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Abstract

Generative models have made it possible to syn-
thesize highly realistic images, potentially provid-
ing an abundant data source for training machine
learning models. Despite the advantages of these
synthesizable data sources, the indiscriminate use
of generated images as real images for training
can even cause mode collapse due to modality
discrepancies between real and synthetic domains.
In this paper, we propose a novel framework for
discriminative use of generated images, coined
GMAIL, that explicitly treats generated images as
a separate modality from real images. Instead of
indiscriminately replacing real images with gener-
ated ones in the pixel space, our approach bridges
the two distinct modalities in the same latent space
through a multi-modal learning approach. To be
specific, we first fine-tune a model exclusively on
generated images using a cross-modality align-
ment loss and then employ this aligned model to
further train various vision-language models with
generated images. By aligning the two modalities,
our approach effectively leverages the benefits
of recent advances in generative models, thereby
boosting the effectiveness of generated image
learning across a range of vision-language tasks.
Our framework can be easily incorporated with
various vision-language models, and we demon-
strate its efficacy throughout extensive experi-
ments. For example, our framework significantly
improves performance on image captioning, zero-
shot image retrieval, zero-shot image classifica-
tion, and long caption retrieval tasks. It also shows
positive generated data scaling trends and notable
enhancements in the captioning performance of
the large multimodal model, LLaVA.
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1. Introduction
Generative models, such as GANs (Goodfellow et al., 2020;
Chen et al., 2016) and diffusion models (Song et al., 2021a;
Dhariwal & Nichol, 2021; Rombach et al., 2022), have rev-
olutionized the field of computer vision by enabling the
synthesis of highly realistic images. These generated im-
ages offer a rich and scalable source of data, which can
significantly augment training datasets, enhance data diver-
sity, and reduce the dependency on costly real-world data
collection. However, despite their potential, incorporating
generated images directly into training pipelines poses sub-
stantial challenges due to inherent modality discrepancies
between generated and real images. This misalignment of-
ten leads to a phenomenon known as mode collapse (LeCun,
2022), where the model’s performance severely deteriorates
due to an over-reliance on generated content that fails to
generalize well to real-world scenarios. To address this, it is
essential to solve the generated-to-real (Gen-Real) modality
discrepancy problem first.

Existing approaches (Tian et al., 2024) typically integrate
generated images into the training process without ade-
quately addressing the modality gap between generated and
real images. The resulting models are prone to overfitting
the peculiarities of synthetic data, which negatively impacts
performance across various downstream tasks, particularly
when the model encounters real-world data. The primary
source of this collapse lies in the failure to recognize that
generated images, despite their realism, represent a distinct
data modality that deviates from real images in subtle but
significant ways. Addressing this modality gap is crucial to
harnessing the full potential of generated data while main-
taining robust performance on real-world tasks.

The challenge of using generated images stems from the
fundamental differences between generated and real-world
data distributions. Even when generated images appear vi-
sually convincing, they often contain subtle artifacts, biases,
or domain-specific noise introduced during the generation
process. These discrepancies are not just visual but can
also affect higher-level semantic representations, resulting
in a misalignment in the feature space that can propagate
through the training pipeline. Furthermore, generative mod-
els may inadvertently capture and amplify biases present
in their training data, leading to synthetic images that devi-
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ate in unexpected ways from real-world distributions. This
modality gap poses significant challenges for downstream
tasks, where models trained on misaligned data struggle
with overfitting to generated features, reduced robustness,
and degraded performance when applied to real images.
Bridging this gap is critical to leveraging the strengths of
generative models while avoiding pitfalls that compromise
model reliability.

To tackle this challenge, we introduce a novel framework
for Generative Modality Alignment for generated Image
Learning, namely GMAIL, that explicitly treats generated
images as a separate modality from real images. Unlike
conventional methods that mix generated and real data in-
discriminately, our approach bridges the two distinct modal-
ities in the latent space by embedding generated images
alongside real images having the same descriptions. Specifi-
cally, we fine-tune a model exclusively on generated images
using a cross-modality alignment loss while keeping the pre-
trained model for real images unchanged. This allows for
explicit and adaptive alignment between the two modalities,
enabling us to utilize the aligned model for training various
vision-language models (Radford et al., 2021; Liu et al.,
2023; Zhang et al., 2024) with highly realistic generated
images. Thereby, we fully exploit the advantages of recent
advances in generative models (Rombach et al., 2022), en-
hancing the performance of generated image training across
various vision-language tasks.

Through the extensive experiments across a wide range
of vision-language tasks, we demonstrate the effective-
ness of our framework by incorporating it with various
vision-language models such as LLaVA (Liu et al., 2023).
For example, our approach enhances image captioning on
COCO (Lin et al., 2014), zero-shot image retrieval on
COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014),
zero-shot image classification across eight widely used
datasets, and long caption retrieval on ShareGPT4V (Chen
et al., 2024). Furthermore, we observe positive generated
data scaling trends in our framework across diverse datasets
such as COCO (Lin et al., 2014), CC3M (Sharma et al.,
2018), and CC12M (Changpinyo et al., 2021), highlighting
the scalability of our method. Notably, our approach also
improves the captioning performance of the recent large
multimodal model, LLaVA (Liu et al., 2023), demonstrating
its broad compatibility.

Our main contributions are summarized as:

• We introduce a novel framework for discriminative
use of generated images, explicitly treating them as a
distinct modality and aligning them with real images
within the same latent space. It enables researchers to
exploit highly realistic generated images effectively.

• We demonstrate the effectiveness of our framework

through extensive experiments on a diverse set of
vision-language benchmarks, including image caption-
ing, zero-shot image retrieval, and zero-shot image
classification, and further validate its compatibility
with the recent large multimodal model, LLaVA.

• We explore the generated data scaling trend of
our framework using large-scale generated datasets,
demonstrating that our approach consistently improves
as the volume of training data increases.

2. Related Work
Diffusion Models. Diffusion models (Ho et al., 2020; Song
et al., 2021b;a) have emerged as a powerful class of gen-
erative models, capable of producing high-quality images
that closely mimic the distribution of real-world images.
Prominent examples include Stable-Diffusion (Rombach
et al., 2022), DreamBooth (Ruiz et al., 2023; 2024), and the
DALL-E series (Ramesh et al., 2021; 2022; Betker et al.,
2023), which have demonstrated remarkable success in gen-
erating diverse and complex images from textual descrip-
tions. These models leverage advanced diffusion processes
to iteratively refine images from noise, capturing intricate
details and generating visually convincing outputs that can
closely resemble real-world imagery. Our work utilizes the
power of diffusion models to generate images, offering an
innovative and cost-effective source of training data derived
from textual descriptions. By aligning these generated im-
ages with real image modalities through our GMAIL frame-
work, we bridge the gap between synthetic image generation
and practical machine learning applications, addressing the
challenges of modality discrepancies. This application of
diffusion models represents a novel contribution to the field,
as it not only enhances training efficiency but also expands
the use of generative models beyond mere content creation,
embedding them directly into the model training process to
improve real-world performance.

