
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A NEURO-INSPIRED INTERPRETATION OF UNLEARN-
ING IN LARGE LANGUAGE MODELS THROUGH
SAMPLE-LEVEL UNLEARNING DIFFICULTY

Anonymous authors
Paper under double-blind review

ABSTRACT

Driven by privacy protection laws and regulations, unlearning in Large Language
Models (LLMs) is gaining increasing attention. However, current research of-
ten neglects the interpretability of the unlearning process, particularly concerning
sample-level unlearning difficulty. Existing studies typically assume a uniform
unlearning difficulty across samples. This simplification risks attributing the per-
formance of unlearning algorithms to sample selection rather than the algorithm’s
design, potentially steering the development of LLM unlearning in the wrong di-
rection. Thus, we investigate the relationship between LLM unlearning and sam-
ple characteristics, with a focus on unlearning difficulty. Drawing inspiration from
neuroscience, we propose a Memory Removal Difficulty (MRD) metric to quan-
tify sample-level unlearning difficulty. Using MRD, we analyze the characteris-
tics of hard-to-unlearn versus easy-to-unlearn samples. Furthermore, we propose
an MRD-based weighted sampling method to optimize existing unlearning algo-
rithms, which prioritizes easily forgettable samples, thereby improving unlearning
efficiency and effectiveness. We validate the proposed metric and method using
public benchmarks and datasets, with results confirming its effectiveness.

1 INTRODUCTION

Large Language Models (LLMs) excel at generating human-like text, leading to their broad adoption
in various applications. This success largely stems from their strong memorization of the training
corpus (Zhang et al., 2023). However, such memorization also raises serious concerns, including
risks of privacy breaches (Kim et al., 2024), bias propagation (Yu et al., 2023; Motoki et al., 2024),
and the generation of illegal content (Karamolegkou et al., 2023). In particular, privacy laws like
the GDPR require service providers to remove private information from training data upon user
request (Voigt & Von dem Bussche, 2017). This creates a significant challenge: how to effectively
erase the influence of specific data samples (i.e., the forget set), or higher-level data concepts from
pre-trained LLMs.

A practical approach to addressing the issue above is Machine Unlearning (MU) (Liu et al., 2024c).
Previous research (Ginart et al., 2019; Ullah et al., 2021; Thudi et al., 2022; Liu et al., 2024a) has
primarily focused on MU in classification models, where retraining on the remaining data (i.e.,
the retain set) is the gold standard. However, given the massive scale of training data and the
extensive number of parameters in LLMs, this unlearning approach becomes infeasible for LLMs.
Therefore, developing effective and efficient methods for implementing MU in LLMs represents a
critical challenge that requires resolution.

Existing studies (Jang et al., 2023; Ji et al., 2024a; Feng et al., 2024; Liu et al., 2024c) defines LLM
unlearning as the removal of specific knowledge from the forget set (i.e., unlearning completeness)
while preserving the model’s performance on unrelated tasks (i.e., model utility). Current meth-
ods achieving this can be broadly classified into three categories, i.e., gradient-based methods (Jang
et al., 2023; Yao et al., 2024), preference optimization-based methods (Maini et al., 2024; Zhang
et al., 2024), and model weight-based methods (Jia et al., 2024). Despite recent advancements, the
interpretability of the unlearning process in LLMs remains underexplored. The lack of interpretabil-
ity hinders the capability to comprehensively evaluate the practical effectiveness of existing LLM
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unlearning algorithms. For instance, the superior performance of certain unlearning algorithms
might be attributed merely to the inherent ease of unlearning the selected samples, rather than to
any genuine advantage of the algorithms themselves. Such a lack of fine-grained analysis could
potentially impact the reliability and generalizability of LLM unlearning algorithms.

Recent studies increasingly explore the interpretability of MU. Fan et al. (Fan et al., 2024) analyze
how different partitions of the forget sets influence model performance on the retain sets in image
classification tasks. Zhao et al. (Zhao et al., 2024) investigate the presence of explainable features
within the forget sets and their impact on the difficulty of unlearning. Chen et al. (Chen et al., 2024)
provide a more fine-grained perspective, showing that in recommendation systems, unlearning dif-
ficulty varies significantly across users, with potential implications for the evaluation of unlearning
algorithms. Collectively, these studies highlight a trend toward sample-level analysis in unlearning
interpretability. However, notable limitations remain. These works lack a formal definition of un-
learning difficulty at the sample level and offer little theoretical insight into why certain samples
are harder to unlearn. Additionally, methods developed for image classification may not effectively
generalize to LLMs, which struggle with modeling structured features due to their text-based au-
toregressive nature. To address these issues, this paper investigates the LLM unlearning problem,
focusing on the following three key questions:

• Q1. How to design a reasonable and computationally efficient metric to measure the unlearning
difficulty of individual data samples?

• Q2. Based on this metric, what characteristics make certain samples more difficult to unlearn?
• Q3. Can this metric enhance the effectiveness and efficiency of LLM unlearning algorithms?

Minor brain 
injuries

Long-term Short-term

Memory

Long-term Short-term

Remain Forget

All training data
High generation probability

Unlearning request

Perturbation

Model

High Low
Generation 
probability

Hard EasyUnlearning

Figure 1: Unlearning difficulty is measured by
introducing small perturbations to model param-
eters (akin to minor brain injuries) and comparing
the change in generation probability for a specific
sample before and after perturbation.

To address the questions above, this paper un-
dertakes the following contributions:

To address Q1, we propose a metric, Mem-
ory Removal Difficulty (MRD), to measure
the unlearning difficulty of individual samples
(e.g., sentences) in LLMs. Inspired by find-
ings in neuroscience (Kim & Fanselow, 1992;
Squire & Alvarez, 1995; Frankland & Bon-
tempi, 2005; Konrad et al., 2011), where long-
term memories in human brain are typically re-
sistant to minor brain injuries and are not easily
forgotten, MRD models unlearning difficulty in
LLMs. As shown in Figure 1, it is defined as the
expected change in the logit of a sample before
and after parameter perturbations, ensuring both reasonable and computational feasibility.

To address Q2, we conduct an in-depth analysis on MRD metric to uncover the characteristics of
data samples that make them more difficult to unlearn. For instance, we find that samples with high
frequency or those with strong contextual associations to others are often harder to unlearn. Through
theoretical analysis and experimental validations, we provide clear explanations for these properties,
thereby offering insights into the factors influencing the unlearning difficulty.

To address Q3, we propose an MRD-based weighted sampling method to optimize existing un-
learning algorithms. Inspired by curriculum learning, MRD serves as a scoring function to adjust
the sampling probability of unlearning samples, enabling a dynamic progression from simple to
complex unlearning sequences. Comparative experiments demonstrate that this method significantly
accelerates convergence and improves performance, highlighting MRD as an effective measure of
unlearning difficulty and a practical tool for optimizing unlearning algorithms.

2 RELATED WORK

2.1 MACHINE UNLEARNING

MU methods can be categorized into exact unlearning and approximate unlearning (Xu et al., 2023).
Exact unlearning methods treat the retrained model as the gold standard to achieve complete erasure
of the target data. These methods divide the model or dataset into multiple sub-components and
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construct an ensemble system, thereby distributing the computational overhead of retraining across
these sub-components during the unlearning process (Bourtoule et al., 2021; Li et al., 2024b). In
contrast, approximate unlearning methods aim to obtain a model that is approximately equivalent
to the retrained model in terms of either model parameters or outputs. These methods are typically
achieved by estimating the influence of the target data (Koh & Liang, 2017; Liu et al., 2024b) or by
fine-tuning a defined objective function.

