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ABSTRACT

Learning object-centric scene representations is crucial for scene structural under-
standing. However, current unsupervised scene factorization and representation
learning models do not reason about scene objects’ relations while making an
inference. In this paper, we address the issue by introducing a differentiable cor-
relation prior that forces the inference models to suppress duplicate object repre-
sentations. The extension is evaluated by adding it to three different scene under-
standing approaches. The results show that the models trained with the proposed
method not only outperform the original models in scene factorization and have
fewer duplicate representations, but also close the approximation gap between the
data evidence and the evidence lower bound.

1 INTRODUCTION

Variational autoencoders (VAEs) (Kingma & Welling, 2013) have become a powerful tool for unsu-
pervised visual scene understanding and representation learning. As a particular type of generative
model, a VAE model not only inherits the ability to explain scene observations (e.g. images) by
learning a distribution p(x;θ) over the observation data x ∈ RM but also it allows to describe and
represent the observed scenes in a more compact latent space z ∈ RD (D �M ) for simplicity and
efficiency. Recent advances in this area (Burgess et al., 2019; Greff et al., 2019; Anon, 2020) treat
a multi-object scene as a composition of scene objects (aka scene components) and show success in
scene factorization and object-based representation learning. I.e. a scene representation z is a set
of K scene object representations z = {zk} where each object representation zk explains one and
only one object in the observation x. These object-based VAE models are often referred to as the
multi-object VAEs, they are called component VAEs (abbr. CompVAEs) in this paper for simplicity.

Inference of the latent representations {zk} in CompVAEs uses variational Bayesian methods
that approximate an intractable posterior p({zk}|x) with a variational distribution q({zk}|x).
A necessary assumption that the inferred latent object representations are independent given an
observation needs to be made in CompVAEs to attain object-wise posteriors: q({zk}|x) =
q(z1|x)q(z2|x) . . . q(zk|x). Because the original posterior is decomposed into independent pieces,
one can easily sample each object’s approximate posterior and manipulate a single scene object with-
out interfering with the other objects. This is crucial when it comes to model evaluation, statistical
criticism and interpretation.

Existing CompVAEs (e.g. MONet (Burgess et al., 2019), IODINE (Greff et al., 2019), MulMON
(Anon, 2020)) show impressive results in factoring scenes and learning scene objects, however, we
argue that the independence assumption is wrong as it ignores the fact that scene objects are not
independent: for example, two objects cannot appear at the same spatial location. Also the trained
inference models cannot perform correlation checks and thus allow inferring duplicate object rep-
resentations. This harms directly the CompVAEs’ scene factorization performance—two or more
duplicate component representations need to compete with each other to explain the same segment
of the observation (see Figure 1). Also, because the independence assumption increases the varia-
tional approximation gap (Cremer et al., 2018) between q({zk}|x) and p({zk}|x), the optimization
process can get stuck at local minimas and thus produce wrong scene decomposition (see the local-
minima example in Figure 1).
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Figure 1: Overview: we propose a correlation prior, namely L-NMS, as an additional training con-
straint to train a CompVAE’s (aka. multi-object VAE) inference model (left side of the Figure). The
proposed L-NMS prior is able to not only suppress duplicates (top right of the Figure), but also
tackle problems that are related to the CompVAEs’ suboptimalities such as the background splitting
(bottom right example) problem which is a known issue of IODINE.

