
Under review as a conference paper at ICLR 2024

GRAPHDEEPONET: LEARNING TO SIMULATE TIME-
DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS US-
ING GRAPH NEURAL NETWORK AND DEEP OPERATOR
NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Scientific computing using deep learning has seen significant advancements in
recent years. There has been growing interest in models that learn the operator
from the parameters of a partial differential equation (PDE) to the correspond-
ing solutions. Deep Operator Network (DeepONet) and Fourier Neural operator,
among other models, have been designed with structures suitable for handling
functions as inputs and outputs, enabling real-time predictions as surrogate mod-
els for solution operators. There has also been significant progress in the research
on surrogate models based on graph neural networks (GNNs), specifically target-
ing the dynamics in time-dependent PDEs. In this paper, we propose GraphDeep-
ONet, an autoregressive model based on GNNs, to effectively adapt DeepONet,
which is well-known for successful operator learning. GraphDeepONet outper-
forms existing GNN-based PDE solver models by accurately predicting solutions,
even on irregular grids, while inheriting the advantages of DeepONet, allowing
predictions on arbitrary grids. Additionally, unlike traditional DeepONet and its
variants, GraphDeepONet enables time extrapolation for time-dependent PDE so-
lutions. We also provide theoretical analysis of the universal approximation capa-
bility of GraphDeepONet in approximating continuous operators across arbitrary
time intervals.

1 INTRODUCTION

Various physical phenomena can be expressed as systems of partial differential equations (PDEs).
In recent years, there has been a growing interest in leveraging deep learning techniques to enhance
the efficiency of scientific computing. The field of scientific computing plays a crucial role in ap-
proximating and simulating solutions to PDEs, making it a subject of significant importance and
active research (Guo et al., 2016; Zhu et al., 2019). As the exploration of deep learning applica-
tions in scientific computing gains momentum, it opens up exciting possibilities for advancing our
understanding and modeling of complex phenomena (Raissi et al., 2019; Karniadakis et al., 2021).

In recent years, operator learning frameworks have gained significant attention in the field of ar-
tificial intelligence. The primary goal of operator learning is to employ neural networks to learn
the mapping from the parameters (external force, initial, and boundary condition) of a PDE to its
corresponding solution operator. To accomplish this, researchers are exploring diverse models and
methods, such as the deep operator network (DeepONet) (Lu et al., 2019) and Fourier neural op-
erator (FNO) (Li et al., 2020), to effectively handle functions as inputs and outputs of neural net-
works. These frameworks present promising approaches to solving PDEs by directly learning the
underlying operators from available data. Several studies (Lu et al., 2022; Goswami et al., 2022)
have conducted comparisons between DeepONet and FNO, and with theoretical analyses (Lanthaler
et al., 2022; Kovachki et al., 2021a) have been performed to understand their universality and ap-
proximation bounds.

In the field of operator learning, there is an active research focus on predicting time-evolving phys-
ical quantities. In this line of research, models are trained using data that captures the evolution of
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physical quantities over time when the initial state is provided. Once the model is trained, it can
be applied to real-time predictions when new initial states are given. This approach finds practical
applications in various fields, such as weather forecasting (Kurth et al., 2022) and control problems
(Hwang et al., 2021). These models can be interpreted as time-dependent PDEs. The DeepONet
can be applied to simulate time-dependent PDEs by incorporating a time variable, denoted as t, as
an additional input with spatial variables, denoted as x. However, the use of both t and x as inputs
at once to the DeepONet can only predict solutions within a fixed time domain and they should be
treated differently from a coefficient and basis perspective. FNO (Li et al., 2020; Kovachki et al.,
2021b) also introduces two methods specifically designed for this purpose: FNO-2d, which utilizes
an autoregressive model, and FNO-3d. However, a drawback of FNO is its reliance on a fixed uni-
form grid. To address this concern, recent studies have explored the modified FNO (Lingsch et al.,
2023; Lin et al., 2022), such as geo-FNO (Li et al., 2022b) and F-FNO (Tran et al., 2023).

To overcome this limitation, researchers have explored the application of GNNs and message
passing methods (Scarselli et al., 2008; Battaglia et al., 2018; Gilmer et al., 2017) to learn time-
dependent PDE solutions. Many works (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021; Lienen
& Günnemann, 2022) have proposed graph-based architectures to simulate a wide range of physi-
cal scenarios. In particular, Brandstetter et al. (2022) and Boussif et al. (2022) focused on solving
the time-dependent PDE based on GNNs. Brandstetter et al. (2022) proposed a Message-Passing
Neural PDE Solver (MP-PDE) that utilizes message passing to enable the learning of the solution
operator for PDEs, even on irregular domains. However, a limitation of their approach is that it can
only predict the solution operator on the same irregular grid used as input, which poses challenges
for practical simulation applications. To address this limitation, Boussif et al. (2022) introduced the
Mesh Agnostic Neural PDE solver (MAgNet), which employs a network for interpolation in the
feature space. This approach allows for more versatile predictions and overcomes the constraints of
using the same irregular grid for both input and solution operator prediction. We aim to employ the
DeepONet model, which learns the basis of the target function’s spatial domain, to directly acquire
the continuous space solution operator of time-dependent PDEs without requiring additional inter-
polation steps. By doing so, we seek to achieve more accurate predictions at all spatial positions
without relying on separate interpolation processes.

In this study, we propose GraphDeepONet, an autoregressive model based on GNNs, effectively
adapting the well-established DeepONet. GraphDeepONet surpasses existing GNN-based models
by accurately predicting solutions even on irregular grids while retaining the advantages of Deep-
ONet, allowing predictions on arbitrary grids. Moreover, unlike conventional DeepONet and its
variations, GraphDeepONet enables time extrapolation. Experimental results on various PDEs, in-
cluding the 1D Burgers’ equation and 2D shallow water equation, provide strong evidence support-
ing the efficacy of our proposed approach. Our main contributions can be summarized as follows:

• By effectively incorporating time information into the branch net using a GNN,
GraphDeepONet enables time extrapolation prediction for PDE solutions, a task that is
challenging for traditional DeepONet and its variants.

• Our method exhibits superior accuracy in predicting the solution operator at arbitrary posi-
tions of the input on irregular grids compared to other graph-based PDE solver approaches.
The solution obtained through GraphDeepONet is a continuous solution in the spatial do-
main.

• We provide the theoretical guarantee that GraphDeepONet is universally capable of ap-
proximating continuous operators for arbitrary time intervals.

2 RELATED WORK

In recent years, numerous deep learning models for simulating PDEs have emerged (Sirignano &
Spiliopoulos, 2018; E & Yu, 2018; Karniadakis et al., 2021). One instance involves operator learning
(Guo et al., 2016; Zhu et al., 2019; Bhatnagar et al., 2019; Khoo et al., 2021), where neural networks
are used to represent the relationship between the parameters of a given PDE and the correspond-
ing solutions (Kovachki et al., 2021b). FNO and its variants (Helwig et al., 2023; Li et al., 2022a)
are developed to learn the function input and function output. Building on theoretical foundations
from Chen & Chen (1995), Lu et al. (2019) introduced the DeepONet model for PDE simulation.
DeepONet has been utilized in various domains, such as fluid dynamics, hypersonic scenarios and
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Figure 1: The original DeepONet structure (Lu et al., 2021) for simulating time-dependent PDE.

bubble dynamics predictions. Efforts to enhance the DeepONet model have led to the development
of various modified versions (Wang et al., 2021; Prasthofer et al., 2022; Lee et al., 2023). Notably,
Variable-Input Deep Operator Network (VIDON), proposed by Prasthofer et al. (2022), shares simi-
larities with our approach in that it uses transformers to simulate PDEs on random irregular domains.
However, it does not address the simulation of time-dependent PDEs propagating over time, which
is a significant distinction in our work. Many studies also focusing on using latent states to simulate
time-dependent PDEs (Mücke et al., 2021; Yin et al., 2023).

Another emerging area of research involves using GNNs for operator learning (Alet et al., 2019; Seo
et al., 2019; Belbute-Peres et al., 2020; Iakovlev et al., 2020; Lienen & Günnemann, 2022; Horie
& Mitsume, 2022). Li et al. (2019) introduced a graph-based neural operator model that learn a
solution operators of PDEs from external forces represented as graphs. Sanchez-Gonzalez et al.
(2020) and Pfaff et al. (2021) presented a GNN-based architecture based on a system of particles
and mesh to simulate a wide range of physical phenomena over time. In particular, both Brandstetter
et al. (2022) and Boussif et al. (2022) conducted research with a focus on simulating time-dependent
PDEs using graph-based simulations. Sun et al. (2022), similar to our model, combined GNNs and
DeepONet to solve power grid transient stability prediction and traffic flow problems. However,
unlike the original idea of DeepONet’s trunk net, they designed basis functions for the desired time
intervals instead of making them align with the spatial basis of the target function domain. As a
result, it is more challenging for this model to achieve time extrapolation compared to our model.