Generated Image Learning. Generated image learning has
gained traction as researchers explore the potential of syn-
thetic data to augment traditional training paradigms. Syn-
CLR (Tian et al., 2024) proposed a self-supervised frame-
work that employs synthetic data to pre-train visual repre-
sentations, showing that models trained on generated data
achieve competitive results compared to those trained on
real data. However, a critical challenge in this domain is the
issue of mode collapse, where the over-reliance on synthetic
data without proper alignment leads to performance degra-
dation when models are applied to real-world tasks. Recent
work (Shumailov et al., 2024) highlights the inherent risks
of training models on recursively generated data, emphasiz-
ing that models can inherit and amplify errors in synthetic
data, ultimately compromising their ability to generalize.
Our research directly addresses these challenges by propos-
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ing a novel strategy that treats generated images as a distinct
modality and aligns them with real images in the same latent
space. This approach not only mitigates the risk of collapse
but also enhances the robustness by embedding generated
images within the same latent space as real images.

Meanwhile, there also exist attempts (Zhang et al., 2021;
Ye et al., 2024; Wu et al., 2023) at generating high-quality
labeled datasets. While prior works have primarily focused
on improving image segmentation tasks by generating mask
labels, we instead aim to bridge modality gaps when us-
ing synthetic data to further train vision–language models,
mitigating over-reliance on the synthetic domain.

Vision-Language Models. Vision-language models, such
as CLIP (Radford et al., 2021), have revolutionized cross-
modal understanding by learning joint representations of im-
ages and text through contrastive learning objectives. While
these models excel at leveraging large-scale real-world data,
they often struggle when trained on generated images due
to the modality gap. To overcome this, recent methods have
explored various alignment techniques to improve cross-
modal performance. For example, Long-CLIP (Zhang et al.,
2024) extended CLIP by integrating longer captions, improv-
ing its ability to handle more descriptive texts. Similarly,
LLaVA (Liu et al., 2023) has demonstrated the potential for
vision-language models to handle multimodal tasks like vi-
sual question answering and captioning by leveraging large-
scale data. Our work builds on these foundational efforts
by introducing an explicit Gen-Real alignment framework
that enhances the adaptability of vision-language models
when using generated data. By embedding generated im-
ages within the same latent space as real images and training
the alignment, our approach directly addresses the modal-
ity discrepancies that limit model performance, offering a
scalable solution that significantly boosts cross-modal learn-
ing across diverse vision-language tasks, including image
captioning, zero-shot retrieval, and classification.

3. Method
In this section, we describe our proposed Generative
Modality Alignment for generated Image Learning
(GMAIL) framework, which tackles the challenge of training
on generated images while ensuring robust performance dur-
ing inference on real-world data, as illustrated in Figure 1.
Our approach introduces two key components: (1) a Gen-
CLIP flow on training and inference that handles generated
and real images as separate modalities, and (2) an explicit
alignment strategy with vision-language models to facili-
tate better integration with large language models (LLMs)
such as CLIPCap (Mokady et al., 2021), LLaVA (Liu et al.,
2023), and Llama3 (Meta, 2024). In this part, we detail the
problem setup, the key components of our framework, and
the alignment strategy used to enhance the performance of

models trained on both generated and real data.

3.1. Preliminaries

In this subsection, we introduce the problem setup and nota-
tions, followed by an overview of the contrastive language-
image pre-training methodology that forms the foundation
of our approach.

Problem Setup and Notations. Let Dr = {(xr, yr)} rep-
resent a dataset of real images with corresponding labels
or annotations, and Dg = {(xg, yg)} denote a dataset of
generated images synthesized by generative models, such as
GANs or diffusion models. Our objective is to train a model
f(·) that performs well across a broad set of downstream
tasks, utilizing both Dr and Dg , while mitigating the risk of
mode collapse caused by the inherent modality gap between
Dr and Dg. To formally define the alignment process, we
introduce two models: a base model fr, pre-trained on real
images, and a fine-tuned model fg, trained specifically on
generated images. The primary goal of our framework is to
align fg with fr, ensuring that the feature representations of
generated images are semantically consistent with those of
real images. This alignment facilitates a unified understand-
ing of both modalities, allowing the model to generalize
across real data during inference.

Contrastive Language-Image Pre-training. Our frame-
work builds on the foundation of Contrastive Language-
Image Pre-Training (CLIP) (Radford et al., 2021), which
learns joint embeddings for images and textual descriptions.
CLIP leverages a contrastive loss that brings the embeddings
of paired images and texts closer, while pushing apart the
embeddings of unpaired ones, fostering cross-modal align-
ment. However, traditional CLIP training does not explicitly
address the discrepancy between generated and real images,
often leading to performance degradation when integrating
generated data directly. To extend CLIP to handle generated
images as a distinct modality, we propose a modified train-
ing objective that incorporates contrastive learning not only
between real images and text but also between generated
images and text. This treats generated and real images in-
dependently, preserving the unique characteristics of each
modality during training.

3.2. Gen-CLIP Flow: Training on Generated Images

The first key component of our method is the Gen-CLIP
flow, which focuses on training the model on generated
images while treating them as a distinct modality. Unlike
traditional approaches that mix generated and real images
indiscriminately, we handle generated images separately
to prevent the model from overfitting to the peculiarities
of synthetic data. In the Gen-CLIP flow, we fine-tune a
pre-trained CLIP model (i.e., image encoder of fr) using
generated images, paired with the same textual descriptions
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Figure 1. Illustration of the proposed framework for vision-language tuning with Gen-Real alignment from diffusion models. We
propose a method that explicitly aligns a CLIP trained on real images with another CLIP model trained on generated images and then
leverages the aligned CLIP to train state-of-the-art vision-language models on generated images (i.e., Gen-CLIP Flow). For inference with
real images, the original CLIP is used to process real images, thereby avoiding discrepancies between real and generated modalities.

used for real images. During fine-tuning, we employ a
cross-modality alignment loss to minimize the feature space
discrepancy between generated and real images (see Eq. 1).
This contrastive alignment loss encourages the model fg to
learn representations that place generated and real images
with the same descriptions close to each other in the latent
space, while maintaining their distinct modality-specific
characteristics. To maintain computational efficiency and
prevent catastrophic forgetting of real image representations,
we apply Low-Rank Adaptation (LoRA) (Hu et al., 2022)
during fine-tuning. LoRA introduces lightweight, efficient
updates to the model, ensuring that the alignment process
does not degrade the model’s ability to generalize across
different data modalities.

CLIP Flow: Inference on Real Images. In the inference
phase with real images, the model fg fine-tuned on gen-
erated images in the Gen-CLIP flow can be deployed to
process real images through the original image encoder of
fr without further fine-tuning. By keeping the pre-trained
CLIP model for real images unchanged during the generated
image training process, we ensure that the learned repre-
sentations from the generated data remain aligned with real
data. The CLIP flow leverages these aligned representations
for inference on real images, allowing the model to gen-
eralize well to real-world data without suffering from the
typical mode collapse associated with over-reliance on gen-
erated content. This dual-model structure allows the model
to benefit from the complementary strengths of both real
and generated images, ensuring that it performs robustly
during real-world deployment while still benefiting from the
scalability of generated training data. Note that the encoder
fine-tuned with the LoRA and the projection for real is used
on real images during inference time.

3.3. Alignment with Vision-Language Models

Our alignment strategy is designed to enhance the integra-
tion of generated data into vision-language models, par-
ticularly large language models (LLMs) such as CLIP-
Cap (Mokady et al., 2021), LLaVA (Liu et al., 2023), and
Llama3 (Meta, 2024). This extension of GMAIL ensures
that generated images can be utilized effectively within these
models for tasks such as image captioning, retrieval, and
long-form question answering.

