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Abstract

Unsupervised reinforcement learning aims to acquire skills without prior goal
representations, where an agent automatically explores an open-ended environment
to represent goals and learn the goal-conditioned policy. However, this procedure
is often time-consuming, limiting the rollout in some potentially expensive target
environments. The intuitive approach of training in another interaction-rich envi-
ronment disrupts the reproducibility of trained skills in the target environment due
to the dynamics shifts and thus inhibits direct transferring. Assuming free access
to a source environment, we propose an unsupervised domain adaptation method
to identify and acquire skills across dynamics. Particularly, we introduce a KL
regularized objective to encourage emergence of skills, rewarding the agent for
both discovering skills and aligning its behaviors respecting dynamics shifts. This
suggests that both dynamics (source and target) shape the reward to facilitate the
learning of adaptive skills. We also conduct empirical experiments to demonstrate
that our method can effectively learn skills that can be smoothly deployed in target.

1 Introduction

Recently, the machine learning community has devoted attention to unsupervised reinforcement learn-
ing (RL) to acquire useful skills, ie, the problem of automatic discovery of a goal-conditioned policy
and its corresponding goal space [8]. As shown in Figure 1 (left), the standard training procedure of
learning skills in an unsupervised way follows: (1) representing goals, consisting of automatically
generating the goal distribution p(g) and the corresponding goal-achievement reward function rg; (2)
learning the goal-conditioned policy πθ with the acquired p(g) and rg . Leveraging fully autonomous
interaction with the environment, the agent sets up goals, builds the goal-achievement reward function,
and extrapolates the goal-conditioned policy in parallel by adopting off-the-shelf RL methods [40, 19].
While we can obtain skills without any prior goal representations (p(g) and rg) in an unsupervised way,
a major drawback of this approach is that it requires a large amount of rollout steps to represent goals
and learn the policy itself, together. This procedure is often impractical in some target environments
(eg, the robot in real world), where online interactions are time-consuming and potentially expensive.

That said, there often exist environments that resemble in structure (dynamics) yet provide more
accessible rollouts (eg, unlimited in simulators). For problems with such source environments
available, training the policy in a source environment significantly reduces the cost associated with
interaction in the target environment. Critically, we can train a policy in one environment and deploy
it in another by utilizing their structural similarity and the excess of interaction. Considering the
navigation in a room, we can learn arbitrary skills through the active exploration in a source simulated
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The standard unsupervised RL: 

learning skills for the target env. 

1. Representing goals:  

a) Learning 𝑝(𝑔) in target env.     
b) Learning 𝑟𝑔 in target env. 

2. Learning 𝜋𝜃 in target env. 

Unsupervised domain adaptation RL: 

learning skills for the target env. 

1. Representing goals:  

a) Learning 𝑝(𝑔) in source and target.
b) Learning 𝑟𝑔 in source and target. 

2. Learning 𝜋𝜃 in source env. 

Target Source
Target 

𝜋𝜃

𝑟𝑔
𝑝(𝑔)𝑝(𝑔)

𝜋𝜃
𝑟𝑔

Figure 1: The training procedures of (left) the standard unsupervised RL in a single target environment,
and (right) the unsupervised domain adaptation in RL with a pair of source and target environments.
p(g): the goal distribution; rg: the goal-achievement reward function; πθ: the goal-conditioned policy.

room (with different layout or friction) before the deployment in the target room. However, it is
reasonable to suspect that the learned skills overfit the training environment, the dynamics of which,
dictating the goal distribution and reward function, implicitly shape goal representation and guide
policy acquisition. Such deployment would then make learned skills struggle to adapt to new, unseen
environments and produce a large drop in performance in target due to the dynamics shifts, as shown
in Figure 2 (top). In this paper, we overcome the limitations (of limited rollout in target and dynamics
shifts) associated with the (source, target) environments pair through unsupervised domain adaptation.

