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Abstract

Learning robust and generalizable world models is crucial for enabling efficient1

and scalable robotic control in real-world environments. In this work, we in-2

troduce a novel framework for learning world models that accurately capture3

complex, partially observable, and stochastic dynamics. The proposed method4

employs a dual-autoregressive mechanism and self-supervised training to achieve5

reliable long-horizon predictions without relying on domain-specific inductive6

biases, ensuring adaptability across diverse robotic tasks. We further propose a7

policy optimization framework that leverages world models for efficient training8

in imagined environments and seamless deployment in real-world systems. This9

work advances model-based reinforcement learning by addressing the challenges of10

long-horizon prediction, error accumulation, and sim-to-real transfer. By providing11

a scalable and robust framework, the introduced methods pave the way for adaptive12

and efficient robotic systems in real-world applications.13
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Figure 1: Autoregressive imagination, ground-truth simulation, and real-world deployment of RWM.
For each environment, the top row showcases the RWM autoregressively predicting future trajectories
in imagination. The second row visualizes the ground truth evolution in simulation. Specifically for
the ANYmal D quadruped, the framework achieves robust policy optimization through MBPO-PPO,
enabling zero-shot deployment on hardware.
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1 Introduction14

Robotic systems have achieved remarkable advancements in recent years, driven by progress in rein-15

forcement learning (RL) [1, 2] and control theory [3, 4]. A prevalent limitation in many approaches16

is the lack of adaptation and learning once the policy is deployed on the real system [5, 6, 7, 8]. This17

results in underutilization of the valuable data generated during real-world interactions. Robotic18

systems operating in dynamic and uncertain environments require the ability to continually adapt their19

behavior to new conditions [9]. The inability to exploit real-world experience for further learning20

restricts the system’s robustness and limits its ability to handle evolving scenarios effectively. Truly21

intelligent robotic systems should operate efficiently and reliably using limited data, adapting to real-22

world conditions in a scalable manner [10, 11]. While model-free RL algorithms such as Proximal23

Policy Optimization (PPO) [2] and Soft Actor-Critic (SAC) [1] have demonstrated impressive results24

in simulation, their high interaction requirements make them impractical for real-world robotics.25

Sample-efficient methods are therefore essential for leveraging the information in real-world data26

without extensive environment interactions [12, 13].27

A promising solution is the use of predictive models of the environment, commonly referred to28

as world models [14, 15]. World models simulate environment dynamics to enable planning and29

policy optimization, often referred to as learning in imagination [16]. These models have shown30

success across diverse robotic domains, including manipulation [17, 18], navigation [11], and loco-31

motion [10]. However, developing reliable and generalizable world models poses unique challenges32

due to the complexity of real-world dynamics, including nonlinearities, stochasticity, and partial33

observability [19, 20]. Existing approaches often incorporate domain-specific inductive biases, such34

as structured state representations or hand-designed network architectures [21, 22, 23], to improve35

model fidelity. While effective, these methods are limited in their scalability and adaptability to36

novel environments or tasks. In contrast, a general framework for learning world models without37

domain-specific assumptions has the potential to enhance generalization and applicability across a38

wide range of robotic systems and scenarios.39

In this work, we present a novel approach for learning world models that emphasizes robustness40

and accuracy over long-horizon predictions. Our method is designed to operate without handcrafted41

representations or specialized architectural biases, enabling broad applicability to diverse robotic42

tasks. To evaluate the utility of these learned models, we further propose a policy optimization method43

using PPO and demonstrate successful deployment in both simulated and real-world environments.44

To the best of our knowledge, this is the first framework to reliably train policies on a learned neural45

network simulator without any domain-specific knowledge and deploy them on physical hardware46

with minimal performance loss.47

Our contributions are summarized as follows: (i) We introduce a novel network architecture and48

training framework that enables the learning of reliable world models capable of long autoregressive49

rollouts, a critical property for downstream planning and control. (ii) We provide a comprehensive50

evaluation suite spanning diverse robotic tasks to benchmark our method. Comparative experiments51

with existing world model frameworks demonstrate the effectiveness of our approach. (iii) We52

propose an efficient policy optimization framework that leverages the learned world models for53

continuous control and generalizes effectively to real-world scenarios with hardware experiments.54

By addressing the challenges associated with learning world models, this work contributes toward55

bridging the gap between data-driven modeling and real-world deployment. The proposed framework56

enhances the scalability, adaptability, and robustness of robotic systems, paving the way for broader57

adoption of model-based reinforcement learning in real-world applications. Supplementary videos58

for this work are available at https://sites.google.com/view/neurips2025-rwm/home.59

2 Related work60

2.1 World Models for Robotics61

World models have emerged as a cornerstone in robotics for capturing system dynamics and enabling62

efficient planning and control through simulated trajectories. A prominent application of world63

models is in robotic control, where dynamics models are used to describe real-world dynamics for64

policy optimization [24]. Extensions to vision-based tasks have been realized through visual foresight65

techniques [18, 25, 17], which learn visual dynamics for planning in high-dimensional sensory spaces.66
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Similar ideas are applied to train RL agents in such world models aiming to fully replicate real67

environment interactions [14, 26]. These approaches underline the versatility of world models in68

tasks requiring rich perceptual inputs.69

To improve the generalization of black-box neural network-based world models beyond the train-70

ing distribution, many works incorporate known physics principles or state structures into model71

design, addressing potential limitations in control performance. Examples include foot-placement72

dynamics [21], object invariance [22], granular media interactions [27], frequency domain param-73

eterization [23], rigid body dynamics [20], and semi-structured Lagrangian dynamics models [28].74

While these methods demonstrate impressive results, they often require strong domain knowledge75

and carefully crafted inductive biases, which can restrict their scalability and adaptability to diverse76

robotic applications. Latent-space dynamics models offer an alternative by abstracting the state space77

into compact representations, enabling efficient long-horizon planning. Deep Planning Network78

(PlaNet) [15] and its successor Dreamer [29, 11, 30] exemplify this trend, achieving state-of-the-art79

performance in continuous control and visual navigation tasks. These frameworks have been ex-80

tended to real-world robotics [19, 31], demonstrating their potential in both simulation and hardware81

deployment.82

2.2 Model-Based Reinforcement Learning83

Model-Based Reinforcement Learning (MBRL) has emerged as a powerful approach to address the84

limitations of model-free reinforcement learning, particularly in scenarios where sample efficiency and85

safety are critical. Unlike model-free methods, which learn policies directly from interactions with the86

environment, MBRL leverages a learned model of the environment to simulate interactions, enabling87

more efficient and safer policy learning. One of the pioneering methods in MBRL is Probabilistic88

Ensembles with Trajectory Sampling (PETS), which uses an ensemble of probabilistic neural networks89

to model the environment dynamics [12]. Building on the idea of latent-space modeling, PlaNet90

leverages a latent dynamics model to plan directly in a learned latent space [15]. Dreamer extends91

the concept by incorporating an actor-critic framework into the latent dynamics model, enabling the92

simultaneous learning of both the dynamics model and the policy [29, 11, 30]. Variations on the93

architectural design also see success in improving generation capabilities of such latent dynamics94

models with autoregressive transformer [32] and the stochastic nature of variational autoencoders [33].95

Recent advancements in this area include TD-MPC and TD-MPC2, which integrate model-based96

learning with MPC to achieve high-performance control in dynamic environments [34, 35, 36].97

