
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 10, No. 1, March 2021, pp. 207~214

ISSN: 2252-8938, DOI: 10.11591/ijai.v10.i1.pp207-214 207

Journal homepage: http://ijai.iaescore.com

Massively scalable density based clustering (DBSCAN) on the

HPCC systems big data platform

Yatish HR1, Shubham Milind Phal2, Tanmay Sanjay Hukkeri3, Lili Xu4, Shobha G5, Jyoti Shetty6,

Arjuna Chala7
1,2,3,5,6 RV College of Engineering, Bangalore, Karnataka, India

4,7 HPCC Systems LexisNexis Risk Solutions, USA

Article Info ABSTRACT

Article history:

Received Aug 1, 2020

Revised Jan 9, 2021

Accepted Feb 7, 2021

 Dealing with large samples of unlabeled data is a key challenge in today’s
world, especially in applications such as traffic pattern analysis and disaster

management. DBSCAN, or density based spatial clustering of applications

with noise, is a well-known density-based clustering algorithm. Its key

strengths lie in its capability to detect outliers and handle arbitrarily shaped

clusters. However, the algorithm, being fundamentally sequential in nature,

proves expensive and time consuming when operated on extensively large

data chunks. This paper thus presents a novel implementation of a parallel

and distributed DBSCAN algorithm on the HPCC systems platform. The

algorithm seeks to fully parallelize the algorithm implementation by making

use of HPCC systems optimal distributed architecture and performing a tree-

based union to merge local clusters. The proposed approach* was tested both

on synthetic as well as standard datasets (MFCCs Data Set) and found to be

completely accurate. Additionally, when compared against a single node

setup, a significant decrease in computation time was observed with no

impact to accuracy. The parallelized algorithm performed eight times better

for higher number of data points and takes exponentially lesser time as the

number of data points increases.

Keywords:

Big data

Data mining

Density based clustering

Distributed computing

HPCC systems

Machine learning

This is an open access article under the CC BY-SA license.

Corresponding Author:

Yatish H R

Department of Computer Science and Engineering

R.V College of Engineering

Mysore Rd, RV Vidyaniketan, Post, Bengaluru, Karnataka 560059, India

Email: yatishhr.cs16@rvce.edu.in

1. INTRODUCTION

Clustering, or the grouping of data into clusters, is one of the most fundamental techniques in

dealing with large chunks of unlabeled data. It involves grouping the data into meaningful subclasses,

such that the inter-class distances are maximized, and the intra-class distances are minimized. There are

four major domains of clustering algorithms, namely: hierarchy-based, partitioning-based, density-based

and grid-based [1] DBSCAN, or density based spatial clustering of applications with noise, falls under

the category of density-based clustering algorithm. This algorithm is based on the premise that for every

data point in the cluster, its neighborhood within a given radius(eps) has to contain a minimum number of

points(minpts). Thus, for a given threshold, the density of the neighborhood for every point should exceed

this threshold. When dealing with large samples of data, performing this clustering in a sequential manner is

time consuming and often expensive. Thus, the proposed paper presents a distributed parallel DBSCAN

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 1, March 2021: 207 – 214

208

algorithm, in order to overcome these performance bottlenecks without any impact to accuracy. The proposed

algorithm is implemented on the HPCC systems [2].

HPCC systems is an open-source, lightweight and powerful big data management plat- form, which

serves as an end-to-end Data Lake management solution. Its key advantages arise from its scalability,

performance and usability. The platform serves as an alternative to existing big-data platforms such as apache

hadoop, apache spark and data torrent RTS [3]. The platform is supported by its underlying programming

language ECL, which is implicitly parallel and declarative in nature, and provides several constructs to

simplify parallel compute operations. The general HPCC systems architecture is shown in Figure 1.

Figure 1. HPCC systems architecture

HPCC systems is further supported by a pair of powerful data engines: THOR and ROXIE. THOR

serves as the data refinery engine, and gives the user control over data transformations. It also facilitates

optimal operational capacity on mixed schema data. ROXIE serves as the search engine that facilitates high-

speed real-time queries through interfaces such as REST, SOAP and XML. It is responsible in greatly

reducing the latency associated with querying. The remainder of the paper is organized as follows. Section 2

analyses the existing state of the art for distributed parallel clustering algorithms. Section 3 details both the

traditional DBSCAN algorithm as well as the novel parallel DBSCAN algorithm. Section 4 discusses the

experiments carried out and the results obtained. Finally, section 5 provides a conclusion to the work as well

as propositions for future work.

