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Saliency-Guided Fine-Grained Temporal Mask Learning for
Few-Shot Action Recognition

Anonymous Author(s)∗

ABSTRACT
Temporal relation modeling is one of the core aspects of few-shot
action recognition. Most previous works mainly focus on temporal
relation modeling based on coarse-level actions, without consid-
ering the atomic action details and fine-grained temporal infor-
mation. This oversight represents a significant limitation in this
task. Specifically, coarse-level temporal relation modeling can make
the few-shot models overfit in high-discrepancy temporal context,
and ignore the low-discrepancy but high-semantic relevance ac-
tion details in the video. To address these issues, we propose a
saliency-guided fine-grained temporal mask learning method that
models the temporal atomic action relation for few-shot action
recognition in a finer manner. First, to model the comprehensive
temporal relations of video instances, we design a temporal mask
learning architecture to automatically search for the best matching
of each atomic action snippet. Next, to exploit the low-discrepancy
atomic action features, we introduce a saliency-guided temporal
mask module to adaptively locate and excavate the atomic action
information. After that, the few-shot predictions can be obtained
by feeding the embedded rich temporal-relation features to a com-
mon feature matcher. Extensive experimental results on standard
datasets demonstrate our method’s superior performance compared
to existing state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding.

KEYWORDS
temporal relation modeling, few-shot action recognition, temporal
mask learning

1 INTRODUCTION
Few-shot learning is able to generalize well to new unseen cate-
gories with only a few data samples and thus has gained increasing
attention. It is promising to reduce the labor of collecting large-scale
training data and the computational cost that many successful ac-
tion recognition models [1, 11, 12, 40] will suffer when deployed in
unfamiliar realistic scenarios where large-scale datasets are difficult
to collect. However, video few-shot action recognition persists as a
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challenge, attributed to the intricate nature of action representation
and temporal relationships.

Metric-based meta-learning methods [26, 28, 32] are one of the
most widely used techniques in few-shot action recognition, where
a meta-trained embedding network maps videos into a feature
space and then matches the most similar video pairs in the feature
space for recognition [3, 15, 41, 43, 44]. Most of the these methods
obtain the similarity between videos by aggregating frame-to-frame
similarity scores [4, 35, 36]. For example, OTAM [4] performs fixed
time-order video frame alignment after obtaining video features
to match the closest frame pair in two videos. HyRSM [36] devises
a bidirectional mean Hausdorff metric to obtain frame-to-frame
correspondences with aggregate matching relationships.

Despite the remarkable results, metric-based approaches to few-
shot action recognition still exhibit limitations. Frame-level metric
methods treat all frames in a video equally in the matching process,
ignoring the fact that the semantic salience of each frame is differ-
ent. Video frames can be classified into salient frames, non-salient
frames, and ambiguous frames. However, current video models,
trained on video-level semantic labels, tend to excessively priori-
tize salient frames that exhibit high dissimilarity to other support
videos. Consequently, ambiguous frames may not receive adequate
attention from the model, increasing the likelihood of false match-
ing, especially when dealing with complex atomic actions [17] or
those containing multiple semantic instances.

Recently, masked visual modeling has achieved stunning results
in self-supervised learning of images and videos [13, 18, 20, 31],
which masks out a part of the input and reconstructs the complete
input with the remaining part, and it has been shown that masked
visual modeling is capable of learning a more generalized feature
potential space [18]. In addition, by designing a specific masking
strategy, the model can be directed to focus on particular parts of
the data. Building upon the aforementioned concepts, we posit that
the introduction of mask feature reconstruction as a self-supervised
pretext task into supervised few-shot learning for classification,
which guides the model to perceive the semantics of the actions in
the video more efficiently by reconstructing the video features, and
improves the generalization ability of the few-shot action classifi-
cation on the new task. However, in few-shot action recognition,
indiscriminate escalation of the reconstruction difficulty may lead
to an imbalance between the learning objectives of self-supervision
and few-shot classification. Therefore, it remains a challenge to
design a reasonable masking strategy so as to take full advantage
of masked visual modeling to enhance the generalization ability of
few-shot action recognition.

To address the above issues, we propose a novel saliency guided
fine-grained temporal mask learning method for few-shot action
recognition. Specifically, we built a temporal mask learning scheme
in which fine-grained atomic action details are learned through
interaction with the saliency-guided temporal mask. In general,

1

https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MM ’24, October 28–November 1, 2024, Melbourne, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

our study revolves around two key ideas. First, we learn a compre-
hensive temporal relation by forcing ambiguous frames to aggre-
gate the complete video action semantics. Second, we exploit the
low-discrepancy atomic action features to locate and excavate the
atomic action information. Notably, to the best of our knowledge,
our method is the first to learn the mid-level atomic action details
compared to existing mask visual modeling work that typically uses
the paradigm of reconstructing low-level features such as original
pixels and HOGs [18, 37].