Gen-Real Alignment. The key to our framework is the
cross-modality alignment loss, which ensures that generated
images are embedded within the same latent space as real
images, while maintaining their distinct characteristics. The
alignment loss is formulated as:

Lalign = − 1

|B|
∑

(xg,xr)∈B

log
exp(sim(fg(xg), fr(xr))/τ)∑

x′
r∈B exp(sim(fg(xg), fr(x′

r))/τ)
, (1)

where xg and xr represent generated and real images, fg and
fr are their corresponding image representations, sim(·, ·)
denotes cosine similarity between embeddings, and τ is
a temperature parameter. This loss encourages generated
images to be aligned with their real counterparts, facilitating
effective transfer of knowledge across both modalities.

CLIPCap (Mokady et al., 2021) combines CLIP’s image
embeddings with a transformer-based language model to
generate captions from images. By aligning generated im-
ages with real image embeddings, we ensure that CLIPCap
can generate high-quality captions from both real and gener-
ated data. Fine-tuning CLIPCap with our alignment frame-
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work allows the model to handle both modalities effectively,
resulting in enhanced performance on image captioning.

LLaVA (Liu et al., 2023) & Llama3 (Meta, 2024) are
advanced multimodal models designed to perform vision-
language tasks. To align generated images with these mod-
els, we first fine-tune the vision-language models using our
GMAIL strategy to ensure that representations from gen-
erated data are aligned with real data. The aligned vision
representations are then integrated with the LLMs, allowing
the models to handle complex vision-language tasks such as
long captioning and retrieval more effectively. This align-
ment enhances the robustness and flexibility of LLaVA and
Llama3 in both real and generated images.

Our framework is designed to scale effectively with larger
datasets, as evidenced by the performance improvements
observed on large-scale datasets such as CC3M (Sharma
et al., 2018) and CC12M (Changpinyo et al., 2021). The
alignment strategy ensures that as the volume of generated
training data increases, the model continues to generalize
effectively to real-world data. This scalability demonstrates
the potential of GMAIL as a cost-effective solution for train-
ing robust vision-language models using synthetic data.

4. Experiments
In this section, we provide the experimental setup, evalua-
tion metrics, and comparative analysis conducted to validate
the effectiveness of our method. Through rigorous experi-
mentation on a diverse set of datasets, we assess our model
on image captioning, zero-shot image retrieval, and zero-
shot image classification tasks, comparing it against existing
benchmarks to highlight our contributions.

4.1. Experimental Setup

Datasets. Our experiments leverage a comprehensive collec-
tion of datasets to evaluate the versatility and effectiveness
of our proposed Gen-Real alignment framework. We fo-
cus on a diverse set of tasks, including image captioning,
zero-shot image retrieval, and zero-shot image classification,
ensuring broad coverage across various domains. Please
refer to Appendix Section A for the detailed dataset settings.

Evaluation Metrics. To comprehensively evaluate our
framework, we employ task-specific metrics tailored to im-
age captioning, zero-shot image retrieval, and zero-shot
image classification: Image Captioning: Performance is as-
sessed using standard metrics such as BLEU@4 (B@4) (Pa-
pineni et al., 2002), METEOR (Denkowski & Lavie, 2014),
CIDEr (Vedantam et al., 2014), SPICE (Anderson et al.,
2016), ROUGE-L (Lin & Och, 2004), and Word Mover’s
Distance (WMD) (Kusner et al., 2015). These metrics evalu-
ate the quality and semantic accuracy of generated captions
compared to ground truth. Zero-Shot Image Retrieval:

We measure both image-to-text and text-to-image retrieval
capabilities using Recall@1, Recall@5, and Recall@10.
These metrics assess the model’s ability to correctly retrieve
relevant items based on the provided query, highlighting its
cross-modal understanding. Zero-Shot Image Classifica-
tion: The classification performance on unseen categories
is evaluated using top-1 accuracy, reflecting the model’s
generalization ability to new classes without prior training
on those specific categories.

Implementation. For image captioning, we adhere to the
implementation strategy of ClipCap (Mokady et al., 2021),
which combines CLIP with a text generation model to pro-
duce descriptive captions for images. ClipCap uses CLIP’s
image embeddings as input to a transformer-based caption-
ing model, enabling the generation of semantically accurate
and contextually rich captions for both real and generated
images. For zero-shot evaluation on both retrieval and im-
age classification tasks, we follow the setup detailed in the
original CLIP (Radford et al., 2021) paper. This setup em-
phasizes the model’s ability to generalize across unseen
data by using natural language prompts to guide image clas-
sification and retrieval, leveraging the contrastive training
between images and textual descriptions without explicit
fine-tuning on target datasets. We adopt Stable Diffusion
v2 (Rombach et al., 2022) to generate synthetic images us-
ing captions from the COCO (Lin et al., 2014) train2014
set. Stable Diffusion provides high-quality image synthe-
sis, enabling us to produce generated images that are both
visually realistic and semantically aligned with the training
captions, serving as the generated modality in our align-
ment framework. During fine-tuning, we use a rank of 4
in Low-Rank Adaptation (LoRA) to adjust the model pa-
rameters specifically for generated images, ensuring that the
adaptation remains efficient and computationally manage-
able. For optimization, we use the AdamW optimizer with
a learning rate of 1× 10−4 and weight decay of 0.01. We
employ a cosine annealing schedule with warm restarts to
dynamically adjust the learning rate, enhancing convergence
stability across training phases. Batch normalization and
gradient clipping are applied to prevent exploding gradients
and ensure smooth training dynamics.

4.2. Comparison to prior work

Image Captioning. We compare our model’s performance
on the COCO dataset against prior commonly-used base-
lines, including ClipCap (Mokady et al., 2021), LLaVA (Liu
et al., 2023), and LLAMA-3 (Meta, 2024). The results,
detailed in Table 1, demonstrate significant improvements
across all evaluated metrics, underscoring the efficacy of our
GMAIL approach when combined with synthetic images
and LoRA optimization. For ClipCap, the proposed Clip-
Cap + GMAIL configuration achieves 38.12 B@4, 31.67
METEOR, 119.53 CIDEr, 23.75 SPICE, 56.27 ROUGE-L,
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Table 1. Image captioning. We perform fine-tuning on pre-trained ClipCap, IFCap, LLaVA, and LLaMA-3 for image captioning on
COCO. We report the standard metrics to evaluate the quality of generated captions. The best results are indicated in bold.

Method B@4 (↑) METEOR(↑) CIDEr (↑) SPICE (↑) ROUGE-L (↑) WMD (↑)

ClipCap (Mokady et al., 2021) 32.15 27.10 108.35 20.12 – –
ClipCap + GMAIL (ours) 38.12 31.67 119.53 23.75 56.27 62.16
IFCap (Lee et al., 2024) 33.25 28.60 115.27 21.58 51.35 56.72
IFCap + GAMIL (ours) 39.32 32.07 127.86 23.98 59.83 63.51
LLaVA (Liu et al., 2023) 39.67 32.38 134.29 24.17 61.36 65.78
LLaVA + GMAIL (ours) 43.26 34.89 146.38 27.23 65.25 71.39
Llama3 (Meta, 2024) 47.36 35.21 158.13 28.35 68.32 75.13
Llama3 + GMAIL (ours) 50.21 38.59 168.53 32.58 73.29 80.25

Table 2. Zero-shot image retrieval on COCO. We perform zero-shot retrieval on pre-trained SemiCLIP for image retrieval on the COCO
benchmark. We report the image-to-text and text-to-image Recall@1,5,10 metrics to evaluate the quality of retrieved images.

