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Abstract

Dataset distillation aims to give models trained on synthetic datasets the same performance
as models trained with complete real datasets. Trajectory matching distillation, as an
efficient dataset distillation method, achieves this goal gradually by accurately matching
the dynamic trajectories of the target dataset and the synthetic dataset during the training
process. Where the training trajectory is composed of the time series parameters of the
agent model, and each time series contains the network parameters of all the layers in
the agent model, i.e., trajectory matching distillation achieves its goal by matching the
network parameters between the target dataset and the synthetic dataset. However, the
variability of the training datasets used by the teacher and student networks can lead to
the problem of difficult alignment of network parameters during the distillation process, so
this paper proposes Difference-Driven Pruning Distillation (DPD), an innovative approach
to pruning the difficult-to-align parameters according to the magnitude of the difference in
parameter comparisons to alleviate the above problem. Comparative experimental results
show that DPD achieves a significant performance improvement, with a greatly reduced
memory footprint and superior performance in several benchmarks.

Keywords: Dataset Distillation,Data Compression,Parameter Pruning.

1. Introduction

With the rapid development of deep learning, researchers have found that for deep neu-
ral network models to achieve ideal performance, they generally require large-scale labeled
datasets and powerful computing power. However, with the continuous growth of data
volume, efficiently storing and processing this data has become a major challenge. This
is particularly true for applications that depend on iterative training with datasets, where
achieving satisfactory results often requires significant time investment, such as in hyperpa-
rameter optimization Maclaurin et al. (2015); Lorraine et al. (2019) and neural architecture
search Ren et al. (2022); Zhao and Bilen (2021). To solve this problem, dataset distillation
has been developed as a data compression technique.

Before the advent of dataset distillation (DD) Wang et al. (2018), coreset selection
Mirzasoleiman et al. (2020); Wang et al. (2024) played a key role in dataset compression.
This method creates a “coreset” by identifying a concise collection of illustrative model
samples from the primary training dataset. During the training process, the model is trained
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only on this small coreset, thus reducing the amount of training data and computational
cost, while avoiding significant performance degradation as much as possible.

However, because the data elements in the coreset are drawn unedited from the source
data and are neither modified nor reworked,the expressive power of this approach is limited,
notably if the coreset has a restricted size, and often struggles to proficiently embody the
variety and intricacy of the source data.

Dataset distillation effectively addresses the shortcomings of coreset selection methods.
Inspired by the classic model distillation approach Hinton et al. (2015), which transfers
knowledge from a complex teacher model (typically a high-performance large model) to a
smaller student model, dataset distillation extends this concept to the data level. It gen-
erates a small-scale yet sufficiently representative “distilled dataset” that can approximate
the entire training dataset (often containing thousands to tens of thousands of examples).
Dataset distillation extends this concept to the data level, generating a small yet sufficiently
representative “distilled dataset” that encapsulates nearly all knowledge from the original
training dataset (typically containing thousands to millions of images). For example, Figure
1 illustrates the encapsulation effect achieved on the CIFAR-10 dataset.

Figure 1: Visualization of synthetic images extracted from the 32 x 32 CIFAR-10 dataset
with IPC = 1. IPC refers to how many images per class (images-per-class).

The process of parameter matching, as an essential optimization direction for dataset
distillation, can be summarized into two stages: (1) Training trajectory: record the network
parameters, i.e., the expert trajectory, when the teacher model trains the target dataset. (2)
Trajectory matching: minimizing the error between the teacher information in the expert
trajectory and the student information obtained from training. In the trajectory training
phase, the teacher network is trained with an extensive and heterogeneous pristine dataset.
In contrast, in the trajectory matching phase, the training of the student network is predi-
cated on a condensed, distilled dataset. It is precisely the variations in the training datasets
employed by the teacher network and the student network that give rise to data heterogene-
ity. This can result in difficulties aligning the parameters of the teacher network and the
student network during the distillation process, potentially preventing the student network
from fully capturing the essence of the teacher network, particularly in terms of data distri-
bution and feature representation. This information gap leads to challenges in parameter
matching, which in turn impacts the distillation effectiveness and the performance of the
student model. To address this issue and achieve parameter alignment between the teacher
network and the student network, it is necessary to process parameters with significant
differences between the two networks.