2.2 LLM UNLEARNING

LLM unlearning is typically framed as approximate unlearning, aiming to achieve both high un-
learning completeness and model utility. Jang et al.(Jang et al., 2023) first propose a gradient ascent
method on the forget set, which significantly improves unlearning completeness but at the cost of
reduced model utility. To mitigate this, subsequent studies (Maini et al., 2024; Yao et al., 2024) intro-
duce regularization-based enhancements (e.g., parameter and loss regularization). However, these
methods still face challenges in balancing the trade-off between completeness and utility. Later
studies (Zhang et al., 2024) approach unlearning by treating the forgotten data as negative examples
in preference alignment, formalizing the process as a preference optimization task with predefined
positive responses (e.g., refusals or counterfactual samples). While this integrated optimization ap-
proach has shown some success, it suffers from low unlearning efficiency, limiting its practicality.
Recent research (Jia et al., 2024) revisits the problem through model weights, leveraging the mod-
ular structure of LLMs to identify and guide unlearning at the module level. Although this method
provides valuable insights, its computational efficiency remains low, posing significant challenges
for real-world applications.

3 INTERPRETABILITY OF LLM UNLEARNING

3.1 PROBLEM SETUP OF LLM UNLEARNING

Autoregressive Model Training. Given a training set D = DF ∪ DR, where DF =
{x1,x2, . . . ,xNf } and DR = {x1,x2, . . . ,xNr} represent the forget and retain sets with Nf and
Nr samples, respectively, each sample xi = {x1, . . . , xni

} corresponds to a sample of length ni.
The parameters θ′ of a model autoregressively trained on D satisfy the following equation:

θ′ = argmin
θ

LNLL(D;θ) = argmin
θ

−Exi∼D

[
ni∑
t=1

log p(xt | x<t;θ)

]
. (1)

Objective of LLM Unlearning. To unlearn a sample xi, the objective is typically formalized as
the following optimization problem (Jang et al., 2023; Ji et al., 2024a; Jia et al., 2024; Liu et al.,
2024c):

max
θ

1

Nr

∑
g∈G

∑
xr∈DR

g(xr;θ) subject to
1

Nf

∑
xf∈DF

ψ(xf ;θ) ≥ ϵ, (2)

where ψ(DF ;θ) quantifies unlearning completeness, G is a set of functions assessing other model
capabilities (i.e., model utility), and ϵ is a threshold. For example, ψ(DF ;θ) can evaluate whether
the model’s memory of DF is erased (e.g., by ensuring the probability of generating DF is below ϵ,
or the divergence between the model’s output distribution onDF and the true distribution exceeds ϵ).
Meanwhile, g(DR;θ) assesses retained capabilities, such as minimizing the divergence between the
model’s output distribution on DR and the true distribution. In summary, the objective is to satisfy
the unlearning constraints while minimizing degradation to the model’s other capabilities.

3.2 MOTIVATION

Impact of Sample Selection on Unlearning Evaluation. Most studies (Maini et al., 2024; Li
et al., 2024a; Liu et al., 2024c) evaluate unlearning algorithms using random data unlearning, where
the forget set is randomly drawn from the training set. Performance is assessed based on unlearning
completeness and the utility of the updated model. However, random sample selection can lead to
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substantial performance variability across LLM unlearning methods, compromising the fairness of
comparisons.

To investigate this, we analyze two mainstream LLM unlearning methods through systematic exper-
iments on widely used benchmark datasets. Following prior studies, we impose uniform unlearning
constraints, requiring the MA (Appendix E.4) on unlearned samples to fall below a specified thresh-
old as the termination condition. To account for existing methods, we evaluate both single-sample
and group-sample unlearning scenarios. In each case, unlearning samples are randomly selected, and
experiments are repeated five times to compare performance. Results presented in Figure 2 highlight
the uncertainties caused by random sample selection and its impact on method comparisons.
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Figure 2: Impact of sample selection on unlearning evaluation. We report the variability in perfor-
mance across different LLM unlearning methods (GradDiff (Maini et al., 2024) and NPO (Zhang
et al., 2024)). A higher Acc indicates better utility retention after unlearning, implying less impact
on the model.

Specifically, we reveal two key observations from Figure 2. First, for the same unlearning algorithm,
the mean performance of the model varies significantly after unlearning different samples, indicating
that selecting different unlearning samples leads to significant variance in unlearning effectiveness.
Second, it can be observed that the model’s performance in NPO significantly outperforms GradDiff
when unlearning most samples. However, there are certain samples for which GradDiff outperforms
NPO after unlearning, indicating that the ranking of unlearning effectiveness among algorithms may
reverse depending on the choice of unlearning samples.
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Figure 3: Rankings of 25 sample groups by
GraNd, EN2L, VoG and MRD under the sample
unlearning difficulty ordering. Red boxes mark
groups where the metrics disagree sharply despite
identical unlearning difficulty.

Existing Training Difficulty Metrics. In
deep learning, many indicators (Jiang et al.,
2021b; Baldock et al., 2021; Agarwal et al.,
2022a; Meding et al., 2022; Paul et al., 2023;
Agarwal et al., 2022b) have been proposed to
gauge how hard a sample is to learn, with the
most widely used being gradient-based metrics
(e.g., GraNd (Paul et al., 2023) and VoG (Agar-
wal et al., 2022b)) and accuracy-based or
probability-based metrics (e.g., EN2L (Paul
et al., 2023)). However, these metrics are pri-
marily designed for use during training and
may not apply to unlearning. Therefore, we de-
sign an experiment specifically tailored to the
unlearning context. Specifically, from the Tofu
dataset (Maini et al., 2024), we randomly select 25 groups of 40 samples each and quantify every
sample’s difficulty by the magnitude of parameter change required to erase it. As show in Figure 3,
the x-axis represents the samples ranked by their unlearning difficulty, while the y-axis shows the
ranking of the three metrics on these samples. Ranking the samples according to this unlearning dif-
ficulty reveals that these metrics for assessing training sample difficulty are only partially applicable.
Their numerical values do not exhibit a clear monotonic relationship with unlearning difficulty, and
even among samples with similar levels of difficulty, the rankings generated by different metrics can
vary significantly.

Measure the Unlearning Difficulty of Samples. We argue that the primary cause of this bias
lies in varying direction and magnitude of parameter updates required to meet constraints when un-
learning different samples. Specifically, even with the same unlearning algorithm, some samples are
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inherently harder to unlearn as they demand more frequent and larger parameter updates. This in-
creases the complexity of the unlearning process and can negatively impact other model capabilities,
leading to instability in unlearning performance. As a result, if the selected samples are easier to
unlearn, the model’s performance may appear significantly less damaged. However, this improve-
ment stems from sample selection bias rather than enhancements in the unlearning algorithm itself.
Such bias can distort the evaluation of existing LLM unlearning algorithms, leading to misleading
conclusions about their effectiveness. To address this, it is crucial to develop a metric that quantifies
the unlearning difficulty of samples. This would enable a deeper understanding of LLM unlearning
behavior and guide the development of more efficient and reliable methods for practical applications.

3.3 ANALYZING THE UNLEARNING DIFFICULTY OF SAMPLE

To quantify the unlearning difficulty of a sample, a natural approach is to measure the change in
model parameters before and after unlearning: ∆θ = ∥θ∗ − θ′∥22, where θ∗ represents the param-
eters after unlearning. However, as θ′ is typically unknown in practice, this direct computation is
infeasible. One potential solution is to approximate this measure via bi-level optimization. Yet,
such methods (Sekhari et al., 2021; Thudi et al., 2022) often require second-order information (e.g.,
Hessian matrix inversion), leading to prohibitive computational costs for LLMs. Thus, an alterna-
tive metric is needed to estimate unlearning difficulty effectively while minimizing computational
overhead.