3 GRAPHDEEPONET FOR TIME-DEPENDENT PDES

3.1 PROBLEM STATEMENT

We focus on time-dependent PDEs of the form

∂u

∂t
= L(t,x, u, ∂u

∂x(i)
,

∂2u

∂x(i)∂x(j)
, ...),

u(t = 0,x) = u0(x),

B[u] = 0,

(1)

where B is a boundary operator for t ∈ R+ and x := (x(1), ..., x(d)) ∈ Ω ⊂ Rd with a bounded
domain Ω. Denote the frame of solution as uk(x) := u(k∆t,x) for a fixed ∆t. Assume that
the one solution trajectory for (1) consists of Kframe frames u0, ..., uKframe . Assume that we have
Ntrain trajectories for the training dataset and Ntest trajectories for the test dataset for each different
initial condition u0(x). The aim of operator learning for time-dependent PDEs is to learn a mapping
G(k) : u0 7→ uk from initial condition u0(x) to the solution uk(x) at arbitrary time k = 1, ...,Kframe.
Denote the approximated solution for uk(x) as ũk(x).
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3.2 DEEPONET FOR TIME-DEPENDENT PDES

DeepONet (Lu et al., 2021) is an operator learning model based on the universality of operators
from Chen & Chen (1995). It consists of two networks: a branch net ν and trunk net τ , as illus-
trated in Figure 1. Firstly, the branch net takes the input function u0(x) as the discretized values at
some fixed sensor points. More precisely, it makes the finite dimensional vector ū0, where ū0 :=
[u0(x0), ..., u

0(xN−1)] ∈ RN at some fixed sensor points xi ∈ Ω ⊂ Rd (0 ≤ i ≤ N − 1). The
branch net then takes the input ū0 and makes the p−length vector output ν[ū0] = [ν1[ū

0], ..., νp[ū
0]].

To simulate the time-dependent PDE (1) using DeepONet, we need to handle the two domain vari-
ables, t and x, of the target function u(k∆t,x) as inputs to the trunk net. The trunk net takes
variables t and x as input and makes the output τ (k∆t,x) = [τ1(k∆t,x), ..., τp(k∆t,x)]. The
outputs of these networks can be regarded as coefficients and basis functions of the target function,
and the inner product of the outputs of these two networks approximates the desired target function.
The trunk net learns the basis functions of the target function domain separately, which gives it a
significant advantage in predicting the values of the target function on an arbitrary grid within its do-
main. Hence, the ultimate result of DeepONet, denoted as ũk(x), approximates the solution uk(x)
by utilizing the branch and trunk nets as follows:

ũk(x) =

p∑
j=1

νj [ū
0]τj(k∆t,x), (2)

for k = 1, ...,Kframe. However, this approach becomes somewhat awkward from the perspective
of the Galerkin projection method. Many studies (Hadorn, 2022; Lee et al., 2023; Lu et al., 2022;
Meuris et al., 2023) interpret the roles of the branch and trunk nets in DeepONet from the perspective
of the basis functions of the target function. The trunk net generates the p-basis functions for the
target function, while the the branch net generates the p-coefficients corresponding to the p-basis
functions. These coefficients determine the target function, which varies depending on the input
function u0(x). Therefore, the trunk net must to produce spatial basis functions in the target function
domain that depend only on x, but DeepONet (2) also handles the time variable t as an input to the
trunk net, which is unnatural. From this perspective, we consider the improved branch net to deal
with the time variable t as follows:

ũk(x) =

p∑
j=1

νj [ū
0, k∆t]τj(x), (3)

so that the coefficient νj [ū0, k∆t] is dependent on time variable t to show the global behavior of
the function. To express the change of the solution over time using the branch net, a more refined
model is required. This is the main motivation behind our development of GraphDeepONet GGDON :
[ū0, k∆t] 7→ uk using a GNN. In the following section, we provide a more detailed explanation of
the proposed model, utilizing a GNN to describe how the branch net ν is constructed and how it
incorporates the evolution over time.

3.3 PROPOSED MODEL: GRAPHDEEPONET

For a fixed set of positional sensors xi (0 ≤ i ≤ N − 1), we formulate a graph G = (V, E),
where each node i belongs to V and each edge (i, j) to E . The nodes represent grid cells, and the
edges signify local neighborhoods. Edges are constructed based on the proximity of node positions,
connecting nodes within a specified distance based on the k-NN algorithm (See Appendix C.1).

3.3.1 ENCODER-PROCESSOR-DECODER FRAMEWORK

The GraphDeepONet architecture follows an Encode-Process-Decode paradigm similar to Battaglia
et al. (2018); Sanchez-Gonzalez et al. (2020); Brandstetter et al. (2022). However, due to our in-
corporation of the DeepONet structure, the processor includes the gathering of information from all
locations, and the decoder involves a reconstruction that enables predictions from arbitrary positions.

Encoder ϵ. The encoder maps node embeddings from the function space to the latent space. For
a given node i, it maps the last solution values at node position xi, denoted as u0i := u0(xi), to
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Figure 2: Framework of the proposed GraphDeepONet

the latent embedding vector. Formally, the encoding function ϵ : R1+d → Rdlat produces the node
embedding vector f0

i as follows:

f0
i := ϵ

(
u0i ,xi

)
∈ Rdlat , (4)

where ϵ is multilayer perceptron (MLP). It is noteworthy that the sampling method, which includes
both the number of sensors N and their respective locations xi for 0 ≤ i ≤ N − 1, can differ for
each input.

Processor ϕ, ψ. The processor approximates the dynamic solution of PDEs by performing M it-
erations of learned message passing, yielding intermediate graph representations. The update equa-
tions are given by

mm
ij = ϕ(hm

i ,h
m
j ,xi − xj), (5)

hm+1
i = ψ

hm
i ,

∑
j∈N (i)

mm
ij

 , (6)

for m = 0, 1, ...,M − 1 with h0
i = f0

i , where N (i) denotes the neighboring nodes of node i. Both
ϕ and ψ are implemented as MLPs. The use of relative positions, i.e., xj − xi, capitalizes on the
translational symmetry inherent in the considered PDEs. After the M iterations of message passing,
the processor emits a vector hM

i for each node i. This is used to update the latent vector f0
i as

follows:
f1
i = f0

i + h
M
i , 0 ≤ i ≤ N − 1. (7)

The updated latent vector f1
0:N−1 := {f1

i }N−1
i=0 is used to predict the next time step solution u1(x).

Decoder1 - Soft attention aggregation ω. We first predict the p−coefficients for each next
timestep. Here, we use the soft attention aggregation layer with the feature-level gating described by
Li et al. (2019). The soft attention aggregation ν : Rdlat×N → Rp consists of two neural networks
to calculate the attention scores and latent vectors as follows:

ν[f1
0:N−1,∆t] :=

N−1∑
i=0

attention score︷ ︸︸ ︷
exp

(
ωgate(xi,f

1
i )/

√
dlat

)∑N−1
j=0 exp

(
ωgate(xj ,f

1
j )/

√
dlat

) ⊙ ωfeature(∆t,f
1
i ), (8)

where ⊙ represents the element-wise product, and ωgate : Rdlat+d → Rp and ωfeature : Rdlat+1 → Rp

are MLPs. Note that ν is well-defined for any number of sensors N ∈ N. The proposed decoder
will be proved to be expressive in Appendix B.
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Decoder2 - Inner product of coefficients and basis τ . The final output is reconstructed using the
p−coefficients ν[f1

0:N−1,∆t] and trained global basis via trunk net τ (x) = [τ1(x), ..., τp(x)] with
τj : Rd → R. The next timestep is predicted as

ũ1(x) =

p∑
j=1

νj [f
1
0:N−1,∆t]τj(x), (9)

where ν[f1
0:N−1,∆t] := [ν1, ν2, ..., νp] ∈ Rp. The GraphDeepONet is trained using the mean

square error Loss(1) = MSE(ũ1(x), u1(x)). Since the GraphDeepONet use the trunk net to learn
the global basis, it offers a significant advantage in enforcing the boundary condition B[u] = 0 as
hard constraints. The GraphDeepONet can enforce periodic boundaries, unlike other graph-based
methods, which often struggle to ensure such precise boundary conditions (See Appendix C.6).

3.4 RECURSIVE TIME PREDICTION IN LATENT SPACE

We described the steps of GraphDeepONet from the input function u0(x) obtained through the
encoding-processing-decoding steps to predict the solution at the next timestep, ũ1(x). Similar to
MP-PDE or MAgNet, by using the predicted ũ1(x) as input and repeating the aforementioned steps,
we can obtain solutions ũk(x) for k = 2, 3...,Kframe. However, rather than recursively evolving in
time using the predicted solutions, we propose a method where we evolve in time directly from the
encoded latent representation without the need for an additional encoding step. By substituting the
value of h2M

i with f0
i and executing the processor step again, we can derive the second latent vector

using the relation
f2
i = f0

i + h
2M
i , 0 ≤ i ≤ N − 1.