The independence assumption, as discussed, it is a key assumption that simplifies an intractable
scene factorization. In this paper, to address the aforementioned issues, we weaken the independence
assumption during training the inference models by introducing a differentiable correlation prior.
This implements the key insight that two identical object representations cannot be inferred for
the same object so the inferred duplicates will be penalized by the correlation prior during training.
This shares the same spirit with the non-maximum suppression (abbr. NMS) technique that is widely
used in computer vision. We call our correlation prior the latent non-maximum suppression (abbr.
L-NMS). We clarify that our goal is not to infer a set of mutually-correlated object representations
{zk} but to enable the inference models to reason and resolve correlation while inferring {zk}. I.e.
with duplicates removed, we expect to train inference models that can infer de-correlated {zk}.
In our experiments, we train three representative CompVAE models, i.e. MONet, IODINE and
MulMON, with L-NMS as the experimental group and train the same models without L-NMS as the
control group. We illustrate the effectiveness of training CompVAEs’ with L-NMS in suppressing
scene factorization duplicates and closing the approximation gap by comparing the performance of
the two groups of models. We claim and demonstrate:
1) Training a CompVAE with the proposed L-NMS prior enables the CompVAE to make an
inference taking account of scene objects’ correlations and produce better scene factorizations with
fewer duplicate objects (see Section 4.1).
2) Training a CompVAE with the proposed L-NMS prior closes the approximation gap and thus
increases the original evidence lower bound (see Section 4.2).
3) With the approximation gap closed, CompVAEs’ trained with the proposed L-NMS better
overcome local minimas and thus learn better scene representations that supports better scene
observation reconstructions (see Section 4.1).

2 METHOD

Our goal is to weaken the independence assumption made in the existing CompVAEs during training
so that the trained inference models can handle scene object correlations and therefore infer de-
correlated object scene representations. Our approach is to introduce a differentiable correlation
prior, i.e. the L-NMS prior, as an additional constraint to train the CompVAEs’ inference models. In
Section 2.1, we briefly review the general construction of CompVAEs. In Section 2.2, we present the
L-NMS prior and how to train a CompVAE model with it. In Section 2.3, we discuss CompVAEs’
suboptimality and define a measure for the comparison of two posterior approximations.
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2.1 GENERAL CONSTRUCTION OF COMPVAES

Similar to VAEs, a CompVAE model often consists of a generative model and an inference model.
The generative likelihood of a scene image observation in a CompVAE is often modeled as a spa-
tial Gaussian mixture (Williams & Titsias, 2004; Greff et al., 2017) parametrized by θ (where the
variables θ parameterize the generative model):

pθ(x|{zk}) =

M∏
i=1

K∑
k=1

pθ(Ci = k|zk) · N (xik; gθ(zk), σ2), (1)

where i indexes a pixel location (M in total) and xik is the RGB value of the k-th object at the
location. RGB values are samples of N (xik; gθ(zk), σ2) where gθ(·) is a decoder network and
the standard deviation σ is set to a fixed value, e.g. σ = 0.1, for all pixels. The generated K
RGB values xik compete to explain a location i as an instance of object k. The objects and their
likelihoods, i.e. the mixing coefficients, are captured by a categorical distribution pθ(Ci = k|zk),
where Ci = k denotes the event of object k’s winning. This formulation is similar to that seen
in MulMON (Anon, 2020), but that approach investigated multi-view problems, where viewpoints
were taken as conditions.

To tackle the problems of scene factorization and object-centric learning, CompVAEs’ inference
models infer a joint posterior of all interested factors (i.e. scene objects {zk}). Although CompVAEs
encode a fixed number (K) of object slots for the inferred object representations, they do not make
any assumption about the number of objects in a scene. Ideally, one can use as many object slots as
possible. However, in practice, a K that is slightly larger than the number of scene objects is often
chosen for efficient computation. Based on the independence assumption about the scene objects,
the inference problem is solved by computing a tractable variational approximation:

qΦ({zk}|x) = qΦ(z1, z2, . . . ,zk|x) =

K∏
k=1

qΦ(zk|x), (2)

where Φ denotes the trainable amortized parameters (Kingma & Welling, 2013) that parameterize
a family of distributions. Note that equation 2 is a general form of a CompVAE inference model,
however, the amortization and factorization hold for all existing CompVAE variants.