In summary, our contribution can be summarized as follows:

• we propose a novel saliency guided fine-grained temporal
mask learning method that models the temporal atomic
action relation for few-shot action recognition in a finer
manner.

• We propose a temporal mask learning architecture to au-
tonomously explore the optimal alignment for each atomic
action snippet while incorporating a saliency-guided tem-
poral mask module to adaptively locate and excavate the
atomic action information.

• We conduct extensive experiments on five benchmark datasets
to verify the effectiveness of the proposed method. The ex-
perimental results demonstrate the superior performance of
our method compared to existing state-of-the-art methods.

2 RELATEDWORKS
2.1 Few-Shot Action Recognition
Existing few-shot action recognition methods typically employ a
metric-based meta-learning paradigm [32] and perform frame-to-
frame temporal matching [4, 35, 36] to search for the most similar
videos. Videos have an additional dimension of time than images,
and thus the few-shot action recognition task requires a combi-
nation of both video spatio-temporal modeling and inter-video
similarity metrics. For instance, AMeFu [15] incorporates the depth
modality as supplementary scene information and fuses it with
RGB modality for prototype metric [26]. OTAM [4] employs a vari-
ant of Dynamic Time Warping (DTW) to enforce the alignment of
video frames in temporal order. ITANet [42] introduces a decom-
posed self-attention mechanism to alleviate intra-class variability in
video features. TRX [24] utilizes CrossTransformers [9] to construct
query-specific prototype representations. Building upon TRX [24],
STRM [30] enhances local and global features to effectively capture
spatiotemporal contextual information in videos. HCL [43] extracts
multi-scale video representations from coarse to fine granularity,
utilizing these representations for hierarchical matching. HyRSM
[36], through task-aware video relation learning, tailors features
specific to the task and employs a set-matching metric. MoLo [35]
introduces a long-short contrastive loss to enforce local frame fea-
ture prediction with global context and perceives motion details
through frame-wise difference reconstruction. SloshNet [39] adap-
tively integrates spatial features from different levels and integrates
long-term and short-term temporal features for rich spatiotemporal
characteristics. Our method focuses on providing discriminative
video features, reducing potential ambiguities in frame-to-frame
matching.

2.2 Mask Visual Modeling
Mask autoencoder is fundamentally a denoising autoencoder that
learns effective feature representations by reconstructing the com-
plete input from corrupted inputs. Recently, some work has ap-
plied Masked Image Modeling to self-supervised image pretraining,
achieving remarkable results. For instance, iGPT [6] employs a self-
supervised image pretraining approach by predicting the next pixel
in a one-dimensional pixel sequence. BEiT [2] learns the visual se-
mantics of images through predicting discrete visual tokens during
pretraining. SimMIM [38] introduces a simple framework for the
regression task on original image pixels. MAE [18] introduces an
asymmetric encoder-decoder architecture and employs a high mask
rate random masking strategy, enhancing the efficiency of masked
image pretraining.

The tremendous success of Masked Image Modeling has sparked
numerous efforts to extend this self-supervised pretraining par-
adigm to videos. BEVT [34] and VIMPAC [29] attempt a similar
approach to BEiT [2], learning video representations by predicting
features exported by a tokenizer. MaskFeat [37] sets the goal of
mask reconstruction to HOG [7] handcrafted features instead of
raw pixels. VideoMAE [31] and MAE-ST [13] use extremely high
mask ratios to increase the reconstruction difficulty. VideoMAE
[31] also proposes a tube masking strategy to mitigate information
leakage during the reconstruction process, while VideoMAE v2
[33] introduces dual masking to explore larger video-based models,
masking the input of the decoder to enhance training efficiency.
MAR [25] introduces cell running masking, providing detailed con-
text for the encoder to easily perceive the missing parts. In contrast
to the aforementioned methods, our proposed saliency-guided fine-
grained temporal mask learning is not aimed at achieving better
pretraining performance but rather to assist in achieving more
accurate video matching for few-shot action recognition.

3 METHOD
3.1 Problem Definition
The goal of few-shot action recognition is to obtain good general-
ization over new action categories with a small number of labeled
samples. We follow the standard metric-based few-shot learning
protocol [24, 32, 44] and employ the episode training paradigm. We
sample videos from the meta-training set 𝐶𝑡𝑟𝑎𝑖𝑛 during training
to construct multiple episodes, each of which consists of a set of
support videos 𝑆 and a set of query videos𝑄 . The support set S con-
tains 𝑁 × 𝐾 samples from 𝑁 action categories, where each action
category contains 𝐾 samples (called the 𝑁 -way 𝐾-shot task), and
the query set𝑄 contains several samples in N action categories. The
training objective is to correctly recognize the video in 𝑄 as one of
the 𝑁 categories. During testing, episodes are built by sampling 𝑁
categories from the meta-test set𝐶𝑡𝑒𝑠𝑡 , where the action categories
of 𝐶𝑡𝑟𝑎𝑖𝑛 and 𝐶𝑡𝑒𝑠𝑡 do not overlap with each other, in order to test
the generalization performance of the model on unseen data.