Employing the f2
i vectors to produce the function ũ2(x), the decoder step remains analogous by

using 2∆t instead of using ∆t. Finally, employing the predicted {ũk(x)}Kframe
k=1 from u0(x) in this

manner, we train the GraphDeepONet with LossTotal = 1
Kframe

∑Kframe
k=1 MSE(ũk(x), uk(x)). The ap-

proach of iteratively performing temporal updates to gradually compute solutions is referred to as
the autoregressive method, which is applied across various PDE solvers (Li et al., 2020; Brandstet-
ter et al., 2022) to obtain time-dependent solutions. When compared to other methods, we anticipate
that evolving in time from the encoded embedding vector may result in reduced cumulative errors
over time, in contrast to fully recursive approaches. This, in turn, is expected to yield more precise
predictions of the solution operator. For computational efficiency, we also use the temporal bundling
method suggested by Brandstetter et al. (2022). We group the entire dataset Kframe + 1 into sets of
K frames each. Given K initial states at time steps 0,∆t, · · · , (K − 1)∆t, the model predict the
solution’s value at subsequent time steps K∆t, · · · , (2K − 1)∆t and beyond.

3.5 DISTINCTIONS BETWEEN GRAPHDEEPONET AND OTHER MODELS

Lu et al. (2022) suggested using various network structures, including GNNs, for the branch net
of DeepONet, depending on the problem at hand. From this perspective, employing a GNN in the
branch net to handle the input function on an irregular grid seems intuitive. However, in the context
of time-dependent PDEs, which is the focus of this study, predicting the solution u(t,x) of the
target function PDE using both t and x as inputs to the trunk net pre-fixes the time domain during
training, making extrapolation impossible for future times. In this regard, GraphDeepONet, which
considers time t in the branch net instead of the trunk net and utilizes GNNs, distinguishes itself
from traditional DeepONet and its variants.

We also highlight that our methodology allows us to predict the solution ũk(x) for any x ∈ Ω ⊂
Rd. This distinguishes our approach from GNN-based PDE solver architectures (Brandstetter et al.,
2022; Boussif et al., 2022), which are limited to inferring values only at specified grid points. This
is made possible by leveraging one of the significant advantages of the DeepONet model, which
uses a trunk in the encoding process that takes the spatial variable x as input. The trunk net creates
the basis for the target function, determining the scale at which the coefficients νi are multiplied
by the bases, which enables predictions of the solution u(t,x) at arbitrary positions. For instance,
when predicting the solution as an output function at different points from the predetermined spatial
points of the input function, our approach exhibits significant advantages over other GNN-based
PDE solver models.
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3.6 THEORETICAL ANALYSIS OF GRAPHDEEPONET FOR TIME-DEPENDENT PDES

The universality of DeepONet is already well-established (Chen & Chen, 1995; Lanthaler et al.,
2022; Prasthofer et al., 2022). However, existing theories that consider time-dependent PDEs
tend to focus solely on the solution operator for the target function u(t,x) as G : u(0, ·) 7→
u(t = T, ·), or they restrict their considerations to predefined bounded domains of time, such
as G : u(0, ·) 7→ u(t,x)|t∈[0,T ]. In contrast, we employ GNNs to evolve coefficients over
time, enabling us to approximate the mapping G(k) : u0 7→ uk for arbitrary points in the dis-
cretized time domain (k = 1, 2, ...,Kframe). Based on the theories from Lanthaler et al. (2022),
we aim to provide a theoretical analysis of our GraphDeepONet GGDON : [ū0, k∆t] 7→ uk, where
ū0 = [u0(x0), ..., u

0(xN−1)] ∈ RN at sensor points xi ∈ Ω ⊂ Rd (0 ≤ i ≤ N − 1). The proposed
model is capable of effectively approximating the operator, irrespective of the grid’s configuration.
Our theorem asserts that our model can make accurate predictions at multiple time steps, regardless
of the grid’s arrangement. The key motivation behind the proof and the significant departure from
existing theories lies in the utilization of the representation capability of GNNs for permutation-
equivariant functions.

Theorem 1. (Universality of GraphDeepONet) Let G(k) : Hs(Td) → Hs(Td) be a Lipschitz
continuous operator for k = 1, ...,Kframe. Assume that µ is a probability measure on L2(Td) with
a covariance operator characterized by a bounded eigenbasis with eigenvectors {λj}j∈N. Let fixed
sensor points xi (0 ≤ i ≤ N − 1) be independently selected based on a uniform distribution over
Td and ū0 = [u0(x0), ..., u

0(xN−1)]. If N is sufficiently large, then there exists a GraphDeepONet
GGDON : RN+1 → Hs(Td) with p-trunk net ensuring that the following holds with probability 1:

Kframe∑
k=1

∥∥∥G(k)(u0)− GGDON(ū
0, k∆t)

∥∥∥
L2(µ)

≤ C

 ∑
j>N/C log(N)

λj

1/2

+ Cp−s/d, (10)

for every p ∈ N, where the constant C > 0 is a function of N , Kframe, G, and µ.

There exist graph-based models, including MP-PDE and MAgNet, that attempt to learn the opera-
tor G(1) : u0 7→ u1. These models consider fixed grids for the input u0(x) as nodes and employ
message-passing neural networks to transmit information at each node. Consequently, when approx-
imating the target function u1(x), they can only predict function values on specific grids, which can
lead to failures in learning the operator G(1) in certain grid locations. The following theorem pro-
vides an error analysis of the learned operator Ggraph based on a GNN, which is only predictable on
the same fixed grids. Note that GraphDeepONet is also a graph-based model that uses message-
passing neural networks, but it differs in that it utilizes a trunk net τ based on DeepONet, allowing
it to make predictions for all grids.
Theorem 2. (Failure to learn operator using other graph-based models) Assume that the sensor
points xi (0 ≤ i ≤ N − 1) are independently selected following a uniform distribution on Td.
Then, there exists a Lipshitz continuous operator G(1) : Hs(Td) → Hs(Td) such that the following
inequality holds with a non-zero probability δ > 0:∥∥∥G(1)(u0)− Ggraph(u0)

∥∥∥
L2(µ)

≥ 1/2.

We provide proof of this theorem through the construction of a rotational mapping in a periodic do-
main. The rotation speed increases with distance from the domain’s center. Conventional message-
passing neural networks, which rely on consistent relative distances for information exchange, are
incapable of learning this mapping due to the inherent periodicity; identical inputs at different grid
points would erroneously yield the same output. Our approach deviates from this limitation by learn-
ing a global latent basis that facilitates the generation of distinct values for identical inputs across
various positions. A more detailed proof and discussion are presented in Appendix B.

4 EXPERIMENTS

We conduct experiments comparing the proposed GraphDeepONet model with other benchmark
models. Firstly, we explore the simulation of time-dependent PDEs by comparing the original Deep-
ONet and VIDON with GraphDeepONet for regular and irregular sensor points. Specifically, we
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Table 1: Mean Rel. L2 test errors with standard deviations for 3 types of Burgers’ equation dataset
using regular/irregular sensor points. Three training trials are performed independently.

Type of
sensor points Data FNO-2D DeepONet variants Graph-based model GraphDeepONet (Ours)DeepONet VIDON MP-PDE MAgNet

Regular
E1 0.1437± 0.0109 0.3712± 0.0094 0.3471± 0.0221 0.3598± 0.0019 0.2399±0.0623 0.1574±0.0104

E2 0.1343±0.0108 0.3688±0.0204 0.3067±0.0520 0.2622±0.0019 0.2348± 0.0153 0.1716 ±0.0350

E3 0.1551±0.0014 0.2983±0.0050 0.2691±0.0145 0.3548 ±0.0171 0.2723± 0.0628 0.2199 ±0.0069

Irregular E1 - 0.3564±0.0467 0.3430±0.0492 0.2182±0.0108 0.4106± 0.0864 0.1641±0.0006

assess how well GraphDeepONet predicts in arbitrary position, especially concerning irregular sen-
sor points, compared to models such as MP-PDE, and MAgNet. Furthermore, we include FNO-2D,
a well-established model known for operator learning, in our benchmark comparisons. Given the
difficulty FNO faces in handling input functions with irregular sensor points, we limited our com-
parisons to input functions with regular sensor points. We consider the 1D Burgers’ equation data
from Brandstetter et al. (2022), the 2D shallow water equation data from Takamoto et al. (2022), and
the 2D Navier-Stokes (N-S) equation data from Kovachki et al. (2021b). For datasets with periodic
boundaries, the GraphDeepONet leveraged the advantage of enforcing the condition (See Appendix
C.6). The PyTorch Geometric library (Fey & Lenssen, 2019) is used for all experiments. The relative
L2 error by averaging the prediction solutions for all time is used for error estimate. See Appendix
C for more details.