2.2 LATENT NON-MAXIMUM SUPPRESSION

As discussed in Section 1, the main goal of correlation modeling is to weaken the independence
assumption in CompVAEs’ training processes so as to produce fewer duplicate object representa-
tions during inference. In other words, we want the trained Φ to resolve scene object correlations.
Because CompVAEs use fixed numbers (K) of object slots for the inferred latent representations,
we can easily construct a fixed-size correlation matrix Σ ∈ RK×K using a kernel function. In this
paper, we use a simple cosine-similarity function to compute the correlation between any two ob-
jects’ latent representations in the set {zk}. This is computationally equivalent to concatenating the
inferred K D-dim object latent representations {zk} to make a matrix Z ∈ RK×D and computing
the correlation matrix : Σ = ZZT /(||Zr|| · ||ZTc ||), where ||Zr|| and ||ZTc || compute the Euclidean
norms for matrix Z and ZT ’s row and column vectors respectively.

The self-correlations of the inferred objects are captured by the constructed Σ’s diagonal elements
and the mutual correlations are captured by Σ’s off-diagonal elements. The goal is to reformulate
the inference model resolve correlations so as to produce less-correlated {zk}. We penalize high
off-diagonal values, i.e. by maximizing the L-NMS prior:

LL−NMS({zk}; Φ) =

K∑
h=1

K∑
,j=1,h6=j

logN (Σh,j ; 0, σ2). (3)

The log normal density regulates its measure to certain range and σ (which models small variation
in the correlation values) is is fixed globally at 0.1. As both VAEs and CompVAEs are variational
Bayesian models, their training relies on maximizing their evidence lower bounds (abbr. ELBO,
denoted as LELBO(x; Φ, θ)) w.r.t. the two trainable parameters Φ and θ. Taking a CompVAE
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model, we thus train it by maximizing:

L(x; Φ, θ) = LELBO(x; Φ, θ) + LL−NMS({zk}; Φ). (4)

A general CompVAE ELBO can be defined using equation 1 and 2 as: LELBO(x; Φ, θ) =
EqΦ({zk}|x)[log pθ(x|{zk})]−DKL(qΦ({zk}|x)|pθ({zk})) but the exact formulations for a specific
CompVAE is model-dependent. Note that although ELBOs are computed by the iterative inference
processes of IODINE and MulMON during testing, we use the L-NMS priors only in training.

2.3 COMPVAE SUBOPTIMALITY MEASURE

In this paper, we use superscripts + and 0 on a variable to indicate if it is related to the experi-
mental group (CompVAEs trained with L-NMS prior) or the control group (original CompVAEs).
To validate that after weakening the independence assumption, the obtained variational posterior
qΦ+({zk}|x) becomes a better approximation than qΦ0({zk}|x) with respect to p({zk}|x), we
need a measure to quantify approximation qualities and thus support model comparisons.

Through the derivation of VAEs’ ELBO (Kingma & Welling, 2013), a gap between the observed
evidence log pθ(x) and the ELBO LELBO(x; Φ, θ) is illustrated:

DKL(qΦ(z|x)‖pθ(z|x)) = log pθ(x)− LELBO(x; Φ, θ) ≥ 0. (5)

The gap shown in equation 5 is further decomposed by Cremer et al. (2018) into two items: the
variational approximation gap and the amortization gap. In this paper, we are interested in only the
former and the latter will not be discussed.

The approximation gap for a VAE is defined as: G = DKL(q?Φ(z|x)‖pθ(z|x)), where a superscript
? indicates the optimum. This provides a quantitative measure of how good is an approximation
when the optimal is reached: smaller denotes better and 0 is the smallest value. Similarly, we for-
mulate G = DKL(q?Φ({zk}|x)‖pθ({zk}|x)) as the approximation gap for a CompVAE. Therefore,
by comparing G+ and G0 we can determine if the experimental group reaches better suboptimality
than the control group.

Because G is not computable due to the inaccessibility of log pθ(x), to simplify the discussion
hereafter, we define a measure ELBO increment (denoted as ∆L+) using G+ and G0:

∆L+ = G0 − G+ = L?ELBO(x; Φ+, θ)− L?ELBO(x; Φ0, θ), (6)

to tell directly how much the VAE approximation is improved w.r.t. to a model change, e.g. adding
the L-NMS prior as in our case. In general, a positive ∆L+ suggest a smaller gap is achieved and
thus provides better approximation, a negative ∆L+ suggests the opposite. In our experiments, we
use ∆L+ as an important metric for our model suboptimality analysis (see Section 4.2).