Recognizing the strengths of both model-based and model-free methods, several hybrid approaches98

have been developed to combine the sample efficiency of MBRL with the robustness of model-99

free reinforcement learning. One notable example is Model-Based Policy Optimization (MBPO),100

which uses a model-based approach for planning and policy optimization but refines the policy101

using model-free updates [13]. It emphasizes selectively relying on the learned model when its102

predictions are accurate, thus mitigating the negative effects of model inaccuracies. Building on103

similar principles, Model-based Offline Policy Optimization (MOPO) extends the framework to104

the offline setting, where learning is conducted entirely from previously collected data without105

further environment interaction [37]. In contrast to using zeroth-order model-free reinforcement106

learning for policy optimization, first-order gradient-based optimization is used to improve policy107

learning [38, 39]. This allows for more efficient and precise policy updates, particularly in complex,108

high-dimensional environments, where accurate gradient information is crucial for performance. Our109

framework extends MBPO by integrating it with PPO over extensive autoregressive rollouts, making110

it particularly effective for complex robotic control tasks.111

3 Approach112

3.1 Reinforcement Learning and World Models113

We formulate the problem by modeling the environment as a Partially Observable Markov Decision114

Process (POMDP) [40], defined by the tuple (S,A,O, T,R,O, γ), where S, A, and O denote the115

state, action, and observation spaces, respectively. The transition kernel T : S × A → S captures116

the environment dynamics p (st+1 | st, at), while the reward function R : S × A × S → R maps117

transitions to scalar rewards. Observations ot ∈ O are emitted according to probabilities p (ot | st),118

governed by the observation kernel O : S → O. The agent seeks to learn a policy πθ : O → A that119
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maximizes the expected discounted return Eπθ

[∑
t≥0 γ

trt

]
, where rt is the reward at time t and120

γ ∈ [0, 1] is the discount factor.121

World models [14] approximate the environment dynamics and facilitate policy optimization by122

enabling simulated environment interactions in imagination [16]. Training typically involves three123

iterative steps: (1) collect data from real environment interactions; (2) train the world model using124

the collected data; and (3) optimize the policy within the simulated environment produced by the125

world model.126

Despite the success of existing frameworks in achieving tasks in simplified settings, their application127

to complex low-level robotic control remains a significant challenge. To address this gap, we128

propose Robotic World Model (RWM), a novel framework for learning robust world models in129

partially observable and dynamically complex environments. RWM builds on the core concept of130

world models but introduces architectural and training innovations that enable reliable long-horizon131

predictions, even in stochastic and partially observable settings. By incorporating historical context132

and autoregressive training, RWM addresses challenges such as error accumulation and partially133

observable and discontinuous dynamics, which are critical in real-world robotics applications.134

3.2 Self-supervised Autoregressive Training135

To address the inherent complexity of partially observable environments, we propose a self-supervised136

autoregressive training framework as the backbone of RWM. This framework trains the world model137

pϕ to predict future observations by leveraging both historical observation-action sequences and its138

own predictions, ensuring robustness over extended rollouts.139

The input to the world model consists of a sequence of observation-action pairs spanning M his-140

torical steps. At each time step t, the model predicts the distribution of the next observation141

p (ot+1 | ot−M+1:t, at−M+1:t). Predictions are generated autoregressively: at each step, the pre-142

dicted observation o′t+1 is appended to the history and combined with the next action at+1 to serve143

as input for subsequent predictions. This process is repeated over a prediction horizon of N steps,144

producing a sequence of future predictions. The predicted observation k steps ahead can thus be145

written as146

o′t+k ∼ pϕ
(
· | ot−M+k:t, o

′
t+1:t+k−1, at−M+k:t+k−1

)
. (1)

A similar process is also applied to predict privileged information c, such as contacts, providing147

an additional learning objective that implicitly embeds critical information for accurate long-term148

predictions. Such a training scheme introduces the model to the distribution it will encounter at test149

time, reducing the mismatch between training and inference distributions. Overall, the model is150

optimized by minimizing the multi-step prediction error:151

L =
1

N

N∑
k=1

αk
[
Lo

(
o′t+k, ot+k

)
+ Lc

(
c′t+k, ct+k

)]
, (2)

where Lo and Lc quantify the discrepancy between predicted and true observations and privileged152

information, and α denotes a decay factor. This autoregressive training objective encourages the153

hidden states to encode representations that support accurate and reliable long-horizon predictions.154

Training data is constructed by sliding a window of size M +N over collected trajectories, providing155

sufficient historical context for prediction targets. To improve gradient propagation through autore-156

gressive predictions, we apply reparameterization tricks to enable effective end-to-end optimization.157

By incorporating historical observations, RWM captures unobservable dynamics, addressing the158

challenges of partially observable and potentially discontinuous environments. The autoregressive159

training mitigates error accumulation, a common issue in long-horizon predictions, and eliminates the160

need for handcrafted representations or domain-specific inductive biases, enhancing generalization161

across diverse tasks. This process is illustrated in Fig. 2a, in contrast to the teacher-forcing pipeline162

in Fig. 2b, which is commonly adopted to train many popular architectures [29, 41]. Specifically,163

teacher-forcing can be viewed as a special case of autoregressive training with forecast horizon164

N = 1, which boosts training with higher parallelization.165

While the proposed autoregressive training framework can be applied to any network architecture,166

RWM utilizes a GRU-based architecture for its ability to maintain long-term historical context167

while operating on low-dimensional inputs. The network predicts the mean and standard deviation168
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(b) Teacher-forcing training.

Figure 2: Comparison of training paradigms for world models with an example of a history horizon
H = 3. (a) Autoregressive training operates with an example of a forecast horizon N = 2, leveraging
historical data and its own predictions for long-horizon robustness. The dashed arrows denote the
sequential autoregressive prediction steps. (b) Teacher-forcing training can be viewed as a special
case of autoregressive training with a forecast horizon N = 1, using ground truth observations for
next-step predictions to optimize parallelization but limiting robustness to error accumulation.

of a Gaussian distribution describing the next observation. Our framework introduces a dual-169

autoregressive mechanism: (i) Inner autoregression updates GRU hidden states autoregressively170

after each historical step within the context horizon M . (ii) Outer autoregression feeds predicted171

observations from the forecast horizon N back into the network. This architecture, visualized in172

Fig. S6, ensures robustness to long-term dependencies and transitions, making RWM suitable for173

complex robotics applications.174

3.3 Policy Optimization on Learned World Models175

Policy optimization in RWM is conducted using the learned world model, following a framework176

inspired by Model-Based Policy Optimization (MBPO) [13] and the Dyna algorithm [42]. During177

imagination, the actions are generated recursively by the policy πθ conditioned on the observations178

predicted by the world model pϕ, which is further conditioned on the previous predictions. The179

actions at time t+ k can thus be written as180

a′t+k ∼ πθ

(
· | o′t+k

)
, (3)

where o′t+k is drawn autoregressively according to Eq. 1. Rewards are computed from imagined181

observations and privileged information. The approach combines model-based imagination with182

model-free RL to achieve efficient and robust policy optimization, as outlined in Algorithm 1.183

Algorithm 1 Policy optimization with RWM

1: Initialize policy πθ, world model pϕ, and replay buffer D
2: for learning iterations = 1, 2, . . . do
3: Collect observation-action pairs in D by interacting with the environment using πθ

4: Update pϕ with autoregressive training using data sampled from D according to Eq. 2
5: Initialize imagination agents with observations sampled from D
6: Roll out imagination trajectories using πθ and pϕ for T steps according to Eq. 3
7: Update πθ using PPO or another reinforcement learning algorithm
8: end for

The replay buffer D aggregates real environment interactions collected by a single agent. The184

world model pϕ is trained on this data following the autoregressive scheme described in Sec. 3.2.185