3.2 Saliency-Guided Fine-Grained Temporal
Mask Learning

Overall architecture. Figure 1 shows an overview of our frame-
work. Our framework comprises two branches: the temporal mask
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Figure 1: Illustration of our few-shot action recognition model with saliency-guided fine-grained temporal mask learning.

learning branch and the few-shot classification branch. In the tem-
poral mask learning branch, we utilize the saliency-guided tempo-
ral mask generator module to adaptively generate a mask map for
masking the feature embeddings, and then force the remaining por-
tions to predict the features of the complete video. In the few-shot
classification branch, we measure the similarity of action videos
through frame-level matching for action classification. We aggre-
gate the losses from both branches to form the overall framework
loss.

In the episode under the N-way K-shot setting, the support set
contains 𝑁 ×𝐾 videos, and the query set contains at least one video.
For each video V, it can be represented as 𝑉 = {𝐼1, 𝐼2, · · · , 𝐼𝑇 } ∈
R𝑇×3×𝐻×𝑊 , where 𝑇 is the number of video frames obtained by
uniform sampling. We use a 2D CNN backbone network to extract
frame-level features of the video V to obtain the feature embedding
𝑋𝑒𝑚𝑏 = {𝑋𝑒𝑚𝑏

1 , 𝑋𝑒𝑚𝑏
2 , · · · , 𝑋𝑒𝑚𝑏

𝑇
} ∈ R𝑇×𝐷 . Each video frame is

encoded as a feature vector in D dimensions.
Saliency-guided temporal mask. Given a frame-level embed-

ded feature sequence𝑋𝑒𝑚𝑏 of a video, we obtain the category-aware
scores for each frame using the following formula:

A = Φ𝑐𝑙𝑠 (𝑋𝑒𝑚𝑏 ) (1)

Where Φ𝑐𝑙𝑠 is the composition of several temporal convolutional
layers, interspersed with ReLU layers and Dropout layers. The
resultingA ∈ R𝑇×𝐶 represents the semantic relevance between the
frame-level features of the video and the class labels, where𝐶 is the
number of action categories in the meta-training set. Subsequently,
a simple channel-wise summation operation (Φ𝑠𝑢𝑚) and a Sigmoid
function are applied for category-agnostic aggregation, resulting in

the actionness score A𝑛𝑒𝑠𝑠 ∈ R𝑇 . This operation can be expressed
as follows:

A𝑛𝑒𝑠𝑠 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (Φ𝑠𝑢𝑚 (A)) (2)

We consider the value of A𝑛𝑒𝑠𝑠 as the temporal saliency of all
sampled frames in the video, and use it to guide the generation of
the mask map. To excavate and learn more details about atomic
actions. We focus on the ambiguous snippets (more detailed dis-
cussion in Section 4.3.2). We mask both salient and non-salient
frames, compelling the network to aggregate comprehensive video
semantics from ambiguous frames. Specifically, we perform top-k
and bottom-k operations on the feature embedding 𝑋𝑒𝑚𝑏 based
on 𝐴𝑛𝑒𝑠𝑠 to obtain two sets of frame features: 𝑋𝑠𝑎𝑙 ∈ R𝑇1×𝐷 con-
taining the top 𝑇1 frames with the highest temporal saliency, and
𝑋𝑛𝑜𝑛 ∈ R𝑇1×𝐷 comprising the bottom 𝑇1 frames with the lowest
temporal saliency. The remaining frame-level features are consid-
ered as features corresponding to ambiguous frames, denoted as
𝑋𝑎𝑚𝑏 ∈ R𝑇2×𝐷 , where𝑇2 = 𝑇 −2×𝑇1. We mask𝑋𝑠𝑎𝑙 and𝑋𝑛𝑜𝑛 and
input only 𝑋𝑎𝑚𝑏 as the visible portion into the encoder, relying on
𝑋𝑎𝑚𝑏 to reconstruct the features of the entire video.

Encoder. Vision Transformer (ViT) [10] has demonstrated its
powerful capability for global visual perception and is commonly
employed as an encoder in Mask Visual Modeling methods [13,
18, 31]. Therefore, we choose shallow Transformer layers, simi-
lar to those in the ViT, as our encoder. In order to make the fea-
tures extracted by the CNN suitable to be used as inputs to the
Transformer block, we decompose the feature embedding into 𝑁
non-overlapping tokens, each of which has the shape 1 × 𝑃 , i.e.
𝑁 = 𝑇2𝐷/𝑃 . We reshape 𝑋𝑎𝑚𝑏 ∈ R𝑇2×𝐷 into 𝑋𝑎𝑚𝑏 ∈ R𝑁×𝑃 , add
positional embedding to identify the relative position of tokens,

3
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and then feed them into the encoder to obtain the encoded latent
features 𝑋 𝑙𝑎𝑡 :

𝑋 𝑙𝑎𝑡 = Φ𝑒𝑛𝑐 (𝑋𝑎𝑚𝑏 + 𝑃𝐸) (3)

Φ𝑒𝑛𝑐 refers to the encoder network, and 𝑃𝐸 denotes positional
embedding.