Method Image-to-Text Text-to-Image
R@1 (↑) R@5 (↑) R@10 (↑) R@1 (↑) R@5 (↑) R@10 (↑)

CLIP (Radford et al., 2021) 51.8 76.8 84.3 32.7 57.7 68.2
CLIP + GMAIL (ours) 56.8 80.1 87.2 37.5 62.7 73.2
Long-CLIP (Zhang et al., 2024) 57.2 80.8 87.8 40.4 65.9 75.7
Long-CLIP + GMAIL (ours) 62.3 84.1 91.2 45.6 69.8 79.5

and 62.16 WMD, significantly outperforming the baseline
ClipCap and the ClipCap + LoRA setup. Specifically, our
GMAIL approach boosts the original ClipCap (Mokady
et al., 2021) by 5.97 B@4, 4.57 METEOR, 11.18 CIDEr,
and 3.63 SPICE. These results highlight the advantages of
aligning generated and real images within a unified seman-
tic space, allowing for enhanced image captioning perfor-
mance. Similarly, when applied to LLAMA-3, our LLAMA-
3 + GMAIL model reaches 50.21 B@4, 38.59 METEOR,
168.53 CIDEr, 32.58 SPICE, 73.29 ROUGE-L, and 80.25
WMD, demonstrating notable improvements over both the
baseline and the LoRA fine-tuning strategy. Compared to
LLAMA-3 alone, GMAIL achieves gains of 2.85 B@4,
2.46 METEOR, 10.35 CIDEr, and 4.30 SPICE, establish-
ing our approach as a robust technique for enhancing mod-
els through Gen-Real alignment. The substantial gains ob-
served across both model architectures confirm the effec-
tiveness of our GMAIL framework. By fine-tuning with
generated images while maintaining alignment with real
image modalities, our method effectively bridges the modal-
ity gap, resulting in better understanding and generation of
descriptive captions aligned with real-world data.

Zero-shot Image Retrieval. The comparative results in
Tables 2 and 3 highlight our model’s superior recall rates,
showcasing its robustness in understanding and associating
visual and textual data. Our method is evaluated on two
benchmarks: COCO and Flickr30k, using both image-to-
text and text-to-image retrieval tasks, demonstrating signif-
icant improvements over prior baselines. On the COCO
dataset, our approach, CLIP + GMAIL, achieves 56.8 R@1,
80.1 R@5, and 87.2 R@10 for image-to-text retrieval, out-
performing the original CLIP (Radford et al., 2021) trained

on real images by 5.0 R@1, 3.3 R@5, and 2.9 R@10. For
text-to-image retrieval, CLIP + GMAIL scores 37.5 R@1,
62.7 R@5, and 73.2 R@10, demonstrating gains of 4.8
R@1, 5.0 R@5, and 5.0 R@10 compared to the baseline
CLIP. These improvements validate the effectiveness of our
alignment strategy in bridging the gap between generated
and real image modalities, enhancing zero-shot retrieval
capabilities. Similarly, when applied to the Long-CLIP ar-
chitecture (Zhang et al., 2024), our Long-CLIP + GMAIL
configuration further boosts performance, achieving 62.3
R@1, 84.1 R@5, and 91.2 R@10 on image-to-text retrieval,
and 45.6 R@1, 69.8 R@5, and 79.5 R@10 on text-to-image
retrieval. This demonstrates that GMAIL consistently en-
hances model performance across different backbone archi-
tectures by facilitating better alignment of generated images
with real-world data. On the Flickr30k dataset, our CLIP
+ GMAIL model achieves 47.1 R@1, 71.2 R@5, and 79.6
R@10 for image-to-text retrieval, outperforming CLIP by
3.0 R@1, 3.2 R@5, and 2.6 R@10. In text-to-image re-
trieval, the model scores 39.3 R@1, 61.5 R@5, and 71.8
R@10, with respective gains of 14.6 R@1, 16.0 R@5, and
17.2 R@10 over CLIP. These results validate the robustness
of our approach in learning meaningful representations from
generated images for zero-shot retrieval on real images.

Zero-shot Image Classification. We evaluate the zero-shot
classification performance of our model across eight di-
verse benchmarks, including DTD, Stanford Cars, SUN397,
Food 101, Aircraft, Oxford Pets, Caltech 101, and ImageNet
1K. As shown in Table 4, our model consistently achieves
top-1 accuracy surpassing previous approaches, validating
the advantage of leveraging generated images through our
framework for enhancing zero-shot learning capabilities.
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Table 3. Zero-shot image retrieval on Flickr30k. We perform zero-shot retrieval on pre-trained SemiCLIP for image retrieval on the
Flickr30k benchmark. We report the image-to-text and text-to-image Recall@1,5,10 metrics to evaluate the quality of retrieved images.

Method Image-to-Text Text-to-Image
R@1 (↑) R@5 (↑) R@10 (↑) R@1 (↑) R@5 (↑) R@10 (↑)

CLIP (Radford et al., 2021) 44.1 68.2 77.0 24.7 45.1 54.6
CLIP + GMAIL (ours) 47.1 71.2 79.6 30.2 50.3 60.5
Long-CLIP (Zhang et al., 2024) 47.2 71.5 80.0 33.1 55.6 64.9
Long-CLIP + GMAIL (ours) 51.6 75.3 83.6 39.3 61.5 71.8

Table 4. Zero-shot image classification. We perform a zero-shot evaluation on pre-trained SemiCLIP for image classification on eight
benchmarks. We report the top-1 accuracy to evaluate the quality of learned representations. The best results are indicated in bold.

Method DTD Stanford Cars SUN397 Food 101 Aircraft Oxford Pets Caltech 101 ImageNet

CLIP (Radford et al., 2021) 55.20 77.53 69.31 93.08 32.88 93.33 93.24 75.54
CLIP + GMAIL (ours) 65.26 81.32 75.53 95.21 37.85 95.23 95.57 77.68
SynCLR (Tian et al., 2024) 79.90 93.80 76.20 91.60 81.70 93.60 95.30 85.80 (ft)
SynCLR + GMAIL (ours) 83.67 96.56 81.25 96.38 86.75 95.70 98.35 87.95 (ft)

Table 5. Long caption retrieval on ShareGPT4V. We report the
image-to-text and text-to-image Recall@1 to evaluate the quality
of retrieved images. The best results are indicated in bold.

