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Abstract

Structure representation learning is a task to001
provide an overall representation for a given002
structure (e.g., sequential text, non-sequential003
graph). This representation characterizes the004
property of that structure. Previous methods005
decompose the task into an element represen-006
tation learning phase and a pooling phase to007
aggregate element representations. Their pool-008
ing phase only considers the final representa-009
tion of each element without considering the010
relationship between these elements that are011
used only to construct representations of ele-012
ments. In this paper, we conjecture that classi-013
fication performance suffers from the lack of014
relation exploitation while pooling and propose015
the Self-Attention Pooling to dynamically pro-016
vide centrality scores for pooling based on the017
self-attention scores from the element represen-018
tation learning. Simply applying Self-Attention019
Pooling improves model performance on 3 sen-020
tence classification tasks (↑ 2.9) and 5 graph021
classification tasks (↑ 2.1) on average1.022

1 Introduction023

We use structure representation learning to denote024

learning a summary representation for a natural025

structure like a sequence or a non-sequential graph.026

For example, we can predict the property of a sen-027

tence that consists of a sequence of words, with028

its representations (Wang et al., 2019). In addition029

to the sequence, the structure can also be a non-030

sequential graph that is composed of nodes (Reimer031

and Hahn, 1988; Yao et al., 2018). This task usually032

follows a pipeline that first learns the representation033

of the elements and then pools the representations034

of these elements based on their final represen-035

tations (Kim, 2014). The pooling layer first pre-036

dicts the centrality of each element and then either037

weighted-sum element representations according038

1We compare with CLS Pooling from BERT for sequence
pooling and SAGPooling for non-sequence pooling.
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Figure 1: In Self-Attention Pooling, we jointly learn
element representations and their centrality for pooling.

to their centrality or selects element representations 039

with significant centrality. 040

Most recently proposed models follow an ele- 041

ment representation-based pooling method. For 042

example, in sentence classification, scoring is ob- 043

tained through the attention of artificial [CLS] to- 044

ken to natural words (Radford et al., 2018; Devlin 045

et al., 2019). In graph classification, to get the cen- 046

trality of each node, we can exploit the static graph 047

topology (Lee et al., 2019) in addition to the rep- 048

resentation of the nodes (Gao and Ji, 2019). A po- 049

tential issue with this element representation-based 050

pooling method is that obtaining the structure rep- 051

resentation by separately considering the represen- 052

tation of the elements does not exploit the relation 053

between the elements. This issue makes the model 054

overly dependent on the element representation to 055

encode the relationship between them and sequen- 056

tially learns the representations of elements and the 057

pool operation. The relation between elements that 058

help learn element representations can also help 059

learn structures (Voita et al., 2019; Jawahar et al., 060

2019). 061

To address this issue, we propose jointly learn- 062

ing to represent the elements and pool the elements 063

by sharing the self-attention modules from element 064
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representation learning. Specifically, we utilize065