Figure 3: Solution profile in Burgers’ equa-
tion for time extrapolation simulation using
DeepONet, VIDON, and GraphDeepONet.

Comparison with DeepONet and its variants
The fourth and fifth columns in Table 1 display the
training results for DeepONet and VIDON, respec-
tively. The DeepONet and VIDON struggled to ac-
curately predict the solutions of Burgers’s equation.
This is because DeepONet and VIDON lack uni-
versal methods to simultaneously handle input and
output at multiple timesteps. Figure 3 compares the
time extrapolation capabilities of existing DeepONet
models. To observe extrapolation, we trained our
models using data from time Ttrain = [0, 2], with in-
puts ranging from 0 to 0.4, allowing them to predict
values from 0.4 to 2. Subsequently, we evaluated
the performance of DeepONet, VIDON, and our
GraphDeepONet by predicting data Textra = [2, 4], a
range on which they had not been previously trained.
Our model clearly demonstrates superior prediction
performance when compared to VIDON and Deep-
ONet. In contrast to DeepONet and VIDON, which
tend to maintain the solutions within the previously
learned domain Ttrain, the GraphDeepONet effectively learns the variations in the PDE solutions
over time, making it more proficient in predicting outcomes for time extrapolation.

Comparison with GNN-based PDE-solvers The third, sixth, and seventh columns of Table 1
depict the accuracy of the FNO-2D and GNN-based models. While FNO outperformed the other
models on a regular grid, unlike graph-based methods and our approach, it is not applicable to irreg-
ular sensor points, which is specifically designed for uniform grids. The F-FNO (Tran et al., 2023),
which extends FNO to irregular grids, also faces challenges when applied to the irregular grid of
the N-S data (See Appendix C.3). When compared to GNN-based models, with the exception of
FNO, our model slightly outperformed MP-PDE and MAgNet, even on an irregular grid. Table 2
summarizes the results of our model along with other graph-based models, including MP-PDE and
MAgNet, when applied to various irregular grids for 2D shallow water equation and 2D N-S equa-
tion, namely, Irregular I,II, and III for each equation. Remarkably, on one specific grid, MP-PDE
outperformed our model. However, the MP-PDE has a significant inconsistency in the predicted
performance. In contrast, our model consistently demonstrated high predictive accuracy across all
grid cases. This is because, unlike other methods, the solution obtained through GraphDeepONet is
continuous in the spatial domain. Figure 4 displays the time-evolution predictions of models trained

8
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Figure 4: Prediction of 2D shallow water equations on irregular sensor points with distinct training
sensor points using graph-based models and GraphDeepONet. The Truth (irregular), MP-PDE, and
MAgNet plot the solutions through interpolation using values from the irregular sensor points used
during training, whereas GraphDeepONet predicts solutions for all grids directly.

Table 2: Mean Rel. L2 test errors for 2D shallow water equation data using regular/irregular sensor
points.

Data Type of sensor points FNO-2D MP-PDE MAgNet GraphDeepONet (Ours)

2D shallow

Regular 0.0025 0.0014 0.0078 0.0124
Irregular I - 0.2083 0.0662 0.0227
Irregular II - 0.2154 0.0614 0.0287
Irregular III - 0.0140 0.0919 0.0239

2D N-S

Regular 0.0395 0.5118 0.3653 0.1287
Irregular I - 1.1176 0.4564 0.1243
Irregular II - 0.1207 0.4676 0.1257
Irregular III - 0.1240 0.4306 0.1289

on the shallow water equation for an initial condition. The GNN-based models are trained on fixed
irregular sensors as seen in the second column and are only capable of predicting on the same grid,
necessitating interpolation for prediction. In contrast, GraphDeepONet leverages the trunk net, en-
abling predictions at arbitrary grids, resulting in more accurate predictions.

5 CONCLUSION AND DISCUSSION

The proposed GraphDeepONet represents a significant advancement in the realm of PDE solution
prediction. Its unique incorporation of time information through a GNN in the branch net allows
for precise time extrapolation, a task that has long challenged traditional DeepONet and its vari-
ants. Additionally, our method outperforms other graph-based PDE solvers, particularly on irregular
grids, providing continuous spatial solutions. Furthermore, GraphDeepONet offers theoretical as-
surance, demonstrating its universal capability to approximate continuous operators across arbitrary
time intervals. Altogether, these innovations position GraphDeepONet as a powerful and versatile
tool for solving PDEs, especially in scenarios involving irregular grids. While our GraphDeepONet
model has demonstrated promising results, one notable limitation is its current performance on reg-
ular grids, where it is outperformed by FNO. Addressing this performance gap on regular grids
remains an area for future improvement. As we have employed the temporal bundling method in our
approach, one of our future endeavors includes exploring other techniques utilized in DeepONet-
related models and GNN-based PDE solver models to incorporate them into our model. Further-
more, exploring the extension of GraphDeepONet to handle more complex 2D time-dependent PDEs
or the N-S equations, could provide valuable insights for future applications.

9
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6 REPRODUCIBILITY STATEMENT

The data employed in this study consists of Burgers’ equation data obtained from Brandstetter et al.
(2022); Boussif et al. (2022) and 2D shallow water equation data from Takamoto et al. (2022) as
described in the main text. Experiment details can be found in both the main text and the Appendix
C. For the sake of reproducibility, we submit the code for the fundamental settings as supplemental
material.
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Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=tmIiMPl4IPa.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605,
2021.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and patrick galli-
nari. Continuous PDE dynamics forecasting with implicit neural representations. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=B73niNjbPs.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. J. Comput. Phys., 394:56–81, 2019. ISSN 0021-9991. doi: 10.1016/j.jcp.
2019.05.024. URL https://doi.org/10.1016/j.jcp.2019.05.024.

13

https://openreview.net/forum?id=tmIiMPl4IPa
https://openreview.net/forum?id=B73niNjbPs
https://openreview.net/forum?id=B73niNjbPs
https://doi.org/10.1016/j.jcp.2019.05.024


Under review as a conference paper at ICLR 2024

A NOTATIONS

The notations in the paper is summarized in Table 3.

Table 3: Notations
Notation Meaning

t the spatial variable
d the dimension of spatial domain
x the spatial variable in d dimension
xi (i = 0, 1, ..., N − 1) the N -fixed sensor point in the spatial domain
∆t the discretized time
Kframe + 1 the number of frames in one solution trajectory
K the number of grouping frames for temporal bundling method
uk(x) (k = 0, 1, ...,Kframe) the solution at time t = k∆t
ūk(x) (k = 0, 1, ...,Kframe) the values of solution at time t = k∆t in fixed sensor points
ũk(x) (k = 0, 1, ...,Kframe) the approximated solution at time t = k∆t
G(k) the operator from the initial condition to the solution at time k∆t
GGDON the approximated operator using GraphDeepONet
Ggraph the approximated operator using other graph-based PDE solver
p the number of basis (or coefficients) in DeepONet
ν the branch net (or decoder) in DeepONet (or GraphDeepONet)
τ the trunk net in DeepONet (or GraphDeepONet)
ϵ the encoder in GraphDeepONet
ϕ, ψ the neural networks of processor in GraphDeepONet
ω the neural network of decoder in GraphDeepONet
f i (i = 0, 1, ..., N − 1) the feature vector at node i

B DETAILS ON THE UNIVERSALITY OF THE PROPOSED GRAPHDEEPONET

We first define the Lipschitz continuity of the operator.
Definition 1. For α > 0, an operator G : X → Y is Lipschitz continuous if there exists a constant
CG such that

∥G(f1)− G(f2)∥Y ≤ CG∥f1 − f2∥X , ∀f1, f2 ∈ X.

Note that if there exists a constant CG such that G : X(⊂ Z) → X such that ∥G(f1)− G(f2)∥X ≤
CG∥f1 − f2∥X we say that G is Lipschitz continuous in Z.

Throughout the theorem in this section, we consider the Lipschitz operator G(k) : Hs(Td) →
Hs(Td) and probability measure µ which satisfy the following condition.
Assumption 1. There exists a constant M such that the following inequality holds for any k ∈
{1, . . . ,Kframe}. ∫

Hs(Td)

∥G(k)(u)∥2dµ(u) ≤M.

Assumption 2. The covariance operator Γk =
∫
L2(Td)

u ⊗ udG(k)
∗ µ has bounded eigenbasis for

any k ∈ 1, . . . ,Kframe where dG(k)
∗ µ is push forward measure of µ.

Figure 5 shows the pictorial description of the proposed GraphDeepONet model. The real line
denotes the computational process by GraphDeepONet and the dashed line denotes the process
through the correct operator G.

