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Abstract

Structure representation learning is a task to
provide an overall representation for a given
structure (e.g., sequential text, non-sequential
graph). This representation characterizes the
property of that structure. Previous methods
decompose the task into an element represen-
tation learning phase and a pooling phase to
aggregate element representations. Their pool-
ing phase only considers the final representa-
tion of each element without considering the
relationship between these elements that are
used only to construct representations of ele-
ments. In this paper, we conjecture that classi-
fication performance suffers from the lack of
relation exploitation while pooling and propose
the Self-Attention Pooling to dynamically pro-
vide centrality scores for pooling based on the
self-attention scores from the element represen-
tation learning. Simply applying Self-Attention
Pooling improves model performance on 3 sen-
tence classification tasks (1 2.9) and 5 graph
classification tasks (1 2.1) on average'.

1 Introduction

We use structure representation learning to denote
learning a summary representation for a natural
structure like a sequence or a non-sequential graph.
For example, we can predict the property of a sen-
tence that consists of a sequence of words, with
its representations (Wang et al., 2019). In addition
to the sequence, the structure can also be a non-
sequential graph that is composed of nodes (Reimer
and Hahn, 1988; Yao et al., 2018). This task usually
follows a pipeline that first learns the representation
of the elements and then pools the representations
of these elements based on their final represen-
tations (Kim, 2014). The pooling layer first pre-
dicts the centrality of each element and then either
weighted-sum element representations according

"We compare with CLS Pooling from BERT for sequence
pooling and SAGPooling for non-sequence pooling.
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Figure 1: In Self-Attention Pooling, we jointly learn
element representations and their centrality for pooling.

to their centrality or selects element representations
with significant centrality.

Most recently proposed models follow an ele-
ment representation-based pooling method. For
example, in sentence classification, scoring is ob-
tained through the attention of artificial [CLS] to-
ken to natural words (Radford et al., 2018; Devlin
et al., 2019). In graph classification, to get the cen-
trality of each node, we can exploit the static graph
topology (Lee et al., 2019) in addition to the rep-
resentation of the nodes (Gao and Ji, 2019). A po-
tential issue with this element representation-based
pooling method is that obtaining the structure rep-
resentation by separately considering the represen-
tation of the elements does not exploit the relation
between the elements. This issue makes the model
overly dependent on the element representation to
encode the relationship between them and sequen-
tially learns the representations of elements and the
pool operation. The relation between elements that
help learn element representations can also help
learn structures (Voita et al., 2019; Jawahar et al.,
2019).

To address this issue, we propose jointly learn-
ing to represent the elements and pool the elements
by sharing the self-attention modules from element



representation learning. Specifically, we utilize
the accumulation of all the attention the element
receives to indicate its centrality. We also design
specific applications on sentence classification with
the BERT model and graph classification with the
Graph Attention model (refer to Fig. 1). In sen-
tence classification, we extend BERT finetuning so
that the relationship between natural words can be
applied to pooling instead of just using the relation-
ship between the artificial [CLS] token and natural
tokens. We extend graph representation learning
on graph classification by exploiting automatically
learned node relations instead of just using static
graph topology.

2 Related Work

Pooling plays an important role in both sequen-
tial (Socher et al., 2011; Chen et al., 2015; Safari
et al., 2020) and non-sequential structure repre-
sentation learning (Lee et al., 2019). Most meth-
ods separately learn element representations and
pooling and do not exploit the relation between
elements (Kim, 2014; Ying et al., 2018).
Sequential Pooling Sequential pooling objects to
obtain a representation of a piece of text. Previous
methods usually perform an average or maximum
operation on every position (Kim, 2014; Ma et al.,
2019; Song et al., 2020), or sum the representations
of positions with their feature weights (Yang et al.,
2016; Wu et al., 2020). The powerful pretrained
language model BERT (Devlin et al., 2019) directly
applies CLS pooling with an artificial [CLS] to-
ken (Devlin et al., 2019), which aggregates infor-
mation by attending representations of other posi-
tions. However, these methods neglect the relation
between all positions, and the CLS pooling is only
learned in the finetuning phase of BERT. Recent
studies find that attention weights can indicate key-
words, but they do not study its effectiveness in
pooling and downstream tasks like sequence classi-
fication (Clark et al., 2019; Ding and Luo, 2021).
Non-sequential Pooling Non-sequential pooling
aims to extract the overall representation of a
non-sequence. The graph is a well-studied non-
sequence. Previous research mainly disassembled
it into two parts: node representation learning and
graph pooling. Traditional graph pooling takes
the node representation into account (Gao and Ji,
2019), and recent methods propose to utilize graph
topology to model the node relation (Lee et al.,
2019; Murphy et al., 2019; Yuan and Ji, 2020),

but the relationship automatically learned in node
representation learning is still not considered.