2. LITERATURE REVIEW

A study of the state-of-the-art techniques reveals certain pre-existing methods that seek to improve

the performance of the DBSCAN algorithm. The authors in [4-5] showed that the DBSCAN algorithm can be

solved in O(nlogn) for Euclidean 2D spaces. However, this method cannot be directly applied on massive

datasets distributed across multiple nodes for higher dimensions. There were efforts presented by authors in

[6] which presented an approximate DBSCAN in O(nlog(n)) time. The authors [7] also achieved the same

but in O(n) time. However, none of the approaches talk about paralellization required in big data

applications.

Some of the other techniques make use of GPU’ s and various concepts of parallelism to achieve the
requisite level of performance. Other proposals to improve the performance include the use of R*-Tree

structure [8], KDTREE algorithm [9], special data partition algorithm or disjoint set data structure [10-13].

The implementation of these techniques however, is performed on a single physical system. Due to

limitations on the number of cores, and memory of a single system the amount of scalability and performance

boost that can be achieved using them is limited.

When working with large real-world datasets the use of a distributed system for clustering is more

appropriate [14-17]. A popular strategy for implementing the distributed DBSCAN algorithm is the usage of

the disjoint set data structure. This approach was proposed in the PDSDBSCAN algorithm by Patwary et.al.

[18-19]. The algorithm makes use of a bottom- up structure to construct the clusters as a collection of

hierarchical trees. In this approach the clustering is performed in 2 phases. In the first phase local clustering

is performed via the regular DBSCAN algorithm across each node. In the second phase the global union of

clusters across nodes is performed using the union-find operation. PDSDBSCAN was shown to significantly

outperform the previous approaches used to parallelize DBSCAN. Speedups up to a factor of 25.97 was

achieved when using 40 cores on datasets containing several hundred million high-dimensional points.

PDSDBSCAN is implemented using both OpenMP and MPI.

Int J Artif Intell ISSN: 2252-8938

Massively scalable density based clustering (DBSCAN) on the HPCC… (Yatish HR)

209

An improvement to the above algorithm was proposed by Hu et al. [20] wherein the authors made

use of the distributed file system of the Kunpeng system. In this algorithm data was distributed across

different workers and message passing interface (MPI) communication pattern was used to communicate the

data between the workers. Further the large overhead associated with MPI was overcome using a novel

parameter server frame- work. PS-DBSCAN was show to outperform the MPI-based PDSDBSCAN-D with a

2-10 times speedup on communication efficiency in both real-world and synthetic datasets, and the speedup

was found to increase with the increase in the number of processor cores and the dataset scale. In RP-

DBSCAN [21] the authors made use of pseudo random partitioning together with a two-level cell dictionary.

RP-DBSCAN was implemented using 48 cores (12 Azure Ma- chines) on an Apache Spark system. RP-

DBSCAN was found to achieve an almost perfect load balance among data splits in local clustering and did

not duplicate points among them. Hence RP-DBSCAN dramatically outperformed the state-of-the-art parallel

DBSCAN algorithms by up to 180 times. Furthermore, only RP-DBSCAN was able to handle large data sets

(362 GB) whereas the other algorithms could not.

Although the usage of disjoint set data structure for DBSCAN is popular in distributed systems

several other methods such as the convex-hull method are used as well [22]. In the convex- hull method a

convex hull enclosing the points within a cluster is created locally across nodes. In the merge operation, the

convex hulls of the local clusters are merged based on the amount of overlap. However, this algorithm is not

capable of handling concave shapes and hence does not correctly capture the essence of the underlying

points. In the algorithm [23] the authors propose a grid based disjoint set algorithm for solving the problem

efficiently. However due to the fact that distribution of data by Thor among nodes is random, it is not

possible to apply the algorithm directly. These existing algorithms are not a straightforward fit into the HPCC

Big Data Platform and require modifications. Hence there is a need for a better algorithm which can exploit

the components of HPCC such as Thor and Roxie in order to gain massive performance improvements during

parallel execution of the DBSCAN algorithm.