Given that parametric pruning, as a model pruning method Sucholutsky and Schon-
lau (2019); Deng and Russakovsky (2022), is frequently utilized for model size reduction
and speeding up model training, this paper introduces parametric pruning into trajectory
matching distillation, attempting to solve the problem of difficult alignment of parameters
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between the teacher network and the student network by dynamically pruning the parame-
ters with significant differences between teachers and students, thereby enabling the student
network to better adapt to the complexity and magnitude of synthetic data. This processing
method eliminates secondary or redundant parameters, thereby achieving a more stream-
lined presentation of the student network. At the same time, it also adjusts the matching
relationship between the model and the data, which improves the training effect, generates
a more robust distillation dataset, and ultimately improves the distillation performance
and cross-architecture generalization ability. In addition, from Figure 2, we can visualize
that the memory share of Difference-Driven Pruning Distillation (DPD) during the training
process is always than that of the previous DATM Guo et al. (2023) method, and at the
maximum difference between the two, DPD uses only 2/3 of the memory used by DATM.
This indicates that the DPD method is more efficient in memory usage, and is able to reduce
memory consumption during the same training process.
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Figure 2: Memory usage of DPD and DATM methods throughout the training process when
distilling the CIFAR-10 dataset with IPC=1 setting.

In this study, we introduce a difference-driven dynamic pruning-based approach to tra-
jectory matching distillation, aiming to optimize the trajectory matching distillation process
in terms of improving teacher-student network alignment. Based on the experimental results
conducted, it is indicated that the approach detailed herein can largely achieve parameter
alignment of the teacher network and the student network, and outperforms other SOTA
dataset distillation methods on various datasets, including CIFAR-10, CIFAR-100 and Tiny
ImageNet. Our main contributions are as follows:

e In this paper, the redundant parameters in the student network are effectively reduced
by the pruning technique. This allows the distillation process to reduce the consump-
tion of computational resources while maintaining the key features, thus improving
the training efficiency.

e The structure of the student network was optimized through pruning to better align
it with the teacher network. This enabled the student network to focus on learning
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the key trajectories output by the teacher network, thereby optimizing the effect of
the distillation process.

e The results of the cross-architecture experiment, Section 4.4, and the neural archi-
tecture search experiment, Section 4.5, performed on datasets of different resolutions,
also demonstrate the effectiveness and generalizability of the method.

2. Preliminaries and Related Work

In the past few years, dataset distillation has also yielded a series of achievements, with
various studies extending its application to multiple research domains, including continuous
learning Gu et al. (2024); Yang et al. (2023) and federated learning Xiong et al. (2023);
Song et al. (2023), privacy preservation Dong et al. (2022), and so on. It was initially
conceived and explored by Wang et al. (2018), and at this stage, based on different im-
plementation mechanisms, dataset distillation methods are largely structured around two
technical architectures: meta-learning oriented optimization frameworks and data matching
driven simulation frameworks. These two types of frameworks are fundamentally different
in technical routes and can be categorized into finer-grained technologies based on specific
implementation methods Yu et al. (2023).

In meta-learning frameworks, researchers consider distilled datasets as optimizable hyper-
parameter sets and achieve data refinement by constructing a two-layer optimization struc-
ture, e.g., DD Wang et al. (2018), LD Bohdal et al. (2020), SLDD Sucholutsky and Schonlau
(2019), RTP Deng and Russakovsky (2022). The data matching framework, on the other
hand, skips the explicit meta-optimization process and instead achieves data distillation
through direct alignment of the parameter space or feature space. The core idea is to en-
able synthetic data to produce similar effects as the original training data when influencing
model parameter updates by constructing appropriate matching objectives (e.g., gradient
matching, feature distribution matching, or training dynamics matching).