Decoder. Similar to the encoder, the decoder consists of shal-
low Transformer layers. We concatenate 𝑋 𝑙𝑎𝑡 with learnable mask
tokens, add fixed positional embedding to indicate the position of
each token in the video frame sequence, and utilize this as input for
the decoder. Consequently, we obtain the reconstructed features
𝑋𝑟𝑒𝑐𝑜𝑛 ∈ R𝑁 ′×𝑃 , where 𝑁 ′ = 𝑇𝐷/𝑃 . The process can be expressed
by the following equation:

𝑋𝑟𝑒𝑐𝑜𝑛 = Φ𝑑𝑒𝑐 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑋 𝑙𝑎𝑡 ,𝑚𝑎𝑠𝑘) + 𝑃𝐸) (4)

Φ𝑑𝑒𝑐 denotes the decoder network, while 𝑚𝑎𝑠𝑘 represents mask
tokens.

Reconstruction loss. To extract more semantic information
from a small number of ambiguous frames, we introduce the recon-
struction loss. The training objective of the temporal mask learning
branch is tominimize theMean Square Error (MSE) loss between the
reconstructed and original features. We decompose 𝑋𝑒𝑚𝑏 ∈ R𝑇×𝐷

into a token sequence 𝑋𝑒𝑚𝑏 ∈ R𝑁 ′×𝑃 , where 𝑃 is the dimension of
each token, and 𝑁 ′ = 𝑇𝐷/𝑃 is the number of tokens, achieving the
same size as 𝑋𝑟𝑒𝑐𝑜𝑛 , and then apply the MSE loss:

L𝑟𝑒𝑐𝑜𝑛 =
1
𝑁 ′

𝑁 ′∑︁
𝑡=1

| |𝑋𝑒𝑚𝑏
𝑡 − 𝑋𝑟𝑒𝑐𝑜𝑛

𝑡 | |2 (5)

where | | · | |2 denotes the ℓ2 loss.
Metric-based few-shot classification. The frame-level feature

sequence 𝑋𝑒𝑚𝑏 undergo a notable refinement through the encoder
of the aforementioned temporal mask learning branch. Neverthe-
less, a disparity persists between this refined representation and
the requisite representation for the few-shot action recognition. As
a result, in preparation for the frame-level metric procedure, we
employ shallow Transformer layers [10] to further process the fea-
tures, facilitating an improved alignment of these features within
the metric space. The reshaped token sequence 𝑋𝑒𝑚𝑏 , along with
positional embeddings, is fed into the Transformer. The output
are then reshaped into the size of 𝑇 × 𝐷 , obtaining the features
𝑋𝑚𝑎𝑡 for frame-level matching in videos. The above process can
be represented by the following formula:

𝑋𝑚𝑎𝑡 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (Transformer(Φ𝑒𝑛𝑐 (𝑋𝑒𝑚𝑏 + 𝑃𝐸))) (6)

Φ𝑒𝑛𝑐 represents the encoder in the temporal mask learning branch,
Transformer stands for the shallow Transformer layers.

Given the features corresponding to the query video, denoted as
𝑋𝑚𝑎𝑡
𝑞 , and the feature representations corresponding to videos in

the support set S with the same labels as the query video, repre-
sented as 𝑋𝑚𝑎𝑡 , the classification loss is expressed as follows:

L𝐶𝐸 = − log
exp(−𝜙 (𝑋𝑚𝑎𝑡

𝑞 , 𝑋𝑚𝑎𝑡 )))∑
𝑠∈S exp(−𝜙 (𝑋𝑚𝑎𝑡

𝑞 , 𝑋𝑚𝑎𝑡
𝑠 ))

. (7)

𝜙 is the distance metric function for video features, used to obtain
video-level similarity by aggregating the similarity of frame-level

features between support videos and the query video. The final loss
can be expressed as:

L = L𝐶𝐸 + 𝜆L𝑟𝑒𝑐𝑜𝑛 (8)

Our training strategy consists of two steps. Firstly, we freeze the
feature embedding network and perform supervised training on
Φ𝑐𝑙𝑠 using the class labels of video instances from the meta-training
set. Subsequently, we freeze the parameters of Φ𝑐𝑙𝑠 and train our
framework using the lossL from Equation 8. In the inference phase,
given a query video 𝑞 from an unknown class and a support set S,
we use a similarity metric to find the video in S that is most similar
to 𝑞. Subsequently, we assign the action class label of that video to
𝑞.