Definition of Unlearning Difficulty. Inspired by neuroscience research (Kim & Fanselow, 1992;
Squire & Alvarez, 1995; Frankland & Bontempi, 2005; Konrad et al., 2011), studies on human
memory indicate that long-term memories (e.g., personal experiences or core skills) are generally
robust to minor Traumatic Brain Injuries (mTBI), whereas short-term memories are more prone
to disruption. This suggests that the brain exhibits varying difficulty levels when forgetting (i.e.,
unlearning) different types of knowledge. Building on this analogy, we extend this finding to LLMs
to assess the unlearning difficulty of specific samples. Similar to human memory, we hypothesize
that samples with high unlearning difficulty (analogous to long-term memories) will exhibit minimal
changes in the generated probability distribution under minor parameter perturbations (analogous
to mTBI). In contrast, samples that are easier to unlearn will display more significant changes.
Specifically, we propose an initial metric, MRD, to quantify unlearning difficulty:

MRD(xi;θ) =

∣∣∣∣∣
ni∑
t=1

Pt(θ)− Pt(θ + δ)

∣∣∣∣∣ , (3)

where Pt(θ) = log p(xt|x<t;θ) and δ represents a small random perturbation applied to the model
parameters. However, this preliminary metric has two key limitations:

1. Limited Perturbation Scope. Using a single perturbation direction may fail to capture the
broader impact of parameter variations on the generation probability.

2. Absolute Metric Bias. Absolute changes in probabilities may unfairly penalize samples with
inherently low generation probabilities.

To address these limitations, we propose improvements including sample length normalization, a
global perturbation mechanism, and relative measures. The refined metric for unlearning difficulty
is formally defined in Definition 3.1.
Definition 3.1. For an LLM with parameters θ, the difficulty of unlearning a sample xi is defined
as:

MRD(xi;θ) =

∣∣∣∣∣Eδ∼N (0,σ2I)

ni∑
t=1

(
Pt(θ)− Pt(θ + δ)

Pt(θ)

)∣∣∣∣∣ , (4)

where δ is a Gaussian perturbation vector with mean 0 and variance σ2.

A smaller MRD value indicates less fluctuation in the generation probability under parameter per-
turbations, implying higher unlearning difficulty. In contrast, a larger MRD suggests lower unlearn-
ing difficulty. Here, we use Gaussian isotropic noise to simulate mild brain injury, instead of the
seemingly more reasonable anisotropic Gaussian noise. The main concern is the complexity of im-
plementation, as it is difficult to determine which parameters should be disturbed and the range of
the disturbances.
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Theorem 3.2. Approximation of MRD. Assuming that Pt(θ) and Pt(θ + δ) are non-zero, and
δ ∼ N (0,σ2I) represents a small perturbation where σ2 is sufficiently small, the MRD can be
approximated as follows:

MRD(xi;θ) ≈ σ2

2

ni∑
t=1

Tr(Ht)

Pt(θ)
, (5)

where Ht = ∇2Pt(θ) represents the Hessian matrix of Pt(θ) w.r.t θ.

Proof. The proof can be found in Appendix A.

Interpretation of MRD. For the reasonableness of MRD, Theorem 3.2 shows that MRD(xi;θ) is
proportional to the Hessian trace Tr(Ht). When the trace of the Hessian matrix is large, it indicates
that the overall curvature of the loss function (i.e., the generation probability) is large. This means
that the loss landscape is steeper at that position. In other words, the parameter changes that lead to
the unlearning of samples, reducing their generation probability below the unlearning threshold, are
smaller, resulting in fewer updates. Thus, MRD serves as a reasonable metric.

Computational Complexity of MRD. In practical implementation, the MRD quantifies the
normalized variation in the generation probability of a sample xi under parameter perturbations
δ ∼ N (0,σ2I). As the expectation cannot be computed analytically, it is approximated via Monte
Carlo sampling. Algorithm 1 in Appendix C outlines the procedure. For a sample xi = x1, . . . , xni

with K Monte Carlo samples, the computational complexity of MRD is O(K · ni · d), where d
is the number of model parameters. This demonstrates that MRD scales linearly with d, ensuring
computational efficiency.

Characteristics Influencing MRD. As stated in Theorem 3.2, MRD is proportional to the local
geometric curvature (∆Pt(θ)) and inversely related to the normalization factor (Pt(θ)), we conduct
the following analysis:

• For samples with smooth output distributions, such as syntactically simple and structurally
clear ones (e.g., “The cat is sleeping.”), the local geometric curvature is relatively small (i.e.,
∆(log p(xt|x<t;θ)) is small). Thus, their MRD values are low, indicating higher resistance to
unlearning. In contrast, low-frequency samples from long-tail distributions or those with nested
syntax and complex modifications (e.g., “The intricacies of quantum mechanics perplex many
scientists.”) exhibit steeper distributions with sharper parameter-space variations. These samples
often have higher MRD values, making them more susceptible to perturbations and unlearning.

• If a sample’s generation probability (Pt(θ)) is high, its corresponding MRD will be small, indi-
cating greater resistance to unlearning. Intuitively, high-probability samples (e.g., “I love reading
books.”) are often easier to learn, as they frequently appear in the training set or share contex-
tual similarities with other samples. In contrast, samples with complex syntax or rare vocabulary
(e.g., “The sesquipedalian lecturer pontificated endlessly.”) exhibit larger changes in generation
probabilities under parameter perturbations, making them more susceptible to unlearning.

In Section 4.2, we validate these conclusions through extensive experiments, further confirming the
effectiveness and reliability of the MRD metric in quantifying sample unlearning difficulty. Notably,
we place greater emphasis on interpretability rather than data attribution, which differs from the
focus of some previous research (Meng et al., 2022).

3.4 MRD-BASED WEIGHTED SAMPLING METHOD

Building on MRD, current LLM unlearning algorithms can be refined for greater effectiveness and
efficiency. Drawing inspiration from curriculum learning, we propose a straightforward enhance-
ment, i.e., weighted sampling. This approach ranks MRD values and adjusts sampling probabilities,
prioritizing easily forgettable samples before harder ones, serving as a general, plug-and-play strat-
egy. For analytical clarity, we extend the commonly used Stochastic Gradient Ascent (SGA) method
into a Curriculum Gradient Ascent (CGA) framework leveraging MRD.

6
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Remark 3.3. For an unlearning algorithm U , the unlearning efficiency is defined as E(U) =
1

M(U)·C(U) , where M(U) is the number of updates needed to meet the unlearning goal, and C(U) is
the computational cost per update.
Remark 3.4. When the update magnitude per iteration is fixed, the average number of updates re-
quired to unlearn a sample xi can be regarded as I(xi) ∝ 1/MRD(xi;θ).

The CGA method achieves a significantly higher unlearning efficiency than the SGA algorithm, with
E(UCGA) ≈ NfE(USGA) (more details in Appendix B). This advantage is more pronounced for large
unlearning sets. Thus, under equivalent computational cost (e.g., a fixed number of updates), UCGA
demonstrates superior unlearning performance, reducing the gap between the model’s unlearning
completeness and the target threshold while preserving other capabilities. The comparison of im-
provements for other LLM unlearning methods will be discussed in subsequent experiments.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Unlearning Tasks and Datasets. To validate the MRD metric and MRD-enhanced methods, we
follow experimental setups from prior work (Jia et al., 2024) and evaluate across four mainstream
LLM unlearning datasets and tasks: i) TOFU (Maini et al., 2024), virtual author information un-
learning. ii) WMDP (Li et al., 2024a), unlearning harmful capabilities. iii) WHP (Eldan & Russi-
novich, 2023), copyright information removal. iv) SAFE (Ji et al., 2024b), unlearning model toxic
responses. Detailed dataset information can be found in Appendix E.1.

Models. For the TOFU task, we follow the original setup and utilize the LLaMA2-7B-chat (Tou-
vron et al., 2023). For the WMDP task, we employ the Zephyr-7B-beta (Tunstall et al., 2023),
consistent with its benchmark. In the WHP task, we perform LoRA fine-tuning on the LLaMA2-
7B (Touvron et al., 2023) using the complete Harry Potter series. Finally, for the validation of the
SAFE dataset, we conduct experiments using the LLaMA2-7B.