In addition to directly optimizing the synthetic data instances themselves, in recent
years researchers have proposed more scalable parametric generation paradigms to con-
struct parametric representations of distillation data by introducing latent representation
spaces and neural generators. For example, Such et al. (2021) proposed a deep generative
distillation framework, which employs a noise-to-data generative network architecture and
achieves a compressed representation of key features of the data distribution by jointly
optimizing the generative network parameters in a meta-learning framework.

Among the above optimizations, parameter matching, as a key optimization strategy,
has attracted much attention in recent years, and previous studies have laid the foundation
for our work. Therefore, we will focus on the latest research progress in the direction of
parameter matching.

Trajectory Match The Matching Trajectory Method (MTT) Cazenavette et al. (2022)
was first proposed as a parameter matching method, introducing “expert trajectories” to
direct the distillation of synthetic datasets. Its core idea is to train the synthetic data Dy,
beginning from a common parameter set, such that the results of NV training steps on the
synthetic data Dy, match the results of M steps on the real data D,.,, where N < M.
Where the expert trajectory T* refers to the parameter sequence composed of different
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periods of the model obtained by training a large number of models and the formula is
expressed as T* = {07}, where 0} denotes that in the real data D,., network parameters
at the ¢ th training step of training on it.

During every iteration of the distillation procedure , a trajectory 7* is randomly selected
from a set of expert trajectories {7*}. Subsequently, two parameter points, #; and 07 _,,,
are randomly chosen from this trajectory to serve as the starting point and target point
for matching. Finally, the synthetic dataset Dy, is boosted to ensure that the student
model’s output at the parameter point §i+ ~ approximates the expert output at the target
parameter point 67, ,, as closely as possible. The optimization objective is the normalized

squared L2 error, expressed as:

Y
107 = 07,0 113
Where N and M are preset hyperparameters and the denominator is normalized by the

distance moved by the expert to the Ly error, (/9\i+ N is obtained from optimization of adaptive
learning rate o and cross-entropy ( CE ) loss ¢ in the inner loop:

é\z’+N+1 = gi-i-N - av£(§i+N7 Dsyn)- (2)

Memory optimization TESLA Cui et al. (2023), on the other hand, found that MTT
could not be extended to massive datasets like ImageNet-1K, due to the high memory con-
sumption when optimizing by unfolding the SGD steps. To solve this problem, TESLA
proposed a process that precisely calculates the unfolding gradient at a constant memory
complexity, making the memory complexity of calculating the MTT loss independent of
step i. A novel soft label allocation (SLA) method is proposed, which initializes soft labels
using logits L; = fg«(x;). These soft labels are output by the pre-trained model fy«, which
is trained on data randomly selected from expert trajectories, significantly improving con-
vergence.

Trajectory optimization FTD Du et al. (2023) conducted further analysis on the flat
trajectory, revealing that although the synthetic dataset S obtained through gradient match-
ing possesses a certain degree of generalization capability and can adapt to various initial
weights, its resilience to error perturbations remains limited. The existence of cumulative
trajectory error was then demonstrated to be the convergence weight error caused by the
difference in starting points between the training and testing phases. The solution pro-
cess was changed from finding the minimization solution of Lo norm of the approximate
initialization error in the buffer phase to finding the maximum eigenvalue equivalent to
minimizing the Hessian matrix and using GSAM Zhuang et al. (2022) to help solve the
expression to find the flattest possible trajectory of the teacher.

Trajectory Aligned Building upon the foundation of the former work, DATM Guo et al.
(2023), as an SOTA method for dataset distillation, demonstrated that the size of the syn-
thetic dataset (measured by IPC) impacts a model’s ability to learn patterns of varying
difficulty. Consequently, DATM further proposed a difficulty-aligned trajectory matching



Cao Liu ZHANG KAN

approach to scale the size of the refined dataset to match the difficulty of the synthesis
pattern. The core of this approach lies in regulating the complexity of generated patterns
by constraining the scope of trajectory matching. Additionally, DATM observes that labels
initialized using methods like TESLA may be incorrect (i.e., the target class is not the
argmax of the logit scores). To address this issue and avoid mislabeled data, DATM selects
samples correctly classified by the model fg« to perform real-data filtering, using them to
construct the subset Dg,;. Finally, samples are randomly selected from Dy,; to initialize

Dsyn = {(4,9; = softmax(L;))}.