Imagination agents are initialized from samples in D and simulate trajectories using the world model186

for T steps, enabling policy updates through a reinforcement learning algorithm. The training diagram187

is visualized in Fig. S7.188

While PPO is known for its strong performance in robotic tasks, training it on learned world189

models poses unique challenges. Model inaccuracies can be exploited during policy learning,190

leading to discrepancies between the imagined and true dynamics. This issue is exacerbated by the191
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Figure 3: (Left) Solid lines represent ground truth trajectories, while dashed lines denote predicted
state evolution. Predictions commence at t = 32 using historical observations, with future observa-
tions predicted autoregressively by feeding prior predictions back into the model. (Right) Yellow
curves denote RWM at varying noise levels, demonstrating consistent robustness and lower error
accumulation across forecast steps. Grey curves represent the MLP baseline, which exhibits signifi-
cantly higher error accumulation and reduced robustness to noise.

extended autoregressive rollouts required for PPO, which compound prediction errors. We denote192

this policy optimization method by MBPO-PPO. Despite these challenges, RWM demonstrates its193

robustness by successfully optimizing policies over a hundred autoregressive steps with MBPO-PPO,194

far exceeding the capabilities of existing frameworks such as MBPO [13], Dreamer [29, 11, 30], or195

TD-MPC [34, 36]. This result underscores the accuracy and stability of the proposed training method196

and its ability to synthesize policies deployable on hardware.197

4 Experiments198

We validate RWM through a comprehensive set of experiments across diverse robotic systems,199

environments, and network architectures. The experiments are designed to assess the accuracy200

and robustness of RWM, evaluate its architectural and training design choices, and demonstrate its201

effectiveness across diverse robotic tasks in Isaac Lab [43] and in real-world deployment combined202

with MBPO-PPO. We start the analysis by looking into the autoregressive prediction accuracy and203

robustness of the world model on ANYmal D learned with simulation data induced by a velocity204

tracking policy. The observation and action spaces of the world model are detailed in Table S2 and205

Table S4. We then compare various network architectures and the error induced across diverse robotic206

environments and tasks to demonstrate the generality of RWM. And finally, we learn a policy in207

RWM with the proposed MBPO-PPO and demonstrate the applicability and robustness of the method208

on an ANYmal D hardware [44].209

4.1 Autoregressive Trajectory Prediction210

The capability of a world model to maintain high fidelity during autoregressive rollouts is critical for211

effective planning and policy optimization. To evaluate this aspect, we analyze the autoregressive212

prediction performance of RWM using trajectories collected from ANYmal D hardware. The control213

frequency of the robot is at 50Hz. The model is trained with history horizon M = 32 and forecast214

horizon N = 8. Further details on the network architecture and training parameters are summarized215

in Sec. A.2.1 and Sec. A.3.1, respectively. The autoregressive trajectory predictions by RWM are216

visualized in Fig. 3a.217

The results demonstrate that RWM exhibits a remarkable alignment between predicted and ground218

truth trajectories across all observed variables. This consistency persists over extended rollouts,219

showcasing the model’s ability to mitigate compounding errors—a critical challenge in long-horizon220

predictions. This performance is attributed to the dual-autoregressive mechanism introduced in221

Sec. 3.2, which stabilizes predictions despite the short forecast horizon employed during training.222

A comparison of state evolution between the RWM prediction and the ground truth simulation is223

illustrated in Fig. 1 (bottom). The visualization highlights the ability of RWM to maintain consistency224

in trajectory predictions over long horizons, even beyond the training forecast horizon. This robustness225

is pivotal for stable policy learning and deployment, as discussed further in Sec. 4.4.226
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Figure 4: Autoregressive trajectory prediction errors across diverse robotic environments and network
architectures. RWM trained with autoregressive training (RWM-AR) consistently outperforms
baseline methods, including MLP, recurrent state-space model (RSSM), and transformer-based
architectures. RWM-AR demonstrates superior generalization and robustness across tasks, from
manipulation to locomotion. Autoregressive training (RWM-AR) reduces compounding errors over
long rollouts, significantly improving performance compared to teacher-forcing training (RWM-TF).

It is notable that the choice of history horizon M and forecast horizon N plays a critical role in the227

training and performance of RWM. Our ablation study in Sec. A.4.1 reveals that, while extending228

both M and N improves accuracy, practical considerations of computational cost necessitate careful229

tuning of these hyperparameters to achieve optimal performance.230

4.2 Robustness under Noise231

A critical challenge in training world models is their ability to generalize under noisy conditions,232

particularly when predictions rely on autoregressive rollouts. Even small deviations from the training233

distribution can cascade into untrained regions, causing the model to hallucinate future trajectories.234

To assess the robustness of RWM, we analyze its performance under Gaussian noise perturbations235

applied to both observations and actions. We compare the results with an MLP-based baseline also236

trained autoregressively with the same history and forecast horizon, as shown in Fig. 3b, where yellow237

curves denote the relative prediction error e for RWM, and grey curves represent the MLP baseline.238

The results indicate a clear advantage of RWM over the MLP baseline across all noise levels.239

As forecast steps increase, the relative prediction error of the MLP model grows significantly,240

diverging more rapidly than RWM. In contrast, RWM demonstrates superior stability, maintaining241

lower prediction errors even under high noise levels. This robustness can be attributed to the dual-242

autoregressive mechanism introduced in Sec. 3.2, which ensures stability in long-horizon predictions.243

This design minimizes the accumulation of errors by continually refining the state representation244

toward long-term predictions, even in the presence of noisy inputs.245

4.3 Generality across Robotic Environments246

To assess the generality and robustness of RWM across a diverse range of robotic environments,247

we compare its performance with several baseline methods, including MLP, recurrent state-space248

model (RSSM) [15, 29, 11, 30], and transformer-based architectures [41, 45]. These baselines249

represent widely adopted approaches in dynamics modeling and policy optimization. All models250

are given the same context during training and evaluation. Their training parameters are detailed in251

Sec. A.2.2. The relative autoregressive prediction errors e for these models are shown in Fig. 4. The252

tasks span manipulation scenarios as well as quadruped and humanoid locomotion tasks, allowing253

for a comprehensive evaluation of the models. In addition, we highlight the importance of the254

autoregressive training introduced in Sec. 3.2 by including both RWM trained with teacher-forcing255

(RWM-TF) and autoregressive training (RWM-AR), demonstrating the significant performance gains256

achieved by the latter.257

The results highlight the superiority of RWM trained with autoregressive training (RWM-AR),258

which consistently achieves the lowest prediction errors across all environments. The performance259

gap between RWM-AR and the baselines is especially pronounced in complex and dynamic tasks,260
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Figure 5: Model error and policy mean reward for the ANYmal D velocity tracking task with
MBPO-PPO. The policy is trained using estimated rewards computed from predicted observations by
RWM. Ground truth rewards, visualized with solid lines, are reported by the simulator for evaluation
purposes only.

such as velocity tracking for legged robots, where accurate long-horizon predictions are critical for261

effective control. The comparison also reveals that RWM-AR significantly outperforms its teacher-262

forcing counterpart (RWM-TF), underscoring the importance of autoregressive training in mitigating263

compounding prediction errors over long rollouts. We additionally visualize the imagination rolled264

out by RWM-AR compared with the ground truth simulation in Fig. 1 and Fig. S9.265