4 EXPERIMENT
4.1 Datasets and Experimental Setups
Datasets. We evaluate our approach on five standard datasets,
including Kinetics [5], UCF101 [27], HMDB51 [27], SSv2-Full [16],
and SSv2-Small [16]. The datasets are partitioned intometa-training,
meta-validation, and meta-testing sets based on action categories
to meet the requirements of the few-shot classification setting. For
Kinetics, we follow the splitting strategy proposed by [44], selecting
100 action categories, each with 100 samples, and dividing these
categories into 64, 12, and 24 for training, validation, and testing,
respectively. For UCF101, we split it into 70, 10, and 21 categories
for training, validation, and testing, following the same setup as
[41]. In the case of HMDB51, we split it into 31, 10, and 10 categories
for training, validation, and testing, adhering to the same splitting
strategy as in [41]. For SSv2-Full and SSv2-Small, we adopt the
split strategies utilized in [4] and [44], selecting 64 categories for
training, 12 for validation, and 24 for testing from the datasets. The
distinction lies in the fact that SSv2-Full comprises all samples for
each category, whereas SSv2-Small only includes 100 samples per
category.

Implementation details. Following the common paradigm of
existing few-shot action recognition methods [4, 24, 35, 36], we
employ ResNet50 [19] as the backbone network and initialize it
with weights pre-trained on ImageNet [8] to extract frame-level
features. We sparsely and uniformly sample 8 frames from each
video, like previous methods [30, 35]. In the network architecture,
the Transformer layers of the Encoder and Decoder are both con-
figured with two layers. Additionally, we set k in the top-k and
bottom-k, as well as 𝑇1 and 𝑇2 to 2, thus masking 4 frames. During
training, we resize each frame in the video into 256 × 256, followed
by random horizontal flips and random cropping to a 224 × 224
region. In the testing phase, we first perform resizing and then re-
place random cropping with center cropping. Similar to prior work
[35], we collect 10,000 episodes from the meta-testing set to evalu-
ate the model’s performance and report the average accuracy. The
weight parameter 𝜆 in the loss function is set to 0.5. In Section 4.2,
we employ two methods, OTAM [4] and Bi-MHM [36], as feature
similarity metrics to train and evaluate our model. In Section 4.3, we
exclusively utilize OTAM during the feature matching phase. We
implement our framework using PyTorch [23] and conduct training
on one RTX 4090 GPU.
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Table 1: Comparison with state-of-the-art few-shot action recognition methods on the Kinetics, UCF101, and HMDB51 datasets.
Experiments are performed under the 5-way task with 1-shot, 3-shot, and 5-shot settings. The best results are denoted in bold
black, the second-best results are indicated with an underscore, and "-" signifies that the result is not available in the published
works.

Method Reference Kinetics UCF101 HMDB51
1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

CMN [44] ECCV’18 57.3 72.5 76.0 - - - - - -
ARN [41] ECCV’20 63.7 - 82.4 66.3 - 83.1 45.5 - 60.6
OTAM [4] CVPR’20 72.2 78.7 84.2 79.9 87.0 88.9 54.5 65.7 68.0
AMeFu [15] MM’20 74.1 84.3 86.8 85.1 93.1 95.5 60.2 71.5 75.5
ITANet [42] IJCAI’21 73.6 - 84.3 - - - - - -
TRX [24] CVPR’21 63.6 81.8 85.9 78.2 92.4 96.1 53.1 66.8 75.6
TA2N [21] AAAI’22 72.8 - 85.8 81.9 - 95.1 59.7 - 73.9
STRM [30] CVPR’22 62.9 81.1 86.7 80.5 92.7 96.9 52.3 67.4 77.3
HyRSM [36] CVPR’22 73.7 83.5 86.1 83.9 93.0 94.7 60.3 71.7 76.0
Bi-MHM [36] CVPR’22 72.3 81.1 84.5 81.7 88.2 89.3 58.3 67.1 69.0
HCL [43] ECCV’22 73.7 82.4 85.8 82.5 91.0 93.9 59.1 71.2 76.3

Task Sampler [22] MM’22 73.6 - 86.2 83.5 - 96.0 59.9 - 73.5
SloshNet [39] AAAI’23 70.4 - 87.0 86.0 - 97.1 59.4 - 77.5
MoLo [35] CVPR’23 74.0 83.7 85.6 86.0 93.5 95.5 60.8 72.0 77.4

Ours+OTAM - 75.2 84.1 87.2 88.1 94.6 96.1 60.9 72.1 76.3
Ours+Bi-MHM - 75.6 84.4 87.6 87.8 95.0 96.0 61.5 72.5 76.0