From previous related work, even DATM, which has shown some advantages in dataset
distillation, has neglected the treatment of irrelevant feature activation and redundant com-
putation and failed to select and optimize model parameters effectively in distillation. If
the model uses too many redundant parameters in the training process, it may learn some
irrelevant patterns or noise, which affects the learning effect of the synthetic dataset, which
not only increases the training time but also leads to the difficulty of model generalization.
Therefore, this paper introduces the difference-driven dynamic pruning method based on
the dataset distillation to try to solve the above problems.

3. Methodology

In Section 3.1 we analyze the feasibility of the pruning method applied to trajectory match-
ing distillation through theory. Next, in Section 3.2 we describe the concrete implementation
of the trajectory matching distillation method based on difference-driven dynamic pruning
and show the concrete implementation process in the form of pseudo-code.

3.1. Theoretical analysis

The pruning technique projects the trajectory of the teacher model 7; into a sparse subspace
TP with much lower dimensions than the original space by removing redundant or low
contributing parameters. That is, the pruning can be viewed as a mapping:

TP = 1(T;), ILR? — RF(E < d),
which need to be satisfied
Tt = TP"2 < €| Tila, e <1,

After pruning, the student model only needs to match the sparsified teacher trajectory
TP instead of the original high-dimensional 7;. This allows the model’s training process
to reduce computational complexity while maintaining the learning of key information,
especially in the environment of multiple datasets and finite sample learning. Because of
this, the pruned trajectory matching distillation method has a significant advantage in
optimization efficiency.

In Table 1 we also show the difference in computational complexity and efficiency be-
tween traditional dataset distillation and pruned trajectory-matched distillation by com-
paring the key metrics of parameter space dimensionality, dynamic system complexity, and
convergence speed.
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Table 1: Pruning efficiency gain analysis.

Traditional Pruned
Parameter Space R? Rk
Dynamic Complexity Match all modes® Match dominant modes
Convergence Rate O(1/+/d) O(1/Vk)

! In neural network training, large eigenvalue directions (dominant
modes) correspond to parameter variations that significantly affect
the loss function, and small eigenvalue directions (secondary modes)
may be noisy or redundant parameters.

3.2. Realization

We still use the most commonly used two-layer optimization for dataset distillation to
obtain the optimal synthetic dataset. The goal of internal optimization is to make the
student model fit the training data as well as possible on the synthetic dataset, and the
purpose of external optimization is to construct the optimal synthetic dataset.

In the external for loop, at each iteration, a parameter, T— < ¢ < T, is randomly
selected within the restricted matching range, and 67 and 6}, ,, are sampled from the
expert trajectory as the start parameter and the target parameter for the current match.
Considering that the expert parameter trajectory may contain redundant information in its
later stages, we limit the step size to not exceed the upper bound I, thereby truncating the
trajectory and utilizing only the information-rich portion. In the internal loop, a network
that best fits the synthetic dataset, i.e., éi+N, is obtained with the help of the formula 2.
After the inner loop, the parameters are pruned and the pruning methodology process has
the following three steps:

1. Flatten the parameters.
Flatten the teacher network parameters 0, ,, and student network parameters éH N
into the following one-dimensional tensors (where a represents the total number of
parameters) to enable element-wise comparison.

o = [tiems tie a2y o tik Moal (3)

0iyN = [Si4N,1, Si+-N,25 - Si+N,a] (4)

2. Difference measures.
D (i.e., differences between student and teacher parameters) was calculated for each
pair of corresponding parameters using the Lo paradigm (or some other method). We
also compared the different metrics methods and the effects are shown in Section 4.3.