3 RELATED WORK

Our work lies in the research area of unsupervised scene factorization and representation learning.
Earlier works in this area like the Attend-Infer-Repeat (AIR) model (Eslami et al., 2016) and its
variants (Hsieh et al., 2018; Kosiorek et al., 2018) perform object-centric scene factorization by
sequentially searching for one object at a time in the image plane until all objects in the image
are captured. As these models do not target a 3D understanding of a scene, they cannot resolve
occlusions and handle images with complex backgrounds. The problem is overcome by recent
advances (Burgess et al., 2019; Engelcke et al., 2020; Greff et al., 2019; Anon, 2020) that the pixel-
level compositions of scene objects, i.e. each pixel needs to be explained by one and only one scene
component. This line of work is referred to as the scene-mixture models by Lin et al. (2020b) as they
all use the spatial mixture models (Williams & Titsias, 2004; Greff et al., 2017) to explain the image
observations of scenes (see Eq.1 for an example). This allows the models to reason about depth and
occlusions which are essential for 3D understanding.

Different from all the aforementioned works, our work targets an unsolved problem that is com-
monly seen in recent scene-mixture models, i.e. the inference models cannot resolve scene corre-
lations and thus produce duplicate object representations. Although there are some unsupervised
scene factorization models that handle the relations among the inferred objects, e.g. R-NEM (van
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Steenkiste et al., 2018), STOVE (Kossen et al., 2020) and G-SWM (Lin et al., 2020a), they define
“relations” as the interactions and scene dynamics of the scene objects and thus differs from what
we are trying to solve in this paper.

The proposed work is related to the non-maximum-suppression (or duplicate-removal) idea that
is widely used across many computer-vision tasks such as edge detection (Rosenfeld & Thurston,
1971) and feature extraction (Lowe, 2004). Among all the tasks it is applied, NMS’s usage in object
detection is the closest to ours, where duplicate detection candidates will be removed or suppressed
(Rothe et al., 2014; Bodla et al., 2017) based on a quantifiable criterion, e.g. detection confidence.

However, as NMS in these models works as a post-processing technique so it cannot handle the
mistakes a model made in the inference stage. For example, these techniques cannot handle the local
minima case shown in Figure 1 (bottom right). In fact, such cases are no more a non-maximum
suppression problem, it is related to the inference suboptimality of VAEs. Hence, other than a
NMS problem, we deal with also the inference suboptimality (Cremer et al., 2018) caused by miss
reasoning of the underlying scene correlations. There are other related works (Salimans et al., 2015;
Mattei & Frellsen, 2018) that discuss the suboptimality in variational inference in a general manner.
In the specific CompVAE cases, we only take the approximation gap of Cremer et al. (2018) to define
a measure, i.e. the ELBO increment ∆L+, and use it for model evaluation in our experiments.

4 EXPERIMENTS
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Figure 2: Data samples from the two datasets
we use for our experiments.

Our experiments are based on two datasets: CLE-
MV (Anon, 2020) and Dolphin. The Dolphin
dataset is synthesized using CLE-MV’s graphics
engine by adding more complex and general shapes
(e.g. dolphins, horses, ducks, etc.). We show sev-
eral data samples from the two data sets in Figure 2.
There are in total 1700 and 3631 different scenes in
the CLE-MV and the Dolphin datasets respectively
and each scene consists of 3-6 objects including the
background (a trivial object). As there are 10 im-
age observations (with size 64× 64) taken from 10
different viewpoints, both the two datasets support
multi-view tasks. We thus randomly select scenes
(15000 images) from CLE-MV and 3000 scenes
(30000 images) from Dolphin to make the training
sets. At test time, we sample 160 unseen scenes (i.e.
1600 images) from CLE-MV and 200 unseen scenes (2000 images) from Dolphin, where “unseen
scenes” denote scenes that are not in the training sets. For the experiments, we use as baseline three
CompVAE models, i.e. MONet, IODINE, and MulMON, and create our experimental group with
the three CompVAEs trained with the proposed L-NMS prior. We train all models using the same
training specifications as that of the experimental group except for removing the L-NMS prior. We
thus study and demonstrate the effectiveness by comparing the two groups in various aspects. We
refer the reader to the Appendix for the model and training specifications.