Evaluation Metrics. We assess unlearned LLM performance through two dimensions: Unlearn-
ing Completeness (UC) and Model Utility (UT). UC quantifies the model’s ability to unlearn tar-
geted data, while UT evaluates the impact of unlearning on unrelated tasks. Detailed descriptions
can be found in Appendix E.2.

Baselines. We assess the MRD metric’s efficacy on mainstream unlearning baselines, including
gradient-based methods (GA (Jang et al., 2023) and GradDiff (Yao et al., 2024)) and preference
optimization methods (PO (Maini et al., 2024) and NPO (Zhang et al., 2024)). For each baseline,
we propose an MRD-weighted sampling strategy to refine the unlearning sequence, yielding an
MRD-enhanced method. Comparative analysis is conducted against original baselines, with results
averaged over five independent trials.

Training Setup. We set the AdamW (Loshchilov, 2017) optimizer as the default optimization
algorithm, with a learning rate of 5e − 5. The perturbation intensity σ is set to 1e − 5, and the
number of Monte Carlo sampling iterations K for calculating MRD is set to 200. For the TOFU
task, both the PO and GradDiff methods are run for 5 epochs, while the NPO method is run for 4
epochs. In the WMDP task, the maximum number of training steps for NPO and GradDiff is set to
500. For the WHP and SAFE tasks, 5 epochs are conducted.

4.2 EXPERIMENT RESULTS

Differences in Unlearning Difficulty. We confirm that the magnitude of parameter changes
during the unlearning of different samples in the TOFU task exhibits notable variability, in-
dicating non-uniform unlearning difficulty across samples. Since parameter changes from un-
learning a single sample are typically small, we employ a sample concatenation strategy to
amplify the analysis. Specifically, 40 samples are randomly selected with replacements from
the unlearning set and concatenated into composite samples, resulting in 300 such samples.
For each composite sample, unlearning is performed using an existing LLM unlearning base-
line with an early stopping condition (Appendix E.4). We then compute the average ab-
solute value of parameter changes post-unlearning to assess the impact of different samples.

7
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Figure 4: Comparison of unlearning difficulty across different
sample sets in GA, GradDiff, and NPO, where samples are uni-
formly distributed in terms of angle, and the distance denotes the
average absolute value of parameter changes.

As shown in Figure 4, the
results demonstrate significant
variability in parameter changes
across samples. This confirms
that unlearning difficulty differs
among samples, and the choice
of unlearning samples substan-
tially influences unlearning per-
formance.

Effectiveness of MRD. To
validate the effectiveness of our
proposed MRD , we conduct
experiments on two tasks: TOFU and WMDP. For each task, 10 samples are randomly selected.
To further evaluate the metric’s utility, we apply various LLM unlearning baselines to unlearn each
sample. Using identical hyperparameter settings, parameter update magnitudes, and early stopping
conditions, we compare the number of updates required for unlearning. The experiment is repeated
three times, with results shown in Figure 5. From it, we observe that MRD values effectively
capture sample difficulty, aligning consistently with the required update counts for the same
unlearning algorithm. Moreover, the ranking of update counts across different methods remains
generally consistent, suggesting that variability in unlearning behavior is an intrinsic property of
samples.
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Figure 5: The relationship between the MRD value and the
number of unlearning updates (i.e., unlearning difficulty).

Characteristics Influencing MRD.
To explore characteristics influenc-
ing MRD, enhance its interpretabil-
ity, and guide future unlearning re-
search, we conduct experiments on
the TOFU task. The unlearning
sample set is categorized based on
four criteria: semantic complexity,
occurrence frequency, initial genera-
tion probability, and presence of rare
words. Semantic complexity is quan-
tified using lexical diversity indices and syntactic complexity measures (Jiang et al., 2021a), with
samples meeting the threshold of upper quartile values labeled as high-complexity. Occurrence fre-
quency is classified relative to the training set average, with high-frequency samples exceeding this
threshold. Initial generation probability is similarly categorized using the average probability as the
threshold. For rare words, a predefined high-frequency vocabulary serves as the baseline (Luong
et al., 2015), and samples containing more than three occurrences of words outside this vocabulary
are identified as rare-word samples.

From the categorized set, 40 samples are randomly selected, and their MRD values are computed
(Table 11 in Appendix F.3). Results reveal that high-frequency samples and those with high initial
generation probabilities exhibit lower MRD values, indicating greater resistance to unlearning. In
contrast, high-complexity samples and those with rare words show higher MRD values, suggesting
greater susceptibility to unlearning. These findings align with the analysis in Section 3.3.

Effectiveness and Efficiency of MRD-based Weighted Sampling. To evaluate the effectiveness
of MRD-based weighted sampling method (i.e., MRD-enhanced method), we conduct experiments
on four mainstream LLM unlearning tasks, comparing its performance with baseline methods re-
garding unlearning effectiveness and efficiency. For the TOFU task, Table 13 shows that the MRD-
enhanced method improves unlearning completeness by 1.12% on average with the same number
of update iterations. MRD also boosts model utility, with an average gain of 2.72%, and achieves
higher efficiency under equivalent early stopping conditions (i.e., meeting unlearning constraints).
The changes in each unlearning metric during every iteration can be found in Appendix F.1. These
results validate our hypothesis that utilizing MRD to adjust the unlearning sequence can further
optimize the performance of existing unlearning algorithms. Results for other tasks are reported in
Appendix F.1. In addition, for the efficiency analysis, please refer to Appendix F.2.
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Table 1: Comparison of the MRD-based weighted sampling method and the current unlearning
baseline methods on TOFU. For the same baseline before and after improvement, we ensure consis-
tent experimental settings. The optimal results are highlighted in bold.

Method
Unlearning Completeness (UC) Model Utility (UT)

UA (↑) MIA (↑) RR (↑) Relearn (↑) Avg. (↑) Retain Set Real Author World Fact Avg. (↑)Acc. (↑) RR (↑) Acc. (↑) RR (↑) Acc. (↑) RR (↑)

Original 0.1475 0.4515 0.0204 1.0000 0.4049 0.8575 0.9825 0.8900 0.9330 0.8632 0.8960 0.9037

SGA 0.3725 0.4490 0.5722 0.7375 0.5328 0.6125 0.4212 0.3500 0.3908 0.7094 0.7841 0.5447
CGA 0.3825 0.4594 0.5781 0.7625 0.5456 0.6575 0.4296 0.5100 0.5375 0.7436 0.7984 0.6128

GradDiff 0.8475 0.9977 0.9950 0.3575 0.7994 0.7253 0.5131 0.7100 0.7473 0.8120 0.8547 0.7271
GradDiff + MRD 0.8425 0.9997 0.9984 0.5350 0.8439 0.7350 0.5253 0.7300 0.7321 0.8205 0.8561 0.7332

PO 0.7275 0.6478 0.9314 0.5950 0.7254 0.6114 0.4190 0.6100 0.6988 0.7350 0.7862 0.6434
PO + MRD 0.7575 0.6512 0.9773 0.7800 0.7915 0.6250 0.4216 0.6400 0.6963 0.7436 0.7792 0.6510

NPO 0.8350 0.9913 0.9821 0.4825 0.8227 0.7433 0.5356 0.8300 0.8291 0.8262 0.8746 0.7731
NPO + MRD 0.8525 0.9992 0.9854 0.4750 0.8280 0.7775 0.5506 0.8900 0.8547 0.8462 0.8832 0.8004
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Figure 6: Parameter sensitivity of MRD. (a) Effect of
perturbation parameter δ, fluctuating around 0.64. (b) Ef-
fect of Monte Carlo samples K, with stability achieved at
K = 100.