Note that the baselines are trained using teacher forcing as they are traditionally implemented. How-266

ever, the proposed autoregressive training framework is architecture-agnostic and can also be applied267

to baseline models. When trained with autoregressive training, RSSM achieves a performance compa-268

rable to the proposed GRU-based architecture. Nevertheless, we opt for the GRU-based model due to269

its simplicity and computational efficiency. On the other hand, training transformer architectures with270

autoregressive training does not scale effectively, as the multi-step gradient propagation in autoregres-271

sive forecasting leads to GPU memory constraints, limiting their practicality for this approach. These272

results demonstrate that RWM, when combined with autoregressive training, achieves robust and273

generalizable performance across diverse robotic tasks.274

4.4 Policy Learning and Hardware Transfer275

Using MBPO-PPO, we train a goal-conditioned velocity tracking policy for ANYmal D leveraging276

RWM. The policy’s observation and action spaces are detailed in Sec. A.1.1, and its architecture is277

described in Sec. A.2.3. Reward formulations are provided in Sec. A.1.2, while training parameters278

are summarized in Sec. A.3.2. We compare MBPO-PPO with two baselines: Short-Horizon Actor-279

Critic (SHAC) [38] and DreamerV3 [30]. SHAC employs a first-order gradient-based method that280

propagates gradients through the world model to optimize the policy. Dreamer integrates a latent-281

space dynamics model with an actor-critic framework, emphasizing sample efficiency and robustness282

in continuous control tasks.283

Figure 5 (left) illustrates the model error e during policy optimization. While MBPO-PPO demon-284

strates a significant reduction in model error over training, SHAC struggles with high and fluctuating285

model error throughout the process. Its reliance on first-order gradients for optimization is not well-286

suited for discontinuous dynamics, such as those encountered in legged locomotion, where system287

behavior changes drastically due to varying contact patterns. The resulting inaccurate gradients lead288

to suboptimal policy updates, producing chaotic robot behaviors during training. These chaotic behav-289

iors, in turn, generate low-quality training data for updating RWM, exacerbating model inaccuracies.290

Although Dreamer effectively leverages its latent-space dynamics model for policy optimization,291

its reliance on shorter planning horizons during training limits its ability to handle long-horizon292

dependencies, particularly in stochastic environments. As a result, Dreamer encounters moderate293

compounding errors during policy learning, which hinder its convergence to optimal behaviors.294

On the right plot of rewards r, predicted rewards (dashed) from MBPO-PPO initially overshoot the295

ground truth (solid) due to the policy exploiting small inaccuracies in the model’s optimistic estimates.296

As training progresses, predictions align more closely with ground truth, remaining accurate enough297

to guide effective learning. In contrast, SHAC fails to converge, producing unstable behaviors that298

degrade both policy and model quality. Dreamer demonstrates partial convergence, achieving higher299

rewards compared to SHAC but significantly lagging behind MBPO-PPO.300
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To evaluate the robustness of the learned policy, we deploy it on ANYmal D hardware in a zero-shot301

transfer setup. SHAC and Dreamer fail to produce a deployable policy due to its collapse during302

training. However, as shown in Fig. 1, the policy learned using MBPO-PPO demonstrates reliable303

and robust performance in tracking goal-conditioned velocity commands and maintaining stability304

under external disturbances, such as unexpected impacts and terrain conditions. The success of305

MBPO-PPO in hardware deployment is a direct result of the high-quality trajectory predictions306

generated by RWM, which enable accurate and effective policy optimization. Videos showcasing the307

robustness of the policy in hardware, including its responses to external disturbances, are available in308

our supplementary materials. These results underline the effectiveness of RWM and MBPO-PPO in309

enabling robust and scalable policy deployment for real-world robotic systems.310

5 Limitations311

The policy learned with RWM and MBPO-PPO surpasses existing MBRL methods in both robustness312

and generalization. However, it still falls short of the performance achieved by well-tuned model-free313

RL methods trained on high-fidelity simulators. Model-free RL, being a more mature and extensively314

optimized paradigm, excels in settings where unlimited interaction with near-perfect simulators is315

possible. In contrast, the strengths of MBRL are more pronounced in scenarios where accurate or316

efficient simulation is infeasible, making it an indispensable tool for enabling intelligent agents to317

eventually learn and adapt in complex, real-world environments. To clarify the computational and318

performance aspects, we provide a comparison against a PPO-based method with a high-fidelity319

simulator in Table 1.

Table 1: Comparison with model-free method
Method RWM pretraining MBPO-PPO PPO

state transitions 6M − 250M
total training time 50 min 5 min 10 min
step inference time − 1 ms 1 ms
real tracking reward − 0.90± 0.04 0.90± 0.03

320

In this work, the world model is pre-trained using simulation data prior to policy optimization, reduc-321

ing instability during training (see Sec. A.4.3). However, training from scratch remains challenging322

as policies can exploit model inaccuracies during exploration, leading to inefficiency and instability.323

In addition, the need for additional interaction with the environment to fine-tune the world model324

highlights areas for further refinement. Nevertheless, enabling safe and effective online learning325

directly on hardware remains challenging (see Sec. A.4.4). Current training in simulation avoids326

potential hardware damage, but incorporating safety constraints and robust uncertainty estimates will327

be critical for deploying RWM and MBPO-PPO in real-world, lifelong learning scenarios. These328

limitations underscore the trade-offs inherent in MBRL frameworks, balancing data efficiency, safety,329

and performance while addressing the complexities of real-world robotic systems.330

6 Conclusion331

In this work, we present RWM, a robust and scalable framework for learning world models tailored332

to complex robotic tasks. Leveraging a dual-autoregressive mechanism, RWM effectively addresses333

key challenges such as compounding errors, partial observability, and stochastic dynamics. By334

incorporating historical context and self-supervised training over long prediction horizons, RWM335

achieves superior accuracy and robustness without relying on domain-specific inductive biases,336

enabling generalization across diverse tasks. Through extensive experiments, we demonstrate337

that RWM consistently outperforms state-of-the-art approaches like RSSM and transformer-based338

architectures in autoregressive prediction accuracy across diverse robotic environments. Building339

on RWM, we propose MBPO-PPO, a policy optimization framework that leverages long world340

model rollout fidelity. Policies trained using MBPO-PPO demonstrate superior performance in341

simulation and transfer seamlessly to hardware, as evidenced by zero-shot deployment on the342

ANYmal D robot. This work advances the field of model-based reinforcement learning by providing343

a generalizable, efficient, and scalable framework for learning and deploying world models. The344

results highlight RWM ’s potential to enable adaptive, robust, and high-performing robotic systems,345

setting a foundation for broader adoption of model-based approaches in real-world applications.346
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A Technical Appendices and Supplementary Material473

A.1 Task Representation474

A.1.1 Observation and action spaces475

The observation space for the ANYmal world model is composed of base linear and angular velocities476

v, ω in the robot frame, measurement of the gravity vector in the robot frame g, joint positions q,477

velocities q̇ and torques τ as in Table S2.478

Table S2: World model observation space
Entry Symbol Dimensions

base linear velocity v 0:3
base angular velocity ω 3:6
projected gravity g 6:9
joint positions q 9:21
joint velocities q̇ 21:33
joint torques τ 33:45

The privileged information is used to provide an additional learning objective that implicitly embeds479

critical information for accurate long-term predictions. The space is composed of knee and foot480

contacts as in Table S3.481

Table S3: World model privileged information space
Entry Symbol Dimensions

knee contact − 0:4
foot contact − 4:8

The action space is composed of joint position targets as in Table S4.482

Table S4: Action space
Entry Symbol Dimensions

joint position targets q∗ 0:12

The observation space for the ANYmal velocity tracking policy is composed of base linear and483

angular velocities v, ω in the robot frame, measurement of the gravity vector in the robot frame g,484

velocity command c, joint positions q and velocities q̇ as in Table S5.485

A.1.2 Reward functions486

The total reward is sum of the following terms with weights detailed in Table S6.487