CLE-MV Dolphin

Models L-NMS MSE↓ mIoU↑ MSE↓ mIoU↑
MONet 0 0.0037± 0.0000 0.6806± 0.0039 0.0060± 0.0001 ?0.6584± 0.0044

+ 0.0024± 0.0000 0.7899± 0.0032 0.0060± 0.0001 0.6546± 0.0042

IODINE 0 0.0016± 0.0000 0.1907± 0.0007 0.0053± 0.0001 0.3475± 0.0030
+ 0.0020± 0.0001 0.7256± 0.0009 0.0050± 0.0001 0.6257± 0.0024

MulMON 0 0.0019± 0.0000 0.7823± 0.0010 0.0057± 0.0001 0.6266± 0.0024
+ 0.0019± 0.0000 0.7903± 0.0009 0.0051± 0.0001 0.6565± 0.0010

Table 1: Quantitative comparisons between the experimental group (tagged with “+”) and the control
group (tagged with “0”). All experiments are run across five different random seeds. ? denotes the
most significant case where L-NMS does not generate obvious improvements which we will discuss
in the text.
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Figure 3: Qualitative comparisons between the experimental group (tagged with “+”) and the control
group (tagged with “0”). The Obs column is a source image, Rec is the corresponding reconstructed
image based on the inferred representation. The next 7 columns show the independent generation
of the inferred scene components. The Seg column shows the pixel label for the component with
highest probability (the specific color of the pixel is not important). Top Training with the proposed
L-NMS aids the original MONet model which suffers from local minima: obtains fair factoriza-
tion and reconstruction while fails to learn clean object geometries and thus generates noisy scene
components whereas MONet+ produces cleaner inferred components. Middle Training with the
proposed L-NMS aids IODINE: resolves duplicates (circled in yellow) and fixes the weak back-
ground segmentation, as shown by the large colored regions in the Seg column, which is a known
issue of IODINE Greff et al. (2019). Bottom Training with the proposed L-NMS allows MulMON
to suppress duplicates and thus produce a better segmentation map. (Colored boxes and circles
highlight the duplicates and failures caused by them.)
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Figure 4: A partial-failure example from the “outlier” model (MONet0) on Dolphin (tagged with
“?” in Table 1). Top The model produces good factorization but fails badly to learn good-quality
object representations and thus show noisy generations. The proposed L-NMS fails to fix it. Bottom
A good example shown by a model that achieves similar quantitative performance (MulMON+).

4.1 TASK PERFORMANCE

Scene Factorization The biggest advantage of CompVAEs over traditional VAEs in visual scene
understanding is that they can handle unsupervised scene factorization. Therefore, we compare the
scene object decomposition performance between the experimental group (CompVAEs trained with
L-NMS) and control group (original CompVAEs) on scene object decomposition task. Because both
the CLE-MV and Dolphin datasets are synthesized with the ground-truth segmentation maps, we can
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Figure 5: Results of the suboptimality analysis. Left Yellow dots represents the ∆L+ for each test
data sample (2000 test images), and the green line is the mean ∆L+, which is the change in the
ELBO (evidence lower bound) value from Eqn 6. Positive values are improvements. Observe that
most dots lie above the “no improvement” line at 0, demonstrating that L-NMS generally produces
improvements. Middle The correlation between scene factorization performance difference and the
∆L+, which shows a close-to-linear positive correlation, i.e. bigger improvements in the ELBO
measure correlate with better object overlap. Right The correlation between scene reconstruction
performance difference and the ∆L+, which shows a perfect linear negative correlation, i.e. im-
provements in ELBO mean better scene reconstruction.