4.2 Comparison with state-of-the-art
In the 5-way task with 1-shot, 3-shot, and 5-shot settings, we
compare our method with state-of-the-art approaches on Kinet-
ics, UCF101 and HMDB51, as presented in Table 1. We utilize two
commonly used frame-level alignment metrics as feature similar-
ity metrics, namely OTAM [4] and Bi-MHM [36], to validate the
effectiveness of our method. From the experimental results, it can
be observed that when using Bi-MHM as the metric strategy, our
method surpasses existing approaches across all three datasets in
both the 1-shot and 3-shot settings. Specifically, in the 1-shot set-
ting, our method achieves significant improvements of 1.5%, 1.8%,
and 0.7% on Kinetics, UCF01, and HMDB51, respectively. Under the
3-shot setting, improvements of 0.1%, 1.5%, and 0.5% are observed
on the same datasets, establishing a new state-of-the-art benchmark.
When employing OTAM as the metric strategy, our method like-
wise demonstrates excellent performance outperforming numerous
methods. Building upon Bi-MHM, Our method’s performance in
the 5-shot setting on the Kinetics dataset exceeds the previous best
method by 0.6%. However, on UCF101 and HMDB51, it lags behind
the best-performing methods. This problem is attributed to two
possible reasons: (1) Methods such as STRM [30] and SloshNet
[39], following the metric approach introduced in TRX [24], which
is specifically designed for tasks with a higher number of shots,
contributing to its superior performance in the 5-shot setting. (2)
The 5-shot setting includes a higher number of samples in sup-
port set. Consequently, the number of discrepancy-based salient
frames increases, while the number of ambiguous frames decreases.
However, our method may obscure some information in salient
frames, potentially leading to a decrease in accuracy. This problem
is further elaborated in the subsequent experiments.

We further compare our approach with state-of-the-art methods
on the SSv2-Small and SSv2-Full datasets, as presented in Table 2.

Our method achieves optimal performance under the 5-shot setting
on both datasets, with a consistent improvement of 0.8%. However,
under the 1-shot setting, our method slightly lags behind the best-
performing approach, i.e. MoLo [35], which additionally leverages
inter-frame difference information, thereby effectively enhancing
performance on SSv2-Small and SSv2-Full. However, the framework
of MoLo results in a larger parameter count (89.6M). In contrast,
our approach achieves a parameter count (37.2M) only 0.42 times
that of MoLo, striking a better balance between performance and
efficiency.

Through analyzing the results of the first two experiments, we de-
rive the following observations: For Kinetics, UCF101, andHMDB51,
actions can be easily recognized through several key frames con-
taining scene content, characterizing them as scene-centric datasets.
On the other hand, the actions in SSv2 encompass complex tem-
poral variations, classifying it as a temporal-centric dataset. For
scene-centric datasets, having more key frames in the samples of
support set makes it easier for the model to identify action cate-
gory. For instance, in the 5-shot setting in Table 1, several previous
methods achieve better results, whereas our approach performs
better in low-shot settings. Conversely, in temporal-centric datasets,
having more samples of support set results in more variable motion
information, making it more challenging to learn. Our method ef-
fectively addresses this issue, yielding the best performance in the
5-shot setting. Therefore, in more complex temporal action match-
ing scenarios, our approach demonstrates significant efficacy.

4.3 Ablation Study
4.3.1 Impact of network components. The results of the ablation
study of network components are displayed in Table 3. Starting
with a comparison of baseline and method 1, we add an Encoder to
the baseline method, consisting of 2 Transformer layers without
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Table 2: Comparison with state-of-the-art few-shot ac-
tion recognition methods on the SSv2-Small and SSv2-Full
datasets. Experiments are performed under the 5-way task
with 1-shot and 5-shot settings.

Method Reference SSv2-Small SSv2-Full
1-shot 5-shot 1-shot 5-shot

MatchingNet [32] NeurIPS’16 31.3 45.5 - -
MAML [14] ICML’17 30.9 41.9 - -
CMN [44] ECCV’18 33.4 46.5 - -
OTAM [4] CVPR’20 36.4 48.0 42.8 52.3
ITANet [42] IJCAI’21 39.8 53.7 49.2 62.3
TRX [24] CVPR’21 36.0 56.7 42.0 64.6
TA2N [21] AAAI’22 - - 47.6 61.0
STRM [30] CVPR’22 37.1 55.3 43.1 68.1
HyRSM [36] CVPR’22 40.6 56.1 54.3 69.0
Bi-MHM [36] CVPR’22 38.0 48.9 44.6 56.0

Task Sampler [22] MM’22 - - 47.1 61.6
SloshNet [39] AAAI’23 - - 46.5 68.3
MoLo [35] CVPR’23 42.7 56.4 56.6 70.6

Ours+OTAM - 40.0 56.0 54.1 69.8
Ours+Bi-MHM - 41.3 57.5 55.4 71.4

Table 3: Ablation study of three network components on
Kinetics dataset under 5-way 1-shot and 5-way 5-shot settings.
Encoder: shallow transformer layers; TML: Temporal Mask
Learning; SGTM: Saliency-Guided Temporal Mask.