3. METHODOLOGY

3.1. DBSCAN algorithm

The DBSCAN algorithm [24] is non-parametric spatial clustering algorithm. The main concept of

the clustering algorithm is that for each cluster the number of points within eps distance is greater than

certain minimum points i.e.., threshold density. The pseudo code for DBSCAN algorithm is elucidated in

Algorithm 1. The algorithm starts with a point p ∈ D and retrieves the neighboring points in the eps-

neighborhood of itself. If the retrieved neighborhood contains at least minpts points, then a new cluster, C is

added. The algorithm then finds all points in X, that are reachable from x (neighboring point) and adds them

to the cluster C. If the eps-neighborhood of x has less than minpts, then x is marked as noise. The pseudo

code can be summarized in Algorithm 1.

Algorithm 1. DBSCAN algorithm

The time complexity of Algorithm 1 is O (n^2), where n is the number of points in X. But if R*

trees or K-D trees are used to obtain the nearest neighbors the time complexity is reduced to O (n*log n). The

 ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 1, March 2021: 207 – 214

210

DBSCAN algorithm is a highly sequential algorithm. This makes it computationally inefficient task when

applied to large amounts of data, especially on big data platforms. Hence there is a need to parallelize the

algorithm for achieving better efficiency in such big data systems. The following section gives the overall

procedure for the same.

3.2. Parallel DBSCAN algorithm

The proposed methodology provides a scalable solution to the DBSCAN clustering on HPCC big

data platform. This is achieved by decomposing the clustering algorithm into three stages namely-spraying of

data, local clustering phase and global merging of results. Each of these stages are explained in sections:

3.2.1. Spraying of data

In this stage the data points are assigned global unique ids and distributed across different nodes in a

cluster by Thor engine. The distribution by the Thor engine ensures that the data points are distributed evenly

across all the nodes. Each of the local nodes then sort the data points by their unique ids and send the data to

local clustering stage. These unique ids do not change till the end of all the stages and they identify each data

point uniquely. One more important point to note is that the algorithm does not depend on the nature of

distribution of data across the nodes.

3.2.2. Local clustering

In this phase each node performs DBSCAN clustering operations on the data points that are local to

the node in the HPCC cluster. The local DBSCAN algorithm uses disjoint set operations namely-UNION and

FIND for performing local DBSCAN clustering. Each set (final cluster) is uniquely represented by highest

core point. The FIND operation is used to identify the parent i.e.., highest core point, for each point (node) in

the tree. The FIND operation is summarized in Algorithm 2. The union operation merges two trees to form a

bigger tree based on rem’s algorithm. The union operation is performed on a core point and other core or a
non-core point. The union operation is summarized in Algorithm 3.

Algorithm 2. Find operation

Algorithm 3. Union operation

Initially each data point is represented as a node containing the fields and parent id. The parent of

each data point is made to point to itself i.e.., p(x)=x and the points are marked as non-core point. Each

cluster is uniquely represented by the parent id (highest core point of that cluster). The pseudo code for local

DBSCAN clustering is given in Algorithm 4. Let X denote the set of data points that are in the local node and

Y denote set of data points that are present on a remote node. The points that are in the eps neighborhood of

each x ∈ X in the set X U Y is found. The neighborhood points can be found by using numerous distance

metrics like Euclidean, Manhattan, and Chebyshev’s distance functions. If the number of points in the
neighborhood is greater than the minimum number of points, then it is marked as a core point. Each point y

in the neighborhood of x can either be local to that node or in a remote node.

Int J Artif Intell ISSN: 2252-8938

Massively scalable density based clustering (DBSCAN) on the HPCC… (Yatish HR)

211

Algorithm 4. Local DBSCAN

If y is in local node then there can be two cases: (a) y is core point, (b) y is non-core point i.e.., a

border point. If condition (a) is true Union (x, y) is performed. If condition (b) is true then its marked as

visited and Union (x, y) is performed. If y is a remote point then y can be either a core point or a non-core

point. If the latter condition is true then the neighborhood of y is found. If the neighborhood does not contain

minimum points then y is a border point else it is marked as a core point and union (x, y) is performed. If the

point y is core then union (x, y) operation is performed and the process is continued for other points.