thus compute the mean intersection over union (mIoU) score as the performance measure. To solve
the bipartite matching problem as the output object masks (in a list) are not in the same order as
the GT masks, we use the Hungarian matching algorithm to find the best match that maximizes the
mIoU score for a scene. Table 1 shows that the experimental group, i.e. CompVAEs trained with the
proposed L-NMS prior, results in similar or improved performance compared to the control group
over all models and datasets. Figure 3 demonstrates the effectiveness of the proposed L-NMS prior
in reducing duplicates and aiding CompVAEs’ local minimas. We also examine the “outlier model”,
i.e. MONet+ trained on Dolphin, and show some output samples in Figure 4. For the outlier model,
even though the quantitative measures are achieved, the model still suffer from the local minima.
We also consider this a failure instance of the proposed L-NMS as it does not aid the model like it
does to MONet trained on the Dolphin dataset (see Figure 3).

Scene Reconstruction Reconstruction quality reflects the representation-learning quality of a VAE
model. Hence, we compare the experimental group and the control group also on reconstruction
quality using the mean squared error (MSE) between the observation image and the reconstruction
image as our quantitative measure. The MSE is computed from the RGB vector distances, where
color values are on a [0, 1] scale. Table 1 shows that the proposed L-NMS improves not only the
scene factorization but also the scene reconstruction. This suggests the proposed L-NMS helps
CompVAEs to learn better scene representations.

4.2 SUBOPTIMALITY ANALYSIS

The suboptimality analysis presented in this section gives a better understanding of how the pro-
posed L-NMS helps to improve the task performance. The experiments illustrate the relationships
between: 1) the variational approximation gap and the proposed L-NMS, 2) the task performance
and the variational approximation gap. We first verify that the proposed L-NMS closes the vari-
ational approximation gap. We use the two MONet models trained on CLE-MV for the analysis.
As discussed in Section 2.3, closing the variational gap is equivalent to obtaining a positive ∆L+

(i.e. the ELBO increment). We use the 2000 test images from the CLE-MV dataset and compute the
∆L+ for each of them and then average over 2000 samples to obtain the mean ∆L+. Figure 5 (left)
shows the ∆L+ of these 2000 test samples and their mean. As illustrated by Figure 5 (left), MONet
trained with the proposed L-NMS produces a positive mean ∆L+, which reduces the variational
approximation gap and is thus a better approximation than the original model.

To demonstrate the correlations between the task performance and the computed ∆L+, we compute
also the task performance differences between MONet+ and MONet0 (also denoted by ∆) for every
sample of the CLE-MV test set. Note that we standardize both the task performance and the ∆L+ to
range [0, 1] for visual clarity. Figure 5 (middle and right) show strong correlations (close-to-linear)
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Figure 6: Ablation study results. Top left Scene observation reconstruction performance vs. L-NMS
prior precision (σ). Top right Scene decomposition performance vs. L-NMS prior precision (σ).
Bottom left Scene observation reconstruction performance vs. the number of object slots used in
training and testing (K). Bottom right Scene decomposition performance vs. the number of object
slots used in training and testing (K).

between the task performance difference and the ∆L+, which indicates that the improvements are
essentially driven by ∆L+, i.e. reaching a better approximation suboptimum. Hence, based on
our analysis, we conclude that the proposed L-NMS improves component inference performance by
training a CompVAE to reach a better suboptimum, i.e. reduces the approximation gap.

4.3 ABLATION STUDY

The ablation study focuses on two hyperparameters: 1) the standard deviation σ used in the L-NMS
prior (see Section 2.2) and 2) the number of object slots K. The former relates to the precision of
the correlation modeling and the latter determines the size of the correlation matrix constructed in
L-NMS’ computation, i.e. it relates to the scalability of L-NMS. We do the ablation study with only
MONet and on only the CLE-MV dataset for computation efficiency. We select 4 different σ to
train MONet and compare their performance on the scene reconstruction and the scene factorization
tasks. Figure 6 shows no significant performance loss in tasks by changing σ from the default value,
0.1, to other values. Moreover, the performance might get boosted in some cases. For the object-slot
quantity K, we first train MONet with K = 7 and K = 9 respectively and test them with 7,9, 11,
15 object slots. Figure 6 shows: 1) the models trained with K = 7 and K = 9 have very similar
performance in both tasks and 2) testing with a differentK does not cause a clear performance drop.

