the base models without fine-tuning, we utilize few-shot
in-context learning (ICL, Brown et al., 2020; Dong et al., 2024) and task description prepending, i.e.,
providing task description at the beginning of each query. Additionally, we include results of Arrow
Routing zero-shot performance from Ostapenko et al. (2024). Note that the performance can only be
compared indirectly as it uses a different set of LoRA adapters and training tasks. Furthermore, there
are likely differences in the benchmark evaluation prompts.

In most experiments, we use Mistral-7B-Instruct (Jiang et al., 2023) as the base LLM model
except in Tables 3 and 4 where Llama-3.1-8B-Instruct and Gemma-2-2b-Instruct are used as
the base models, respectively. We use gte-large-en-v1.5 (Li et al., 2023; Zhang et al., 2024) for
extracting the task embedding from a natural language task description. All LoRA adapters are of
rank 8 and only target the query and the value projection modules in every attention block of the base
LLM (totaling 3.4M parameters). With this LoRA configuration, L , M , and S have 55M, 34M,
and 5M trainable parameters respectively. We utilize the SNI dataset (Wang et al., 2022) for training
LoRA adapters. We use a subset of 500 tasks following Brüel-Gabrielsson et al. (2024), 10 of which
are manually chosen while the rest are randomly sampled. We use 11 tasks for hold-out validation,
and remove 10 datasets due to data contamination from the evaluation benchmark tasks, leaving 479
datasets for training. All samples are in English.

For evaluation, we choose 10 widely used benchmarks that collectively cover a variety of LLM
capability assessments, e.g., reasoning, math, science, coding, and world knowledge. Specifically, we
include the following benchmarks: Arc-challenge (ArcC) and Arc-easy (ArcE) (Clark et al., 2018),
BoolQ (Clark et al., 2019), GSM8K (Cobbe et al., 2021), Hellaswag (HS) (Zellers et al., 2019),
OpenBookQA (OQA) (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), Winogrande (WG) (Keisuke
et al., 2019), HumanEval (HE) (Chen et al., 2021), and MBPP (Austin et al., 2021). Task descriptions
for the training datasets and the benchmarks are fully generated, as described in Appendix G. When
we use a language task embedding as a part of the input, we average T2L performance using three
descriptions for each benchmark.

4.1 LORA COMPRESSION

Table 1: Benchmark performance of T2L trained via reconstruction loss on 9 benchmark tasks.
Green highlight indicates that T2L outperforms the benchmark-specific LoRA adapters.

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

GSM8K
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

MBPP
(pass@1)

Avg.
(9 tasks)

Base model 65.4 77.8 71.6 40.9 49.7 54.2 72.8 45.0 43.1 55.8

One-Hot Task Embeddings
T2L (Recon) L 76.4 89.9 89.4 53.8 92.6 85.0 69.7 51.2 52.6 73.4
T2L (Recon) M 76.7 89.9 89.4 53.2 92.6 85.0 69.9 51.4 52.9 73.4
T2L (Recon) S 75.2 88.8 87.4 50.9 89.1 75.6 83.9 58.1 48.1 73.0

Task Description Embeddings
T2L (Recon) L 76.6 89.8 89.4 53.9 92.6 85.0 69.6 51.2 51.8 73.3
T2L (Recon) M 76.5 89.9 89.4 53.9 92.5 84.9 70.4 51.6 52.8 73.5
T2L (Recon) S 75.4 88.8 87.8 49.1 89.7 76.7 84.2 56.9 48.0 73.0

Task-specific LoRAs 76.6 89.9 89.4 53.5 92.6 85.0 69.9 51.1 52.1 73.3

In this experiment, we aim to investigate whether T2L can recover the performance of trained LoRAs
via reconstruction training. For quality control and consistent evaluation, we train a task-specific
LoRA (oracle) on the training split of each benchmark task, collectively forming a library of LoRAs.
Table 1 shows the benchmark performance of T2L trained by distilling 9 benchmark-specific LoRAs
using either one-hot or natural language task embeddings from gte-large-en-v1.5. We note that the
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benchmark tasks are indirectly seen during training by T2L as it learns to distill benchmark-specific
LoRAs. We can see that T2L fully recovers the performance of the oracle adapters with both task
embedding types. Notably, T2L outperforms task-specific LoRAs on several benchmarks (highlighted
in green). We hypothesize that the gain comes from the lossy compression of the target LoRAs,
which acts as a regularization on the already trained LoRA weights. This effect is most apparent on
PIQA and WG benchmarks, where the oracle LoRA overfits and performs worse than the base model.
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Figure 3: Relative performance (y-
axis) and training reconstruction er-
ror (x-axis) of T2L instances trained
with an increasing number of tasks
({16, 32, 64, 128, 256, 489} from left to
right of each line).

Next, we explore whether T2L conditioned on one-hot task
vectors can maintain the oracle single-task LoRA’s perfor-
mance when using an increasing number of training tasks.
Fig. 3 shows the performance of one-hot T2L on the test
splits of a subset of 10 SNI training tasks with varying
degrees of final average training L1 reconstruction error.
We train various T2L instances for each architecture us-
ing {16, 32, 64, 128, 256, 489} training tasks, effectively
increasing the training reconstruction error. Although T2L
fully recovers the oracles’ performance when the recon-
struction loss is less than 10−4, the performance drops as
the training error increases. This result suggests that T2L
learns a lossy compression of the target LoRAs. Still, we
find that all T2L architectures can maintain around 65% of
oracles’ performance, and the performance does not drop
further even at > 8× 10−4 per element L1 error. Despite
the performance drop, we show that increasing the number
of training tasks is beneficial, increasing generalization of
T2L when generating LoRAs for unseen tasks in Section 5.1.

4.2 ZERO-SHOT LORA GENERATION

Table 2: Zero-shot performance on unseen benchmark tasks. SFT-trained T2L generates LoRAs based
on unseen task descriptions. Its performance is an average of three generated LoRAs, each with a
different instance of task descriptions. Arrow Routing results are taken from Ostapenko et al. (2024).
Green highlight indicates high performance than that of the benchmark-specific LoRA adapters.

Bold numbers are used when the performance is higher than the multi-task LoRA.

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

MBPP
(pass@1)

Avg.
(8 tasks)

GSM8K
(acc)

HE
(pass@1) Avg.