the accumulation of all the attention the element066

receives to indicate its centrality. We also design067

specific applications on sentence classification with068

the BERT model and graph classification with the069

Graph Attention model (refer to Fig. 1). In sen-070

tence classification, we extend BERT finetuning so071

that the relationship between natural words can be072

applied to pooling instead of just using the relation-073

ship between the artificial [CLS] token and natural074

tokens. We extend graph representation learning075

on graph classification by exploiting automatically076

learned node relations instead of just using static077

graph topology.078

2 Related Work079

Pooling plays an important role in both sequen-080

tial (Socher et al., 2011; Chen et al., 2015; Safari081

et al., 2020) and non-sequential structure repre-082

sentation learning (Lee et al., 2019). Most meth-083

ods separately learn element representations and084

pooling and do not exploit the relation between085

elements (Kim, 2014; Ying et al., 2018).086

Sequential Pooling Sequential pooling objects to087

obtain a representation of a piece of text. Previous088

methods usually perform an average or maximum089

operation on every position (Kim, 2014; Ma et al.,090

2019; Song et al., 2020), or sum the representations091

of positions with their feature weights (Yang et al.,092

2016; Wu et al., 2020). The powerful pretrained093

language model BERT (Devlin et al., 2019) directly094

applies CLS pooling with an artificial [CLS] to-095

ken (Devlin et al., 2019), which aggregates infor-096

mation by attending representations of other posi-097

tions. However, these methods neglect the relation098

between all positions, and the CLS pooling is only099

learned in the finetuning phase of BERT. Recent100

studies find that attention weights can indicate key-101

words, but they do not study its effectiveness in102

pooling and downstream tasks like sequence classi-103

fication (Clark et al., 2019; Ding and Luo, 2021).104

Non-sequential Pooling Non-sequential pooling105

aims to extract the overall representation of a106

non-sequence. The graph is a well-studied non-107

sequence. Previous research mainly disassembled108

it into two parts: node representation learning and109

graph pooling. Traditional graph pooling takes110

the node representation into account (Gao and Ji,111

2019), and recent methods propose to utilize graph112

topology to model the node relation (Lee et al.,113

2019; Murphy et al., 2019; Yuan and Ji, 2020),114

but the relationship automatically learned in node 115

representation learning is still not considered. 116

3 Proposal 117

3.1 Self-Attention Pooling 118

To model dynamic relation in the structure repre- 119

sentation, we propose Self-Attention Pooling. It 120

links the construction of element representation and 121

structure representation (i.e., pooling). For learn- 122

ing element representation, self-attention module 123

updates the representation of each element. For 124

pooling, weights are centrality scores that reflect 125

the importance of each element in a structure. In- 126

spired by PageRank (see Section 5), we define the 127

centrality score of an element by its overall atten- 128

tion scores2 received from other elements. While 129

for learning structure representation, the centrality 130

scores are ranked for top-k selection or weighted 131

sum of the structure representation. We define X 132

as the input structure, N as the number of elements 133

and X
(m)
j as the element j at layer m. Then, the el- 134

ement representation X
(m)
j and the centrality S

(m)
j 135

can be formulated as follows: 136

X
(m)
j =

∑N

i=1
αi,jX

(m−1)
j (1) 137

S
(m)
j =

∑N

i=1
αi,j (2) 138

where αi,j is the self-attention score from element 139

i to j, and
∑N

j=1αi,j = 1. For conciseness, we 140

omit the description of the non-aggregation neural 141

network and focus on the element aggregation. 142

3.2 Self-Attention based Sequence Pooling 143

As illustrated in Fig. 1 (a), for sequential structure, 144

our objective is to learn sequence representation for 145

downstream tasks like sentence classification. Here 146

the element representation can be seen as position 147

representation, e.g., word-level or subword-level 148

representation. For sequence pooling, we study 149

the powerful BERT model and compare its pooling 150

methods. Therefore, we pool the representations 151

from the last hidden layer of the BERT encoder. 152

We compare with the CLS pooling, mean- 153

pooling, and max-pooling. Although been de- 154

fault in BERT pooling, CLS pooling merely takes 155

X
(m)
0 =

∑N
j=0α0,jX

(m−1)
j as the sequence rep- 156

resentation. In contrast, BERT is pretrained with 157

all the positions rather than only the CLS position. 158

2For pooling, we use the averaged self-attention scores
overheads.
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Therefore, the discrepancy between pretraining and159

CLS finetuning causes the learning of finetuning160

insufficient. Moreover, CLS pooling ignores the161

relation between natural tokens. mean-pooling and162

max-pooling are both typical pooling methods, they163

are operated along the position dimension here.164

For Self-Attention Pooling, we implement pool-165

ing on the last hidden layer of the BERT encoder,166

while calculating αi,j from various layers. Ac-167

cording to Eq. 1, we exploit the relation between168

all positions to obtain centrality scores for each169

position. The overall sequence representation is170 ∑N
j=0Xj · Sj .171

3.3 Self-Attention based Graph Pooling172

As shown in Fig. 1 (b), for graph structure, nodes173

and graphs represent elements and structures re-174

spectively. Here Xj (j=1,2,...,N) denote the fea-175

ture of each node. We compare our method with176

two baselines for graph representation: gPool that177

considers only node features, formulated3 as Z =178

X(l)Θ(l)/
∥∥Θ(l)

∥∥. SAGPool that considers both179

features of nodes and the overall graph topology,180

roughly4 described as Z = σ
(
D̃− 1

2 ÃD̃− 1
2XΘ

)
.181

Different from previous work, Self-Attention Pool-182

ing exploits node relations from the graph attention183

mechanism (Veličković et al., 2018) (GAT) directly,184

which is also crucial for node representation. It is185

slightly different from Eq. 1 because αi,j is only186

calculated among each node and its neighbors. In187

GAT, eij is a logit calculated from concentrated188

element representation, N(i) denotes node i and189

its neighbours. The centrality scores are calculated190

as:191

αij = softmaxj (eij) =
exp (eij)∑

k∈Ni
exp (eik)

(3)192

Sj = Zj +
N∑

i∈N(j)

αi,j (4)193

Since the attention in graph is local, we propose194

iterative Self-Attention Pooling as:195

wj =

N∑
i∈N(j)

αi,j , αi = wi·αi, Sj = Zj+

N∑
i∈N(j)

αi,j

(5)196

3The superscript represents the layer. Θ, N and Ã ∈
RN×N stands for learnable parameters, the input features of
the graph and the adjacency matrix respectively.