Linear velocity tracking x, y488

rvxy
= wvxy

e
−∥cxy−vxy∥2

2/σ
2
vxy ,

where σvxy = 0.25 denotes a temperature factor, cxy and vxy denote the commanded and current489

base linear velocity.490

Angular velocity tracking491

rωz
= wωz

e−∥cz−ωz∥2
2/σ

2
ωz ,

where σωz
= 0.25 denotes a temperature factor, cz and ωz denote the commanded and current base492

angular velocity.493
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Table S5: Policy observation space
Entry Symbol Dimensions

base linear velocity v 0:3
base angular velocity ω 3:6
projected gravity g 6:9
velocity command c 9:12
joint positions q 12:24
joint velocities q̇ 24:36

Table S6: Reward weights
Symbol wvxy

wωz
wvz wωxy

wqτ

Value 1.0 0.5 −2.0 −0.05 −2.5e−5

Symbol wq̈ wȧ wfa wc wg

Value −2.5e−7 −0.01 0.5 −1.0 −5.0

Linear velocity z494

rvz = wvz ∥vz∥
2
2 ,

where vz denotes the base vertical velocity.495

Angular velocity x, y496

rωxy
= wωxy

∥ωxy∥22 ,
where ωxy denotes the current base roll and pitch velocity.497

Joint torque498

rqτ = wqτ ∥τ∥
2
2 ,

where τ denotes the joint torques.499

Joint acceleration500

rq̈ = wq̈ ∥q̈∥22 ,
where q̈ denotes the joint acceleration.501

Action rate502

rȧ = wȧ∥a′ − a∥22,
where a′ and a denote the previous and current actions.503

Feet air time504

rfa = wfatfa ,

where tfa denotes the sum of the time for which the feet are in the air.505

Undesired contacts506

rc = wccu,
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Figure S6: Dual-autoregressive mechanism employed in RWM. Inner autoregression updates GRU
hidden states after each historical step within the context horizon, while outer autoregression feeds
predicted observations from the forecast horizon back into the network. The dashed arrows denote
the sequential autoregressive prediction steps, highlighting robustness to long-term dependencies and
transitions.

where cu denotes the counts of the undesired knee contacts.507

Flat orientation508

rg = wgg
2
xy,

where gxy denotes the xy-components of the projected gravity.509

A.2 Network Architecture510

A.2.1 RWM511

The robotic world model consists of a GRU base and MLP heads predicting the mean and standard512

deviation of the next observation and privileged information such as contacts, as detailed in Table S7.513

The training scheme is visualized in Fig. S6.514

Table S7: RWM architecture
Component Type Hidden Shape Activation

base GRU 256, 256 −
heads MLP 128 ReLU

A.2.2 Baselines515

The network architectures of the baselines are detailed in Table S8.516

A.2.3 MBPO-PPO517

The network architectures of the policy and the value function used in MBPO-PPO are detailed in518

Table S9. The training scheme is visualized in Fig. S7.519

A.3 Training Parameters520

The learning networks and algorithm are implemented in PyTorch 2.4.0 with CUDA 12.6 and trained521

on an NVIDIA RTX 4090 GPU.522

A.3.1 RWM523

The training information of RWM is summarized in Table S10.524
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Table S8: Baseline architecture
Network Parameter Value

MLP hidden shape 256, 256
activation ReLU

RSSM type GRU
hidden size 256
layers 2
latent dimension 64
prior type categorical
categories 32

Transformer type decoder
dimension 64
heads 8
layers 2
context length 32
positional encoding sinusoidal

𝑜𝑡−⋯ 𝑜𝑡−1 𝑜𝑡 𝑜𝑡+1 𝑜𝑡+⋯

𝑜′𝑡+1

𝑎𝑡−1

𝑎𝑡

𝑜′𝑡+2 𝑜′𝑡+𝑇

𝑜′𝑡 𝑜′𝑡+1 𝑜′𝑡+𝑇−1

imagination rollouts

env interactions

Figure S7: Model-Based Policy Optimization with learned world models. The framework combines
real environment interactions with simulated rollouts for efficient policy optimization. Observation
and action pairs from the environment are stored in a replay buffer and used to train the autoregressive
world model. Imagination rollouts using the learned model predict future states over a horizon of T ,
providing trajectories for policy updates through reinforcement learning algorithms.

A.3.2 MBPO-PPO525

The training information of MBPO-PPO is summarized in Table S11.526

A.4 Additional Experiments and Discussions527

A.4.1 Dual-autoregressive Mechanism528

The heatmap on the left in Fig. S8 shows the relative autoregressive prediction error e under different529

combinations of M and N . Models trained with a longer history horizon M consistently exhibit530

lower prediction errors, demonstrating the importance of providing sufficient historical context to531

capture the underlying dynamics. However, the influence of M plateaus beyond a certain point,532

indicating diminishing returns for very large history horizons. Forecast horizon N , on the other hand,533

plays a decisive role in improving long-term prediction accuracy. Increasing N during training leads534

to better performance in autoregressive rollouts, as it encourages the model to learn representations535

robust to compounding errors over extended prediction horizons. This improvement comes at the cost536

of increased training time, as shown in the heatmap on the right. Larger N values require sequential537

computation during training due to the autoregressive nature of the process, significantly lengthening538

the training duration.539

Interestingly, when the forecast horizon N = 1 (teacher-forcing), training can be highly parallelized,540

resulting in minimal training time. However, this setting leads to poor autoregressive performance, as541

the model lacks exposure to long-horizon prediction during training and fails to effectively handle542

compounding errors. From the results, an optimal trade-off emerges: moderate values of M and543

N balance prediction accuracy and training efficiency. For instance, a history horizon of M = 32544

and forecast horizon of N = 8 achieve strong autoregressive performance with manageable training545

time. These settings ensure sufficient historical context while training the model for robust long-546
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Table S9: Policy and value function architecture
Network Type Hidden Shape Activation

policy MLP 128, 128, 128 ELU
value function MLP 128, 128, 128 ELU

Table S10: RWM training parameters
Parameter Symbol Value

step time seconds ∆t 0.02
max iterations − 2500
learning rate − 1e−4

weight decay − 1e−5

batch size − 1024
history horizon M 32
forecast horizon N 8
forecast decay α 1.0
approximate training hours − 1
number of seeds − 5

term predictions. Overall, the results highlight the critical interplay between history and forecast547

horizons in autoregressive training. While extending both M and N improves accuracy, practical548

considerations of computational cost necessitate careful tuning of these hyperparameters to achieve549

optimal performance.550

A.4.2 Visualization of Imagination Rollouts551

The imagination rollouts across various robotic environments compared with the ground-truth simula-552

tion is visualized in Fig. S9.553

A.4.3 Collision Handling and Model Pretraining554

In both phases of the pretraining and online fine-tuning of RWM, we terminate rollouts and reset the555

environment when ground contact by the base is detected, signaling a failure. We explicitly train556

RWM to predict such terminations in its privileged information prediction head. This enables the557

world model to learn transitions leading to unsafe situations. During policy optimization, MBPO-PPO558

treats these termination predictions as episode-ending events in imagination rollouts, affecting PPO’s559

return computation and state values.560

1 2 8 16 32
M

1
2

8
16

32
N

79.03 27.14 14.88 8.20 3.99

21.78 6.38 5.44 2.46 1.91

10.58 4.57 0.54 0.50 0.47

2.52 1.51 0.49 0.52 0.53

1.50 0.74 0.49 0.48 0.47

e

1 2 8 16 32
M

0.52 0.56 0.58 0.59 0.62

0.70 0.72 0.78 0.91 1.05

1.00 1.03 1.06 1.06 1.07

1.01 1.08 1.25 1.44 1.58

1.97 1.96 2.04 2.01 2.27

Training Time [h]