No Test-Time Adaptation
Mistral-7B-Instruct 65.4 77.8 71.6 49.7 54.2 72.8 45.0 43.1 60.0 40.9 37.2 55.8
Prepending task desc. 72.0 85.8 67.6 58.9 63.4 77.9 59.0 41.6 65.8 40.9 39.0 60.6
3-shot ICL 72.1 85.9 71.7 59.0 66.2 76.2 58.0 42.6 66.5 40.9 37.2 61.0
Average LoRA 70.7 84.4 75.4 59.9 59.0 78.0 54.3 47.1 66.1 42.4 37.8 60.9
Multi-task LoRA 76.2 88.3 85.5 65.2 68.0 81.8 62.4 48.1 71.9 47.5 39.6 66.3

Zero-Shot Adaptation
Arrow Routing 60.9 86.2 87.6 80.8 48.6 83.0 68.5 50.2 70.7 N/A 28.7 N/A
Hyperdecoders (per-instance) 76.6 88.5 83.9 65.2 76.6 81.3 64.9 51.6 73.6 43.6 40.9 67.3

T2L (SFT) S 76.0 88.7 83.8 68.0 71.6 82.3 61.0 41.2 71.6 47.3 39.0 65.9
T2L (SFT) M 77.2 89.0 84.3 65.1 76.1 81.8 64.0 50.5 73.5 45.2 41.3 67.5
T2L (SFT) L 77.5 88.9 85.0 66.5 75.5 82.1 64.2 51.9 73.9 45.8 39.2 67.7
Oracle
Task-specific LoRAs 76.6 89.9 89.4 92.6 85.0 69.9 51.1 52.1 75.8 53.5 N/A N/A

Here, we explore whether T2L can generate useful LoRA adapters for unseen tasks. We train T2L with
SFT on 479 SNI tasks, each with 128 task descriptions. For each data point in a training minibatch,
we sample a description from the corresponding dataset in an online fashion. Table 2 shows the
zero-shot performance on 10 benchmark tasks. Here, we present the best model of each variant
from our scaling experiment in Section 5.2. We observe that a multi-task LoRA adapter performs
well on the benchmarks despite no additional fine-tuning. Still, there is a performance gap between
task-specific LoRAs and MT LoRA. We observe that SFT-trained T2L indeed generates useful LoRAs,
thus improving over the multi-task LoRA adapter consistently and across benchmarks (indicated by
bold numbers). Notably, even though T2L cannot fully bridge the performance gap with task-specific
LoRAs, it outperforms the oracles on a subset of tasks (highlighted in green).
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4.3 GENERALIZATION TO Llama AND Gemma MODELS

Table 3: Zero-shot performance with Llama-3.1-8B-Instruct as the base language model.

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

GSM8K
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

HE
(pass@1)

MBPP
(pass@1) Avg.

Llama-3.1-8B-Instruct 73.3 90.6 80.4 75.7 66.6 75.4 79.8 55.3 66.5 68.7 73.2
3-shot ICL 80.7 91.9 80.0 75.7 59.3 77.6 80.9 61.3 66.5 70.4 74.4
Prepending task desc. 80.2 92.5 79.9 75.7 69.8 78.4 81.7 62.4 68.3 70.2 75.9
Multi-task LoRA 82.0 92.8 83.3 77.6 70.8 81.8 83.8 60.3 63.4 69.4 76.5

T2L (SFT) L 82.4 92.9 84.4 79.1 72.8 81.8 81.2 60.0 64.6 69.9 76.9

Table 4: Zero-shot performance with Gemma-2-2B-Instruct as the base language model.

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

GSM8K
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

HE
(pass@1)

MBPP
(pass@1) Avg.

Gemma-2-2B-Instruct 73.7 89.9 81.0 55.6 55.2 71.0 71.0 53.8 43.9 12.3 60.7
3-shot ICL 72.4 88.9 82.5 55.6 55.7 72.6 67.6 53.7 43.9 43.1 63.6
Prepending task desc. w/ ICL 72.4 88.9 82.5 55.6 55.7 72.6 67.6 53.7 43.9 43.1 63.6
Multi-task LoRA w/ ICL 73.5 89.4 81.6 57.2 59.5 74.6 69.4 58.1 39.0 50.4 65.2

T2L (SFT) L w/ ICL 74.0 89.8 81.8 55.1 62.5 73.9 75.2 58.7 41.5 51.5 66.4

In this section, we explore the generality of our proposed architectures to different model families
and sizes. Tables 3 and 4 show the benchmark performance of T2L L compared to various baselines
using Llama-3.1-8B-Instruct and Gemma-2-2B-Instruct as the base models, respectively. With
Gemma base model, we utilize ICL for all approaches as it drastically improves the performance
on the MBPP benchmark. We see that T2L consistently outperforms the baselines across all tested
models with varying model sizes and architectures. We note that T2L are trained with the same set of
hyperparameters across base models.

5 ABLATIONS

5.1 SCALING THE NUMBER OF TRAINING TASKS WITH FIXED COMPUTE

Table 5: Benchmark performance of SFT-trained T2L with varying numbers of training tasks. We
show results with {64, 128, 256, 479} tasks. ▲▲▲ (▼▼▼) indicates increased (decreased) performance
compared to the previous increment in the number of training tasks and training budget.

Number
of tasks

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

GSM8K
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

HE
(pass@1)

MBPP
(pass@1) Avg.

T2L (SFT) L

479 77.2 89.0 85.0 46.3 66.5 73.6 82.6 61.8 39.2 44.3 66.6 ▼▼▼
256 76.6 89.1 84.8 47.0 67.7 73.5 82.8 62.4 39.6 51.0 67.5 ▲▲▲
128 76.2 89.0 85.3 46.2 67.9 71.7 82.6 59.9 40.5 51.3 67.0 ▲▲▲
64 75.5 88.0 84.5 43.9 65.5 70.7 80.5 59.5 39.8 51.7 66.0

T2L (SFT) M

479 77.5 89.0 85.0 45.8 66.5 71.9 82.1 61.4 41.3 50.1 67.1 ▲▲▲
256 76.1 88.2 85.3 45.4 65.6 72.7 81.7 62.3 36.8 50.6 66.5 ▲▲▲
128 75.5 87.8 85.3 46.1 66.6 71.6 81.7 62.2 39.8 44.9 66.1 ▲▲▲
64 73.6 87.7 84.5 43.2 64.6 70.5 79.9 56.0 40.7 51.4 65.2

T2L (SFT) S

479 75.8 88.5 83.9 45.6 64.2 71.9 82.3 61.5 36.2 45.0 65.5 ▲▲▲
256 76.1 88.4 83.0 47.3 65.0 71.7 82.5 58.1 36.2 39.1 64.8 ▲▲▲
128 75.6 87.7 84.9 46.5 65.7 72.7 81.0 59.6 39.0 28.1 64.1 ▼▼▼
64 75.4 88.4 85.0 43.1 64.8 70.7 81.5 51.6 39.4 46.7 64.7

We study the impact of the number of training tasks on the zero-shot benchmark performance of T2L
in the SFT setting, where all T2L instances are trained for roughly the same number of gradient steps
(see details in Appendix D). Overall, we find that increasing the number of training tasks improves
the average zero-shot benchmark performance of the hypernetwork (Fig. 1 and Table 5). This result
hints at the plausible scalability of T2L and positive transfer between tasks.
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Table 6: Benchmark performance of SFT-trained T2L with varying numbers of training tasks.