Method Image-to-Text Text-to-Image

CLIP (Radford et al., 2021) 78.2 79.6
CLIP + GMAIL (ours) 85.2 86.7
Long-CLIP (Zhang et al., 2024) 94.6 93.3
Long-CLIP + GMAIL (ours) 97.2 96.1

Our CLIP + GMAIL approach achieves a top-1 accuracy of
65.26 on the DTD benchmark, outperforming the original
CLIP (Radford et al., 2021) by 10.06 points, demonstrating
the significant benefit of aligning generated images with
real data. On the Stanford Cars dataset, our model reaches
81.32, showing robust performance gains, particularly in
fine-grained classification tasks. For the challenging FGVC
Aircraft benchmark, our method scores 37.85, marking a
substantial improvement of 4.97 over the baseline CLIP,
highlighting our model’s capacity to handle complex visual
distinctions. Additionally, our model performs exception-
ally well on other benchmarks, achieving 75.53 on SUN397,
95.21 on Food 101, 95.23 on Oxford Pets, 95.57 on Cal-
tech 101, and 77.68 on ImageNet 1K. These results consis-
tently outperform both the standard CLIP and the CLIP +
LoRA setup, confirming the effectiveness of our Gen-Real
alignment strategy in broadening the model’s generalization
capabilities across various domains.

Long Caption Retrieval. We evaluate our model’s capabil-
ity to handle long captions using the ShareGPT4V (Chen
et al., 2024) benchmark, as reported in Table 5. The evalu-
ation focuses on image-to-text and text-to-image retrieval
tasks, with Recall@1 used to assess the quality of retrieved
results. Our model demonstrates an enhanced ability to com-
prehend and generate relevant responses to extended textual
inputs, affirming its utility in applications that require de-
tailed and descriptive outputs. For the CLIP-based models,

our CLIP + GMAIL configuration achieves 85.2 for image-
to-text and 86.7 for text-to-image retrieval, outperforming
both the original CLIP (Radford et al., 2021) and the CLIP
+ LoRA variants. This result highlights the effectiveness
of our alignment strategy in bridging the semantic gap be-
tween generated and real images, particularly when handling
complex, long-caption scenarios. When applied to the Long-
CLIP architecture (Zhang et al., 2024), our Long-CLIP +
GMAIL configuration reaches 97.2 for image-to-text and
96.1 for text-to-image retrieval, marking the highest perfor-
mance among all tested configurations. These gains of 2.6
and 1.6 over Long-CLIP + LoRA confirm that our approach
not only strengthens the alignment between modalities but
also substantially improves the retrieval of images and cap-
tions involving extended and intricate descriptions. Overall,
these results confirm the robustness and scalability of our
framework in managing complex captioning tasks.

4.3. Experimental analysis

In this section, we performed ablation studies to demonstrate
the benefit of Gen-Real alignment. We also conducted ex-
tensive experiments to explore the scaling trend on different
training data sizes.

Gen-Real Alignment. To quantify the impact of Gen-Real
alignment fine-tuning on our model’s performance, we con-
ducted ablation studies comparing models with and without
alignment optimization. The results, presented in Table 6,
demonstrate significant improvements across all metrics
when alignment tuning is applied, validating the effective-
ness of our proposed approach. In the context of image
captioning tasks, models fine-tuned with Gen-Real align-
ment consistently outperform their counterparts that lack
this optimization step. Specifically, adding Gen-Real align-
ment to the vanilla baseline using synthetic images to fine-
tune all parameters led to substantial increases across all
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Table 6. Ablation study on Gen-Real Alignment. We perform ablation studies on image captioning from pre-trained CLIP on generated
images. The best results are indicated in bold.

Alignment B@4 (↑) METEOR(↑) CIDEr (↑) SPICE (↑) ROUGE-L (↑) WMD (↑)

✗ 36.15 30.32 115.35 22.95 55.12 61.08
✓ 38.12 31.67 119.53 23.75 56.27 62.16

Table 7. Scaling trend of Gen-Real alignment on zero-shot image retrieval on Flickr30k. We perform zero-shot retrieval on models
trained from COCO, CC3M, and CC12M on Flickr30k. We report the Recall@1,5,10 metrics to evaluate the quality of retrieved images.

Train Data Image-to-Text Text-to-Image
R@1 (↑) R@5 (↑) R@10 (↑) R@1 (↑) R@5 (↑) R@10 (↑)

COCO 47.1 71.2 79.6 30.2 50.3 60.5
CC3M 48.6 73.6 82.2 32.6 52.6 62.3
CC12M 50.9 75.3 84.6 34.9 54.7 64.8

Figure 2. Visualizations of real (Column 1) and generated im-
ages (Columns 2-6) using the same caption. Those generated
images generally capture high-level semantics in real images.

evaluated metrics: 3.56 in B@4, 1.13 in METEOR, 4.18 in
CIDEr, 0.8 in SPICE, 1.15 in ROUGE-L, and 1.09 in WMD.
These improvements highlight the critical role of alignment
fine-tuning in bridging the modality gap between generated
and real images, which enables the model to better cap-
ture and replicate the semantic richness found in real-world
data. The results underscore the effectiveness of Gen-Real
alignment in optimizing model performance, particularly
in adapting to the nuances of generated images and their
associated textual descriptions. By embedding generated
images within the same latent space as real images, our
approach enhances the model’s ability to understand and
process complex visual-language relationships, ultimately
leading to superior performance in downstream tasks.

Scaling trend of Gen-Real alignment. To further eval-
uate the scalability of our proposed Gen-Real alignment,
we explore its performance across varying scales of train-
ing data. Specifically, we apply our training framework on
synthetic images derived from COCO (Lin et al., 2014),
CC3M (Sharma et al., 2018), and CC12M (Changpinyo
et al., 2021). The comparison results on zero-shot image
retrieval on the Flickr30k benchmark are reported in Table 7.

Table 8. Comparison with SigLIP on COCO captioning. Our
GMAIL significantly improves SigLIP by effectively addressing
the synthetic-real discrepancy. The best results are bold.

Method B@4 (↑) CIDEr (↑)

SigLIP 37.51 117.82
SigLIP + GMAIL (ours) 42.35 125.68

The results reveal a clear scaling trend, where increasing the
volume of training data from COCO to CC3M and then to
CC12M consistently enhances the model’s performance on
both image-to-text and text-to-image retrieval tasks. Specif-
ically, our model trained on CC12M achieves the high-
est scores with 50.9 R@1, 75.3 R@5, and 84.6 R@10
for image-to-text retrieval, and 34.9 R@1, 54.7 R@5, and
64.8 R@10 for text-to-image retrieval, outperforming the
models trained on the smaller COCO and CC3M datasets.
These improvements demonstrate that our Gen-Real align-
ment framework benefits significantly from larger and more
diverse training datasets of generated images, effectively
capturing richer semantic representations and enhancing re-
trieval capabilities. The results underscore the effectiveness
of our method in leveraging the scaling trend of generated
data, showing that as the scale of synthetic images increases,
our model continues to learn and generalize better across
zero-shot retrieval tasks.

Visualization of Generated Images. To further understand
the quality and semantic alignment of the generated images
used in our training process, we provide visualizations of a
subset of generated images alongside their corresponding
real counterparts, as shown in Figure 2. These images were
generated using Stable Diffusion (Rombach et al., 2022),
and are designed to closely match the real-world data in
terms of visual realism and content. Through these visual-
izations, we observe that while generated images generally
capture high-level features and structures present in real
images, they may still exhibit subtle artifacts or variations
that could contribute to the modality gap. Despite these dif-
ferences, our Gen-Real Alignment framework successfully
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Table 9. Comparison with models trained on real images. We perform experiments on image captioning from pre-trained CLIP on
generated and real images. The best results are indicated in bold.