0.4
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1.0

10.0
20.0

70.0

0.75
1.00
1.25
1.50
1.75
2.00
2.25

Figure S8: Ablation study on the history horizon M and forecast horizon N in RWM. The heatmap on
the left shows the relative autoregressive prediction error, with darker colors indicating higher errors.
Models trained with larger history horizons M exhibit lower errors, although the improvements
plateau beyond a certain point. Forecast horizon N has a significant impact, with longer horizons
leading to better long-term prediction accuracy due to exposure to extended rollouts during training.
The heatmap on the right illustrates training time, with darker colors representing longer durations.
Increasing N significantly raises training time due to sequential computation, while shorter horizons
(e.g., N = 1, teacher-forcing) enable faster training but result in poor prediction accuracy.
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Table S11: MBPO-PPO training parameters
Parameter Symbol Value

imagination environments − 4096
imagination steps per iteration − 100
step time seconds ∆t 0.02
buffer size |D| 1000
max iterations − 2500
learning rate − 0.001
weight decay − 0.0
learning epochs − 5
mini-batches − 4
KL divergence target − 0.01
discount factor γ 0.99
clip range ϵ 0.2
entropy coefficient − 0.005
number of seeds − 5

RWM is pretrained with simulation data induced by policies trained for similar tasks under varied561

dynamics. The policy is learned from scratch purely in imagination, with RWM fine-tuned using562

a single-environment online dataset. Pretraining is essential for two key reasons. First, the online563

dataset is extremely limited, as it is generated by only a single environment, akin to real-world564

constraints. Training the world model entirely from scratch on such data would lead to severe565

overfitting and long training times. Second, an immature policy would frequently cause the robot to566

fall, generating transitions with limited value. In cases of significant failure or domain shift, training567

the world model solely on these data would result in chaotic imagined rollouts, which in turn would568

produce poor policy updates. Pretraining stabilizes training and serves as a robust initialization for569

online fine-tuning, particularly in environments with challenging dynamics.570

Importantly, RWM pretraining does not require data from optimal policies. Figure 3 demonstrate571

that RWM remains robust to domain shifts and injected noise. As an alternative, we warm up the572

model using data from a suboptimal policy, which significantly stabilizes training. Notably, this573

pretraining is only necessary for locomotion tasks due to the discontinuous dynamics and environment574

terminations. Our manipulation experiments do not require such pretraining.575

A.4.4 Challenges in Real-World Online Learning576

We acknowledge that the advantages of our approach would be further demonstrated by performing577

the policy training phase directly on real hardware. While this is a key long-term objective, several578

challenges currently prevent real-world deployment.579

During online learning, the policy often exploits minor world model errors, leading to overly optimistic580

behaviors that result in collisions. In simulation, these failures serve as corrective signals, but in real581

hardware, they pose a risk to the robot. Our experiments show that such failures occur more than 20582

times on average during online learning, which would be detrimental to real-world systems. Even583

if hardware collisions were acceptable, fully automating online learning would require a recovery584

policy capable of resetting the robot to an initial state—a particularly challenging requirement for585

large platforms like ANYmal. Additionally, privileged information used to fine-tune RWM (e.g.,586

contact forces) must be either measured or estimated using onboard sensors, which may not always587

be available. To mitigate error exploitation, uncertainty-aware world models could be explored, but588

integrating such models into RWM would require additional architectural modifications. Due to these589

challenges, we approximate real-world constraints by using only a single simulation environment with590

domain shifts from pretraining environments. This setup reduces engineering effort while proving the591

feasibility of our approach. Our ongoing work specifically addresses these issues .592

A.5 Ethics and Societal Impacts593

This work does not involve human subjects or sensitive data. All experiments are conducted in594

simulation or on dedicated robotic hardware operated by the authors, with no use of third-party595
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Figure S9: Autoregressive imagination of RWM and ground-truth simulation across diverse robotic
systems. For each environment, the top row showcases the RWM autoregressively predicting future
trajectories in imagination. The second row visualizes the ground truth evolution in simulation. The
visualized coordinate and arrow markers denote the predicted and measured end-effector pose and
base velocity, respectively.

datasets. The research complies with the Code of Ethics of the venue. The proposed framework596

provides a robust and scalable method for learning world models tailored to complex robotic tasks.597

This can benefit domains such as healthcare, disaster response, and logistics, and reduce environmental598

and hardware costs associated with physical experimentation. Potential risks include misuse of the599

method in surveillance or autonomous enforcement systems, and the acceleration of automation600

in labor-sensitive sectors. While such uses are not intended or explored in this work, the authors601

acknowledge the dual-use potential of generalizable control methods. To mitigate safety risks, policy602

training occurs entirely in simulation, and deployment is limited to policies validated under domain603

shifts. Failure events are explicitly modeled and used to terminate unsafe rollouts. Online learning on604

hardware is deferred due to safety concerns and the absence of reliable recovery strategies. Future605

work will explore uncertainty-aware models and safer online adaptation.606
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paper’s contributions and scope?610

Answer: [Yes]611

Justification: The abstract and introduction clearly state the paper’s contributions: a gener-612

alizable neural network simulator (RWM) using autoregressive training, its application in613

MBPO-PPO, and successful hardware deployment. These are substantiated in Sec. 3 and614

validated experimentally in Sec. 4.615

Guidelines:616

• The answer NA means that the abstract and introduction do not include the claims617

made in the paper.618

• The abstract and/or introduction should clearly state the claims made, including the619

contributions made in the paper and important assumptions and limitations. A No or620

NA answer to this question will not be perceived well by the reviewers.621

• The claims made should match theoretical and experimental results, and reflect how622

much the results can be expected to generalize to other settings.623

• It is fine to include aspirational goals as motivation as long as it is clear that these goals624

are not attained by the paper.625

2. Limitations626

Question: Does the paper discuss the limitations of the work performed by the authors?627

Answer: [Yes]628

Justification: Sec. 5 discusses performance trade-offs versus model-free RL, challenges in629

pretraining and online learning on hardware, and generalizability limits without privileged630

information or recovery policies. These are transparent and specific.631

Guidelines:632

• The answer NA means that the paper has no limitation while the answer No means that633

the paper has limitations, but those are not discussed in the paper.634

• The authors are encouraged to create a separate "Limitations" section in their paper.635

• The paper should point out any strong assumptions and how robust the results are to636

violations of these assumptions (e.g., independence assumptions, noiseless settings,637

model well-specification, asymptotic approximations only holding locally). The authors638

should reflect on how these assumptions might be violated in practice and what the639

implications would be.640

• The authors should reflect on the scope of the claims made, e.g., if the approach was641

only tested on a few datasets or with a few runs. In general, empirical results often642

depend on implicit assumptions, which should be articulated.643

• The authors should reflect on the factors that influence the performance of the approach.644

For example, a facial recognition algorithm may perform poorly when image resolution645

is low or images are taken in low lighting. Or a speech-to-text system might not be646

used reliably to provide closed captions for online lectures because it fails to handle647

technical jargon.648

• The authors should discuss the computational efficiency of the proposed algorithms649

and how they scale with dataset size.650

• If applicable, the authors should discuss possible limitations of their approach to651

address problems of privacy and fairness.652

• While the authors might fear that complete honesty about limitations might be used by653

reviewers as grounds for rejection, a worse outcome might be that reviewers discover654

limitations that aren’t acknowledged in the paper. The authors should use their best655

judgment and recognize that individual actions in favor of transparency play an impor-656

tant role in developing norms that preserve the integrity of the community. Reviewers657

will be specifically instructed to not penalize honesty concerning limitations.658