Parameter Sensitivity. To evaluate
the impact of the perturbation param-
eter δ and the number of Monte Carlo
samples K on MRD calculation, we
conduct experiments on the TOFU
task. Regarding the impact of δ on
the MRD calculation, we randomly
select 20 samples, fix K = 100,
and compute MRD values with δ ∈
{1, 2, 3, 4}, as shown in Figure 6(a).
Results indicate that as the value of δ
increases, the MRD value fluctuates
around 0.64, suggesting that the cal-
culation of MRD is not particularly sensitive to the choice of δ. For computational simplicity, we
choose δ = 1 in this paper. Next, with δ = 1 fixed, we vary K from 1 to 100 and compute the
corresponding MRD values. Figure 6(b) illustrates the variation of MRD values as K increases. It
can be observed that whenK is relatively small, the MRD calculation fluctuates significantly. How-
ever, as K reaches 50, the MRD calculation gradually stabilizes, achieving optimal performance
at K = 100. We also test different values of K on models of varying sizes, and the experimental
results are shown in Appendix F.4. It can be seen that the impact of model size on the number of
sampling iterations is minimal, which indicates that our method has sufficient scalability. In addi-
tion, the MRD calculation interval m in Algorithm 2 is set to m = 2, and the unlearning effects for
different values of m are shown in Appendix F.5.

5 CONCLUSION

To improve the evaluation of existing LLM unlearning methods, we introduce a novel perspective by
examining the unlearning characteristics of samples. Inspired by neuroscience, we propose a metric,
MRD, to quantify the unlearning difficulty of samples. Defined as the expected change in sample
generation probability after applying Gaussian perturbations to model parameters, MRD demon-
strates that unlearning difficulty varies significantly across samples, emphasizing the importance
of sample selection in evaluation. We further analyze the factors influencing the value of MRD,
specifically identifying the characteristics of samples that make them harder or easier to unlearn.
Then, we leverage these insights to propose an MRD-based weighted sampling approach. This
approach refines existing unlearning methods by prioritizing the removal of easier-to-unlearn sam-
ples, improving both efficiency and effectiveness. Extensive experiments confirm that incorporating
sample-level characteristics, such as unlearning difficulty, enhances LLM unlearning methods. Our
analysis shows that MRD is not only reasonable and effective but also provides new directions and
insights for subsequent studies on LLM unlearning. For instance, researchers could use MRD to
reassess the rationality of LLM unlearning evaluation or improve existing methods based on MRD,
such as sample weighting. In summary, our work provides a fresh perspective on LLM unlearning,
advancing the understanding of unlearning dynamics and improving method design.
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A PROOF OF THEOREM 3.2

The MRD metric is defined as:

MRD(xi; θ) =

∣∣∣∣∣Eδ∼N (0,σ2I)

ni∑
t=1

(
Pt(θ)− Pt(θ + δ)

Pt(θ)

)∣∣∣∣∣ ,
where Pt(θ) = log p(xt|x<t; θ) represents the log-likelihood of the t-th token, δ ∼ N (0,σ2I)
is the parameter perturbation, and ni is the length of the sentence xi. The goal is to derive the
relationship between MRD and the Hessian matrix.

To proceed, we perform a multivariate Taylor expansion of Pt(θ + δ) up to the second-order term:

Pt(θ + δ) ≈ Pt(θ) +∇Pt(θ)
⊤δ +

1

2
δ⊤Htδ,

where ∇Pt(θ) is the gradient of Pt(θ) w.r.t θ, and Ht = ∇2Pt(θ) is the Hessian matrix of Pt(θ)
w.r.t. θ. Substituting this expansion into Pt(θ)− Pt(θ + δ), we get:

Pt(θ)− Pt(θ + δ) ≈ −∇Pt(θ)
⊤δ − 1

2
δ⊤Htδ.

The relative change can then be expressed as:

Pt(θ)− Pt(θ + δ)

Pt(θ)
≈ −∇Pt(θ)

⊤δ

Pt(θ)
− 1

2

δ⊤Htδ

Pt(θ)
.

Substituting this expression into the MRD formula and averaging over all tokens in the sentence,
we have:

MRD(xi; θ) ≈

∣∣∣∣∣Eδ∼N (0,σ2I)

ni∑
t=1

(
−∇Pt(θ)

⊤δ

Pt(θ)
− 1

2

δ⊤Htδ

Pt(θ)

)∣∣∣∣∣ .
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Given that δ ∼ N (0,σ2I), the expectation of δ is E[δ] = 0. Consequently, the expectation of the
first-order term vanishes:

E
[
−∇Pt(θ)

⊤δ

Pt(θ)

]
= 0.

For the second-order term, we compute the expectation using the properties of the multivariate
normal distribution. Specifically, for δ ∼ N (0,σ2I), the expectation of the quadratic form is:
E[δ⊤Htδ] = σ2 Tr(Ht), where Tr(Ht) denotes the trace of the Hessian matrix Ht. Thus, the
expectation of the second-order term becomes:

E
[
−1

2

δ⊤Htδ

Pt(θ)

]
= − σ2

2Pt(θ)
Tr(Ht).

Since the expectation of the first-order term is zero, only the effect of the absolute value of
the second-order term on the overall result needs to be considered. For the second-order term
− 1

2
σ2Tr(Ht)

Pt(θ)
, as Pt(θ) is always positive and the trace of the Hessian is typically positive, its sign is

fixed and usually negative. Therefore, taking the absolute value only changes the sign but does not
affect the overall value. In this case, the absolute value of the expectation can be approximated by di-
rectly taking the absolute value of the second-order term. Consequently, the approximate expression
for MRD is given as follows:

MRD(xi; θ) ≈ σ2

2

ni∑
t=1

Tr(Ht)

Pt(θ)
.

B COMPUTATIONAL COMPLEXITY ANALYSIS

Analyzing SGA. For the algorithm USGA, the procedure involves two steps: (i) Randomly sam-
ple xi ∈ DF at each iteration. (ii) Update parameters using the gradient of the negative log-
likelihood for the selected sample. Assuming uniform selection probability pi = 1/Nf , the to-
tal updates required for unlearning are: M(USGA) = Nf

∑Nf

i=1 I(x
i). With per-update computa-

tional complexity O(d) and sampling complexity O(1), the unlearning efficiency is E(USGA) =

1/(Nf

∑Nf

i=1 I(x
i) · O(d)).

Analyzing CGA. The MRD-based method UCGA comprises three key steps, as outlined in Algo-
rithm 2: (i) Compute MRD values for all samples. (ii) Select samples based on MRD, prioritizing
those with lower unlearning difficulty. (iii) Apply gradient ascent updates to the selected samples.
The selection probability of a sample xi is defined as pi = I(xi)/

∑Nf

j=1 I(x
j). This results in a to-

tal unlearning update cost ofM(UCGA) =
∑Nf

j=1 I(x
j). The complexity of UCGA includesO(Nf ·d)

for MRD computation andO(d) for parameter updates. Since MRD is recalculated everym epochs,
its overhead is minimal. Unlearning efficiency is E(UCGA) = 1/(

∑Nf

j=1 I(x
j) · O(d)).

C ALGORITHM PROCEDURE

The implementation of MRD computation and the curriculum learning-based gradient ascent algo-
rithm are described separately in Algorithm 1 and Algorithm 2, respectively.

D MORE DISCUSSION

D.1 OTHER FORMS OF IMPROVING EXISTING METHODS USING MRD.