Number
of tasks

Max
SGD steps

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

GSM8K
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

HE
(pass@1)

MBPP
(pass@1) Avg.

T2L (SFT) L

479 1M 77.5 88.9 85.0 45.8 66.5 75.5 82.1 64.2 39.2 51.9 67.7 ▲▲▲
256 640K 77.3 88.1 84.3 46.0 64.5 75.7 81.9 64.0 39.8 52.1 67.4 ▲▲▲
128 320K 76.6 88.4 85.2 46.1 67.0 74.3 81.6 55.0 38.2 45.7 65.8 ▼▼▼
64 160K 75.5 88.0 84.5 43.9 65.5 70.7 80.5 59.5 39.8 51.7 66.0

T2L (SFT) M

479 1M 77.2 89.0 84.3 45.2 65.1 76.1 81.8 64.0 41.3 50.5 67.5 ▲▲▲
256 640K 75.9 89.3 85.0 47.0 65.3 73.7 81.6 63.2 39.8 48.6 66.9 ▲▲▲
128 320K 74.9 88.3 85.5 44.9 64.8 72.8 80.7 61.6 42.9 43.5 66.0 ▲▲▲
64 160K 73.6 87.7 84.5 43.2 64.6 70.5 79.9 56.0 40.7 51.4 65.2

T2L (SFT) S

479 1M 77.7 88.3 85.0 46.3 65.3 73.9 82.4 61.9 34.6 36.6 65.2 ▼▼▼
256 640K 76.0 88.7 83.8 47.3 68.0 71.6 82.3 61.0 39.0 41.2 65.9 ▲▲▲
128 320K 74.9 88.0 84.5 44.4 66.2 72.2 82.0 59.3 39.0 47.3 65.8 ▲▲▲
64 160K 75.4 88.4 85.0 43.1 64.8 70.7 81.5 51.6 39.4 46.7 64.7

5.2 INCREASING TRAINING COMPUTE PROPORTIONAL TO THE NUMBER OF TRAINING TASKS

As the performance of the L variant drops after increasing the number of training tasks from 256
to 479 with a fixed training budget (Table 5), we investigate whether increasing the training budget
would allow T2L to scale more gracefully. Specifically, we increase the training budget proportionally
to the dataset size on all variants. Table 6 shows that, after increasing the training budget, L benefits
from the additional training tasks. Additionally, M improves over training runs with a fixed budget
when using 256 or more training tasks. However, S does not benefit from extended training with
479 tasks, potentially due to its limited model capacity.

5.3 TRAINING DESCRIPTION SOURCES

Table 7: Benchmark performance of SFT-trained T2L with two different training description sources.

ArcC
(acc)

ArcE
(acc)

BQ
(acc)

GSM8K
(acc)

HS
(acc)

OQA
(acc)

PIQA
(acc)

WG
(acc)

HE
(pass@1)

MBPP
(pass@1) Avg.

T2L (SFT) L 77.5 88.9 85.0 45.8 66.5 75.5 82.1 64.2 39.2 51.9 67.7
T2L (SFT) L w/ SNI def. 75.3 87.4 85.0 45.9 63.6 73.5 80.9 61.8 38.2 53.8 66.5

In this experiment, we explore the impact of the sources of the training task descriptions: SNI
and chatGPT (Appendix G) Table 7 shows that using task definitions provided by the SNI datasets
reduces the zero-shot benchmark performance of T2L. As the SNI datasets are crowd-sourced, we
hypothesized that the task descriptions might have inconsistent template or varied levels of details.
Thus, it is harder for T2L to learn and generalize.

5.4 TASK EMBEDDING MODELS

Table 8: Zero-shot benchmark performance of T2L
trained via SFT on 128 tasks.

gte Mistral

Avg. Benchmark
performance

S M L S M L
65.8 66.0 65.8 64.7 66.2 66.0

Avg. 65.9 65.6

Table 8 shows the zero-shot benchmark
performance with two different embed-
ding models: gte-large-en-v1.5 and
Mistral-7B-Instruct. For the gte model,
we extract a task description by presenting the
activation of the CLS token in the last layer
(1024D) as the model is a bidirectional model.
For Mistral, we use the activation of the last token in the sequence (4096D) to represent a given
description (BehnamGhader et al., 2024). Table 8 shows the results with the two embedding
models used for T2L SFT training on 128 tasks. Both embedding models yield T2L instances with
comparable generalization capability (65.9 vs 65.6 on average), suggesting T2L robustness to specific
text embedding methods.

5.5 VARYING TASK DESCRIPTIONS
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Table 9: Benchmark performance of T2L trained
via reconstruction on 9 benchmark tasks.

Aligned Unaligned
Train Eval Train (random) Random strings

T2L L 73.3 73.6 49.1 68.2
T2L M 73.5 70.2 49.5 68.5
T2L S 73.0 72.9 55.7 53.9

Avg. 73.3 72.2 51.4 63.5

We investigate the impact of input task descrip-
tions on the performance of generated LoRAs.
We use four types of task descriptions:

• Train: Training descriptions
• Eval: Unseen descriptions
• Random strings: Random literal strings
• Train (random): Training descriptions randomly sampled from other benchmarks

For each description type, we use the gte-large-en-v1.5 embedding and report the average per-
formance using three descriptions. The four types can be grouped into two categories based on
the alignment between the descriptions and the tasks: aligned (Train, Eval) and unaligned (Train
(random) and Random strings). Note that we use reconstruction-trained T2L in this experiment.
That is, the hypernetwork has seen training descriptions of the benchmarks during training. We
observe a performance gap between the two description categories. Specifically, training and evalua-
tion descriptions generate the best performing LoRAs, matching the performance of oracle LoRAs,
despite the evaluation descriptions being unseen. These results suggest that T2L are robust to changes
in the task description as long as the descriptions are aligned with the task. On the other hand, if the
descriptions are not aligned with the task at hand, the generated LoRAs will not perform as well, as
indicated by the performance of the unaligned group.