3 Proposal
3.1 Self-Attention Pooling

To model dynamic relation in the structure repre-
sentation, we propose Self-Attention Pooling. It
links the construction of element representation and
structure representation (i.e., pooling). For learn-
ing element representation, self-attention module
updates the representation of each element. For
pooling, weights are centrality scores that reflect
the importance of each element in a structure. In-
spired by PageRank (see Section 5), we define the
centrality score of an element by its overall atten-
tion scores® received from other elements. While
for learning structure representation, the centrality
scores are ranked for top-k selection or weighted
sum of the structure representation. We define X
as the input structure, [V as the number of elements

and X J(.m) as the element j at layer m. Then, the el-

ement representation X ](m) and the centrality .S j(-m)
can be formulated as follows:
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where «; ; is the self-attention score from element
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1 to j, and Z;V:lai,j = 1. For conciseness, we
omit the description of the non-aggregation neural
network and focus on the element aggregation.

3.2 Self-Attention based Sequence Pooling

As illustrated in Fig. 1 (a), for sequential structure,
our objective is to learn sequence representation for
downstream tasks like sentence classification. Here
the element representation can be seen as position
representation, e.g., word-level or subword-level
representation. For sequence pooling, we study
the powerful BERT model and compare its pooling
methods. Therefore, we pool the representations
from the last hidden layer of the BERT encoder.
We compare with the CLS pooling, mean-
pooling, and max-pooling. Although been de-
fault in BERT pooling, CLS pooling merely takes
Xém) = Zj.vzoao,jXJ(-m_l) as the sequence rep-
resentation. In contrast, BERT is pretrained with

all the positions rather than only the CLS position.

ZFor pooling, we use the averaged self-attention scores
overheads.



Therefore, the discrepancy between pretraining and
CLS finetuning causes the learning of finetuning
insufficient. Moreover, CLS pooling ignores the
relation between natural tokens. mean-pooling and
max-pooling are both typical pooling methods, they
are operated along the position dimension here.
For Self-Attention Pooling, we implement pool-
ing on the last hidden layer of the BERT encoder,
while calculating «; ; from various layers. Ac-
cording to Eq. 1, we exploit the relation between
all positions to obtain centrality scores for each
position. The overall sequence representation is

Zj'vzo Xj-5j
3.3 Self-Attention based Graph Pooling

As shown in Fig. 1 (b), for graph structure, nodes
and graphs represent elements and structures re-
spectively. Here X (j=1,2,...,N) denote the fea-
ture of each node. We compare our method with
two baselines for graph representation: gPool that
considers only node features, formulated? as Z =
xXWeW/ H@(Z)H. SAGPool that considers both
features of nodes and the overall graph topology,
roughly* described as Z = o <B_%AD_%X®>.
Different from previous work, Self-Attention Pool-
ing exploits node relations from the graph attention
mechanism (Veli¢kovié et al., 2018) (GAT) directly,
which is also crucial for node representation. It is
slightly different from Eq. 1 because «; ; is only
calculated among each node and its neighbors. In
GAT, e;; is a logit calculated from concentrated
element representation, N (i) denotes node ¢ and
its neighbours. The centrality scores are calculated
as:

_ exp (€;5)
>ken; €xP (€ik)
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Sj=Zj+ Y i (4)
i€N(j)
Since the attention in graph is local, we propose
iterative Self-Attention Pooling as:

N N
wj = Z Ozi’j, ;= WOy, Sj = Zj‘f' Z Oé@j
i€N(j) ieN(j)(s)

3The superscript represents the layer. ©, N and A e
RY*N stands for learnable parameters, the input features of
the graph and the adjacency matrix respectively.