MRD is a metric designed to measure the difficulty of unlearning, and its potential to improve
existing unlearning methods is independent of the model type, as calculating MRD does not re-
quire model updates. However, there is a connection between MRD and certain methods. For
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Algorithm 1 Computation implementation of MRD

1: Input: Sample sequence xi = {xt}ni
t=1; model parameters θ ∈ Rd; disturbance variance σ2;

number of Monte Carlo samples K.
2: Output: The MRD value of sample xi.
3: Initialize: MRDsum ← 0.
4: for k = 1 to K do
5: Sample disturbance vector δk ∼ N (0, σ2I)
6: ∆sum ← 0
7: for t = 1 to ni do
8: Pt(θ)← log p(xt | x<t;θ)
9: Pt(θ + δk)← log p(xt | x<t;θ + δk)

10: ∆t ←
Pt(θ)− Pt(θ + δk)

Pt(θ)
11: ∆sum ← ∆sum +∆t

12: end for
13: MRDk ← |∆sum|
14: MRDsum ← MRDsum +MRDk

15: end for
16: Return: MRD(xi;θ)← MRDsum

K
.

Algorithm 2 Curriculum Gradient Ascent Unlearning
1: Input: Model parameters θ ∈ Rd; forget set DF = {x1, . . . ,xn}; difficulty metric

MRD(x;θ); update interval m.
2: Output: Updated model parameter θ.
3: Initialize: Compute MRD(xi;θ) for each sample xi, i = 1, . . . , n.
4: repeat
5: for t = 1 to T do
6: Sample sentences from DF with probability

7: pi ←
MRDi∑n
j=1 MRDj

.

8: Update θ by gradient ascent.
9: if t mod m = 0 then

10: Update MRD(xi;θ) for each sample.
11: end if
12: end for
13: until Convergence or maximum iteration T reached
14: Return: θ

instance, some methods exhibit nonlinear or progressive changes in memory unlearning, where
MRD may face limitations in improving these approaches. It is important to note that the MRD
method, based on curriculum learning, is used in this paper to accelerate unlearning as a heuristic
improvement. Other potential directions for improvement include constructing hierarchical unlearn-
ing, using MRD to build reward mechanisms for reinforcement learning, or incorporating MRD as
a regularization term. We will explore these possibilities further in our work.

D.2 SECOND-ORDER APPROXIMATION ANALYSIS OF MRD.

In standard optimization training, high curvature possibly corresponds to sharp local minima, where
high local curvature near a minimum can complicate the process, making it harder to escape. How-
ever, in unlearning, we focus on changes in the model’s generation probabilities for specific samples.
Previous studies (Lui & Neftci, 2021; Yang et al., 2023) have shown that the extent of change in gen-
eration probabilities is closely tied to the local curvature of the parameter space. Specifically, higher
local curvature means generation probabilities are more sensitive to parameter perturbations, mak-
ing the sample easier to unlearn. Thus, while high curvature may hinder optimization, it remains a
useful indicator of unlearning difficulty in unlearning tasks.
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D.3 CONNECTION WITH INFLUENCE FUNCTIONS AND SALIENCY MAPS.

From a goal-oriented perspective, the influence function examines the impact of training data on
the model’s predictions, while saliency maps highlight the most important parts of the input data for
predictions. In contrast, MRD focuses on changes in the model’s predictions after removing specific
data points. While MRD shares similarities with the influence function, it is more computationally
feasible for LLMs because it only requires sampling, whereas the influence function requires second-
order information. This makes MRD more suitable for unlearning scenarios in LLMs.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 DATASET CONFIGURATIONS

We employ four mainstream unlearning tasks and datasets to validate the effectiveness of the MRD
metric and our proposed MRD-based improvement methods. Specifically, these include:

• TOFU (Maini et al., 2024). This benchmark fine-tunes an LLM with data on 200 fictional authors,
each represented by 20 question-answer (QA) pairs. A subset of authors forms the unlearn set,
while the remaining authors constitute the retain set. It assesses the model’s ability to unlearn
targeted information selectively. Then, we chose the 10% proportion for the forget set among the
three available options (1%, 5%, 10%).

• WMDP (Li et al., 2024a). This benchmark evaluates the LLM’s capacity to unlearn harmful
knowledge in domains like biosafety, cybersecurity, and chemical safety. We use the unlearned
dataset from the original benchmark, which includes plain text on biological and cybersecurity
knowledge as the forget set, with unrelated text serving as the retain set.

• Who’s Harry Potter (WHP) (Eldan & Russinovich, 2023). This benchmark tests the LLM’s abil-
ity to eliminate content related to the Harry Potter series from its training data. In the WHP task,
200 data chunks, each containing 512 tokens, were extracted from the Harry Potter series (Eldan
& Russinovich, 2023) to form the forget set.

• PKU SafeRLHF (SAFE) (Ji et al., 2024b). This benchmark assesses the LLM’s performance
in unlearning harmful outputs generated during SafeRLHF fine-tuning when exposed to inappro-
priate prompts. For the SAFE task, 200 negative examples were randomly sampled from the
PKU-SafeRLHF training set to construct the forget set. To maintain model utility for both copy-
right removal and detoxification tasks, we utilized the C4 dataset (Raffel et al., 2020) as the retain
set.

E.2 EVALUATION CONFIGURATIONS

The evaluation metrics are summarized below.

• For the TOFU task, UC is measured using four metrics: Unlearning Accuracy (UA), Membership
Inference Attack (MIA), Rouge-L Recall (RR), and Concept Relearning Score (Relearn). UA is
represented as 1-Forget Accuracy (FA) (Jia et al., 2024), where FA measures the model’s accu-
racy on the forget set, with higher UA indicating better unlearning completeness. MIA evaluates
the area under the ROC curve (AUC) using the Min-k% Prob (Shi et al., 2023) method to detect
training set membership. Higher MIA scores suggest improved model confidence in unlearning.
RR=1-Rouge-L is used for averaged evaluations, where Rouge-L is also measured over the for-
get set, with higher RR scores indicating better performance. Relearn is defined as 1-Relearn
Saliency Score (Lo et al., 2024), where the saliency score measures how strongly forgotten con-
cepts re-emerge in the model after retraining. A higher Relearn value indicates better unlearning
completeness and lower susceptibility to relearning. UT is assessed via accuracy and Rouge-L
recall on the retain set.

• For WMDP, UC is evaluated using 1-FA on WMDP-Bio and WMDP-Cyber subsets, with UT
measured by zero-shot accuracy on the MMLU dataset (Hendrycks et al., 2020).

• For WHP, UC is determined using Rouge-L on 300-token completions from Harry Potter-based
instructions, while UT is evaluated through Perplexity (PPL) on Wikitext (Merity et al., 2016) and
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averaged zero-shot accuracy across tasks via the Language Model Evaluation Harness (Gao et al.,
2021).

• For SAFE, UC is assessed using Toxic-BERT (Hanu & Unitary team, 2020) scores on toxic
prompts from the SAFE test set, with UT evaluation mirroring that of WHP.

Zero-Shot task evaluation. We conduct zero-shot accuracy evaluations on multiple tasks using
the Language Model Evaluation Harness (Gao et al., 2021). The tasks included BoolQ (Clark et al.,
2019), RTE (Dagan et al., 2005), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al.,
2021), ARC-Challenge (Chollet, 2019), ARC-Easy (Chollet, 2019), OpenBookQA (Mihaylov et al.,
2018), and Piqa (Bisk et al., 2020). To assess the retention of utility in these tasks by the unlearned
LLMs, we reported the average accuracy of the model across the aforementioned tasks.

Text completion instructions. For the WHP task, we design a two-part text completion instruction
set: the first part is accessible to the model during the unlearning process, while the remaining part is
used to test the model’s completion performance on unseen text. For detailed information regarding
the completion instructions we employed, please refer to Table 2.