Dual Projection Alignment Fine-tuning Data B@4 (↑) CIDEr (↑) SPICE (↑)

✗ ✗ ✗ 32.15 108.35 20.12
✗ ✗ Synthetic 36.15 115.35 22.95
✓ ✓ Synthetic 38.12 119.53 23.75
✗ ✗ Real 38.24 119.78 23.86
✓ ✓ Real 38.37 119.95 23.98

Table 10. Visual question answering on ScienceQA. We report
the average accuracy on questions with the image context from the
ScienceQA benchmark. The best results are bold.

Method Accuracy (%)

LLaVA 85.2
LLaVA + GMAIL (ours) 87.6
LLaMA-3 88.5
LLaMA-3 + GMAIL (ours) 91.2

bridges this gap, as evidenced by the alignment of seman-
tic features between the generated and real images in the
learned latent space. The visualizations not only illustrate
the potential of generated data as a cost-effective supple-
ment to real-world data but also highlight the importance
of explicit alignment strategies to mitigate discrepancies
between generated and real data distributions.

Comparison with SigLIP. To strengthen the effectiveness
of our work, we compare GMAIL with SigLIP (Zhai et al.,
2023) on COCO captioning. The results are shown in Ta-
ble 8. SigLIP (Zhai et al., 2023) adopts a sigmoid loss for
better image-text pre-training, focusing solely on real im-
ages. In contrast, our GMAIL aligns real and generated
images as distinct modalities, addressing the challenges of
integrating synthetic data into further training. GMAIL is
particularly relevant in scenarios requiring synthetic data,
such as handling expensive attribute annotations or gener-
ating diverse samples. These results demonstrate that our
GMAIL complements SigLIP by effectively addressing the
synthetic-real discrepancy, allowing for enhanced general-
ization and performance improvements.

Training on Real Images. To illustrate the impact of real
images on GMAIL, we compare performances on COCO
captioning using real-only (first and fourth rows), mixed
real-generated data (second row), and GMAIL alignment
strategies (third and fifth rows). The results are shown in
Table 9. These results indicate that GMAIL’s alignment
strategy not only bridges the synthetic-real gap but also
could improve models trained exclusively on real data.

ScienceQA Results. We also evaluated GMAIL’s perfor-
mance on ScienceQA (Lu et al., 2022) when integrated with
LLaVA (Liu et al., 2023) and LLaMA-3 (Meta, 2024). We
calculated the average accuracy of questions with the image
context. The comparison results are reported in Table 10.

Table 11. Ablation study on LoRA rank and full fine-tuning.
We perform experiments on image captioning from pre-trained
CLIP on generated images. The best results are indicated in bold.

Method B@4 (↑) CIDEr (↑) SPICE (↑)

LoRA (rank = 2) 36.85 117.62 23.10
LoRA (rank = 4) 38.12 119.53 23.75
LoRA (rank = 6) 37.96 119.12 23.60
Full fine-tuning 37.50 118.95 23.50

These results highlight GMAIL’s ability to enhance VLM’s
generalization across multimodal tasks.

Ablation on LoRA. LoRA (Hu et al., 2022) allows efficient
adaptation to synthetic data while preserving the knowledge
from pre-training on large-scale real data. This avoids the
need for full fine-tuning, which can overwrite important pre-
trained weights, especially when synthetic data is noisy or
biased. The ablation results are reported in Table 11. As can
be seen, LoRA with rank 4 achieves the best performance,
balancing computational efficiency and alignment quality.
Meanwhile, LoRA updates 35% fewer parameters compared
to full fine-tuning while achieving better performance.

5. Conclusion
In this work, we present GMAIL, a novel framework for
generative-to-real alignment that addresses the modality gap
between generated and real images, a key challenge that
often leads to mode collapse when integrating generated
data into training pipelines. Our approach explicitly treats
generated images as a separate modality and employs a
training scheme that aligns these images within the same
latent space as real images. By fine-tuning models on gen-
erated images, while maintaining a pre-trained model for
real images, our framework facilitates explicit alignment be-
tween the two modalities, leading to significant performance
improvements across various vision-language tasks. Exten-
sive experiments demonstrate the efficacy of our method on
a wide range of benchmarks, including image captioning,
zero-shot image retrieval, and zero-shot image classifica-
tion. Our results consistently show that GMAIL enhances
the model’s ability to generalize and perform across tasks,
particularly when trained on large-scale datasets. The scal-
ing trend observed with larger generated datasets such as
CC12M further highlights the robustness and adaptability
of our approach.
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Appendix
In this appendix, we provide the following material:

• addition implementation and datasets details in Section A,

• algorithm for our GMAIL in Section B,

• more discussions on Gen-Real alignment in Section C,

• more experimental analyses in Section D,

• qualitative visualization results in Section E.

A. Implementation & Dataset Details
In this section, we provide additional implementation details to ensure the reproducibility of our experiments, along with a
comprehensive description of the datasets used.

Implementation. The base model used in our framework is the CLIP model (Radford et al., 2021), pre-trained on real
images and paired with their textual descriptions. We fine-tune the pre-trained CLIP model on generated images using the
LoRA (Hu et al., 2022) method to introduce low-rank updates, ensuring that the training remains computationally efficient.
For contrastive learning, we set the temperature parameter τ = 0.07 and optimize using the AdamW optimizer with a
learning rate of 1 × 10−4 and a batch size of 256. The synthetic training data were generated using Stable Diffusion v2
on NVIDIA A100-80GB GPUs. The number of generated images is consistent with the number of text-image pairs in the
original training set: 560k for COCO, 3.3 million for CC3M, and 12 million for CC12M. Each image was generated with 50
inference steps, balancing quality and computational efficiency. The total generation time is 5 GPU days for COCO, 30
GPU days for CC3M, and 109 GPU days for CC12M. Parallelized generation was employed for larger datasets like CC12M.
Fine-tuning for “Proj for Real” and “Proj for Gen” was performed for 50,000 steps.

Datasets. To evaluate the versatility and effectiveness of our Gen-Real Alignment framework, we employ a comprehensive
suite of datasets across a variety of tasks, including image captioning, zero-shot image retrieval, and zero-shot image
classification. This ensures a broad assessment of our model’s performance across multiple domains and challenges.

• COCO (Lin et al., 2014): The COCO dataset is used for both image captioning and zero-shot image retrieval tasks.
It offers a large and diverse collection of real-world images paired with detailed textual descriptions, serving as a
benchmark for evaluating the alignment of generated and real image modalities.

• Zero-Shot Image Classification: To evaluate the generalization capabilities of our model, we utilize eight well-known
benchmarks, following the setup of the original CLIP (Radford et al., 2021):

– DTD (Cimpoi et al., 2014): Tests the model’s ability to classify textures across various images.
– Stanford Cars (Krause et al., 2013): A dataset focusing on fine-grained classification of car models, used to

assess the model’s capacity to distinguish between visually similar objects.
– SUN397 (Xiao et al., 2010; 2014): A large-scale scene classification dataset used to evaluate scene understanding.
– Food 101 (Bossard et al., 2014): A benchmark used to assess the model’s ability to classify food items from

various cuisines.
– Aircraft (Maji et al., 2013): Used for fine-grained classification of aircraft models, testing the model’s accuracy

in distinguishing similar objects.
– Oxford Pets (Parkhi et al., 2012): A dataset focused on the classification of various pet breeds, including both

dogs and cats.
– Caltech 101 (Fei-Fei et al., 2004): A widely used object recognition dataset covering a variety of general

categories.
– ImageNet 1K (Deng et al., 2009): A benchmark for large-scale object classification, testing the model’s ability to

handle diverse image categories.