a

D = 6 ar — Oirnv ll2= | > (tivars — Sitn)? (5)
7j=1
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3. Pruning.
According to the calculated difference D, the parameters are sorted in descending
order according to the index. According to the pruning_rate, the indexes of the pa-
rameters that need to be pruned are filtered out, so that they can be pruned according
to the index position. The number of parameters to be pruned is:

b = |a X pruning_rate], (6)

where pruning_rate is a hyperparameter used to represent the pruning rate. Finally,
the result of the remaining parameters after pruning is:

Foar = [tiear s tisnr2’s o tigar ] (7)
§+N = [8;+N,17S;+N,2’ ""S;—i—N,c] (8)
07 = [th1,th o tis] (9)

where ¢ = a — b, denotes the number of remaining parameters. Our proposed pruning
method is summarized visually in Figure 3.

—_> Teacher parameter pruning process

Student parameter pruning process

—_> Direction of incremental difference
o
Oim e —> [ ti+M,1rti+M,2'---:ti+M,a] [ tisma' tism2's o tim e’ ]
275\ \ ———————— . /1
Flattening Measure [ dy,dy, ..., d, ] e
Pruning
Bron ¢ 2 T Semt' Seanz s Seme’
@ o o0

Figure 3: Alignment Process for Pruning Teacher and Student Parameters Based on Dif-
ference Metrics.

After pruning, the matching loss is computed using formula 1. Backpropagation is
performed to calculate gradients, and gradient descent is employed to progressively adjust
the values of synthetic data x; and labels y;. This process yields the synthetic dataset
corresponding to the minimum loss and the final learning rate.

In the internal for loop, forward propagation is first performed to pass the input data
using the network to compute the resulting values and obtain the loss. Then, based on
the discrepancy between the predicted values and the actual labels, the loss value is ob-
tained. Subsequently, through backpropagation, the gradients of the loss function regarding
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each parameter are computed from the output layer back to the input layer. Using these
gradients, the weights of the network are updated by an optimization algorithm (e.g., gra-
dient descent). After many iterations of the internal for loop, a network that best fits the
synthetic dataset is finally obtained, i.e., éHN. We detail the DPD distillation process in
Algorithm 1.

4. Experiments

A comprehensive experimental evaluation was undertaken to assess the efficacy of the DPD
method. Initially, DPD was evaluated on a range of datasets with varying resolutions, and
its performance was benchmarked against leading contemporary methods. Subsequently,
cross-architecture experiments were performed to confirm the generalizability of the syn-
thetic datasets across diverse network architectures. Furthermore, ablation studies were
carried out to comprehensively illustrate DPD’s performance gains and to analyze the in-
fluence of hyperparameters on the outcomes. Finally, the generated synthetic dataset was
applied to Neural Architecture Search (NAS), demonstrating its robustness and consistency
in this important application.

4.1. Experimental Setup

Datasets To thoroughly assess the DPD model, we conduct experiments on a range of
established datasets. These include CIFAR-10 and CIFAR-100, both comprised of 32x32
color images, but differing in their number of classes (10 and 100, respectively). Further-
more, we utilize Tiny ImageNet, a more complex dataset featuring 200 classes of 64x64
images, and structured with separate training, validation, and testing sets.
Implementation Details For the generation of expert trajectories, the approach of FTD
is followed and its tuning of hyperparameters is retained. Although the distillation process
stabilizes as the number of internal loops increases, this is reached at the expense of increased
training costs and memory demands. Therefore, we employ a sequential generation strategy,
matching only the early parameters of the trajectory during the initial distillation phase to
capture most of the critical information from the real data, and after enough information
is embedded into the synthetic data, we gradually match the later parameters to learn
some edge cases or harder-to-classify instances in the distribution. Distillation becomes
more stable with the implementation of this strategy. To ensure the effectiveness of dataset
distillation across different IPC scenarios, the difficulty of the generation mode must be
adjusted, so the DATM approach is used to control the difficulty of generating patterns by
limiting the range of trajectory matching. Use the real dataset to filter out samples that the
model can correctly classify fyp« and randomly initialize D,,, with these samples. In terms
of equipment, due to our limited experimental computing budget, we were only able to find
GPUs that were accessible within our budget. Therefore, our experiments were conducted
on four RTX3090 GPUs.