5.6 TRAINING SCHEMES

Table 10: Zero-shot benchmark performance of
T2L trained via reconstruction and SFT.

Recon SFT

Benchmark
performance

S M L S M L
61.8 61.7 62.0 64.8 66.5 67.5

Avg. 61.8 66.3

In this section, we investigate the zero-shot
performance of SFT-trained and reconstruction-
trained T2L. All model instances are trained with
roughly equal wall-clock time of 10 hours (see
Appendix D for details). From Table 10, we can
see a clear performance gap between reconstruc-
tion and SFT training schemes. Specifically,
SFT produces T2L instances that perform significantly better than that of reconstruction training (66.3
vs 61.83 benchmark performance averaged over model architectures). We attribute the performance
difference to the library of LoRAs needed for reconstruction training. For reconstruction-trained T2L
to generalize, the target LoRA adapters of similar tasks should be clustered in some latent manifold.
In contrast, SFT training does not need pre-trained task-specific LoRA adapters, thus sidestepping
this challenge via end-to-end learning. In Section 6.1, we show that pre-trained adapters for similar
tasks do not live nearby in the weight space, supporting our claim of a potential problem when
reconstructing pre-trained LoRA adapters.

6 ANALYSIS

6.1 LORAS OF SIMILAR TASKS

Here, we investigate the relationship between LoRA adapters by inspecting their similarity in the
parameter space, performance on the benchmarks, and similarity of their description embeddings.
To measure adapter similarity, we compute the cosine similarity of the concatenation of flattened
low-rank A and B matrices of all layers. In the top row of Fig. 4, we plot the adapters’ similarity
against task description similarity (using the mean embedding of each task). We find no correlation
between the cosine similarity of the adapters’ weights (y-axis) and the task embedding similarity
(x-axis) indicated by near-zero Pearson correlation coefficients.

In the bottom row of Fig. 4, we change the y-axis from adapters’ relative benchmark performance
to benchmark-specific adapters. We find a positive correlation between the relative benchmark
performance of SNI-trained adapters and the task embedding similarity. That is, adapters perform
better on a benchmark if their task descriptions are similar to those of the benchmark. However,
despite their similar functionalities, adapters with similar descriptions are not similar in the parameter
space. We believe that this relationship has a significant impact on the limited generalization of
reconstruction-trained T2L. We further discuss this topic in Appendix F.
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Figure 4: Top row: Each plot shows the similarity between a benchmark LoRA adapter and 489
SNI-trained adapters in the weight space (y-axis) against their similarity in the task embedding space
(x-axis). Bottom row: Each plot shows SNI-trained adapters’ performance relative to a benchmark
adapter (y-axis) with the same x-axis. We can see that LoRAs with similar description embeddings
to the benchmarks’ perform better in those benchmarks, suggesting their shared functionalities.
However, LoRAs with similar functionalities are not nearby in the parameter space.

6.2 VISUALIZATION OF T2L ACTIVATIONS
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Figure 5: 2D t-SNE projection of activations of T2L’s task encoder (left) and activations of the last
MLP block (right) grouped by benchmark tasks (represented by colors). We probe T2L with unseen
three task descriptions per benchmark. We can see activations clustering in both plots, indicating that
T2L indeed learns to generate LoRAs tailored to specific tasks.

Next, we aim to understand T2L further and see whether it generates task-specific LoRA adapters
for unseen tasks with unseen descriptions. We probe our best-performing model in the zero-shot
evaluation setting, SFT T2L M trained on 256 training tasks. We probe the model on all the
benchmark tasks, each with three unseen descriptions. Fig. 5 shows the 2D t-SNE projection of T2L’s
task encoder activation and the output of the last MLP block. We can see a clear clustering in both
projection plots based on the tasks (colors and shapes). T2L generates different adapters for different
tasks, confirming that T2L indeed performs task-specific adaptation ‘on the fly’. Moreover, similar
tasks, e.g., MBPP and HumanEval, are clustered together in both plots, suggesting that SFT-trained
T2L produces similar adapters for semantically similar tasks.
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7 RELATED WORK

Hypernetworks for Adaptation: Hypernetworks (Ha et al., 2016) provide a general indirect encoding
method for neural network weights. They have been applied to different architectures (e.g., in
attention, Schug et al., 2024) and training paradigms (e.g., in continual learning, Von Oswald et al.,
2019). Here, we focus on generating low-rank adapters using natural language instructions. Previous
work (Mahabadi et al., 2021; He et al., 2022; Ortiz-Barajas et al., 2024) considers hypernetworks
for LLM adaptation in a multi-task context but only uses learned task identifiers instead of natural
language for adaptation. Thus, these approaches do not enable task-wise zero-shot generalization.

Hypernetworks for Zero-Shot LLM Adaptation: Xiao et al. (2023) explore the use of HyperLoRA
on a limited set of English dialects; they only consider five dialects, one of which is unseen. Fur-
thermore, the hypernetwork relies on an expert-based transformation of the dialects, limiting the
possibility of generalization. Mu et al. (2024) propose Gisting, a method that learns to compress
an in-context task description to prefix tokens, allowing the language model to follow instructions
with less token count. However, Gisting is limited to prefix tokens—only influencing the attention
matrices of the base model. Thus, prefix tokens are less flexible compared to LoRA that can modify
different parts of LLMs, e.g., MLP blocks. Hyperdecoders (Ivison & Peters, 2022) is a hypernetwork
that generates adapters on the fly based on the input sequence. While per-sequence adaptation is
desirable for benchmark evaluation—where the LLM should always output the correct answer—we
argue that description-based adaptation gives more control to users since they can steer the LLM in
creative ways based on user-generated descriptions. Furthermore, the generated adapters cannot be
efficiently fused into the base model, leading to significant overhead for each query.

Closely related to our work are HyperTuning (Phang et al., 2023), HNET-LM (Deb et al., 2022), and
HINT (Ivison et al., 2023). Differ from prior work that heavily focuses on pre-trained encoder-decoder
models, e.g., T5 (Raffel et al., 2020) or BART (Lewis, 2019), we use frontier instruction fine-tuned
models as the base models, i.e., Mistral, Llama, Gemma. Further, prior work typically relies on
initializing a part of their hypernetworks from the base model (e.g., tying task encoder’s weights
to the base model) to achieve good performance or stable training as opposed to ours that are task-
embedder agnostic and can freely change the task embedding model (Section 5.4). Additionally, our
work utilizes generated descriptions instead of the ones provided by the SNI dataset. Overall, our work
improves upon prior work in several ways, including achieving task-wise zero-shot generalization on
various frontier instruction-tuned language models, simpler and more general hypernetwork input
requirements, investigation of training regimes, and more comprehensive experiments, ablations, and
analyses.