13



GMAIL: Generative Modality Alignment for generated Image Learning

Algorithm 1 GMAIL Algorithm: Training and Inference on Generated and Real Images
Require: Datasets of real images Dr = {(xr, yr)}, generated images Dg = {(xg, yg)}, and image pairs D = {(xg, xr)},

pre-trained CLIP models fr and fg , learning rate η, batch size |B|, temperature τ , LoRA parameters.
Ensure: Fine-tuned model fg for generated images, aligned with fr for real images.

1: Initialize: Load the pre-trained CLIP models fr and fg trained on real and generated images, respectively.
2: Gen-CLIP Flow: Aligning Generated and Real Images.
3: for each mini-batch B = {(xg, xr)} from D do
4: Extract generated image features fg(xg) for each xg ∈ B using fg .
5: Extract real image features fr(xr) for each xr ∈ B using fr.
6: Compute cross-modality alignment loss Lalign:

Lalign = − 1

|B|
∑

(xg,xr)∈B

log
exp(sim(fg(xg), fr(xr))/τ)∑

x′
r∈B exp(sim(fg(xg), fr(x′

r))/τ)

7: Apply LoRA updates to minimize Lalign.
8: Update model parameters fg ← fg − η∇fgLalign.
9: end for

10: Alignment with Vision-Language Models for downstream tasks.
11: for each LLM (e.g., from CLIPCap, LLaVA, LLaMA3) do
12: Fine-tune the LLM using the aligned generated and real image embeddings from Dg and Dr, respectively.
13: end for
14: CLIP Flow: VLM Inference on Real Images.
15: for each real image xr for inference do
16: Extract real image features fr(xr) using fr.
17: Use fr(xr) instead fg(xr) for inference the VLM model on real images.
18: end for
19: Return: VLM models with fg trained on generated images, aligned with the real-image model fr.

• CC3M (Sharma et al., 2018) and CC12M (Changpinyo et al., 2021): These large-scale datasets provide millions of
image-caption pairs, allowing us to explore the scalability of our Gen-Real alignment framework. We evaluate our
model’s performance when trained on both real and generated data from these expansive datasets.

• ShareGPT4V: To evaluate long caption retrieval, we use the ShareGPT4V dataset, which includes complex and
descriptive captions associated with both generated and real images. This dataset emphasizes the importance of strong
cross-modal alignment for retrieving long, detailed captions.

Evaluation Metrics. To comprehensively evaluate our framework, we employ task-specific metrics tailored to image
captioning, zero-shot image retrieval, and zero-shot image classification:

• Image Captioning: Performance is assessed using standard metrics such as BLEU@4 (B@4) (Papineni et al., 2002),
METEOR (Denkowski & Lavie, 2014), CIDEr (Vedantam et al., 2014), SPICE (Anderson et al., 2016), ROUGE-L (Lin
& Och, 2004), and Word Mover’s Distance (WMD) (Kusner et al., 2015). These metrics evaluate the quality and
semantic accuracy of generated captions compared to the ground truth.

• Zero-Shot Image Retrieval: We measure both image-to-text and text-to-image retrieval capabilities using Recall@1,
Recall@5, and Recall@10. These metrics assess the model’s ability to correctly retrieve relevant items based on the
provided query, highlighting its cross-modal understanding.

• Zero-Shot Image Classification: Classification performance on unseen categories is evaluated using top-1 accuracy,
which reflects the model’s generalization ability to classify new classes without prior training on those specific
categories.

This experimental setup allows us to thoroughly validate our Gen-Real alignment framework across a wide range of
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Table 12. Computational costs comparisons on COCO training. Our GMAIL introduces a slight increase in memory usage but remains
more efficient on the convergence training time and steps than the baseline of indiscriminate mixing (gen+real) without alignment.

Dual Projection Alignment Synthetic Training Training Memory FLOPs
Data Time (hrs) Steps Usage (GB) (G)

✗ ✗ ✗ 8 50k 24 70.2
✗ ✗ ✓ 12 70k 26 85.5
✓ ✓ ✓ 10 60k 28 85.5

Table 13. Comparison with the same training steps. We compare CLIP trained on real images, fine-tuned CLIP on generated images
without alignment, and ours under COCO training with the same training steps. The best results are indicated in bold.

Dual Projection Alignment Synthetic Data B@4 (↑) CIDEr (↑) SPICE (↑)

✗ ✗ ✗ 32.15 108.35 20.12
✗ ✗ ✓ 35.76 113.42 22.63
✓ ✓ ✓ 37.92 117.6 23.42

tasks, demonstrating its effectiveness in addressing the modality gap between generated and real images and enhancing
performance across diverse vision-language applications.

B. GMAIL Algorithm
In this section, we outline the algorithm that implements the Generative Modality Alignment for generated Image Learning
(GMAIL) framework, incorporating the Gen-CLIP flow for training on generated images and the CLIP flow for inference on
real images. This algorithm also details the cross-modality alignment loss and how we ensure alignment with vision-language
models (VLMs) such as CLIPCap (Mokady et al., 2021), LLaVA (Liu et al., 2023), and LLaMA-3 (Meta, 2024).

Algorithm 1 summarizes the training and inference process for the GMAIL framework, detailing how the model is trained
on generated images using the Gen-CLIP flow, and subsequently applied to real images during inference. The algorithm
also explains how to integrate aligned generated and real data with vision-language models such as CLIPCap, LLaVA, and
LLaMA-3 for downstream tasks.

C. More Discussions on Gen-Real Alignment
In this section, we provide a comprehensive discussion of Gen-Real Alignment. Given training samples having the same
text: real image R, synthetic S, and text T , let us denote our dual encoders as f, g, h for real-encoder, syn-encoder, and
text-encoder, respectively.

Single vs. Dual Modality. In a single-modality scenario (i.e., a single encoder setup where f = g), given training would
reduce distance D(f(R), h(T )) and D(f(S), h(T )), and then D(f(R), f(S)) would be reduced together. However, due to
the nature of synthetic images, there could exist a gap between R and S, such as unnatural artifacts, assuming S contains
spurious features. Therefore, under such approaches to put real and generated images into the same embedding space,
generated artifacts may dominate, causing poor generalization and overfitting to synthetic patterns. Moreover, if the encoder
ignores such different inputs R and S, and produces representations that remain constant and equal, it can lead to “mode
collapse” (LeCun, 2022; Assran et al., 2023), where the model overfits generated patterns, degrading performance on real
data. On this line, we consider a dual-modality scenario, (i.e., dual encoder setup where f ̸= g) to prevent such a problem
caused by reducing a distance D(f(R), f(S)). Here, we instead minimize D(f(R), h(T )) and D(g(S), h(T )), so allowing
a small D(f(R), h(S)), not D(f(R), f(S)). Specifically, the expected role of h is to ignore a synthetic complement of S
and produce representations that remain an intersection of S and R (having the same T ). Such separate mappings of f
and g would allow learning focused on shared characteristics between the real and generated modalities. Thereby treating
generated images as a distinct modality, GMAIL could prevent “mode collapse”, enabling the effective use of synthetic data
to augment real datasets without poor generalization and overfitting to synthetic patterns.