Network Architectures In terms of networks, we are consistent with previous work in
that we use instance-normalized networks by default, and batch-normalized networks are
used with a “-BN” suffix to the name (e.g., ConvNet-BN). Where not otherwise specified,
for CIFAR-10 and CIFAR-100, ConvNet with 3 layers was used for distillation, while for
Tiny ImageNet, ConvNet with a depth of 4 was used for distillation. We also used ResNet
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He et al. (2016), VGG Simonyan and Zisserman (2014), and AlexNet Krizhevsky et al.
(2017) for cross-architecture experiments, as described in Section 4.4.

Algorithm 1 Difference-Driven Pruning Distillation
Input
o {7T*}: set of expert parameter trajectories

e N: update times of the surrogate network in each inner optimization

e M: update times between the start and target expert parameters

e 7T—: Minimum start epoch, T: current epoch, T": Maximum start epoch
e [: interval for expanding the sampling range

Initialize synthetic dataset Dgyp ~ Dsyp (Only correctly predicted samples)
for each distillation step do

Randomly sample an expert trajectory 7* € {7T*} with 7* = {6} }OT
Choose random start epochAWhere T-<i<T

Initialize student network: 0; = ¢ (target params 67, ,,)
forn=0to N —-1do

‘ Sample batch b; 1, ~ Dsyp Oisni1 = Oirn — aVL i n,bivn)

end

Prune according to formula (3)-(9)
0 =050 112

Calculate loss £ = M
07 =07 ar I3

Update Dy, and o with £

if (step%I ==0) and (T <T*) then
| T=T+1

end

end
Output: Distilled dataset Dy, and learning rate «

4.2. Main Results

To evaluate the performance of the DPD method, we conducted experiments on the CIFAR-
10, CIFAR-100, and Tiny ImageNet datasets, examining the impact of varying data scales
(IPC = 1/10/50). We compared DPD against a suite of classical distillation methods,
including DC Zhao et al. (2020), DM Zhao and Bilen (2023), KIP Nguyen et al. (2020),
MTT, TESLA, FTD, and DATM. The results in Table 2 demonstrate that DPD achieves
significantly superior performance compared to other methods on both the CIFAR and Tiny
ImageNet datasets. Regardless of the IPC size, our method is effective on the CIFAR-10
dataset. For example, DATM is improved by 1.1% on the CIFAR-10 datasets with IPC =
50.
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Table 2: Results comparing the performance of ConvNet for distillation and evaluation with
other distillation methods trained on the CIFAR and Tiny ImageNet datasets. We
reproduce the DATM results and cite results from other baselines reported in the
DATM paper. -’ indicates that previous work did not report their results on that
dataset. TI is the abbreviation of Tiny ImageNet and AD is the abbreviation of
All Dataset.

Dataset IPC Random DC DM KIP MTT TESLA FTD DATM DPD AD
Zhao Zhao  Nguyen Cazenavette Cui Du Guo (Ours)
et al. and et al. et al. et al. et al. et al.
(2020) Bilen (2020) (2022) (2023) (2023) (2023)
(2023)

1 15.4+40.3 28.3+0.5 26.0+0.8 49.9+0.2 46.2+0.8 48.5+0.8 46.0+0.4 46.1+0.3 47.010.5
CIFAR-10 10 31.0£0.5 44.9+0.5 48.9+0.6 62.7£0.3 65.4+0.7 66.4+£0.8 65.3+0.3 63.7£0.5 64.3+0.5 84.0£0.1

50 50.6+0.3 53.94+0.5 63.0+£0.4 68.6+0.2 71.6+0.2 72.6+£0.7 73.2+0.2 73.0+0.2 74.140.5