A e RM*N s the adjacency matrix with self-
connections, (ie. A = A+1Iy), D € RV*¥ is the de-
gree matrix of A. For details of the formulas of gPool and
SAGPool, refer to the SAGPool paper (Lee et al., 2019).

After getting the centrality score S; of each node
in the current graph, we can mask out the nodes
with low importance and retrain the others for fur-
ther calculation.

Dataset CoLA RTE MRPC
Metric Matt. Acc. Acc. F1
CLS Pooling 56.5 657 84.1 88.9
Mean Pooling 59.2 643 84.6 89.0
Max Pooling 59.1 63.5 814 87.7
S.A. Pooling (Ours) 59.8 69.7 86.6 90.6

Table 1: Results on three sequence classification tasks.
S.A. Pooling refers to Self-Attention Pooling. Matt.
denotes Matthews correlation coefficient. Acc. abbrevi-
ates Accuracy. F1 refers to F1 score.

4 Experiments

4.1 Datasets

Sequence Classification In our experiments, we
consider a single sentence or a sentence pair as a
sequence. We use CoLA for single sentence classi-
fication, MRPC, and RTE for sentence-Pair classi-
fication. CoLA (Warstadt et al., 2018) is expertly
annotated for grammatical acceptability, consisting
of 10,657 sentences from 23 linguistics publica-
tions. MRPC (Dolan and Brockett, 2005) is used
to classify whether two sentences are paraphrases
or not. It consists of 5,801 sentence pairs collected
from newswire articles. RTE (Dagan et al., 2005;
Haim et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009) is a dataset for natural language
inference. Given a premise and a hypothesis, mod-
els are expected to select the best answer between
entailment, neutral, and contraction.

Graph Classification We experiment with
five large graph datasets from the benchmark
datasets (Kersting et al., 2016). D&D (Dobson
and Doig, 2003; Shervashidze et al., 2011) and
PROTEINS (Dobson and Doig, 2003; Borgwardt
et al., 2005) are both protein datasets that are classi-
fied as enzymes or non-enzymes. Nodes represent
the amino acids and two nodes are connected by
an edge if they are less than 6 Angstroms apart.
NCI (Wale et al., 2008) is a biological dataset
used for anticancer activity classification. NCI1
and NCI109 are commonly used. FRANKEN-
STEIN (Orsini et al., 2015) is a set of molecu-
lar graphs (Costa and De Grave, 2010). Its la-
bel denotes whether a molecule is a mutagen or
non-mutagen. D&D, PROTEINS, NCI, NCI109,



Dataset D&D PROTEINS NCI1 NCI09 FRANKENSTEIN
gPool (Gao and Ji, 2019) 73.74+£0.45  72.80+0.17 70.04+0.44 70.10+£1.23 75.97£0.53
SAGPool (Lee et al., 2019) 75.01£0.50  72.99£0.12  72.37£0.22  71.63+0.54 76.09£0.57
S.A. Pooling (Ours) 76.00£0.71  74.124+0.40 74.60+0.22 73.81+0.41 79.02+0.70
Iterative S.A. Pooling (Ours)  76.23+0.13  74.06+0.40 74.70+0.25 74.33+0.15 79.30+£0.68

Table 2: Results on graph classification tasks. gPool gets pooling scores from features. SAGPool uses the graph
topology. Self-Attention Pooling introduces learned node relations from node representation learning to pooling.

FRANKENSTEIN have 1178, 1113, 4110, 4127,
4337 graphs respectively.

4.2 Training and Evaluation

Sequence Classification We use the BERT},,50
model implemented by Transformers (Wolf et al.,
2020), and follow the default setting of their "text-
classification" directory without tuning any hyper-
parameters. We also run all GLUE tasks and report
results on them in the Appendix A.

Graph Classification We experiment on the GAT
model and run it 3 times; each run contains 20 dif-
ferent train, valid, test splits of the data (split by
0.8, 0.1, 0.1) since a recent study indicates that
different dataset splits largely affect the test perfor-
mance (Shchur et al., 2019). For evaluation, we
report test accuracy on the early stopping model
with the best valid accuracy.