Cross-Modality Alignment Loss. Furthermore, the proposed cross-modality alignment loss aims to directly reduce a
distance D(f(R), h(S)) allowing effective and faster training to convergence. As shown in Table 12, the proposed loss
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Table 14. Quantitative similarity metrics comparisons on COCO. We computed the cosine similarity between paired real and generated
image embeddings without and with alignment on COCO dataset.

Alignment Cosine Similarity (↑)

✗ 0.52
✓ 0.89

Table 15. Multi-modal reasoning and visual-language alignment on MMMU. We evaluated GMAIL’s performance on MMMU
benchmark when integrated with LLaVA. We report the average accuracy on questions with the image context. The best results are bold.

Method Accuracy (%)

LLaVA 44.7
LLaVA + GMAIL (ours) 48.3

reduced training time and steps to convergence. Throughout our extensive experiments, for a given R and S having the
same T , we have demonstrated the effect of minimizing a distance D(f(R), h(S)) which learns shared semantics between
real and generated images while ignoring generated artifacts of S may raise poor generalization on real images.

Empirical Validation of Alignment Loss. Nevertheless, we further conducted an ablation study on the effect of the
cross-modality alignment loss (i.e., the effects of directly reducing D(f(R), h(S))) under the dual encoder setup on COCO
captioning. The results in Table 6 confirm that the alignment loss significantly bridges the modality gap, resulting in
consistent performance improvements.

D. More Experimental Analysis
Computational Costs. We performed additional experiments to compare the computational costs. Table 12 shows the
results, including explicit details on the contributions of the cross-modality alignment loss and dual-model setup. The
additional costs for GMAIL stem from the cross-modality alignment loss, which facilitates aligning the features of generated
and real images in a shared latent space, and the dual-projection setup, which processes the two modalities separately.
Compared to CLIP without the dual projection, our GMAIL introduces a slight increase in memory usage but remains more
efficient on the convergence training time and steps than the baseline of indiscriminate mixing on generative and real data
without the alignment.

Same Training Steps. Here, we have conducted additional experiments with equal training steps for CLIPCap (Mokady
et al., 2021) across all compared methods and included the results in the Table 13. Even with identical training steps, GMAIL
consistently outperforms both baselines, confirming that gains stem from our alignment design, not from additional training.

MMMU Results. We also evaluated GMAIL’s performance on MMMU (Yue et al., 2024), which is a benchmark that
requires multi-modal reasoning and visual-language alignment. Table 15 shows that GMAIL can improve visual grounding
and alignment with LLMs, demonstrating generalization to reasoning-based VLM tasks.

Comparison with Tasks2Sim. Here, we have added experiments comparing Tasks2Sim (Mishra et al., 2022) in Table 16.
Specifically, GMAIL outperforms prior mix-only methods due to explicit modality disentanglement and alignment, rather
than blending synthetic and real data blindly.

Other generative models. We have conducted experiments using FLUX (Labs, 2024), which introduces a more powerful
and differently parameterized generation pipeline compared to Stable Diffusion v2. These additional results in Table 17 allow
us to test GMAIL’s robustness to shifts in generator-specific artifacts. The performance improvements remain consistent
with FLUX, indicating robust alignment across varying artifact styles and photorealism levels.

Qualitative Embeddings Visualization. To further validate the alignment between real and generated data, we conducted
t-SNE (van der Maaten & Hinton, 2008) visualizations and cosine similarity analyses of the embeddings without and with
alignment. Figure 3 shows the t-SNE plots of real and generated embeddings from 1000 samples in the COCO dataset.
Without alignment, real and synthetic embeddings form two distinct clusters, reflecting the modality gap. With alignment
proposed in our GMAIL, the gap between real and synthetic embeddings is significantly reduced, with both modalities
aligning closely.
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Table 16. Comparison to Task2Sim. We report a comparison to Task2Sim (Mishra et al., 2022), which introduced a mixed training
approach (joint usage of real and synthetic data). The best results are indicated in bold.

Method B@4 (↑) CIDEr (↑) SPICE (↑)

Task2Sim 36.65 115.72 23.02
GMAIL (ours) 38.12 119.53 23.75

Table 17. Image generation with FLUX. We replace a generative model from Stable Diffusion v2 to FLUX and perform experiments on
the image captioning task. The best results are indicated in bold.

Method B@4 (↑) CIDEr (↑) SPICE (↑)

FLUX (without alignment) 37.20 117.82 23.40
FLUX + GMAIL (ours) 39.54 122.36 24.15

Quantitative Similarity Metrics. We also quantified the alignment score of the above 1000 samples in the COCO
dataset using cosine similarity between paired real and generated embeddings. The results are shown in Table 14. These
results demonstrate that the alignment loss effectively bridges the Gen-Real gap, ensuring better feature consistency across
modalities. Moreover, without alignment, we observed that the cosine similarity between embeddings of real image-text pairs
and generated image-text pairs was only 0.44 and 0.42, respectively. This empirically demonstrates that the misalignment
between real and generated images is comparable to the gap between images and text embeddings of CLIP models.

E. Qualitative Visualizations
In this section, we provide qualitative visualizations of the generated images used in our experiments. Figures 4, 5, 6, 7, 8
and 9 show examples of images generated by Stable Diffusion (Rombach et al., 2022), alongside their corresponding
real-world counterparts from the COCO dataset (Lin et al., 2014). Our visualizations demonstrate that the generated images
closely resemble real images, capturing key semantic details and structural elements. However, subtle differences in texture
or object placement are occasionally present. These artifacts highlight the importance of our Gen-Real Alignment (GMAIL)
framework, which ensures that these differences do not lead to mode collapse by aligning the feature representations of
generated and real images in the latent space. These visualizations further validate the effectiveness of our alignment
strategy, ensuring that both generated and real data contribute equally to the model’s understanding during inference.
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Figure 3. Qualitative Visualizations of embeddings of real and synthetic images without (Left) and with (Right) alignment. Blue
and red dots denote the embeddings for real and synthetic images, respectively. Our GMAIL with alignment significantly reduced the gap
between real and synthetic images, with both modalities aligning closely in the latent space.

Figure 4. Visualizations of real (Column 1) and generated images (Columns 2-6) using the same caption. Those generated images
generally capture high-level semantics in real images.
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Figure 5. Visualizations of real (Column 1) and generated images (Columns 2-6) using the same caption. Those generated images
generally capture high-level semantics in real images.

19



GMAIL: Generative Modality Alignment for generated Image Learning

Figure 6. Visualizations of real (Column 1) and generated images (Columns 2-6) using the same caption. Those generated images
generally capture high-level semantics in real images.
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Figure 7. Visualizations of real (Column 1) and generated images (Columns 2-6) using the same caption. Those generated images
generally capture high-level semantics in real images.
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Figure 8. Visualizations of real (Column 1) and generated images (Columns 2-6) using the same caption. Those generated images
generally capture high-level semantics in real images.
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Figure 9. Visualizations of real (Column 1) and generated images (Columns 2-6) using the same caption. Those generated images
generally capture high-level semantics in real images.
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