Therefore, at the end of the algorithm it can be noted that the points which are noisy have single trees

(singleton trees) with its parent pointing to itself. If the point is a border point then it is assigned to the

highest core point of the cluster of its nearest neighbor. If the point is a core point then the Union operation

assigns it to parent with highest core point. The time complexity of the local DBSCAN operation is O(n2).

The above algorithm merges points to its clusters (trees) without any particular ordering of data-points. The

output mapping of datapoint to the parent ids is input to the next stage as a global ttream of data points so that

each data point is returned one by one from the Thor.

3.2.3. Global merge

In this phase, the trees formed in the previous stage are merged to obtain the global clusters. A

merge of trees across nodes happens when a point belongs to more than one tree in different nodes. After the

trees are merged the final clusters are obtained which are represented by their highest core point across all

nodes. This can be achieved by using similar approaches of union and find operations of disjoint set structure

as described before. The pseudo code is elucidated in Algorithm 5. Initially the output mapping of stage 2

(only core points and local points that node) is distributed back among the nodes as well as non outlier points

inorder to find the ultimate id. Each data point has two attributes - local parent id (local to the node) and

global parent id (global/ultimate id). In each node, the remote parents of each data point in remote nodes are

found (by having a local lookup table). In cases such as a highest core point being present in another node,

the trees are merged (changing the ids) and the union operation results in the highest core point to that cluster

(by changing the parent ids). Hence at the end of the algorithm each cluster is represented by highest core

point as cluster id. Since the entire computation is done parallelly, an increased speedup is achieved. After

this, clusters are renumbered by assigning 0 to the outliers found in stage two and 1 based indexing to the rest

of points based on the order of their occurrences in dataset. The final result is returned to ECL Watch for the

user as table.

 ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 1, March 2021: 207 – 214

212

Algorithm 5. Global merge

4. EXPERIMENTS AND RESULTS

The Parallel DBSCAN algorithm was implemented in Enterprise Control Language on HPCC

systems. Each node in the cluster had 6GB of RAM and 128GB of Hard Disk. The processor used was intel

Xeon with 2.4GHz clock frequency. Table 1 elucidates the processor specifications. In order to measure the

performance of the parallel DBSCAN algorithm a comparison between single node and multi node

(consisting of two nodes and three nodes) clusters was made. Each dataset was run with different eps and

minpts. A Higher value of minpts increases the noise counts. The results are tabulated as shown in Table 2.

The parallel DBSCAN implementation and serial DBSCAN implementation were tested separately

for conventional single node processing versus the use of a two node HPCC cluster. The results obtained

were compared with the output of sklearn implementation of DBSCAN to compare the cluster accuracy. The

cluster densities in both cases were found to be identical. The test set consisted of 6 test cases including both

synthetic datasets and real dataset (frogs’ MFCC dataset*[25]). The test sets had up to 20 dimensions. Also,

one more point to note is that the data is distributed uniformly among the nodes. The data points in disjoint

sets (representing each cluster) may or may not be in the same node. Hence the experiments conducted does

not assume any particular distribution of data points among the worker nodes and no further redistribution is

required at any stage of algorithm. The outputs indicate that substantial improvements in time complexity of

the parallel algorithm than the serial version (single node).

The tabulated results obtained are depicted graphically in Figure 2. We can observe that there is no

significant improvement in the execution time for lower number of points for higher number of nodes. It is in

fact slightly higher due to the fact that the time required to distribute data points is not compensated well by

the time gained due to parallelization. However, it is clear that for larger number of data points as the number

of nodes increases, substantial speedup is obtained. The results clearly indicate that the multi node setup

outperforms the single node setup in all cases. When the number of points is less, there is no significant

improvement of parallel DBSCAN over sequential DBSCAN. As the number of data points increases the

parallel algorithm performs way better (4x better for 30000 points compared to two node cluster) than its

serial counterpart. The code for the same was merged to HPCC systems repository and can be found on

Github.