1 42403 12.8+0.3 11.440.3 15.7+£0.2 24.3+0.3 24.840.4 24.4+0.4 27.9+0.2 28.61+0.4
CIFAR-100 10 14.6£0.5 25.2+0.3 29.7+0.3 28.3+0.1 39.7+£0.4 41.7+0.3 42.54+0.2 47.2+0.4 47.6+0.3 55.6+0.1

50 33.4+0.4 - 43.6+0.4 - 47.7+£0.2 47.940.3 48.5+0.3 55.0+0.2 55.81+0.2
1 1.4£0.1 - 3.9£0.2 - 8.84+0.3 - 10.540.2 17.1+£0.3 17.6+0.2

TI 10 5.040.2 - 12.940.4 - 23.2+0.2 - 23.4+£0.3 31.1£0.3 31.940.2 37.0+0.1
50 15.0£0.4 - 24.1£0.3 - 28.0£0.3 - 28.2+0.4 39.7£0.3 40.840.2

4.3. Parameter and Ablation Studies

The comparison between the different difference metric methods obtained and the results
with the SOTA method DATM are shown in Figure 4(a) for the CIFAR-10 dataset distilled
using the 3-layer ConvNet with the settings of IPC = 1 and pruning_rate = 0.1. The
results are found to be most significant when the difference metric method is abs. The
effect of pruning rate was again explored by setting pruning_-method = abs under the
same configuration, and a grid search was used to obtain the value of pruning_rate in
the set {0.05,0.075,0.1,0.125,0.15}, and the experimental results showed that the effect of
pruning_rate was most significant when pruning_rate = 0.1, there are better results and
the performance results are shown in Figure 4(b).

pruning_method/IPC=1 pruning_rate/IPC=1
48 50 == 0.05
abs —~ 0075
46 =i -2 - 0.1
> i > 45
g - ;‘;”TS"\;‘ g_ = 0.125
3 e J
ERE 3c —— 0.15
Q Q
< < 40
42
40 T T T 1 35 T T T 1
0 5 10 (] 5 10
Step(103) Step(103)
(a) (b)

Figure 4: Comparison of different methods of measuring variance.
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Such a result is because when the pruning_rate is large, a high pruning rate can lead
to an oversimplification of the model, thus failing to capture important features or patterns
in the data. This will cause the model’s expressive power to be limited, which in turn does
not effectively fit the training data, ultimately resulting in underfitting. Correspondingly,
when the pruning_rate is on the small side, overfitting occurs due to a low pruning rate.
The values of pruning_rate for all other configurations were determined by means of a grid
search. More hyperparameter settings are shown in Table 3.

To further verify the effect of individual pruning components, under different IPC Set-
tings, we performed distillation on the CIFAR-10 dataset using a 3-layer ConvNet with
the default pruning Settings. As shown in the results in Table 4, the distillation effect of
applying the pruning component alone is also relatively stable and can bring performance
improvements to the previous methods.

Table 3: Hyperparameter settings for different datasets and IPCs.

Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
1 10 50 1 10 50 1 10 50
IPC 1 10 50 1 10 50 1 10 50
N 80 8 80 40 80 80 60 60 80
M 2 2 2 3 2 2 2 2 2
T 0 0 0 0 0 20 0 10 40
T 4 10 2 10 30 70 15 50 70
T+ 4 20 40 20 50 70 20 50 70
I ~ 100 100 100 100 - 400 - -
Learning Rate
(Labal) 5 2 2 10 10 10 10 10 10
Learning Rate 00 100 1000 1000 1000 1000 10000 100 100
(Pixels)

pruning_rate 0.1 0125 0.1 0.1 0.1 0.1 0.125 0.1 0.1

4.4. Cross-Architecture Generalization

Since different model architectures have different representation capabilities and structural
characteristics, this mismatch may cause performance loss when migrating across architec-
tures. Therefore, in this study, we explore the performance of DPD across architectures.