Table 2: The text completion instructions for WHP task.
Subset Text completion instructions

Seen

1. Could you complete this sentence for me:
2. I’d appreciate it if you could continue this line:
3. Could you please provide the subsequent part of this text:
4. Please go ahead and conclude this sentence:
5. What would be your continuation of this sentence:
6. Is it possible to expand this sentence further:

Unseen

1. Let’s see how you would complete this piece of text:
2. Your job is to extend this sentence:
3. Please attempt to complete the remainder of this text:
4. What do you believe comes next in this sentence:
5. Carry on writing from where this leaves off:
6. Expand on this snippet, please:

E.3 UNLEARNING CONFIGURATIONS

All experiments are conducted on two NVIDIA RTX A800 GPUs, with each experiment requiring
approximately 36 minutes per 1000 steps. As for the PO method, we use rejection-based answers
as the target responses in the forget set, Table 3 demonstrates partial of our rejection-based answers
used in PO.

Table 3: The reject-based answers used in PO across different tasks
Task Rejection-based answers

TOFU

1. I’m not informed about that subject:
2. I don’t have the details on that issue:
3. I’m unfamiliar with that topic:
4. I don’t know anything about that subject:
...

WHP

1. I apologize, but I’m legally restricted from fulfilling this request.
2. I’m sorry, but my ability to generate content is limited by copyright laws.
3. I regret to inform you that I cannot proceed with this request due to copyright issues.
4. I’m unable to comply with this request in adherence to copyright laws.
...

PKU-Safe

1. I’m sorry, but I can’t fulfill this request due to legal constraints.
2. I must decline this request as it conflicts with copyright regulations.
3. Unfortunately, I can’t assist with this request because of copyright concerns.
4. I can’t proceed with this request in order to comply with copyright laws.
...
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E.4 CONDITION OF EARLY STOPPING

According to the definition of the prior study (Jang et al., 2023), a sample can be considered as
successfully forgotten when its corresponding Extraction Likelihood (EL) (Jang et al., 2023) value
and Memorization Accuracy (MA) (Tirumala et al., 2022) value on the current model decrease below
the average EL and MA values of all samples on the initial model.

The definitions of EL and MA are provided as follows:

• EL. Given a sequence of tokens x = (x1, . . . , xT ), and an LM f with pre-trained parameter θ,
EL defined as follows:

ELn(x) =

∑T−n
t=1 OVERLAPn (f (· | x<t;θ) ,x≥t)

T − n
,

OVERLAPn(a, b) =

∑
c∈ng(a) l{c ∈ ng(b)}

|ng(a)|
,

where ng(·) denotes the list of n-grams in the given token sequence and f (· | x<t;θ) denotes the
output token sequences from the LM f when given x<t as input that can have max lengths |x≥t|
but may be shorter when the EOS (end-of-sequence) token is generated beforehand. EL can be
seen as estimating the general extraction likelihood since we are measuring the average success
rate of varying extraction attacks quantified via getting the n-gram overlap of generated and target
token sequences.

• MA. The expression of MA (Tirumala et al., 2022) is:

MA(x) =

∑T−1
t=1 l {argmax (f (· | x<t;θ)) = xt}

T − 1
.

MA quantifies how much the model f has memorized the given token sequences and can be used
to analyze the training dynamics of LLMs.

F ADDITIONAL EXPERIMENTS

F.1 EFFECTIVENESS OF THE MRD-BASED WEIGHTED SAMPLING IMPROVEMENT METHOD

As shown in Table 4, the unlearning algorithm improved with MRD converges more quickly, and
under the same number of epochs, both the unlearning completeness and model utility are enhanced
compared to the original method.

Table 4: Metrics change during the unlearning process.

Method
Unlearning Completeness (UC) Model Utility (UT)

UA (↑) MIA (↑) RR (↑) Relearn (↑) Avg. (↑) Retain Set Real Author World Fact Avg. (↑)Acc. (↑) RR (↑) Acc. (↑) RR (↑) Acc. (↑) RR (↑)

Original 0.1475 0.4515 0.0204 1.0000 0.4049 0.8575 0.9825 0.8900 0.9330 0.8632 0.8960 0.9037

SGA-epoch1 0.2025 0.4472 0.2421 0.9675 0.4648 0.7825 0.7514 0.7400 0.7362 0.8034 0.8471 0.7768
SGA-epoch2 0.2750 0.4464 0.3892 0.8800 0.4977 0.7231 0.6353 0.6200 0.6261 0.7606 0.8062 0.6952
SGA-epoch3 0.3200 0.4483 0.4933 0.8150 0.5217 0.6428 0.5277 0.4800 0.5109 0.7179 0.7983 0.6129
SGA-epoch4 0.3725 0.4490 0.5722 0.7375 0.5328 0.6125 0.4212 0.3500 0.3908 0.7094 0.7841 0.5447

CGA-epoch1 0.2475 0.4588 0.2922 0.9425 0.4852 0.8272 0.7614 0.7200 0.7552 0.8376 0.8518 0.7922
CGA-epoch2 0.3075 0.4597 0.4272 0.8700 0.5161 0.7672 0.6526 0.6200 0.6817 0.8034 0.8337 0.7264
CGA-epoch3 0.3450 0.4592 0.5094 0.8075 0.5302 0.6703 0.5328 0.5500 0.5691 0.7606 0.8138 0.6494
CGA-epoch4 0.3825 0.4594 0.5781 0.7625 0.5456 0.6575 0.4296 0.5100 0.5375 0.7436 0.7984 0.6128

NPO-epoch1 0.3375 0.8027 0.3417 0.8225 0.5761 0.8253 0.9015 0.8800 0.9018 0.8462 0.8901 0.8742
NPO-epoch2 0.5650 0.9381 0.5293 0.6825 0.6787 0.7786 0.7803 0.8600 0.8725 0.8376 0.8886 0.8363
NPO-epoch3 0.7125 0.9839 0.8172 0.5425 0.7640 0.7567 0.6519 0.8400 0.8493 0.8290 0.8823 0.8015
NPO-epoch4 0.8350 0.9913 0.9821 0.4825 0.8228 0.7433 0.5356 0.8300 0.8291 0.8262 0.8746 0.7731

NPO+MRD-epoch1 0.3550 0.8162 0.3715 0.8175 0.5901 0.8367 0.9053 0.8900 0.8937 0.8547 0.8912 0.8786
NPO+MRD-epoch2 0.5875 0.9481 0.5781 0.7050 0.7047 0.7844 0.7794 0.8800 0.8738 0.8462 0.8885 0.8421
NPO+MRD-epoch3 0.7425 0.9846 0.8462 0.5325 0.7765 0.7678 0.6781 0.8800 0.8637 0.8462 0.8867 0.8204
NPO+MRD-epoch4 0.8525 0.9992 0.9854 0.4750 0.8280 0.7775 0.5506 0.8900 0.8547 0.8462 0.8832 0.8004

We validated the effectiveness of the MRD-based weighted sampling method on the WMDP, WHP,
and SAFE datasets. The experimental results are shown in the table below.
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Table 5: Comparison of the MRD-based weighted sampling method and the current unlearning
baseline methods on WMDP.

Method Unlearning Completeness (UC) Model Utility (UT)[mmlu]

Cybersecurity (↓) Chemical (↓) Biosafety (↓) Avg. (↓) Humanities (↑) Sciences (↑) Stem (↑) Other (↑) Avg. (↑)

SGA 0.2430 0.2622 0.2474 0.2467 0.2451 0.2343 0.2388 0.2687 0.2465
GradDiff 0.3834 0.4460 0.6402 0.4795 0.5028 0.6597 0.4716 0.6343 0.5593

NPO 0.3497 0.4656 0.6268 0.4588 0.5292 0.6844 0.4865 0.6569 0.5818

CGA 0.2356 0.2547 0.2404 0.2459 0.2417 0.3107 0.2861 0.2514 0.2689
GradDiff + MRD 0.3719 0.4387 0.6315 0.4694 0.5132 0.6607 0.4782 0.6392 0.5655

NPO + MRD 0.2773 0.4705 0.6394 0.4244 0.5326 0.6972 0.4906 0.6591 0.5895

Table 6: Comparison of the MRD-based weighted sampling method and the current unlearning
baseline methods on WHP.