3. Theory assumptions and proofs659
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Question: For each theoretical result, does the paper provide the full set of assumptions and660

a complete (and correct) proof?661

Answer: [NA]662

Justification: The paper does not present theoretical results or formal theorems requiring663

assumptions or proofs. It is primarily experimental and architectural in nature.664

Guidelines:665

• The answer NA means that the paper does not include theoretical results.666

• All the theorems, formulas, and proofs in the paper should be numbered and cross-667

referenced.668

• All assumptions should be clearly stated or referenced in the statement of any theorems.669

• The proofs can either appear in the main paper or the supplemental material, but if670

they appear in the supplemental material, the authors are encouraged to provide a short671

proof sketch to provide intuition.672

• Inversely, any informal proof provided in the core of the paper should be complemented673

by formal proofs provided in appendix or supplemental material.674

• Theorems and Lemmas that the proof relies upon should be properly referenced.675

4. Experimental result reproducibility676

Question: Does the paper fully disclose all the information needed to reproduce the main ex-677

perimental results of the paper to the extent that it affects the main claims and/or conclusions678

of the paper (regardless of whether the code and data are provided or not)?679

Answer: [Yes]680

Justification: Full experimental details are provided in Sec. A.1, Sec. A.2, and Sec. A.3, in-681

cluding network architectures, training parameters, observation/action spaces, and ablations.682

Guidelines:683

• The answer NA means that the paper does not include experiments.684

• If the paper includes experiments, a No answer to this question will not be perceived685

well by the reviewers: Making the paper reproducible is important, regardless of686

whether the code and data are provided or not.687

• If the contribution is a dataset and/or model, the authors should describe the steps taken688

to make their results reproducible or verifiable.689

• Depending on the contribution, reproducibility can be accomplished in various ways.690

For example, if the contribution is a novel architecture, describing the architecture fully691

might suffice, or if the contribution is a specific model and empirical evaluation, it may692

be necessary to either make it possible for others to replicate the model with the same693

dataset, or provide access to the model. In general. releasing code and data is often694

one good way to accomplish this, but reproducibility can also be provided via detailed695

instructions for how to replicate the results, access to a hosted model (e.g., in the case696

of a large language model), releasing of a model checkpoint, or other means that are697

appropriate to the research performed.698

• While NeurIPS does not require releasing code, the conference does require all submis-699

sions to provide some reasonable avenue for reproducibility, which may depend on the700

nature of the contribution. For example701

(a) If the contribution is primarily a new algorithm, the paper should make it clear how702

to reproduce that algorithm.703

(b) If the contribution is primarily a new model architecture, the paper should describe704

the architecture clearly and fully.705

(c) If the contribution is a new model (e.g., a large language model), then there should706

either be a way to access this model for reproducing the results or a way to reproduce707

the model (e.g., with an open-source dataset or instructions for how to construct708

the dataset).709

(d) We recognize that reproducibility may be tricky in some cases, in which case710

authors are welcome to describe the particular way they provide for reproducibility.711

In the case of closed-source models, it may be that access to the model is limited in712

some way (e.g., to registered users), but it should be possible for other researchers713

to have some path to reproducing or verifying the results.714
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5. Open access to data and code715

Question: Does the paper provide open access to the data and code, with sufficient instruc-716

tions to faithfully reproduce the main experimental results, as described in supplemental717

material?718

Answer: [Yes]719

Justification: We provide the full source code and necessary instructions to reproduce720

the main experimental results in the supplementary material. The scripts include environ-721
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optimization. This ensures faithful reproduction of all primary results reported in the paper.723
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public/guides/CodeSubmissionPolicy) for more details.727

• While we encourage the release of code and data, we understand that this might not be728

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not729

including code, unless this is central to the contribution (e.g., for a new open-source730

benchmark).731

• The instructions should contain the exact command and environment needed to run to732

reproduce the results. See the NeurIPS code and data submission guidelines (https:733

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.734

• The authors should provide instructions on data access and preparation, including how735

to access the raw data, preprocessed data, intermediate data, and generated data, etc.736

• The authors should provide scripts to reproduce all experimental results for the new737

proposed method and baselines. If only a subset of experiments are reproducible, they738

should state which ones are omitted from the script and why.739

• At submission time, to preserve anonymity, the authors should release anonymized740

versions (if applicable).741

• Providing as much information as possible in supplemental material (appended to the742

paper) is recommended, but including URLs to data and code is permitted.743

6. Experimental setting/details744

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-745

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the746

results?747

Answer: [Yes]748

Justification: The paper provides comprehensive training and test details in Sec. A.1,749

Sec. A.2, and Sec. A.3. This includes architecture choices, training hyperparameters,750

optimizer settings, batch sizes, learning rates, and environment settings. The replay buffer751

setup, pretraining/fine-tuning protocol, and evaluation methodology are all described in752

Sec. 3 and Sec. 4.753

Guidelines:754

• The answer NA means that the paper does not include experiments.755

• The experimental setting should be presented in the core of the paper to a level of detail756

that is necessary to appreciate the results and make sense of them.757

• The full details can be provided either with the code, in appendix, or as supplemental758

material.759

7. Experiment statistical significance760

Question: Does the paper report error bars suitably and correctly defined or other appropriate761

information about the statistical significance of the experiments?762

Answer: [Yes]763

Justification: Results are averaged across five random seeds, as noted in Table S10 and764

Table S11. Standard deviations are reported explicitly across experiments, as shown in765

Fig. 3b, Fig. 4 and Fig. 5.766
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the main claims of the paper.771

• The factors of variability that the error bars are capturing should be clearly stated (for772
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run with given experimental conditions).774

• The method for calculating the error bars should be explained (closed form formula,775

call to a library function, bootstrap, etc.)776
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• It should be clear whether the error bar is the standard deviation or the standard error778

of the mean.779

• It is OK to report 1-sigma error bars, but one should state it. The authors should780

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis781

of Normality of errors is not verified.782

• For asymmetric distributions, the authors should be careful not to show in tables or783

figures symmetric error bars that would yield results that are out of range (e.g. negative784

error rates).785

• If error bars are reported in tables or plots, The authors should explain in the text how786

they were calculated and reference the corresponding figures or tables in the text.787

8. Experiments compute resources788

Question: For each experiment, does the paper provide sufficient information on the com-789

puter resources (type of compute workers, memory, time of execution) needed to reproduce790

the experiments?791

Answer: [Yes]792

Justification: Sec. A.3 specifies that all experiments are run on an NVIDIA RTX 4090 GPU793

with PyTorch 2.4.0 and CUDA 12.6. Training times are provided in Table S10. An ablation794

study on the trade-offs between performance and computational cost is explicitly conducted795

in Sec. A.4.1. The reported experiments reflect the total compute used for core results.796

Guidelines:797

• The answer NA means that the paper does not include experiments.798

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,799

or cloud provider, including relevant memory and storage.800

• The paper should provide the amount of compute required for each of the individual801

experimental runs as well as estimate the total compute.802

• The paper should disclose whether the full research project required more compute803

than the experiments reported in the paper (e.g., preliminary or failed experiments that804

didn’t make it into the paper).805

9. Code of ethics806

Question: Does the research conducted in the paper conform, in every respect, with the807