The first encoding step E1 : L2(Td) → {R ∪ Td}N maps the initial condition u0(x) to
{(u0(xi),xi)}Ni=1 which denote finite observations at N sensor points. The second encoding step
E2 : {R ∪ Td}N → {Rdlat ∪ Td}N is constructed by fully connected neural network which embeds
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the function value u0(xi) at each location into the embedding space whose dimension is dlat. For ϵ
in Equation (4), it can be written as

E2({u0(xi),xi}Ni=1) := {ϵ(u0(xi),xi),xi}Ni=1.

The processor P : {Rdlat ∪ Td}N → {Rdlat ∪ Td}N updates the value at each node by message
passing algorithm by Equation (5) and (6). The first decoder D1 : {Rdlat ∪ Td}N → Rp in Equation
(8) obtain the predicted coefficient of function in L2(Td) at each time from the given all values in
latent space. The second decoder D2 : Rp → L2(Td) in Equation (9) finally predicts the function
using the learned basis function {τi(x)}pi=1 in L2(Td) at each time.

L2(Td) {R ∪ Td}N {Rdlat ∪ Td}N {Rdlat ∪ Td}N · · · {Rdlat ∪ Td}N

Rp Rp Rp

L2(Td) L2(Td) · · · L2(Td)

E1 E2 P P P

D1 D1 D1

D2 D2 D2

G G G

id

Figure 5: Diagram of the GraphDeepONet

Now for given initial condition u0(x), we denote the approximated solution at time k∆t by Nk :
L2(Td) → L2(Td) is defined as Nk := D2 ◦ D1 ◦ P(k) ◦ E2 ◦ E1. Let us denote the distribution of
input function u0 by µ. Then, the L2 error of our approximation GDONto operator G is expressed by

Ê :=

Kframe∑
k=1

∥∥∥G(k)(u0)− GGDON(ū
0, k∆t)

∥∥∥
L2(µ)

=

Kframe∑
k=1

∫
Hs(Td)

∫
Td

|G(k)(u)(x)−Nk(u)(x)|2dxdµ(u). (11)

Now, we can come up with a pseudo-inverse of E1 and D2 such that D+
2 ◦D2 = id and E1◦E+

1 = id.
For example, the image of E+

1 consists of a piecewise linear function that connects the given input
points {(u0(xi),xi)}N−1

i=0 and D+
2 : L2(Td) → Rp, f 7→ (⟨f, τ1⟩, . . . , ⟨f, τp⟩). Then, we can

obtain the following inequality by the Lipschitz continuity of the operator.

Lemma 1. Suppose that D2, D+
2 are Lipschitz continuous and G : Hs(Td) → Hs(Td) is Lipschitz

continuous in L2(Td). For the error Ê defined in (11), the following inequality holds

Ê ≤
Kframe∑
k=1

(CD2

∫
L2(Td)

∫
{R∪Td}N

|D1 ◦ P(k) ◦ E2 −D+
2 ◦ G(k) ◦ E+

1 |2dyd(E1∗µ)

+ CD2◦D+
2
Ck

G

∫
L2(Td)

(

∫
Td

|E+
1 ◦ E1 − id|2dx)dµ+

∫
L2(Td)

∫
Td

|D2 ◦ D+
2 − id|2d(G(k)

∗ µ)),

where E1∗µ and G(k)
∗ µ are push-forward measure under E1 and G(k) respectively.

Proof. First, we decompose Nk − G(k) into the following four terms.

Nk − G(k) = D2 ◦ D1 ◦ P(k) ◦ E2 ◦ E1 − G(k)

= D2 ◦ D1 ◦ P(k) ◦ E2 ◦ E1 −D2 ◦ D+
2 ◦ G(k) ◦ E+

1 ◦ E1
+D2 ◦ D+

2 ◦ G(k) ◦ E+
1 ◦ E1 −D2 ◦ D+

2 ◦ G(k)

+D2 ◦ D+
2 ◦ G(k) − G(k)
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For the first term, we can derive the following inequality by the Lipschitz continuity of the operator,∫
L2(Td)

∫
Td

|D2 ◦ D1 ◦ P(k) ◦ E2 ◦ E1 −D2 ◦ D+
2 ◦ G(k) ◦ E+

1 ◦ E1|2dxdµ

≤ CD2

∫
L2(Td)

∫
RN

|D1 ◦ P(k) ◦ E2 −D+
2 ◦ G(k) ◦ E+

1 |2dxd(E1∗µ),

where E1∗µ is push-forward measure under E1.

∫
L2(Td)

∫
Td

|D2 ◦ D+
2 ◦ G(k) ◦ E+

1 ◦ E1 −D2 ◦ D+
2 ◦ G(k)|2dxdµ

≤ CD2◦D+
2

∫
L2(Td)

CG(

∫
Td

|G(k−1) ◦ E+
1 ◦ E1 − G(k−1)|2dx)dµ

· · ·

≤ CD2◦D+
2
Ck

G

∫
L2(Td)

(

∫
Td

|E+
1 ◦ E1 − id|2dx)dµ

Finally, ∫
L2(Td)

∫
Td

|D2 ◦ D+
2 ◦ G(k) − G(k)|2dxdµ

=

∫
L2(Td)

∫
Td

|D2 ◦ D+
2 − id|2d(G(k)

∗ µ)

where G(k)
∗ µ is push forward measure under G(k).

We introduce Theorem 3.5 from (Lanthaler et al., 2022) which can handle the error related to the
second step of the decoder. It implies that the whole space Hs(Td) can be approximated by the
truncated Fourier domain with a finite Fourier basis function.
Theorem 3. (Theorem 3.5, (Lanthaler et al., 2022)) Let us consider a operator G : Hs(Td) →
Hs(Td) which is Lipschitz inL2(Td). Assume that the distribution corresponding toHs(Td) follows
µ such that ∫

Hs(Td)

∥G(u)∥2dµ(u) ≤M

there exists a constant C = C(d, s,M) such that for any p ∈ N, there exists a trunk network
τ : Rn → Rp such that ∫

Td

|D2 ◦ D+
2 − id|2dx ≤ CP−2s/n

Furthermore, D2 and D+
2 are Lipschitz continuous with constants less than 2.

We introduce Theorem 3.7 from (Lanthaler et al., 2022) which can handle the error related to the
first step of the encoding. Note that the following theorem states finite observation points through
sampling the sensor on uniform distribution really capture the function which is defined in Td given
a large number of sensor points.
Theorem 4. (Theorem 3.7, (Lanthaler et al., 2022)) Assume that the eigenbasis of covariance op-
erator Γ is bounded in L∞ sense. Suppose that {xi}N−1

i=0 is sampled from the uniform distribution
in Td. Then, there exists a constant C = C(supp∈N ∥ϕp∥L∞(Td), d) and large integer N0 such that
the following inequality holds with probability 1 if N ≥ N0.∫

L2(Td)

|E+
1 ◦ E1 − id|2dµ ≤ C

√ ∑
p>N/Clog(N)

λp
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From now, we assume that the second encoder E2 is identity map (i.e. dlat = 1) for the simplicity.
If we address the case when dlat > 1, all of the works can be done with the same proof by setting
E2({(u0(xi),xi)}N−1

i=0 ) = {(u0(xi), 0, . . . , 0,xi)}N−1
i=0

Lemma 2. Assume that there exists a constant U such that |u0(xi)| < U for all 0 ≤ i ≤ N − 1.
For any ϵ > 0, there exists neural network ωgate and ωfeature such that the following holds for any
{u0(xi),xi}N−1

i=0 .
∥(D1 −D+

2 ◦ E+
1 )({u0(xi),xi}N−1

i=0 )∥lp ≤ ϵ

Proof. Note that we address the optimal basis function as τ∗j in Theorem 3 and interpret D+
2 ◦ E+

1
as discrete transform. We would like to prove that D1 is a good approximator of discrete transform.
We have a function u defined on a d-dimensional grid, where the grid points are given by the vectors
x0,x1, . . . ,xN−1 in Td, and the corresponding function values are u0(x0), u

0(x1), . . . , u
0(xN−1).

For D+
2 ◦ E+

1 ({(u0(xi),xi)}N−1
i=0 ), the corresponding coefficients cj for each basis function τ∗j can

be computed by:

cj =

N−1∑
i=0

u0(xi)τ
∗
j (xi), for j ∈ Zd.

Without the consideration of softmax related to normalization in (8), we can select the two networks
ωgate(u

0(xi),xi) and ωfeature(u
0(xi),xi) as the close approximator of u0(xi) and {τj(xi)}j=1,...,p

by the universal approximation theorem on fully connected neural networks in L∞ sense. Then the
classical argument with the triangle inequality and the boundedness of u0(xi) shows that the product
sum D1({u0(xi),xi}N−1

i=0 ) =
∑N−1

i=0 ωgate(u
0(xi),xi)ωfeature(u

0(xi),xi) can indeed approximate
the D+

2 ◦ E+
1 .