Concurrent to our work, Lv et al. (2024) propose a similar approach that utilizes a hypernetwork to
generate LoRA adapter at inference time. However, their hypernetwork assumes that the context
vector provided to the hypernetwork contains few-shot examples. In contrast, T2L only assumes a
task description, which users can produce themselves within seconds.

8 CONCLUSION

Discussion. We rely on generated descriptions from GPT-4o mini to ensure high-quality and
consistent task descriptions. It is plausible that when T2L is deployed in real-world scenarios, users
might not input high-quality descriptions, which could cause performance degradation on generated
adapters. Our results have primarily focused on LLM adaptation. However, T2L can be directly
applied to other LLMs or adapting vision language models. Finally, the potential for T2L trained on a
smaller base model to transfer effectively to larger models within the same architecture class remains
an open area for exploration.

Limitations. We only consider LoRA as the output space of the hypernetwork. We believe there
are more efficient ways to modulate LLMs given a text description, e.g., directly modulate the
activations of the base model. Additionally, we believe the compression achieved by T2L can be
further optimized using well-designed inductive biases. Though T2L performs better when trained
on more tasks, it is yet to take full advantage of scaling up to a larger set of training tasks shown in
Section 5.1. Finally, although T2L exhibits robustness and signs of scalability, it still does not reach
the benchmark performance of task-specific LoRAs in a zero-shot manner. Achieving such potent
zero-shot adaption is still one of the biggest challenges for T2L.
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Future Work. We plan to expand T2L across multiple architectures and explore the potential for
transfer between different model sizes. In addition, we intend to rigorously study the scaling laws
of LoRA compression as the number of T2L parameters, dataset, and compute increases. Finally,
our goal is to provide an openly accessible service for various T2L configurations. We envision a
user-friendly platform where individuals could generate and download fine-tuned adapters by simply
prompting a model with a minimal chat interface.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jacob Beck, Matthew Thomas Jackson, Risto Vuorio, and Shimon Whiteson. Hypernetworks in
meta-reinforcement learning. In Conference on Robot Learning, pp. 1478–1487. PMLR, 2023.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados,
and Siva Reddy. LLM2Vec: Large language models are secretly powerful text encoders. In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
IW1PR7vEBf.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Rickard Brüel-Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald,
Mikhail Yurochkin, and Justin Solomon. Compress then serve: Serving thousands of lora adapters
with little overhead. arXiv preprint arXiv:2407.00066, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

12

https://openreview.net/forum?id=IW1PR7vEBf
https://openreview.net/forum?id=IW1PR7vEBf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Budhaditya Deb, Ahmed Hassan Awadallah, and Guoqing Zheng. Boosting natural language
generation from instructions with meta-learning. In Yoav Goldberg, Zornitsa Kozareva, and
Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 6792–6808, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.456. URL
https://aclanthology.org/2022.emnlp-main.456.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Kathleen B Digre and KC Brennan. Shedding light on photophobia. Journal of Neuro-ophthalmology,
32(1):68–81, 2012.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, et al. A survey on in-context learning. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 1107–1128, 2024.
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A HYPERPARAMETER SETTINGS

Table 11: Hyperparameters for training a task-specific LoRA adapter.

Hyperparameters Task-specific LoRA HyperLoRA (SFT) HyperLoRA (recon)
Batch size 8 8 Number of the target LoRAs
Gradient accumulation steps 1 1 1
Max learning rate 8× 10−5 2.5× 10−5 10−3

Max gradient norm 1.0 1.0 1.0
NEFTune noise alpha 5.0 5.0 5.0
Warmup fraction 0.1 0.1 0.1
Learning rate scheduler Linear with warm up Linear with warm up Linear with warm up

{
"alpha_pattern": {},
"auto_mapping": null,
"base_model_name_or_path": "models/Mistral-7B-Instruct-v0.2",
"bias": "none",
"fan_in_fan_out": false,
"inference_mode": true,
"init_lora_weights": true,
"layer_replication": null,
"layers_pattern": null,
"layers_to_transform": null,
"loftq_config": {},
"lora_alpha": 16,
"lora_dropout": 0.05,
"megatron_config": null,
"megatron_core": "megatron.core",
"modules_to_save": null,
"peft_type": "LORA",
"r": 8,
"rank_pattern": {},
"revision": null,
"target_modules": [

"q_proj",
"v_proj"

],
"task_type": "CAUSAL_LM",
"use_dora": false,
"use_rslora": true

}

Listing 1: The parameter-efficient fine-tuning (PEFT) config for all LoRA adapters.

Table 11 and Listing 1 show the training configuration of all models trained in this work. For LoRA
reconstruction training, each prediction target is an entirety of a LoRA adapter. That is, there is a
total of 489 training samples for 489 SNI tasks. Thus, we increase the epochs to 100, 000 to ensure
that T2L converges.

B ADDITIONAL DETAILS OF HYPERLORA ARCHITECTURES

Listings 2 and 3 shows the details of the backbone of T2L. Specifically, the size of the module and
layer embedding (E[m] and E[l]) is 32D. Together, they form a dictionary of 34 learnable embeddings
(32 layers + 2 target modules). The task encoder is a linear layer that takes in a text embedding
(1024D for the gte embedding and 4096D for Mistral embedding) and outputs a 64D vector. The
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Hypermod: HyperModulator(
(task_encoder): TaskEncoder(
(mlp): Sequential(
(0): Linear(in_features=1024, out_features=64, bias=True)
(1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)

)
)
(layer_depth_encoder): Sequential(
(0): Embedding(32, 32)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)

)
(layer_type_encoder): Sequential(
(0): Embedding(2, 32)
(1): LayerNorm((32,), eps=1e-05, elementwise_affine=True)

)
(mixer): Sequential(
(0): Linear(in_features=128, out_features=512, bias=True)
(1): SiLU()
(2): Dropout(p=0.05, inplace=False)
(3): Linear(in_features=512, out_features=128, bias=True)
(4): SiLU()
(5): Dropout(p=0.05, inplace=False)

)
(mlp1): MLPResidualBlock(
(mlp): Sequential(

(0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(1): Linear(in_features=128, out_features=512, bias=True)
(2): SiLU()
(3): Dropout(p=0.05, inplace=False)
(4): Linear(in_features=512, out_features=128, bias=True)
(5): SiLU()
(6): Dropout(p=0.05, inplace=False)