Table 1. Processor specifications for each node
Specification Value

Architecture x86_64

CPU op-mode(s) 32-bit, 64-bit

Byte Order Little Endian

Model Name Intel Xeon
CPU GHz 2.4

Core (s) 6

Int J Artif Intell ISSN: 2252-8938

Massively scalable density based clustering (DBSCAN) on the HPCC… (Yatish HR)

213

Table 2. Results of run time of different datasets with various values of eps and minpts for serial and parallel

algorithm
Size Epsdistance Minpts in a cluster Single node time (in s) Time on two nodes (in s) Time on three nodes (in s)

4800 0.2 2 16.35 14.5 15.86

6000 0.3 9 35.2 22.246 23.471

7200* 0.3 10 53.5 44.426 45.63

9000 0.35 10 112.8 50.573 53.642

14300 0.4 20 535.74 213.922 203.184
30000 0.4 20 3924.72 964.616 727.33

50000 0.5 30 24948.69 5124.24 3266.462

Figure 2. Comparison between serial DBSCAN and parallel DBSCAN on HPCC systems

5. CONCLUSION

As the number of big data applications are increasing in the recent years there is a need for big data

platforms which enable faster data processing, and HPCC’s Platform is a suitable alternative. HPCC platform

supports cross platform developments in languages like C++, python, which makes it to develop applications

at a faster pace. The thor and roxie components of HPCC platform enables faster data ingestion and data

query across multiple nodes which makes it efficient in implementing machine learning algorithms. Also, the

platform parallelizes the sequential algorithms across multiple nodes efficiently. This makes it possible for

highly sequential and computation intensive algorithms like DBSCAN to be implemented at a scale. The

experiments demonstrated highlight the fact that the platform can divide the computation across nodes
efficiently. In the future, the existing functionality of the DBSCAN algorithm on HPCC can be used in

various data analytics applications especially in areas of geo-spatial clustering’s.

ACKNOWLEDGEMENTS

We would like to thank Lexis-Nexis and R.V. College of Engineering for actively sup- porting this

research work. The interfacing documentation and the set of clusters used to test the system were provided by

Lexis-Nexis. R.V. College of Engineering provided all the necessary infrastructure support for the project

REFERENCES
[1] Bano, Saima & Khan, Naeem, “A Survey of Data Clustering Methods,” International Journal of Advanced Science

and Technology. 113, 2018, doi:10.14257/ijast.2018.113.14.

[2] A.M. Middleton and A. Chala (Lexis Nexis Risk Solutions), “HPCC Systems®: Introduction to HPCC (High-

Performance Computing Cluster),” May 2011.
[3] Tanmay Sanjay Hukkeri, Shobha G, Shubham Milind Phal, Jyothi Shetty, Yatish H R, and Naweed Mohammed,

“Massively Scalable Image Processing on the HPCC Systems Big Data Platform,” In Proceedings of the 3rd

International Conference on Software Engineering and Information Management (ICSIM '20). Association for

Computing Machinery, New York, NY, USA, pp. 26-31, 2020, DOI:https://doi.org/10.1145/3378936.3378978.

[4] Ade Gunawan, “A faster algorithm for DBSCAN,” Master’s thesis, Eindhoven University of Technology, 2013.

0

5000

10000

15000

20000

25000

30000

4800 6000 7200 9000 14300 30000 50000

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Size

Serial vs Parallel Execution Time

Serial Parallel (2 Nodes) Parallel (3 Nodes)

 ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 1, March 2021: 207 – 214

214

[5] Mark de Berg, Ade Gunawan, and Marcel Roeloffzen, “Faster DB-scan and HDB-scan in Low-Dimensional

Euclidean Spaces,” International Journal of Computational Geometry & Applications, vol. 29, no. 1, pp. 21-47,

2019, doi: 10.1142/S0218195919400028.

[6] Danny Z. Chen, Michiel Smid, and Bin Xu, “Geometric Algorithms for Density-Based Data Clustering,”
International Journal of Computational Geometry & Applications, vol. 15, no. 3, pp. 239-260, 2005, doi:

10.1007/3-540-45749-6_28.

[7] Junhao Gan and Yufei Tao, “On the Hardness and Approximation of Euclidean DBSCAN,” ACM Trans. Database

Syst., vol. 1, no. 1, 2016.

[8] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: an efficient and robust access method for

points and rectangles,” Proceedings of the 1990 ACM SIGMOD international conference on Management of data,

vol. 19, no. 2, pp. 322-331, 1990, doi: 10.1145/93605.98741.

[9] M. B. Kennel, “KDTREE 2: Fortran 95 and C++ software to efficiently search for near neighbors in a multi-
dimensional Euclidean space,” institute for Nonlinear Science, University of California, 2004.