5 CONCLUSION

In this work, we present a correlation prior to regulate the object-centric latent representations in-
ferred by multi-object VAEs, i.e. CompVAEs. Despite its simplicity, we demonstrate its effective-
ness in fixing known issues of the multi-object VAE models such as inferring duplicates, splitting
background, etc. These problems are often related to the independence assumption made in Com-
pVAEs which, as we consider, increases the approximation gap of VAEs or CompVAEs. We thus
demonstrate through experiments that the proposed L-NMS solves most of the aforementioned prob-
lems by closing the approximation gap of CompVAEs and illustrate the correlations between the ap-
proximation gap and the task performance. Regarding the future work, we are particularly interested
in basing correlation modeling on causal understanding, i.e. identifying explicitly the inter-object
correlations’ effect on each dimension of an object’s latent representation.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Training specifications We refer to Table 2, 3 & 4 to the training configurations of MONet, IODINE
and MulMON respectively.

Table 2: Training Configurations For MONet

TYPE THE TRAININGS OF MONET0 AND MONET+

OPTIMIZER RMSPROP
INITIAL LEARNING RATE η0 3e−4

BATCH SIZE 8
LEARNING RATE AT STEP s N/A
TOTAL GRADIENT STEPS 600k
GRADIENT-NORM CLIPPING 5.0
LOG-NORMAL LIKELIHOOD STRENGTH 1.0
KL (GAUSSIAN PRIOR) STRENGTH β 0.5
KL (ATTENTION PRIOR) STRENGTH 0.5
L-NMS (MONET+ ONLY) STRENGTH 0.5

Table 3: Training Configurations of IODINE0 and IODINE+

TYPE THE TRAININGS OF IODINE0 AND IODINE+

OPTIMIZER ADAM
INITIAL LEARNING RATE η0 2e−4

BATCH SIZE 8
LEARNING RATE AT STEP s ?max{0.1η0 + 0.9η0 · (1.0− s/1e6), 0.1η0}
TOTAL GRADIENT STEPS 600k
GRADIENT-NORM CLIPPING 5.0
INFERENCE ITERATIONS (GREFF ET AL., 2019) 5
LOG-NORMAL LIKELIHOOD STRENGTH 1.0
KL (GAUSSIAN PRIOR) STRENGTH β 1.0
L-NMS (IODINE+ ONLY) STRENGTH 1.0
? : SAME SCHEDULER AS GQNS’.

Table 4: Training Configurations of MulMON0 and MulMON+

TYPE THE TRAININGS OF MULMON0 AND MULMON+

OPTIMIZER ADAM
INITIAL LEARNING RATE η0 2e−4

BATCH SIZE 8
LEARNING RATE AT STEP s ?max{0.1η0 + 0.9η0 · (1.0− s/1e6), 0.1η0}
TOTAL GRADIENT STEPS 600k
GRADIENT-NORM CLIPPING 5.0
INFERENCE ITERATIONS (GREFF ET AL., 2019) 5
LOG-NORMAL LIKELIHOOD STRENGTH 1.0
KL (GAUSSIAN PRIOR) STRENGTH β 1.0
L-NMS (IODINE+ ONLY) STRENGTH 1.0
? : SAME SCHEDULER AS GQNS’.

Model Architecture Specifications As discussed in the main paper, we use three existing Comp-
VAE models as our baselines and build our contributions on top of these architectures. It is important
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to use the same architectures as the that of the original papers. However, we found it difficult to use
a latent dimension of 64 as that of (Greff et al., 2019) for the CLEVR-based datasets as it trains too
slow, over one week for one run on two RTX2080TI, we thus reduce the dimension of IODINE to
16 for our IODINE. This is also the only difference of implementation to the original models. As
constructing the proposed L-NMS prior requires no model architecture design and architecture pa-
rameter tweaking, we refer to the original papers of MONet (Burgess et al., 2019), IODINE (Greff
et al., 2019), and MulMON (Anon, 2020) for the architecture details.
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