)
)
(mlp2): MLPResidualBlock(
(mlp): Sequential(
(0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(1): Linear(in_features=128, out_features=512, bias=True)
(2): SiLU()
(3): Dropout(p=0.05, inplace=False)
(4): Linear(in_features=512, out_features=128, bias=True)
(5): SiLU()
(6): Dropout(p=0.05, inplace=False)

)
)
(mlp3): Sequential(
(0): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(1): Linear(in_features=128, out_features=512, bias=True)
(2): SiLU()
(3): Dropout(p=0.05, inplace=False)
(4): Linear(in_features=512, out_features=512, bias=True)
(5): SiLU()

)
)

Listing 2: Detailed backbone architecture.

encoded task, module, and layer embedding are concatenated and then fed into mlp0 followed by
a residual MLP block mlp1. At this point, for M and S , we add a 128D A/B embbedding to the
residual stream. The output is then fed to another residual MLP block mlp2. At this point, for S , we
add a 128D rank embedding to the residual stream. After this, we feed the activation to the last MLP
block. The output of the last MLP block is then fed to a linear head, whose output size is as follows:

• L : 2× r × d giving both A and B matrices

• M : r × d giving a low-rank matrix A or B depending on the A/B embedding

• S : d giving a rank of a low-rank matrix depending on both the A/B embedding and the
rank embedding.

For ease of explanation, we assume d is the same for the input and the output space of a linear
transformation. In practice, din = dout = 4096 for q_proj module and din = 4096, dout = 1024 for
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(AB_emb): ParameterDict(
(q_proj): Object of type: ParameterDict
(v_proj): Object of type: ParameterDict

(q_proj): ParameterDict(
(A): Parameter containing: [torch.cuda.FloatTensor of size 128]
(B): Parameter containing: [torch.cuda.FloatTensor of size 128]

)
(v_proj): ParameterDict(

(A): Parameter containing: [torch.cuda.FloatTensor of size 128]
(B): Parameter containing: [torch.cuda.FloatTensor of size 128]

)
)

(rank_emb): Sequential(
(0): Embedding(8, 128)
(1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)

)

Listing 3: Detailed A/B and rank embedding of T2L.

v_proj module. r = 8 for all adapters in this work. Finally, we list the number of trainable parameters
of each architecture: 55, 252, 992 for L , 34, 282, 240 for M , 4, 923, 392 for S , 3, 407, 872 for
LoRA.

C HYPERLORA INTIALIZATION

We use Bias-HyperInit (Beck et al., 2023) to initialize L T2L. Bias-HyperInit initializes the
linear output head of the hypernetwork such that the weights are all zero and the bias matches the
initialization of the underlying layers. In our work, this corresponds to the output bias of the L
hypernetwork being initialized to U(− 1

d ,
1
d ) for the A head and all zero for the B head to match the

initialization of traditional LoRA. For other architectures, we aim to match the gradient magnitude to
L at the beginning of training. That is, for M architecture, we initialize the bias of the output head

to U(− 1√
2d
, 1√

2d
). Finally, S output bias is initialized to U(− 1√

r2d
, 1√

r2d
). Without this explicit

hypernetwork initialization, the training is unstable, and often leads to failed training runs.

D TRAINING DETAILS

All models trained in this work fit in a single H100 GPU (80GB of VRAM). Notably, SFT requires
much more memory because of the need to backpropagate the gradient through the base LLM.
Reconstruction training, on the other hand, should be possible in a modern consumer-grade GPU.

For reconstruction training, we fix the training epochs to be 100K but scale the batch size to match
the number of target LoRA adapters. This means the model trains much faster for a lower number
of target LoRAs while maintaining the same number of optimizer steps. For reference, training to
reconstruct 9 benchmark-specific LoRAs takes around 10 minutes to complete, while training to
reconstruct 489 SNI LoRA adapters takes around 10 hours.

For SFT training with fixed compute budget, we aim to keep the number of optimizer steps the same
as we do for reconstruction training. However, since we cannot fit all fine-tuning samples, we scale
the number of epochs inverse to the number of training tasks.

Additionally, for reconstruction training, instead of predicting the weights directly, T2L learns to
predict the z-score of a normal distribution of each weight entry in the low-rank A,B matrices. At
test time, the output is multiplied by the standard deviation of each element before adding to the
mean, converting the prediction to the correct scale.

E TRAINING AND EVALUATION DATASETS

We use 500 SNI datasets publicly available at https://huggingface.co/Lots-of-LoRAs. 489
tasks are used for training and the rest for evaluation. Specifically, we use the following evaluation
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tasks: task_035, task_039, task_1557, task_202, task_304, task_362, task_614, task_701, task_706,
task_710, task_726. For the in-context learning baseline, we use 3-shot in-context examples taken
from the training split of each benchmark except MBPP that has an explicit split for in-context
prompting. HumanEval only has the test split, therefore it is always evaluated against in the zero-shot
manner.

E.1 BENCHMARK DETAILS

Every benchmark used in the experiments is publicly available in HuggingFace dataset space. We
evaluate the models on the benchmarks detailed as follows.

E.1.1 GSM8K

We evaluate the models on the test split, using chain-of-thought response pre-filling: "Let’s think step
by step."

E.1.2 HUMANEVAL AND MBPP

We use the evalplus library (Liu et al., 2023) for coding evaluation. For both MBPP and HumanEval,
we use the following response pre-fill: "“‘python"

E.2 QUESTION-ANSWERING TASKS

The rest of the benchmarks are question-answering based tasks. In these tasks, we do not use
response-prefilling. Instead, each task has a specific instruction template shown in Listing 4.

F UTILIZING FULL ADAPTATION MATRIX VS LOW-RANK MATRICES
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Figure 6: Each plot shows the similarity between a benchmark LoRA adapter and 489 SNI-trained
adapters in the ∆W weight space. There is a positive correlation between the two variables indicated
by small positive Pearson correlation coefficients.

Similar to Fig. 4, Fig. 6 show the similarity of SNI adapters to benchmark-specific adapters, but
instead of using the concatenation of flattened A and B matrices, we use flattened ∆W instead.
With the change, we find a positive correlation between the task embedding similarity and the adapter
similarity in the weight space. This is likely because, for a given ∆W matrix, there are many possible
permutations of low-rank matrices A and B. This suggests that if we compute the reconstruction loss
in the full adaptation matrix space, reconstruction-trained T2L could generalize better. However, we
empirically find that it does not outperform T2L trained to reconstruct low-rank matrices at zero-shot
LoRA generation.