Method Encoder TML SGTM Kinetics
1-shot 5-shot

Baseline 74.37 86.81
1 ✓ 74.50 86.87
2 ✓ ✓ 74.94 87.15

Ours ✓ ✓ ✓ 75.18 87.18

mask reconstruction. We observe marginal performance improve-
ments of 0.13% and 0.06% for 1-shot and 5-shot tasks, respectively,
indicating that simply increasing the depth of the temporal feature
extraction network does not lead to a significant performance im-
provement. Integrating temporal mask learning architecture (TML)
into the aforementioned network for masked feature reconstruc-
tion, where the temporal mask is randomly generated, results in
performance improvements of 0.57% and 0.34% for 1-shot and 5-
shot tasks, respectively, demonstrating that the random temporal
mask strategy can improve feature robustness to a certain extent.
Subsequently, we further incorporate saliency-guided temporal
mask module (SGTM). Compared to baseline that without temporal
mask, we observe improvements of 0.81% and 0.37% for 1-shot and
5-shot tasks, respectively. Compared to random mask, SGTM can
bring about more significant improvements. This suggests that se-
lective temporal mask learning enables the network to selectively
focus on learn more detailed actions, ultimately enhancing overall
performance. Further elaboration on the learned action details will
be provided in Section 4.4.

Table 4: Comparison experiments on the performance of
masking different regions on the Kinetics datasets. The re-
gions masked by our method are the two frames with the
highest temporal saliency and the two frames with the low-
est temporal saliency.

Masking Region Kinetics
1-shot 5-shot

4 frames with the highest saliency 75.01 86.30
4 frames with the lowest saliency 74.99 86.49

4 frames with saliency in the middle 74.88 86.34
Ours 75.18 87.18

Table 5: Ablation study for the impact of different loss func-
tions on the Kinetics and UCF101 datasets. 𝜆 represents the
weight of the reconstruction loss in Equation 8.

𝜆 Kinetics (1-shot) UCF101 (1-shot)
0 75.05 87.81
0.1 75.13 88.06
0.3 75.08 88.09
0.5 75.18 88.10
0.7 74.85 87.77
0.9 74.83 87.58

4.3.2 Analysis of different masking regions. In our framework, we
choose tomask frameswith the highest and lowest temporal saliency.
Here, we further explore the impact of masking different regions
under the guidance of temporal saliency on the model’s perfor-
mance. Experiments are conducted on the Kinetics dataset under
the 5-way 1-shot and 5-way 5-shot settings, and the results are sum-
marized in Table 4. We observe that masking the top 4 frames with
the highest temporal saliency achieves suboptimal performance in
the 1-shot setting, masking the middle 4 frames results in the worst
performance, and masking the bottom 4 frames yields 1-shot per-
formance between the first two scenarios. In contrast, our method
achieves the best performance in both 1-shot and 5-shot scenar-
ios. The comparison results of different mask strategies in Table 4
indicate that:

• Masking salient frames can improve overall performance,
suggesting that the network learns additional information
from ambiguous frames and non-salient frames.

• Masking ambiguous frames leads to a performance decrease,
indicating that non-salient frames can’t provide sufficient
information, causing the network to overly rely on salient
frames.

• Our method’s superior performance suggests that addi-
tional temporal information not present in the salient frames,
which can be utilized for few-shot temporal matching and
overall performance enhancement.

4.3.3 Analysis of the impact of different loss functions. We further
investigate the impact of different loss functions on the performance
of the method. Table 5 presents the performance variations of the
method under different size of reconstruction loss on the Kinetics
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Figure 2: Comparison of the per-class accuracy of our method with TRX and baseline under the 5-way 1-shot setting using
Kinetics dataset.

and UCF101 datasets. The experiments are conducted under the
5-way 1-shot scenario. From Table 5, we can observe that, on both
datasets, smaller values of the reconstruction loss, i.e. 𝜆 is set to
0.1 and 0.3, show better performance compared to the case where
the reconstruction loss is 0. Larger values of the reconstruction
loss, i.e., 𝜆 set to 0.7 and 0.9, result in a performance decline. This is
attributed to the stronger constraints imposed on the mask feature
reconstruction network when the reconstruction loss is larger, en-
hancing the reconstruction capability of the encoder. The optimal
performance is achieved when the value of the reconstruction loss
is set between values mentioned aboves. Therefore, we set 𝜆 to
0.5 as a balance point between the two losses to achieve the best
performance.

4.3.4 Analysis of per-class accuracy. To investigate the impact of
our proposed method on per-class classification accuracy for spe-
cific categories, we conduct a per-class accuracy analysis on the
meta-testing set of the Kinetics dataset under the 5-way 1-shot
setting. A comparison is made with TRX [24] and the Baseline,
where the baseline comprises a ResNet50 backbone followed by 2
Transformer layers, and OTAM [4] is employed for metric learning.
As depicted in Figure 2, in comparison to the baseline, our approach
shows a reduction in accuracy for specific categories, such as "play-
ing drums" and "pushing car". These categories involve interactions
with large objects and lack distinct ambiguous segments. Conse-
quently, by masking certain highly salient temporal segments, we
experience a loss in performance. However, in comparison to our
competitors, our method consistently demonstrates an overall per-
formance advantage, which further highlights its applicability to
the majority of motion patterns.