4Ã ∈ RN×N is the adjacency matrix with self-
connections, (i.e. Ã = A+ IN ), D̃ ∈ RN×N is the de-
gree matrix of Ã. For details of the formulas of gPool and
SAGPool, refer to the SAGPool paper (Lee et al., 2019).

After getting the centrality score Sj of each node 197

in the current graph, we can mask out the nodes 198

with low importance and retrain the others for fur- 199

ther calculation. 200

Dataset CoLA RTE MRPC
Metric Matt. Acc. Acc. F1

CLS Pooling 56.5 65.7 84.1 88.9
Mean Pooling 59.2 64.3 84.6 89.0
Max Pooling 59.1 63.5 81.4 87.7
S.A. Pooling (Ours) 59.8 69.7 86.6 90.6

Table 1: Results on three sequence classification tasks.
S.A. Pooling refers to Self-Attention Pooling. Matt.
denotes Matthews correlation coefficient. Acc. abbrevi-
ates Accuracy. F1 refers to F1 score.

4 Experiments 201

4.1 Datasets 202

Sequence Classification In our experiments, we 203

consider a single sentence or a sentence pair as a 204

sequence. We use CoLA for single sentence classi- 205

fication, MRPC, and RTE for sentence-Pair classi- 206

fication. CoLA (Warstadt et al., 2018) is expertly 207

annotated for grammatical acceptability, consisting 208

of 10,657 sentences from 23 linguistics publica- 209

tions. MRPC (Dolan and Brockett, 2005) is used 210

to classify whether two sentences are paraphrases 211

or not. It consists of 5,801 sentence pairs collected 212

from newswire articles. RTE (Dagan et al., 2005; 213

Haim et al., 2006; Giampiccolo et al., 2007; Ben- 214

tivogli et al., 2009) is a dataset for natural language 215

inference. Given a premise and a hypothesis, mod- 216

els are expected to select the best answer between 217

entailment, neutral, and contraction. 218

Graph Classification We experiment with 219

five large graph datasets from the benchmark 220

datasets (Kersting et al., 2016). D&D (Dobson 221

and Doig, 2003; Shervashidze et al., 2011) and 222

PROTEINS (Dobson and Doig, 2003; Borgwardt 223

et al., 2005) are both protein datasets that are classi- 224

fied as enzymes or non-enzymes. Nodes represent 225

the amino acids and two nodes are connected by 226

an edge if they are less than 6 Angstroms apart. 227

NCI (Wale et al., 2008) is a biological dataset 228

used for anticancer activity classification. NCI1 229

and NCI109 are commonly used. FRANKEN- 230

STEIN (Orsini et al., 2015) is a set of molecu- 231

lar graphs (Costa and De Grave, 2010). Its la- 232

bel denotes whether a molecule is a mutagen or 233

non-mutagen. D&D, PROTEINS, NCI, NCI109, 234
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Dataset D&D PROTEINS NCI1 NCI09 FRANKENSTEIN

gPool (Gao and Ji, 2019) 73.74±0.45 72.80±0.17 70.04±0.44 70.10±1.23 75.97±0.53
SAGPool (Lee et al., 2019) 75.01±0.50 72.99±0.12 72.37±0.22 71.63±0.54 76.09±0.57
S.A. Pooling (Ours) 76.00±0.71 74.12±0.40 74.60±0.22 73.81±0.41 79.02±0.70
Iterative S.A. Pooling (Ours) 76.23±0.13 74.06±0.40 74.70±0.25 74.33±0.15 79.30±0.68

Table 2: Results on graph classification tasks. gPool gets pooling scores from features. SAGPool uses the graph
topology. Self-Attention Pooling introduces learned node relations from node representation learning to pooling.