Furthermore, we also ablate how the prediction offset is applied to T2L under SFT training. First,
the offset could be added to the low-rank matrices:

∆W = (Bpred +Boffset)
T (Apred +Aoffset) (6)

= BT
predApred +BT

predAoffset +BT
offsetApred +BT

offsetAoffset. (7)

The other approach is to apply the offset to the full adaptation matrix:

∆W = BT
predApred +BT

offsetAoffset (8)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

OQA_TEMPLATE = (
"Complete the following passage or answer the question by choosing the correct choice.\n\n"
"{question_stem}\n\n"
"{choices[label][0]}: {choices[text][0]}\n{choices[label][1]}: {choices[text][1]}\n"
"{choices[label][2]}: {choices[text][2]}\n{choices[label][3]}: {choices[text][3]}\n\n"
"You must respond with the letter corresponding to the correct choice (A,B,C,D) without any explanation."

)
ARC_TEMPLATE = (

"Answer the question below by choosing the correct choice.\n\n"
"{question}\n\n"
"{choices[label][0]}: {choices[text][0]}\n{choices[label][1]}: {choices[text][1]}\n"
"{choices[label][2]}: {choices[text][2]}\n{choices[label][3]}: {choices[text][3]}\n\n"
"You must respond with the letter corresponding to the correct choice without any explanation."

)
HSWAG_TEMPLATE = (

"You are provided with an incomplete passage below as well as 4 choices of continuation "
"with only one of them being the correct ending. "
"Treat the endings as being labelled 0, 1, 2, 3 in order.\n\n"
"Passage: {ctx}\n\n"
"0: {endings[0]}\n"
"1: {endings[1]}\n"
"2: {endings[2]}\n"
"3: {endings[3]}\n\n"
"You must respond with the only number corresponding to the correct ending (0,1,2,3) for the passage "
"without any explanation."

)
PIQA_TEMPLATE = (

"Choose the option that either answers the question, completes the sentence, or solves the problem. "
"Pay attention to the properties of the objects in the question and how they interact with each other. "
'If both options are correct, choose the one that is more convenient or more common.\n\n"""{goal}"""\n\n'
"0: {sol1}\n1: {sol2}\n\n"
"You must respond with either `0` or `1` without any explanation."

)
WINOGRANDE_TEMPLATE = (

"Given the following situation:\n\n{sentence}\n\nWhich option is correct?\n\n"
"Option 1: {option1}\n\nOption 2: {option2}\n\n"
"You must respond with either `1` or `2` without any explanation."

)
BOOLQ_TEMPLATE = (

"{passage}\n\nQuestion: {question}?\n\nPlease answer with either `true` or `false` without any explanation."
)

Listing 4: Instruction templates of QA-based benchmark tasks.

In a preliminary experiment, we find that applying the offset to the low-rank matrices performs better
than the alternative for SFT training. We hypothesize that the cross terms (the middle two terms in
Eq. (7)) ease the learning process. Effectively, the offset matrices in the cross terms act as ‘answer
bases‘ for Apred and Bpred to act upon.
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G GENERATING TASK DESCRIPTIONS WITH A FOUNDATION LANGUAGE
MODEL

System message
You are a creative and helpful assistant.

Prompt

Given the following question-response pairs, please give a short description of the task describing what the task is.

{IN CONTEXT EXAMPLES}

Now, you must describe the task based on the following question-response pairs.

{5 sampled question-answer pairs}

Please use the information in the question-answer pairs and example description and come up with several descriptions 
that explain the task. Each description should be written in plain text, with the following format.

Description 1: DESCRIPTION_1
Description 2: DESCRIPTION_2
...

You should also be creative and vary the structure and the length of the descriptions such that they'll be diverse and 
cover various writing styles. You should ignore the specific question-answer pairs and focus on the high-level concept 
and topic of the task in general.
**DO NOT** describe that there are multiple choice options or the format of the answer.
**DO NOT** include the answer format, e.g., 'choose the correct option', 'answer with only one word', etc.
**DO NOT** describe how to answer the question, but rather what the task is about and the skills and knowledge 
required.
You can include reasoning steps that should be used to reach the expected answer.

Response with 20 descriptions. Use simple words and please be clear and diverse in your descriptions.

In-context examples

Here are some examples of the structure of the task of describing a task based on question-response pairs.

## Example question-answer pair: 1
### Input
You are given a question on high school macroeconomics. You are also given 4 answer options (associated with 'A', 'B', 'C', 
'D'), out of which only one is correct. You need to answer the question by selecting the correct option. You should only 
answer with the choice letter, not the whole answer.
Input: Allocative efficiency (A)means that no inferior products will be produced. (B)implies that the economy's output is 
distributed evenly. (C)means that those who work hardest will get more. (D)implies that resources are used to produce 
the goods and services society desires in just the right amounts.
Output:
### Expected output
D
### Plausible descriptions
Description 1: Your job is to analyze the provided question about economics. Use your understanding of economic 
principles to guide your choice.
Description 2: Utilize your economic understanding to determine which choice is right. The correct answer will be the one 
that best aligns with economic principles.

## Example question-answer pair: 2
### Input
In this task, you are given a country name and you need to return the capital city of the given country.
Input: Senegal
Output:
### Expected output
Dakar
### Plausible descriptions
Description 1: Given the name of a country, your job is to provide its capital city.
Description 2: For each country listed, determine and state its capital city. This requires familiarity with global locations 
and capitals.

Figure 7: The prompt template used to query GPT-4o mini for task descriptions.
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We automate task description generation for each task by leveraging powerful closed-source language
models (Achiam et al., 2023). We query GPT-4o mini with carefully constructed prompts that incen-
tivize diversity to facilitate downstream generalization. In particular, we generate 200 descriptions per
task by querying the model 10 times, each time asking for 20 descriptions given randomly sampled
five question-answer pairs from the task. We leverage in-context learning by providing examples of
question-answer pairs with matching descriptions. Finally, we also designed our prompts to avoid
overly verbose responses and unnecessary information, such as explicit mentions of answer formats
and additional instructions. We use the generated descriptions for the training and benchmark tasks.
Fig. 7 shows the exact prompt used for querying GPT-4o mini for task descriptions.

H EXAMPLE OF TASK DESCRITIONS

Here, we provide examples of task descriptions used in the experiments.