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?808

Answer: [Yes]809

Justification: As explicitly stated in Sec. A.5, the research does not involve human subjects810

or sensitive data. All experiments are conducted in simulation or on robotic platforms811

controlled by the authors. No surveillance, deceptive, or discriminatory applications are812

proposed. The paper openly discusses potential deployment risks and limitations in Sec. 5813

and Sec. A.4.4, and the work aligns with NeurIPS principles of safety, reproducibility, and814

responsible innovation in robotics and machine learning.815

Guidelines:816

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.817

• If the authors answer No, they should explain the special circumstances that require a818

deviation from the Code of Ethics.819
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-820

eration due to laws or regulations in their jurisdiction).821

10. Broader impacts822

Question: Does the paper discuss both potential positive societal impacts and negative823

societal impacts of the work performed?824

Answer: [Yes]825

Justification: Sec. A.5 discusses both positive and negative impacts. The method improves826

safety and efficiency in robotic learning, with benefits for real-world deployment. Risks827

include potential misuse in surveillance and acceleration of automation. These are mitigated828

through simulation-only training, failure-aware safeguards, and delayed release of code and829

models.830

Guidelines:831

• The answer NA means that there is no societal impact of the work performed.832

• If the authors answer NA or No, they should explain why their work has no societal833

impact or why the paper does not address societal impact.834

• Examples of negative societal impacts include potential malicious or unintended uses835

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations836

(e.g., deployment of technologies that could make decisions that unfairly impact specific837
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• The conference expects that many papers will be foundational research and not tied839

to particular applications, let alone deployments. However, if there is a direct path to840

any negative applications, the authors should point it out. For example, it is legitimate841

to point out that an improvement in the quality of generative models could be used to842

generate deepfakes for disinformation. On the other hand, it is not needed to point out843

that a generic algorithm for optimizing neural networks could enable people to train844

models that generate Deepfakes faster.845

• The authors should consider possible harms that could arise when the technology is846

being used as intended and functioning correctly, harms that could arise when the847

technology is being used as intended but gives incorrect results, and harms following848

from (intentional or unintentional) misuse of the technology.849

• If there are negative societal impacts, the authors could also discuss possible mitigation850

strategies (e.g., gated release of models, providing defenses in addition to attacks,851

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from852

feedback over time, improving the efficiency and accessibility of ML).853

11. Safeguards854

Question: Does the paper describe safeguards that have been put in place for responsible855

release of data or models that have a high risk for misuse (e.g., pretrained language models,856

image generators, or scraped datasets)?857

Answer: [NA]858

Justification: The research proposes a new method trained entirely on data collected in859

simulation for specific robotic tasks. It does not involve pretrained generative models,860

scraped datasets, or artifacts with foreseeable risk of misuse beyond the targeted robotic861

platforms. The models are tightly coupled to specific control settings and have no general-862

purpose or open-domain applicability.863
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• The answer NA means that the paper poses no such risks.865

• Released models that have a high risk for misuse or dual-use should be released with866

necessary safeguards to allow for controlled use of the model, for example by requiring867

that users adhere to usage guidelines or restrictions to access the model or implementing868

safety filters.869

• Datasets that have been scraped from the Internet could pose safety risks. The authors870

should describe how they avoided releasing unsafe images.871
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• We recognize that providing effective safeguards is challenging, and many papers do872

not require this, but we encourage authors to take this into account and make a best873

faith effort.874

12. Licenses for existing assets875

Question: Are the creators or original owners of assets (e.g., code, data, models), used in876

the paper, properly credited and are the license and terms of use explicitly mentioned and877

properly respected?878

Answer: [Yes]879

Justification: The work uses standard simulated robotic environments and the ANYmal D880

hardware platform. No external datasets, pretrained models, or third-party code assets are881

used. The simulator and the ANYmal D platform are properly credited in Sec. 4, and no882

license-restricted assets are incorporated that would require additional terms of use.883

Guidelines:884

• The answer NA means that the paper does not use existing assets.885

• The authors should cite the original paper that produced the code package or dataset.886

• The authors should state which version of the asset is used and, if possible, include a887

URL.888

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.889

• For scraped data from a particular source (e.g., website), the copyright and terms of890

service of that source should be provided.891

• If assets are released, the license, copyright information, and terms of use in the892

package should be provided. For popular datasets, paperswithcode.com/datasets893

has curated licenses for some datasets. Their licensing guide can help determine the894

license of a dataset.895

• For existing datasets that are re-packaged, both the original license and the license of896

the derived asset (if it has changed) should be provided.897

• If this information is not available online, the authors are encouraged to reach out to898

the asset’s creators.899

13. New assets900

Question: Are new assets introduced in the paper well documented and is the documentation901

provided alongside the assets?902

Answer: [NA]903

Justification: The paper does not release any new datasets, code, or models. While the904

method introduces a novel architecture and training framework, no standalone assets are905

made available in this version of the submission.906

Guidelines:907

• The answer NA means that the paper does not release new assets.908

• Researchers should communicate the details of the dataset/code/model as part of their909

submissions via structured templates. This includes details about training, license,910

limitations, etc.911

• The paper should discuss whether and how consent was obtained from people whose912

asset is used.913

• At submission time, remember to anonymize your assets (if applicable). You can either914

create an anonymized URL or include an anonymized zip file.915

14. Crowdsourcing and research with human subjects916

Question: For crowdsourcing experiments and research with human subjects, does the paper917

include the full text of instructions given to participants and screenshots, if applicable, as918

well as details about compensation (if any)?919

Answer: [NA]920

Justification: The paper does not involve crowdsourcing, human participants, or any form921

of human-subject research. All data are generated through simulation or physical robotic922

platforms operated solely by the authors.923
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Guidelines:924

• The answer NA means that the paper does not involve crowdsourcing nor research with925

human subjects.926

• Including this information in the supplemental material is fine, but if the main contribu-927

tion of the paper involves human subjects, then as much detail as possible should be928

included in the main paper.929

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,930

or other labor should be paid at least the minimum wage in the country of the data931

collector.932

15. Institutional review board (IRB) approvals or equivalent for research with human933

subjects934

Question: Does the paper describe potential risks incurred by study participants, whether935

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)936

approvals (or an equivalent approval/review based on the requirements of your country or937

institution) were obtained?938

Answer: [NA]939

Justification: The paper does not involve research with human subjects or any form of human940

interaction. All experiments are conducted with simulated environments or physical robotic941

systems operated by the authors, so IRB approval is not applicable.942

Guidelines:943

• The answer NA means that the paper does not involve crowdsourcing nor research with944

human subjects.945

• Depending on the country in which research is conducted, IRB approval (or equivalent)946

may be required for any human subjects research. If you obtained IRB approval, you947

should clearly state this in the paper.948

• We recognize that the procedures for this may vary significantly between institutions949

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the950

guidelines for their institution.951

• For initial submissions, do not include any information that would break anonymity (if952

applicable), such as the institution conducting the review.953

16. Declaration of LLM usage954

Question: Does the paper describe the usage of LLMs if it is an important, original, or955

non-standard component of the core methods in this research? Note that if the LLM is used956

only for writing, editing, or formatting purposes and does not impact the core methodology,957

scientific rigorousness, or originality of the research, declaration is not required.958

Answer: [NA]959

Justification: The methods in this research do not involve LLMs in any way. LLMs are not960

used for data processing, model components, or experimental design. Any use is limited to961

writing assistance and does not affect the scientific contributions.962

Guidelines:963

• The answer NA means that the core method development in this research does not964

involve LLMs as any important, original, or non-standard components.965

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)966

for what should or should not be described.967
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