Table 4: Comparison of the effect of applying the pruning component and not applying the
pruning component method under different IPC settings, the '+’ after the method
represents the pruning component used.

IPC MTT MTT+ TESLA TESLA+ FTD FTD+

1 45.60 46.80 48.12 48.60 46.20 46.30
10 64.50 65.28 65.98 66.78 64.38 65.48
50 71.20 72.30 71.67 72.50 72.94 73.16
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The DPD method was thoroughly assessed using the CIFAR-10 benchmark dataset. For
the experimental setup, three typical network architectures, ResNet, VGG, and AlexNet,
were used for testing and the IPC was set to 50. For the synthetic dataset, a 3-layer
convolutional neural network (ConvNet) was used for data extraction. As shown in Table
5, DPD demonstrates significant advantages through comparison experiments with the three
baseline methods.

Table 5: Cross-architecture generalization results using ConvNet trained on CIFAR-100,
IPC = 50. Replicated the DATM results and quoted from the DATM paper for
MTT and FTD.

Method ConvNet ResNetl8 VGGI11 AlexNet

MTT 45.68 42.56 41.22 40.29
FTD 48.90 46.65 43.24 42.20
DATM 54.38 50.80 44.67 44.90

DPD(Ours) 55.16 52.47 45.26 45.23

4.5. Neural Architecture Search (NAS)

NAS is a method for automatically designing neural network architectures. The core of
NAS lies in exploring various possible combinations of network structures to identify the
architecture best suited for a specific task. However, evaluating each candidate architecture
typically requires training on large datasets, resulting in extremely high computational costs.
Data set distillation technology effectively reduces the training data volume by directly
generating small subsets containing key information, thereby providing an efficient pathway
for accelerating architecture evaluation in NAS.

Table 6: Top-k shows the Spearman rank correlation coefficients for the top 5, 10, and 20
searches on the synthetic and real datasets (1.00 is the best). The time column
represents the total time of the entire neural architecture search process.

Method top-5 top-10 top-15 Time(h) Images No.

Real 1.00  1.00 1.00 113.4 50000
DATM 0.83  0.67 0.58 5.8 500
DPD(Ours) 0.86 0.79 0.64 5.8 500

To examine the DPD method’s ability to generalize across different architectural de-
signs, we implemented NAS on CIFAR-10 with IPC set to 50. A search space containing
720 ConvNet was constructed by varying five types of parameters: width, depth, normaliza-
tion mode, activation function, and pooling mode Bilen (2021). Each ConvNet undergoes
training utilizing the proxy dataset, with its performance subsequently validated on the
complete test set. Since the top-ranked architectures are more important, the top 20 archi-
tectures in terms of test accuracy are selected. The top 5, 10, and 20 ranked architectures
are distilled from the dataset, and their search ranking correlations with the synthetic and
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real datasets are used as evaluation metrics. Spearman’s rho is employed to quantify the
alignment between evaluation outcomes derived from the proxy and real datasets, effectively
assessing their consistency.

According to the results in Table 6, DPD has a higher correlation than DATM regardless
of the ranking. Especially at top-5, it possesses a correlation of 0.86, which is closer to the
real dataset. This demonstrates that DPD can obtain a more stable synthetic dataset,
exhibiting excellent universality for the NAS process.

5. Conclusion and Future Works

This paper addresses trajectory matching distillation with a new method. This method, by
combining pruning with dataset distillation, can help the model better transfer knowledge
between synthetic datasets and real datasets, avoiding compromising the model’s real-world
performance due to overfitting on synthetic data. Cross-architecture experiments have also
confirmed that DPD has good generalization ability in different architectures.

Although the proposed pruning strategy boosts the training performance of the dataset
distillation method based on optimization, when dealing with extremely large-scale datasets,
the computational burden becomes significant. For example, datasets like ImageNet-1K,
where the image size and the number of categories increase significantly, will slow down
the entire pruning rate, and thereby make the entire distillation process sluggish. We will
continue to explore and optimize data set distillation methods in future work.
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