Definition 2. A fully interconnected GNN is a recurrent process that produces a series of functions
h(m) for m ≥ 0. Given each node feature value {fi}N−1

i=0 with the edge feature wi,j ∈ R1, the
procedure is defined as follows:

for k = 0 : h
(0)
i = fi,

for k > 0 : h
(m)
i = ψm

(
h
(m−1)
i ,

∑
j∈[n]−i

ϕk(h
(m−1)
j , wi,j)

)
.

Note that this definition considers the case when ψm and ϕm are functions, not neural networks.
There is some differences since our P is indeed constructed by neural network. With this regard, we
summarize the theorem 3.4 and corollary 3.14 from (Fereydounian et al., 2022).

Now, we define the permutation-invariance of multidimensional function.

Definition 3. Suppose that a function f : (Rdin)M → (Rdout)M with fi : Rdin → Rdout is defined by

f(x1, . . . ,xM ) = (f1(x1, . . . ,xM ), . . . , fM (x1, . . . ,xM )).

Then, f is said to be permutation-compatible (equivariant) if, for any bijective function π : [N ] →
[N ], we have

(f1(xπ(1), . . . ,xπ(N)), . . . , fM (xπ(1), . . . ,xπ(n))) = (fπ(1)(x1, . . . ,xN ), . . . , fπ(N)(x1, . . . ,xN )),

where xi ∈ Rdin for all i ∈ [N ].

Note that considering the position with the function value, the process such as E2 and P become
permutation equivariant.

Lemma 3. Let F : Y ⊂ {R ∪ Td}N → {R ∪ Td}N be a permutation compatible and continuous
function. Suppose that Y is a bounded set. For any ϵ > 0, there exists a P with a finite depth such
that

∥P(y)−F(y)∥l2({R∪Td}N ) ≤ ϵ,∀y ∈ Y
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Proof. Note that the input node feature {(u(xi),xi)}N−1
i=0 should be different for every node since

there is no duplicated position values xi. By Theorem 3.4 from (Fereydounian et al., 2022), there
exists a graph neural network H with finite depth K such that

∥H(k)(y)−F(y)∥l2({R∪Td}N ) ≤ ϵ,∀y ∈ Y.

By the corollary 3.14 from Fereydounian et al. (2022), {ρk, ϕk}Kk=1 can be selected by continuous
functions by the continuity of F . Since Y is bounded, the universal approximation theorem on fully
connected neural networks in L∞ sense gives the desired results.

B.1 PROOF OF THEOREM 1

We now calculate the upper limit of the term on the right-hand side in the inequality of Lemma B.
The only challenging component to evaluate on the right-hand side is the term

∥D1 ◦ P(k) −D+
2 ◦ G(k) ◦ E+

1 ∥l2({R∪Td}N ).

We outline the proof here of how we can estimate the term with the above theorem.

Proof. We begin the proof by assuming first that E2 is an identity map with dlat = 1. Note that the
proof is similar when dlat ≥ 2 by just concatenating the identity map with 0. By triangle inequality,

∥D1 ◦ P(k) −D+
2 ◦ G(k) ◦ E+

1 ∥l2({R∪Td}N )

≤∥D1 ◦ P(k) −D+
2 ◦ E+

1 ◦ P(k)∥l2({R∪Td}N )

+ ∥D+
2 ◦ E+

1 ◦ P(k) −D+
2 ◦ E+

1 ◦ (E1 ◦ G ◦ E+
1 )(k)∥l2({R∪Td}N )

+ ∥D+
2 ◦ E+

1 ◦ (E1 ◦ G ◦ E+
1 )(k) −D+

2 ◦ E+
1 ◦ E1 ◦ G(k) ◦ E+

1 ∥l2({R∪Td}N )

+ ∥D+
2 ◦ E+

1 ◦ E1 ◦ G(k) ◦ E+
1 −D+

2 ◦ G(k) ◦ E+
1 ∥l2({R∪Td}N )

The first term on the right side can be arbitrarily small by Lemma 2. For the second term, we
note that E1 ◦ G ◦ E+

1 is permutation compatible function. Furthermore, D+
2 , E1 is continuous with

Lipshcitz constant CE1 and CD+
2

since the general Sobolev inequality induces the embedding from

Hs(Td) into the Hölder space Cs−[d/2]−1(Td) when s ≥ [d/2] + 1. Therefore,

∥D+
2 ◦E

+
1 ◦P(k)−D+

2 ◦E
+
1 ◦(E1◦G◦E+

1 )(k)∥l2({R∪Td}N ) ≤ CD+
2
CE+

1
∥Pk−(E1◦G◦E+

1 )(k)∥l2({R∪Td}N ).

By Lemma 3, there exists a P such that

|P − E1 ◦ G ◦ E+
1 |(y) ≤ ϵ, ∀y ∈ Y.

|P(k) − (E1 ◦ G ◦ E+
1 )(k)|(y) ≤|(P − (E1 ◦ G ◦ E+

1 ))(k−1) ◦ (P − E1 ◦ G ◦ E+
1 )|(y)

≤(CP + CE1
CGEk−1

2 )ϵ.

For the third term, the following holds by the Lipshitz continuity

∥D+
2 ◦ E+

1 ◦ (E1 ◦ G ◦ E+
1 )(k) −D+

2 ◦ E+
1 ◦ E1 ◦ G(k) ◦ E+

1 ∥l2({R∪Td}N )

≤CD+
2
CE+

1
∥(E1 ◦ G ◦ E+

1 )(k) − E1 ◦ G(k) ◦ E+
1 ∥l2({R∪Td}N )

If k = 2, then we can estimate the upper bound of the term with the following statement.∫
{R∪Td}N

|(E1 ◦ G ◦ E+
1 )(2) − E1 ◦ G(2) ◦ E+

1 |2dE∗
1µ

=

∫
L2(Td)

|(E1 ◦ G ◦ E+
1 )(2) ◦ E1 − E1 ◦ G(2) ◦ E+

1 ◦ E1|2dµ

≤
∫
L2(Td)

|E1 ◦ G ◦ E+
1 ◦ E1 ◦ G − E1 ◦ G(2)|2dµ+ (C2

E1
C2

GCE+
1
+ CE1C

2
G)

2

∫
L2(Td)

|id− E+
1 ◦ E1|2dµ
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By the Lipschitz continuity, we can obtain the following inequality.∫
L2(Td)

|E1 ◦ G ◦ E+
1 ◦ E1 ◦ G − E1 ◦ G(2)|2dµ

≤ C2
E1
C2

G

∫
L2(Td)

|E+
1 ◦ E1 − id|2dG#µ

With the inductive step for k with theorem 5, we can conclude that there exists constant C such that
the following inequality holds with probability 1∫

{R∪Td}N

|(E1 ◦ G ◦ E+
1 )(k) − E1 ◦ G(k) ◦ E+

1 |2dE1∗µ ≤ C

 ∑
p>N/Clog(N)

λp


Finally, for the last term, similar to the above,∫

R∪TdN
|D+

2 ◦ E+
1 ◦ E1 ◦ G(k) ◦ E+

1 −D2 ◦ G(k) ◦ E+
1 |2dy

≤
∫
Hs(Td)

|D+
2 ◦ E+

1 ◦ E1 −D+
2 |2dG

(k)
∗ µ+ C2

D+
2
C2k

G (CE+
1
CE1 + 1)2

∫
Hs(Td)

∥E+
1 ◦ E1 − id∥2dµ

≤
∫
Hs(Td)

|E+
1 ◦ E1 − id|2dG(k)

∗ µ+ C2
D+

2
C2k

G (CE+
1
CE1 + 1)2

∫
Hs(Td)

∥E+
1 ◦ E1 − id∥2dµ.

As in the estimates of the third term, we can get analogous results. When we put the results together,
we can derive the desired theorem.

B.2 PROOF OF THEOREM 2

We construct the Ggraph by using the fully connected graph neural network in Definition 2. When
discussing the solution operator in a periodic domain, we concentrate on the graph and the distances
between points within this domain. Specifically, we consider node features {(u0(xi),xi)}N−1

i=0 and
the corresponding distance wij = ∥xi − xj∥l2(Td). This distance is calculated as the minimum of
the set {∥(xi(1) , . . . , xi(d))− (xj(1) , . . . , xj(d))∥l2(Td), . . . , ∥(1− xi(1) , . . . , 1− xi(d))− (1− xj(1) ,

. . . , 1− xj(d))∥l2(Td)}..

Ggraph generates a sequence of functions {(h(k)0 , . . . , h
(k)
N−1}∞k=0 by the given manner. For a finite

fixed M , we approximate the value of {u1(xi)}N−1
i=0 with h(M)

i ({(u0(xi),xi)}N−1
i=0 ). The error for

given Ggraph with respect to the probability measure µ can be defined by

∥∥∥G(1)(u0)− Ggraph(u0)
∥∥∥
L2(µ)

:=

∫
Hs(Td)

N−1∑
i=0

(u1(xi)− h
(M)
i ({(u0(xi),xi)}N−1

i=0 ))2dµ.