[10] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial

databases with noise,” in Proceedings of the 2nd International Conference on Knowledge Discovery and Data

mining, vol. 1996. AAAI Press, pp. 226-231, 1996.

[11] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data clustering method for very large databases,”
in ACM SIGMOD Record, vol. 25, no. 2, pp. 103-114, ACM, 1996.

[12] D. Arlia and M. Coppola, “Experiments in parallel clustering with DBSCAN,” in Euro-Par 2001 Parallel

Processing. Springer, LNCS, pp. 326-331, 2001.

[13] M. Chen, X. Gao, and H. Li, “Parallel DBSCAN with priority r-tree,” in Information Management and Engineering

(ICIME), 2010 The 2nd IEEE International Conference on. IEEE, pp. 508-511, 2010, doi:

10.1109/ICIME.2010.5477926.

[14] Y. Fu, W. Zhao, and H. Ma, “Research on parallel DBSCAN algorithm design based on mapreduce,” Advanced

Materials Research, vol. 301, pp. 1133-1138, 2011, DOI: 10.4028/www.scientific.net/AMR.301-303.1133.

[15] Markus Götz, Christian Bodenstein, and Morris Riedel, “HPDBSCAN: Highly Parallel DBSCAN,” In Proc.

Workshop on Machine Learning in High-Performance Computing Environments, no. 2, pp. 1-10, 2015, doi:
10.1145/2834892.2834894.

[16] G. Luo, X. Luo, T. F. Gooch, L. Tian and K. Qin, “A Parallel DBSCAN Algorithm Based on Spark,” 2016 IEEE

International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking

(SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom),

Atlanta, GA, USA, pp. 548-553, 2016, doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.85.

[17] D. Han, A. Agrawal, W. Liao and A. Choudhary, “A Novel Scalable DBSCAN Algorithm with Spark,” 2016 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Chicago, IL, USA, pp. 1393-

1402, 2016, doi: 10.1109/IPDPSW.2016.57.

[18] M. M. A. Patwary, D. Palsetia, A. SAgrawal, W. Liao, F. Manne and A. Choudhary, “A new scalable parallel
DBSCAN algorithm using the disjoint-set data structure,” SC '12: Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis, Salt Lake City, UT, 2012, pp. 1-11. doi:

10.1109/SC.2012.9.

[19] M. Patwary, J. Blair, and F. Manne, “Experiments on union-find algorithms for the disjoint-set data structure,” in

Proceedings of the 9th International Symposium on Experimental Algorithms. Springer, LNCS 6049, pp. 411-423,

2010, doi: 10.1007/978-3-642-13193-6_35.

[20] Hu, Xu & Huang, Jun & Qiu, Minghui & Chen, Cen & Chu, Wei, “PS-DBSCAN: An Efficient Parallel DBSCAN

Algorithm Based on Platform of AI (PAI), arXiv:1711.01034v1 [cs.DB] 3 Nov 2017, 2017.

[21] Song, Hwanjun & Lee, Jae-Gil, “RP-DBSCAN: A Superfast Parallel DBSCAN Algorithm Based on Random

Partitioning,” SIGMOD '18: Proceedings of the 2018 International Conference on Management of Data, 2018,

DOI: 10.1145/3183713.3196887.

[22] Llort, Germán & Gonzalez, Juan & Servat, Harald & Gamblin, T. & Gimenez, Judit & Labarta, Jesús, “Distributed
tree-based implementation of DBSCAN cluster algorithm for on-line performance analysis, Preprint submitted to

Parallel Computing, 2016.

[23] Yiqiu Wang, Yan Gu, and Julian Shun, “Theoretically-Efficient and Practical Parallel DBSCAN. In Proceedings of

the 2020 ACM SIGMOD International Conference on Management of Data (SIGMOD '20). Association for

Computing Machinery, New York, NY, USA, 2555-2571, 2020.

[24] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu, “A Density-based Algorithm for Discovering

Clusters a Density-basedvAlgorithm for Discovering Clusters in Large Spatial Databases withvNoise. In

International Conference on Knowledge Discovery and DatavMining (KDD), pp. 226-231, 1996.

[25] Dua, D. and Graff, C., “UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science, 2019.