FRANKENSTEIN have 1178, 1113, 4110, 4127,235

4337 graphs respectively.236

4.2 Training and Evaluation237

Sequence Classification We use the BERTbase238

model implemented by Transformers (Wolf et al.,239

2020), and follow the default setting of their "text-240

classification" directory without tuning any hyper-241

parameters. We also run all GLUE tasks and report242

results on them in the Appendix A.243

Graph Classification We experiment on the GAT244

model and run it 3 times; each run contains 20 dif-245

ferent train, valid, test splits of the data (split by246

0.8, 0.1, 0.1) since a recent study indicates that247

different dataset splits largely affect the test perfor-248

mance (Shchur et al., 2019). For evaluation, we249

report test accuracy on the early stopping model250

with the best valid accuracy.251

4.3 Results252

As shown in Table 1, mean/max pooling outper-253

forms CLS pooling on single sentence classifica-254

tion, but they are less effective on sentence-pair255

classification. Compared to CLS pooling, Self-256

Attention Pooling considers relations between nat-257

ural tokens. The relations are the self-attention258

weights that can be easily transferred from the per-259

taining phase. On average, Self-Attention Pooling260

outperforms CLS pooling 2.9 points.261

Table 2 demonstrates that graph topology is262

ineffective on the PROTEINS dataset and the263

FRANKENSTEIN dataset. In our Self-Attention264

Pooling method, the automatically leaned relation265

from the node representation learning serves as266

a good indicator for centrality. On average, Self-267

Attention Pooling outperforms SAGPool by +1.9268

points, and can further achieve +0.2 improvements269

if we iterate the method twice.270

5 Discussion271

Relation to PageRank In order to measure the rel-272

ative importance of web pages, Page et al. (1999)273

propose PageRank. Its main idea is that the value 274

of a node is determined by the sum of all the nodes 275

pointing to it, while our Self-Attention Pooling 276

extends it to aggregating self-attention weights. 277

Neural Pagerank (Klicpera et al., 2018) equips the 278

PageRank algorithm with Neural Networks but still 279

does into involve attention weights. 280

Layers Chosen To analyze the effect of layer cho- 281

sen for Self-Attention Pooling during BERT fine- 282

tuning, we take CLS Pooling as the baseline and 283

experiment with different layer settings. Table 3 284

demonstrates that the last layers deliver the most 285

substantial improvement.

Layer CoLA RTE MRPC
Metric Matt. Acc. Acc. F1

CLSL12 56.5 ( − ) 65.7 ( − ) 84.1 ( − ) 88.9 ( − )
L12 59.8(↑ 3.3) 68.2(↑ 2.5) 86.8(↑ 2.7) 90.7(↑ 1.8)
L10-12 60.1(↑ 3.6) 68.6(↑ 2.9) 87.3(↑ 3.2) 91.0(↑ 2.1)
L9-12 59.8(↑ 3.3) 69.7(↑ 4.0) 86.6(↑ 2.5) 90.6(↑ 1.7)
L1-12 59.5(↑ 3.0) 69.7(↑ 4.0) 83.8(↓ 0.3) 88.7(↓ 0.2)

Table 3: Layer chosen for Self-Attention Pooling.

286

Limitation Our method requires that element rep- 287

resentation learning involves self-attention mech- 288

anisms. Nevertheless, our scope of application is 289

still wide because the self-attention mechanism has 290

proven to be dramatically useful in various fields, 291

such as natural language processing (Vaswani et al., 292

2017), graph models (Veličković et al., 2018), and 293

computer vision (Dosovitskiy et al., 2021). 294

6 Conclusion 295

We propose Self-Attention Pooling to learn rep- 296

resentation and pooling simultaneously, allowing 297

the structure representation learning to take ele- 298

ment relation into account. Self-Attention Pooling 299

substantially improves the sequential structure and 300

non-sequential structure. 301
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Model CoLA RTE MRPC(ACC/F1) QNLI SST-2 STS-B QQP MNLI Score

CLS Pooling 56.5 65.7 84.1/88.9 90.7 92.3 88.6 90.7 83.9 82.4
Mean Pooling 59.2 64.3 84.6/89.0 90.6 91.2 88.3 90.9 83.8 82.4
Max Pooling 59.1 63.5 81.4/87.7 90.7 91.2 87.9 91.0 84.5 81.8
Self-Attention Pooling 59.8 69.7 86.6/90.6 90.8 91.5 89.3 91.0 83.9 83.7

Table 4: Results on GLUE.

A Results on GLUE513

We use the BERTbase model implemented by Trans-514

formers (Wolf et al., 2020), and follow the default515

setting of their "text-classification" directory for516

the training and evaluation on GLUE without tun-517

ing any hyper-parameters. Table 4 shows the full518

results and average performance. For STS-B, we519

report Pearson metric. For other new tasks, we re-520

port accuracy. On average, Self-Attention Pooling521

improves CLS Pooling by 1.3 points.522

B Experiment Details on Graph523

Classification524

Our experiments on graph classification (Sec-525

tion 4.2) follow the implementation of the "pro-526

teins_topk_pool.py" file in pytorch-geometric (Fey527

and Lenssen, 2019). We set three GNN layers and528

apply pooling for each layer, retaining 80% nodes529

at a time. The Self-Attention Pooling implemented530

on each layer only takes the self-attention of the531

current layer into account.532

7