Proof. Consider the periodic domain Td, which includes points x = (x(1), x(2), . . . , x(d)) within
Td. The initial function is given by f(x) = f(x(1), x(2), . . . , x(d)). We define the rotation map
Rt : Td → Td on the coordinates as:

Rt


x(1)
x(2)
x(3)

...
x(d)

 =


cos(2πt) − sin(2πt) 0 · · · 0
sin(2πt) cos(2πt) 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




x(1) − 1
2

x(2) − 1
2

x(3)
...

x(d)

+


1
2
1
2
0
...
0

 .

Consequently, the resulting rotated function g(t,x) = f(Rt(x)) represents the state of f after a
rotation by an angle t around the axis through (1/2, 1/2, 0, . . . , 0) in the first two coordinate planes.
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We then establish the mapping G : Hs(Td) → Hs(Td) as follows:

G(f(x)) := f(R1/2(x)), (12)

for any function f in the space Hs(Td).

Define the set A by

A :=

({[
1

12
,
3

12

]⋃[
5

12
,
7

12

]⋃[
9

12
,
11

12

]})d

. (13)

Using the smooth version of Urysohn’s lemma, we’re able to construct the following two functions.

1. A smooth function f1 that equals 1 on the d-dimensional interval
[

5
12 ,

7
12

]d
and 0 on the

other rectangular sections within set A.

2. Another smooth function f2 that is 1 on the d-dimensional interval
[

1
12 ,

3
12

]d
and 0 else-

where within A.

Let’s consider a mesh within the set A that follows a specific property related to the translation of
grid points.

• For any grid point xi = (xi(1) , . . . , xi(d)), and for any arbitrary integers n1, . . . , nd, the
point (xi(1) + n1/3 (mod 1), . . . , xi(d) + nd/3 (mod 1)) is also selected as a grid point.

It is noteworthy that we can choose such grid points with a nonzero probability. Now We consider
the measure µ on the set of initial conditions where We would like to select f1 or f2 by the input
function f with probability 1/2 respectively.

Let’s consider using graph neural networks, denoted as Ggraph following the definition in 2. As
for the message passing algorithm, the input for each node does not change whether we apply the
function f1 to grid points within

[
5
12 ,

7
12

]d
or f2 to those within

[
1
12 ,

3
12

]d
. Consequently, the graph

neural network’s predictions should remain consistent.

On the one hand, G is constructed to map a value of 1 to 1 when using f1 as input function and from
1 to 0 when using f2, for each corresponding grid point. Therefore,

∥G(u0)− Ggraph(u0)∥L2(µ)
≥ (1/2(output − 0)2 + 1/2(output − 1)2)1/2 = 1/2.

The readers might wonder why the statement of neural networks related to our model and graph
neural networks are different. Note that there exist only two eigenfunctions and all eigenvalues λj
except finite many should be zero by construction.

Therefore, the term C(
∑

j>N/C(log(N)) λj)
1/2 in the right-hand side should be zero for large N .

And it is obvious that CN−s/d goes to 0 when N is large.

In conclusion, we can say that there exists a Lipschitz continuous operator G(1) : Hs(Td) →
Hs(Td) such that for any C ∈ N, there exist infinitely many N ∈ N satisfying the following
inequality with a non-zero probability δ > 0:

∥∥∥G(1)(u0)− Ggraph(u0)
∥∥∥
L2(µ)

≥ C

 ∑
j>N/C log(N)

λj

1/2

+ CN−s/d.
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C DETAILS ON EXPERIMENTS AND ADDITIONAL EXPERIMENTS

C.1 DETAIL SETTING ON GRAPH

The edges (i, j) ∈ E are constructed based on the proximity of node positions, connecting nodes
within a specified distance. In actual experiments, we considered nodes as grids with given initial
conditions. There are broadly two methods for defining edges. One approach involves setting a
threshold based on the distances between grids in the domain, connecting edges if the distance
between these grids is either greater or smaller than the specified threshold value. Another method
involves utilizing classification techniques, such as the k-nearest neighbors (k-NN) algorithm, to
determine whether to establish an edge connection. We determined whether to connect edges based
on the k-NN algorithm with k =6 for 1D, k = 8 for 2D. Therefore, the processing of ϕ and ψ takes
place based on these edges. The crucial point here is that once the Graph G = (V, E) is constructed
according to a predetermined criterion, even with a different set of sensor points, ϕ and ψ remain
unchanged as processor networks applied to the respective nodes and their connecting edges.

C.2 DATASET

Similar to other graph-based PDE solver studies (Brandstetter et al., 2022; Boussif et al., 2022), we
consider the 1D Burgers’ equation as

∂tu+ ∂x(αu
2 − β∂xu+ γ∂xxu) = δ(t, x), t ∈ T = [0, 4], x ∈ Ω = [0, 16),

u(0, x) = δ(0, x), x ∈ Ω,
(14)

where δ(t, x) is randomly generated as

δ(t, x) =

5∑
j=1

Aj sin(ajt+ bjx+ ϕj) (15)

where aj , bj and ϕj are uniformly sampled as

Aj ∈
[
−1

2
,
1

2

]
, aj ∈

[
−2

5
,
2

5

]
, bj ∈

{
π

8
,
2π

8
,
3π

8

}
, ϕj ∈ [0, 2π] . (16)

We conducted a direct comparison with the models using the data E1, E2, and E3 as provided in
Brandstetter et al. (2022); Boussif et al. (2022). For a more detailed understanding of the data, refer
to those studies.

Also, we take the 2D shallow water equation data from Takamoto et al. (2022). The shallow water
equations, which stem from the general Navier-Stokes equations, provide a suitable framework for
the modeling of free-surface flow problems. In two dimensions, it can be expressed as the following
system of hyperbolic PDEs

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0,

∂(hu)

∂t
+

∂

∂x
(u2h+

1

2
gh2) +

∂

∂y
(huv) = 0, t ∈ [0, 1],x = (x, y) ∈ Ω = [−2.5, 2.5]2

∂(hv)

∂t
+

∂

∂y
(v2h+

1

2
gh2) +

∂

∂x
(huv) = 0,

h(0, x, y) = h0(x, y),

(17)

where h(t, x, y) is the height of water with horizontal and vertical velocity (u, v) and g is the gravi-
tational acceleration. We generate the random samples of initial conditions similar to the setting of
Takamoto et al. (2022). The initial condition is generated by

h0(x, y) =

{
2.0, for r <

√
x2 + y2

1.0, for r ≥
√
x2 + y2

(18)
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Figure 6: Three types of irregular grid (Irregular I, Irregular II, and Irregular III) used to train the
models in shallow water eqaution

Table 4: Mean Rel. L2 test errors for N-S equation data using regular/irregular sensor points using
GDON(ours) and FFNO.

Data Type of Sensor Points GDON(ours) FFNO

2D N-S

Regular 0.1287 0.5945
Irregular I 0.1243 0.5841
Irregular II 0.1257 0.5907
Irregular III 0.1289 0.5972

where the radius r is uniformly sampled from [0.3, 0.7].

We utilize the same Navier-Stokes data employed in Li et al. (2020). The dynamics of a viscous
fluid are described by the Navier-Stokes equation. In the vorticity formulation, the incompressible
Navier-Stokes equation on the unit torus can be represented as follows:

∂w
∂t + u · ∇w − ν∆w = f, (t,x) ∈ [0, T ]× (0, 1)2,

∇ · u = 0, (t,x) ∈ [0, T ]× (0, 1)2,

w(0,x) = w0(x), x ∈ (0, 1)2,

(19)

Here, w, u, ν, and f represent the vorticity, velocity field, viscosity, and external force, respectively.

C.3 COMPARISON WITH F-FNO FOR THE N-S EQUATION

Our focus is on comparing our model with existing graph neural network(GNN)-based models capa-
ble of simulating time-dependent PDEs on irregular domains, such as MP-PDE and MAgNet. Con-
sequently, instead of considering variations of FNO, we concentrated on GNN-based PDE solvers
for experiment baseline. Therefore, FNO, being a fundamental model in operator learning area, was
compared only on regular grids. We included experiments comparing our model with F-FNO pro-
posed in Tran et al. (2023), which is state-of-the-art on regular grids and applicable to irregular grids.
As shown in Table 4, the F-FNO is applicable to irregular grids of N-S equation data, but it generally
exhibits higher errors compared to GraphDeepONet. This is attributed to the limited capacity for the
number of input features. We used the F-FNO model, which is built for Point Cloud data, to predict
how solutions will evolve over time. At first, the model was designed to process dozens of input
features, which made it difficult to include all the initial values from a two-dimensional grid.
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Table 5: The training time and inference time for the N-S equation data using GNN based models.