Training descriptions

sni_cosmosqa_passage_inappropriate_binary
● Assess whether the given passage contains any elements that are unsuitable or illogical. Contextual understanding 

is key to making your evaluation.
● Look closely at the information provided in the context and determine its appropriateness or nonsensical nature 

based on logical reasoning.
● Assess given contexts critically, marking whether they hold inappropriate content or convey meaning in a way that 

is difficult to comprehend.

sni_winomt_classification_gender_identifiability_anti
● In this task, you will distinguish between identifiable and unidentifiable gender references in sentences featuring 

different professions.
● Your task consists of evaluating professional descriptions within sentences and determining if their respective 

genders can be classified as clearly identifiable or obscure.
● Engage with sentences that present two different professions, paying attention to pronouns that could reveal or 

obscure the gender of the highlighted role.

sni_kth_largest_element
● In this task, you are required to dissect a set of integers and identify which one corresponds to the kth position 

when sorted by size. Knowledge of ascending order and magnitude awareness are pivotal.
● Your mission here is to discover which number holds the kth place when considering size among others in a list. 

Practicing sorting and prioritization will be beneficial.
● The job is to pick out the kth greatest number from a list of integers, which means reevaluating them according to 

their increasing or decreasing order.

Figure 8: Examples of training descriptions from three SNI training tasks.
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Evaluation descriptions

boolq
● Analyze the given details about various subjects, including movies, sports, and television shows. Your role is to 

confirm whether certain claims are true or false.
● Your task is to determine the truthfulness of specific statements based on the provided background information. 

This requires careful reading and comprehension of the content.
● The goal is to evaluate factual claims made in relation to highlighted texts. You will need to discern whether the 

statements align with the information provided.

gsm8k
● You will be tasked with interpreting mathematical situations described in words. The goal is to use logical 

reasoning and calculations to determine the numerical answers based on the context provided.
● This task challenges your problem-solving abilities through mathematical reasoning. You must carefully read each 

scenario and systematically work through the data to compute the final outcome.
● Your role is to engage with practical math scenarios presented as questions. The task requires translating textual 

data into numerical operations that will lead you to the final solution.

humaneval
● Engage in building distinct functions that meet the requirements of various presented problems, honing your 

ability to translate problem statements into logical code. Utilize structured thinking to implement efficient 
solutions.

● You are tasked with generating specific solutions in Python by interpreting problem descriptions associated with 
tasks like counting odds or validating inputs. Recognizing patterns and leveraging programming techniques will be 
beneficial.

● This task focuses on developing algorithms in Python for specific scenarios, such as counting characters, 
assessing conditions between numbers, or converting integers into a different format. Critical thinking and 
algorithmic design will be important.

Figure 9: Task descriptions of the benchmark tasks: boolq, gsm8k, and humaneval.

Evaluation descriptions

mbpp
● Your challenge is to solve a series of problems by writing functions in Python. These problems require handling lists 

and strings, allowing you to showcase your proficiency in coding while addressing practical programming 
scenarios.

● You will be tasked with creating various Python functions that tackle programming challenges. The exercises will 
test your ability to manipulate data structures, search for patterns, and implement checks on numerical products.

● The goal is to develop Python functions that perform designated operations on lists and strings. This requires a 
solid grasp of logical reasoning and the ability to apply relevant algorithms in your code.

winogrande
● In this exercise, you need to read short narratives and discern which person or object fits best within the context 

of the sentence.
● This task requires synthesizing information from concise textual scenarios to identify crucial elements that drive 

the narrative forward.
● The goal is to evaluate descriptions and select the entity that best aligns with the sentiments or actions presented 

in the scenario.

piqa
● You will explore practical questions and select an answer that presents a logical and widely accepted approach to 

solve a given problem or complete a task successfully.
● Analyze the provided scenarios where practical advice or solutions are required, focusing on selecting the most 

commonly used or convenient method.
● Given a question related to common tasks, your responsibility is to discern which proposed solution aligns with 

typical practices or makes the task easier to achieve.

Figure 10: Task descriptions of the benchmark tasks: mbpp, winogrande, piqa

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Evaluation descriptions

hellaswag
● This task revolves around completing an unfinished text by selecting an ending that matches its tone and 

context. It requires you to think critically about how narratives develop and conclude effectively.
● This task asks you to select a suitable conclusion for an unfinished narrative or instructional content. It 

tests your comprehension and reasoning skills as you assess how well each option aligns with the given 
text.

● Your task involves completing an incomplete passage by selecting the ending that logically continues the 
context provided. This requires reading comprehension and the ability to infer meaning from a text.

arc_easy
● Your job is to discern which information best answers a posed question, focusing on practical examples 

and scientific principles. This requires a strong grasp of underlying concepts in ecology or physics.
● You will analyze questions that explore important connections such as environmental issues or animal 

adaptations. Utilize your background knowledge to evaluate and select the most fitting answer.
● This task involves selecting answers that reflect accurate relationships or effects seen in nature or society. 

You will need to sort through potential choices critically to find the appropriate one.

arc_challenge
● This task is about analyzing questions which examine your grasp of scientific ideas. You must connect 

conceptual knowledge with practical examples from geology, ecology and environmental changes.
● The objective here is to evaluate various scientific scenarios and infer the most logical explanations or 

definitions based on established knowledge. This task will strengthen your analytical and reasoning skills in 
the context of natural science.

● Your role is to interpret questions focusing on earth science and biological interactions. This demands a 
clear understanding of relevant processes, such as decomposition, weathering, and species adaptation.

Figure 11: Task descriptions of the benchmark tasks: hellaswag, arc_easy, arc_challenge

Evaluation descriptions

openbookqa
● Analyze the provided statements carefully and determine which one best fits into the context of the 

passage. This requires comprehension skills and the ability to make logical inferences.
● Consider each option in relation to what is presented in the input. Discern which one logically completes 

or responds accurately to the notion being expressed.
● Here, you'll be presented with different statements, and your role is to decide which one appropriately 

complements or responds to a scenario. This process involves critical analysis and synthesis of 
information.

Figure 12: Task descriptions of the benchmark tasks: openbookqa
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Random descriptions

● dogs;cats;bananas;
● 7@9.qwepra#/.sd,s'2OC^039u#rdagjbL
● ggggggggggggggggggggg

Figure 13: Random descriptions

I SCALING NUMBER OF DESCRIPTIONS PER TASK
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Figure 14: Zero-shot benchmark performance of SFT-trained T2L with varying number of descriptions
per training task.

Fig. 14 shows mixed results on the benchmark performance when vary the number of descriptions
per training task. For consistency, we always train T2L with 128 descriptions per training task.
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