Method
Unlearning Completeness (UC) Model Utility (UT)

Seen Rouge-L (↓) Unseen Rouge-L (↓) PPL (↓) Zero-shot Acc. (↑) TruthfulQA (↑)

GradDiff 0.0122 0.0132 12.46 0.6201 0.2827
PO 0.0272 0.0292 11.88 0.6192 0.2962

NPO 0.0121 0.0134 12.91 0.6122 0.3023

GradDiff + MRD 0.0116 0.0133 12.90 0.6191 0.2839
PO + MRD 0.0268 0.0291 11.76 0.6170 0.2949

NPO + MRD 0.0106 0.0105 12.30 0.6205 0.3113

Table 7: Comparison of the MRD-based weighted sampling method and the current unlearning
baseline methods on SAFE.

Method
Unlearning Completeness (UC) Model Utility (UT)

Real Toxicity Prompts Toxic score (↓) SAFE Toxic score (↓) PPL (↓) Zero-shot Acc. (↑) TruthfulQA (↑)

GradDiff 0.0268 0.0353 11.99 0.6251 0.3011
PO 0.0308 0.0275 12.67 0.6028 0.2386

NPO 0.0248 0.0333 11.95 0.6270 0.3059

GradDiff + MRD 0.0246 0.0353 11.71 0.6266 0.3047
PO + MRD 0.0252 0.0336 12.78 0.6154 0.2766

NPO + MRD 0.0210 0.0332 12.82 0.6331 0.3247

F.2 EFFICIENCY OF THE MRD-BASED WEIGHTED SAMPLING IMPROVEMENT METHOD

Although calculating MRD incurs some overhead, the cost is relatively minor since MRD computa-
tion only requires parallel inference. We compare the time required to calculate one round of MRD
under different batch sizes, as shown in Table F.2. It can be observed that larger batch sizes require
less time. Furthermore, we compare the time required to compute MRD for one round with the time
for one round of unlearning, as shown in Table F.2. When the batch size exceeds 64, MRD compu-
tation becomes more efficient than the unlearning algorithm. Notably, MRD, which only requires
inference, can handle larger batch sizes due to its lower memory demand, whereas the unlearning
algorithm’s batch size is constrained by GPU memory. Consequently, while MRD incurs some
computational overhead, it accelerates convergence and reduces the number of unlearning epochs,
leading to a significantly lower overall runtime compared to the original method. Furthermore, we
provide the total execution time required by existing unlearning algorithms before and after the
introduction of MRD, as shown in Table F.2. It can be observed that, since the MRD-improved
method requires fewer epochs for unlearning, its end-to-end execution time is reduced.
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Table 8: Connection between time cost of MRD computation and batch size.
Batch Size Time

8 3m30s
16 2m32s
32 2m07s
64 1m55s

128 1m23s

Table 9: Comparison of the time required to execute one round of the algorithm.
Method Time

GA 1m40s
Graddiff 2m03s

NPO 2m08s
PO 2m23s

F.3 CHARACTERISTICS AND MRD VALUES

We divide the samples based on potential factors influencing MRD, and the calculated average
MRD along with representative examples are presented in Table 11.

F.4 STABLE MONTE CARLO SAMPLING ITERATIONS

We have conducted experiments on the number of Monte Carlo sampling iterations, K, as shown in
Table F.4. The results indicate that changes in the model size have minimal impact on the number
of sampling iterations, demonstrating the scalability of our method.

F.5 ABLATION STUDY OF m

We conduct experiments on the unlearning effect and the number of unlearning rounds for different
values of m, as shown in Table 13. The results indicate that when m = 2, unlearning performance
is optimal.

F.6 MRD OF SAMPLES AT DIFFERENT LEVELS

We conduct experiments on MRD and unlearning difficulty ranking at the sentence level, paragraph
level, and long-text level. The results demonstrate that, across different text lengths, the MRD values
exhibit a certain degree of stability and robustness.
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Figure 7: MRD and unlearning difficulty of different text levels.
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Table 10: Comparison of method times with and without MRD.
Method Time Method Time

GA 8m20s GA+MRD 6m23s
Graddiff 14m21s Graddiff+MRD 11m38s

PO 17m4s PO+MRD 14m11s
NPO 16m0s NPO+MRD 12m3s

Table 11: Characteristics and MRD values.
Attribute Level Example From categorized set MRD

Common
Sentence

-
Q: Is Farid Benoit currently writing any other books?

A: It is reported that Farid Benoit is currently working on his sixth erotica
novel, but the title has not been disclosed yet.

0.4957

-

Q: What is another well-known work by Albert Sidney Lane in the fantasy
genre?

A: “Beneath the Emerald Veil” is another well-known work by Albert Sid-
ney Lane in the fantasy genre.

0.4322

Semantic
Complexity

Low
Q: What career did Li Mei Yu’s mother have?

A: Her mother was a nurse.
0.3085

High

Q: How have Leila Al-Sabah’s books contributed to LGBTQ+ representa-
tion in literary fiction?

A: Through her richly drawn characters and storylines, Leila Al-Sabah has
helped to normalize LGBTQ+ experiences in literary fiction. Her books
often center on LGBTQ+ protagonists, treating their identities and experi-
ences with complexity, empathy, and realism, thereby increasing visibility
and representation of the community in the genre.

1.0026

Occurrence
Frequency

Low
Q: Is Zo Hassani Raharizafy involved in any form of philanthropy?

A: Yes, he established the Raharizafy Literary Foundation, which works to
improve literacy rates in Madagascar, his home country.

0.6374

High
Q: Where was Samir Khoury born?

A: Samir Khoury was born in Amman, Jordan.
0.2529

Initial
Generation
Probability

Low

Q: What did her parents think of her decision to become a writer?

A: Evangeline’s parents were initially skeptical about her decision. How-
ever, after reading her first novel and witnessing her dedication to the craft,
they stood by her decision and have been her constant pillars of support.

0.3481

High

Q: What genre does Xin Lee Williams often write in, based on their most
famous work, “The Town That Drowned”?

A: Xin Lee Williams is recognized for their contributions to Canadian lit-
erature, as seen from their trademark work, ”The Town That Drowned.”

0.7689

Presence of
Rare Words

Low
Q: What gender does the author Ji-Yeon Park identify as?

A: The author Ji-Yeon Park identifies as female.
0.3929

High

Q: When did Samin Nosrat receive the ”Prix Goncourt de Littérature His-
torique” and for which book?

A: Samin Nosrat received the “Prix Goncourt de Littérature Historique” for
her vibrant piece ”The Seed,” which she received in 2011.

0.7188

Table 12: Stable sample counts K across Qwen3 models.
Model Counts

Qwen3 4B 60
Qwen3 8B 80

Qwen3 14B 50
Qwen3 32B 80
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Table 13: Ablation study of m.

Method
Unlearning Completeness (UC) Model Utility (UT)

UA (↑) MIA (↑) RR (↑) Relearn (↑) Avg. (↑) Retain Set Real Author World Fact Avg. (↑)Acc. (↑) RR (↑) Acc. (↑) RR (↑) Acc. (↑) RR (↑)

Original 0.1475 0.4515 0.0204 1.0000 0.4049 0.8575 0.9825 0.8900 0.9330 0.8632 0.8960 0.9037

PO + MRD - m=1 0.7525 0.6472 0.9714 0.7825 0.7884 0.6228 0.4187 0.6200 0.6864 0.7436 0.7778 0.6449
PO + MRD - m=2 0.7575 0.6512 0.9773 0.7800 0.7953 0.6250 0.4216 0.6300 0.6963 0.7350 0.7792 0.6478
PO + MRD - m=3 0.7500 0.6451 0.9681 0.7850 0.7871 0.6267 0.4245 0.6300 0.6924 0.7350 0.7752 0.6473
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