4.3 Results

As shown in Table 1, mean/max pooling outper-
forms CLS pooling on single sentence classifica-
tion, but they are less effective on sentence-pair
classification. Compared to CLS pooling, Self-
Attention Pooling considers relations between nat-
ural tokens. The relations are the self-attention
weights that can be easily transferred from the per-
taining phase. On average, Self-Attention Pooling
outperforms CLS pooling 2.9 points.

Table 2 demonstrates that graph topology is
ineffective on the PROTEINS dataset and the
FRANKENSTEIN dataset. In our Self-Attention
Pooling method, the automatically leaned relation
from the node representation learning serves as
a good indicator for centrality. On average, Self-
Attention Pooling outperforms SAGPool by +1.9
points, and can further achieve +0.2 improvements
if we iterate the method twice.

5 Discussion

Relation to PageRank In order to measure the rel-
ative importance of web pages, Page et al. (1999)

propose PageRank. Its main idea is that the value
of a node is determined by the sum of all the nodes
pointing to it, while our Self-Attention Pooling
extends it to aggregating self-attention weights.
Neural Pagerank (Klicpera et al., 2018) equips the
PageRank algorithm with Neural Networks but still
does into involve attention weights.

Layers Chosen To analyze the effect of layer cho-
sen for Self-Attention Pooling during BERT fine-
tuning, we take CLS Pooling as the baseline and
experiment with different layer settings. Table 3
demonstrates that the last layers deliver the most
substantial improvement.

Layer CoLA RTE MRPC

Metric Matt. Acc. Acc. F1
CLSri12 565(—) 657(—) 841(—) 889(—)
L12 59.8(1 3.3) 68.2(1 2.5) 86.8(1 2.7) 90.7(1 1.8)
L10-12 60.1(1 3.6) 68.6(1 2.9) 87.3(1 3.2) 91.0(1 2.1)
L9-12  59.8(1 3.3) 69.7(1 4.0) 86.6(1 2.5) 90.6(1 1.7)
L1-12  59.5(1 3.0) 69.7(1 4.0) 83.8({ 0.3) 88.7(] 0.2)

Table 3: Layer chosen for Self-Attention Pooling.

Limitation Our method requires that element rep-
resentation learning involves self-attention mech-
anisms. Nevertheless, our scope of application is
still wide because the self-attention mechanism has
proven to be dramatically useful in various fields,
such as natural language processing (Vaswani et al.,
2017), graph models (Velickovi¢ et al., 2018), and
computer vision (Dosovitskiy et al., 2021).

6 Conclusion

We propose Self-Attention Pooling to learn rep-
resentation and pooling simultaneously, allowing
the structure representation learning to take ele-
ment relation into account. Self-Attention Pooling
substantially improves the sequential structure and
non-sequential structure.
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Model CoLA RTE MRPC(ACC/F1) QNLI SST-2 STS-B QQP MNLI Score

CLS Pooling 56.5 65.7 84.1/88.9 90.7 923 88.6 90.7 839 824
Mean Pooling 59.2 643 84.6/89.0 90.6 912 883 909 838 824
Max Pooling 59.1 63.5 81.4/87.7 90.7 912 879 91.0 845 818

Self-Attention Pooling 59.8 69.7 86.6/90.6 90.8 915 893 91.0 839 837

Table 4: Results on GLUE.

A Results on GLUE

We use the BERT}, .5, model implemented by Trans-
formers (Wolf et al., 2020), and follow the default
setting of their "text-classification" directory for
the training and evaluation on GLUE without tun-
ing any hyper-parameters. Table 4 shows the full
results and average performance. For STS-B, we
report Pearson metric. For other new tasks, we re-
port accuracy. On average, Self-Attention Pooling
improves CLS Pooling by 1.3 points.

B Experiment Details on Graph
Classification

Our experiments on graph classification (Sec-
tion 4.2) follow the implementation of the "pro-
teins_topk_pool.py" file in pytorch-geometric (Fey
and Lenssen, 2019). We set three GNN layers and
apply pooling for each layer, retaining 80% nodes
at a time. The Self-Attention Pooling implemented
on each layer only takes the self-attention of the
current layer into account.