4.3.5 𝑁 -way few-shot classification. As shown in Table 6, we evalu-
ate the accuracy of themodel under the N-way 1-shot setting, where

Table 6: Comparison of 𝑁 -way 1-shot classification accuracy
among recent few-shot action recognition methods on the
Kinetics meta-testing set. The experimental results are de-
picted as the number of ways increases from 5 to 10.

Method kinetics
5-way 6-way 7-way 8-way 9-way 10-way

OTAM [4] 72.2 68.7 66.0 63.0 61.9 59.0
TRX [24] 63.6 59.4 56.7 54.6 53.2 51.1

HyRSM [36] 73.7 69.5 66.6 65.5 63.4 61.0
MoLo [35] 74.0 69.7 67.4 65.8 63.5 61.3

Ours 75.2 70.6 68.4 66.2 64.3 62.1

𝑁 is incremented from 5 to 10, and compare it with some previous
methods, including OTAM [4], TRX [24], HyRSM [36], and MoLo
[35]. The experimental results show that the difficulty of few-shot
classification continues to increase with increasing 𝑁 , resulting in
a gradual degradation of performance. Under a higher difficulty
classification setting, i.e., the 10-way 1-shot classification setting,
our method shows an accuracy advantage over the other methods,
achieving an improvement of 0.8%, which further illustrates the
effectiveness of the proposed method in dealing with difficult classi-
fication tasks. Meanwhile, our method consistently delivers the best
results under all settings, demonstrating the excellent performance
of the proposed method under different classification difficulties.

4.3.6 Analysis of different masking ratio. We further investigate
the impact of varying masking ratios on model performance. Figure
4 presents the performance fluctuations of our model on Kinetics
dataset with four different masking ratios, with experiments con-
ducted under both 5-way 1-shot and 5-way 5-shot scenarios. From
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Figure 3: Visualization of frame saliency and attention maps of our method and OTAM for two video instances on the SSv2-Full
meta-testing set. Frames enclosed in the blue box are regarded as salient frames, those in the green box are non-salient, and the
remaining frames in the red box are ambiguous.

Figure 4: Comparison experiments about the performance
of different masking ratio on Kinetics datasets under 5-way
1-shot (left) and 5-way 5-shot (right) settings. In our method,
we mask 50% of the frames within the video.

Figure 4, we can observe that trend in performance variation with
different masking ratios is consistent across both settings: it ini-
tially increases with the growth of the masking ratio, peaks at 50%,
and then diminishes upon reaching 75%. This suggests that for the
majority of video instances in the dataset, employing a 50%masking
ratio effectively captures valuable information, while also learning
more from previously overlooked information within ambiguous
frames.

4.4 Visualization Results
To further investigate the impact of the saliency-guided fine-grained
temporal mask learning strategy on the latent feature representa-
tion, we visualize frame saliency as well as attention maps for two
action instances in the SSv2-Full meta-testing set. We observe and
compare the learned feature content of our method with that of
OTAM by studying the distribution of the spatial attention weights
within the feature embedding network. As shown in Figure 3 (a),
OTAM tends to focus on the correct regions in salient frames, but
its attention is somewhat scattered on ambiguous frames, not con-
centrating on the regions where human limbs interact with objects.

This result in OTAM incorrectly interpreting the entire video se-
quence as the atomic action of "picking up shoes", failing to properly
comprehend the atomic action of "placing shoes behind the door"
contained in the ambiguous snippet. In contrast, our method con-
sistently aligns its attention regions with the semantic regions of
actions in the video, allowing it to correctly focus on the regions
where human limbs interact with objects even in ambiguous frames.

From Figure 3 (b), it can be noted that, due to OTAM concen-
trating solely on differential information between frames within
video instances, it exhibits attention divergence when there is no
significant change in the video content (e.g. the third and fourth
frames). It can also be observed that our method interprets actions
based on interactions between objects rather than focusing on the
objects themselves. This indicates that our method can accurately
focus on the interaction between objects in the scene from a se-
mantic perspective, which is particularly crucial in the SSv2 dataset
where different objects interactions often occur in video instances.
Such results validate the conclusion drawn in Section 4.3.1: Our
saliency-guided temporal mask learning enables the network to
learn more detailed semantic-level action features.

5 CONCLUSION
In this paper, we propose the saliency-guided fine-grained tem-
poral mask learning method for few-shot action recognition. Our
approach models the temporal atomic action relationships in videos
through the temporal mask learning architecture, facilitating fine-
grained matching for each atomic action segment. Additionally, we
employ a saliency-guided temporal mask module to locate and ex-
cavate the fine-grained action snippet information. Extensive exper-
iments demonstrate that our method effectively extracts temporal
semantic information beyond the discrepancy-based salient frames.
This enables a holistic understanding of action patterns from the
perspective of overall motion, achieving a more comprehensive
and refined modeling of temporal relationships. Consequently, our
method exhibits excellent performance and holds a performance
advantage over existing few-shot action recognition methods.
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