Data Model Training time
per epoch (s)

Inference time
per timestep (ms)

Navier Stokes (2D Irregular I)
GDON(Ours) 7.757 19.49
MAgNet 18.09 48.81
MP-PDE 4.88 10.1

C.4 COMPUTATIONAL TIME COMPARISON WITH BENCHMARK MODELS

One significant advantage of models based on Graph Neural Networks (GNNs), such as MP-PDE,
MAgNet, and GraphDeepONet (ours), compared to traditional numerical methods for solving time-
dependent PDEs, lies in their efficiency during inference. In traditional numerical methods, solving
PDEs for different initial conditions requires recalculating the entire PDE, and in real-time weather
prediction scenarios (Kurth et al., 2022), where numerous PDEs with different initial conditions must
be solved simultaneously, this can result in a substantial computational burden. On the other hand,
models based on GNNs (MP-PDE, MAgNet, GraphDeepONet), including the process of learning
the operator, require data for a few frames of PDE. However, after training, they enable rapid in-
ference, allowing real-time PDE solving. More details on advantage using operator learning model
compared to traiditional numerical method is explained in many studies (Goswami et al., 2022;
Kovachki et al., 2021b).

Table 5 presents a computational time comparison between our proposed GraphDeepONet and other
GNN-based models. Due to its incorporation of global interaction using (8) for a better understand-
ing of irregular grids, GraphDeepONet takes longer during both training and inference compared to
MP-PDE. However, the MAgNet model, which requires separate interpolation for irregular grids,
takes even more time than MP-PDE and GraphDeepONet. This illustrates that our GraphDeepONet
model exhibits a trade-off, demonstrating a stable accuracy for irregular grids compared to MP-PDE,
while requiring less time than MAgNet.

C.5 MODEL HYPERPARAMETERS FOR BENCHMARK MODELS AND OUR MODEL

We trained various models, including DeepONet and VIDON, following the architecture and sizes as
well as the training hyperparameters outlined in Prasthofer et al. (2022). Additionally, MP-PDE and
MAgNet utilized parameter settings as provided in Boussif et al. (2022) without modification. We
trained our model, the GraphDeepONet, using the Adam optimizer, starting with an initial learning
rate of 0.0005. This learning rate is reduced by 20

In the small architecture, the encoder was set up with a width of 128 and a depth of 2 for epsilon.
The processor components, ϕ, and ψ, each had a width of 128 and a depth of 2. We employed
distinct ϕ and ψ for each of the three message-passing steps. In the decoder, we assigned ωgate and
ωfeature for aggregation to the neural network, which had a width of 128 and a depth of 3. The trunk
net, τ , was configured with a width of 128 and a depth of 3.

For the large architecture, the width of all neural networks was set to 128, and the depth was set to
3, except for the trunk net. The trunk net’s depth was set to 5. The number of message-passing steps
was set to 3. For more specific details, refer to the code.

C.6 ENFORCING BOUNDARY CONDITION USING THE GRAPHDEEPONET

Utilizing the structure of DeepONet enables us to enforce the boundary condition B[u] = 0 as hard
constraints. To elaborate further, we impose hard constraints for periodic boundary conditions and
Dirichlet through a modified trunk net, which is one of the significant advantages of the DeepONet
model structure, as also explained in [1]. For instance, in our paper, we specifically address enforcing
periodic boundary conditions in the domain Ω. To achieve this, we replace the network input x in the
trunk net with Fourier basis functions

(
1, cos( 2π

|Ω|x), sin(
2π
|Ω|x), cos(2

2π
|Ω|x), ...

)
, naturally leading to

a solution u(t,x) (x ∈ Ω) that satisfies the |Ω|-periodicity. As depicted in Figure 7, the results reveal
that while other models fail to perfectly match the periodic boundary conditions, GraphDeepONet
successfully aligns with the boundary conditions.
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Figure 7: One snapshot for N-S equation data using MP-PDE, MAgNet, and GraphDeepONet.

While our experiment primarily focuses on periodic boundary conditions, it is feasible to handle
Dirichlet boundaries as well using ansatz extension as discussed in Choudhary et al. (2020); Horie
& Mitsume (2022). If we aim to enforce the solution ũ(t,x) = g(x) at x ∈ ∂Ω, we can construct
the following solution:

ũ(t,x) = g(x) + l(x)

p∑
j=1

νj [f
1
0:N−1,∆t]τj(x)

where l(x) satisfies {
l(x) = 0, x ∈ ∂Ω,
l(x) > 0, others.

By constructing g(x) and l(x) appropriately, as described, we can effectively enforce Dirichlet
boundary conditions as well. While the expressivity of the solution using neural networks may be
somewhat reduced, there is a trade-off between enforcing boundaries and expressivity.

C.7 EXPERIMENTS ON BURGERS’ EQUATION

For Burgers’ equation, we generate the uniform grid of 50 points in [0, 16]. We divided the time
interval from 0 to 4 seconds uniformly to create 250 time steps. We started with 25 initial values for
each segment, then predicted the values for the next 25 instances, and so on. The total number of
prediction steps is 9, calculated by dividing 225 by 25. In all experiments, we used a batch size of
16.

The training data consisted of 1896 samples, while both the validation and test samples contained
128 samples each. For irregular data, we selected 50 points from a uniform distribution over 100
uniform points within the range of 0 to 16 and made predictions on a fixed grid. The number of sam-
ples is the same as in the regular data scenario. To ensure a fair comparison in time extrapolation
experiments, each model was assigned to learn the relative test error with a precision of 0.2 concern-
ing the validation data. Our model conclusively shows superior extrapolation abilities compared
to VIDON and DeepONet. Unlike DeepONet and VIDON, which tended to yield similar values
throughout all locations after a given period, our model effectively predicted the local propagation
of values.

In Table 1, our model consistently outperforms other graph neural networks, regardless of the dataset
or grid regularity. Figure 8 illustrates the solution profiles and prediction derived from the models.
It’s important to highlight that the shape of the solution progressively sharpens due to the nature of
Burgers’ equation. Our model can make more accurate predictions for approximating the sharp so-
lution compared to other models. Notably, MAgNet can generate the smoothest prediction, learning
the global representation through a neural network.
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Figure 8: Ground truth solution and two prediction profiles for Burgers’ equation on a uniform grid.

In Figure 3, GraphDeepONet was trained with a parameter setting ofK = 25 for Burgers data where
it divided time t into 250 intervals within the range t ∈ [0, 4]. The model received inputs accord-
ingly and predicted the solutions for the next 25 frames based on the solutions of the preceding 25
frames. While this grouping strategy led to good accuracy, the results in Figure 3 show a noticeable
discontinuity every 25 frames as your concern. However, as illustrated in Figure 9, grouping frames
into smaller units with K = 5 results in a smoother prediction appearance although the error is
slightly increased compared to the K = 25 case. This trade-off in GraphDeepONet is an essential
aspect of our method.
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Figure 9: Comparison of solution profiles obtained from the Burgers’ equation time extrapolation
simulations using GraphDeepONet, with K = 25 and K = 5.

C.8 EXPERIMENTS ON 2D SHALLOW WATER EQUATION AND 2D N-S EQUATION

For the 2D shallow water equation, we generate the grid of 1024 = 322 points for the regular setting.
For irregular data, we selected an equal number of points from a uniform distribution over 1282
points within the rectangle [−2.5, 2.5]2 and made predictions on a fixed grid. Figure 6 illustrates
how we set up irregular sensor points for training GNN-based models and our model.

We evenly divided the time interval from 0 to 1 second uniformly to create 101 time steps. We
started with 10 initial values for each segment, then predicted the values for the next 10 instances,
and so on. The total number of prediction steps is 9, calculated by dividing 101-1=100 by 10. We
remark that the values at t = 1 were excluded from the data set. In all experiments, we used a batch
size of 4. For both regular data and irregular data, the training data consisted of 600 samples, while
both the validation and test samples contained 200 samples each. Note that the MAgNet has the
capability to interpolate values using the neural implicit neural representation technique. However,
we did not utilize this technique when generating Figure 4, which assesses the interpolation ability
for irregular data. For clarity, we’ve provided Figure 10 the predictions on the original irregular grid
prior to interpolation.

In reference to the 2D Navier-Stokes equation, we apply the data from Li et al. (2020) with a vis-
cosity of 0.001. For regular data, we generate the grid of 1024 = 322 points. For irregular data, we
selected an equal number of points from a uniform distribution over 642 points within the rectan-
gle [0, 1]2 and made predictions on a fixed grid. We evenly divided the time interval from 1 to 50
seconds uniformly to create 50 time steps. We started with 10 initial values for each segment, then
predicted the values for the next 10 instances, and so on. The total number of prediction steps is
4, calculated by dividing 50-10=40 by 10. In all experiments, we used a batch size of 4. For both
regular data and irregular data, the training data consisted of 600 samples, while both the validation
and test samples contained 200 samples each.
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Figure 10: Ground truth solution and prediction profile for the 2D shallow water equation on a
irregular grid.
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