In practice, while performing a full unsupervised RL method in target that represents goals and
captures all of them for learning the entire goal-conditioned policy (Figure 1 left) can be extremely
challenging with the limited rollout steps, learning a model for only (partially) representing goals
is much easier. This gives rise to learning the policy in source and taking the limited rollouts in
target into account only for identifying the goal representations, which further shape the policy. As
shown in Figure 1 (right), we represent goals in both environments while optimizing the policy only
in the source environment, alleviating the excessive need for rollout steps in the target environment.
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Figure 2: Skills learned in the source environment,
each represented by a distinct color, are deployed
in the source and target respectively. Top plots de-
pict states visited by the standard unsupervised RL
method, where skills fail to run in the target envi-
ronment. Bottom plots depict trajectories induced
by policy πθ trained with our DARS, resulting in
successful deployment in the target environment.

Furthermore, we introduce a KL regularization
to address the challenge of dynamics shifts. This
objective allows us to incorporate a reward mod-
ification into the goal-achievement reward func-
tion in the standard unsupervised RL, aligning
the trajectory induced in the target environment
against that induced in the source by the same
policy. Importantly, it enables useful inductive
biases towards the target dynamics: it allows
the agent to specifically pursue skills that are
competent in the target dynamics, and penalizes
the agent for exploration in the source where
the dynamics significantly differ. As shown in
Figure 2 (bottom), the difference in dynamics
(a wall in the target while no wall in the source)
will pose a penalty when the agent attempts to
go through an area in the source wherein the tar-
get stands a wall. Thus, skills learned in source
with such modification are adaptive to the target.

We name our method unsupervised domain adaptation with dynamics-aware rewards (DARS), sug-
gesting that source and target dynamics both shape rg: (1) we employ a latent-conditioned probing
policy in the source to represent goals [31], making the goal-achievement reward source-oriented, and
(2) we adopt two classifiers [11] to provide reward modification derived from the KL regularization.
This means that the repertoires of skills are well shaped by the dynamics of both the source and
target. Formally, we further analyze the conditions under which our DARS produces a near-optimal
goal-conditioned policy for the target environment. Empirically, we demonstrate that our objective
can obtain dynamics-aware rewards, enabling the goal-conditioned policy learned in a source to
perform well in the target environment in various settings (stable and unstable settings, and sim2real).

2 Preliminaries

Multi-goal Reinforcement Learning: We formalize the multi-goal reinforcement learning (RL) as a
goal-conditioned Markov Decision Process (MDP) defined by the tupleMG = {S,A,P,RG, γ, ρ0},
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where S denotes the state space and A denotes the action space. P : S × A × S → R≥0 is the
transition probability density. RG , {G, rg, p(g)}, where G denotes the space of goals, rg denotes
the corresponding goal-achievement reward function rg : G× S ×A× S → R, and p(g) denotes
the given goal distribution. γ is the discount factor and ρ0 is the initial state distribution. Given a
g ∼ p(g), the γ-discounted return R(g, τ) of a goal-oriented trajectory τ = (s0, a0, s1, . . . , sT ) is
ΣT−1t=0 γ

trg(st, at, st+1). Building on the universal value function approximators (UVFA, Schaul et al.
[38]), the standard multi-goal RL seeks to learn a unique goal-conditioned policy πθ : A×S×G→ R
to maximize the objective EP,ρ0,πθ,p(g)[R(g, τ)], where θ denotes the parameter of the policy.

Unsupervised Reinforcement Learning: In unsupervised RL, the agent is set in an open-ended
environment without any pre-defined goals or related reward functions. The agent aims to acquire a
repertoire of skills. Following Colas et al. [8], we define skills as the association of goals and the goal-
conditioned policy to reach them. The unsupervised skill acquisition problem can now be modeled by
a goal-free MDPM = {S,A,P, γ, ρ0} that only characterizes the agent, its environment and their
possible interactions. As shown in Figure 1 (left), the agent needs to autonomously interact with the
environment and (1) learn goal representations (eg, discovering the goal distribution p(g) and learning
the corresponding reward rg), and (2) learn the goal-conditioned policy πθ as in multi-goal RL.

Here we define a universal (information theoretic) objective for learning the goal-conditioned policy
πθ in unsupervised RL, maximizing the mutual information IP,ρ0,πθ (g; τ) between the goal g and
the trajectory τ induced by policy πθ running in the environmentM (with P and ρ0),

max IP,ρ0,πθ (g; τ) = H(g)−H(g|τ) = H(g) + EP,ρ0,πθ,p(g)[log p(g|τ)]. (1)

For representing goals, the specific manifold of the goal space could be a set of latent variables (eg,
one-hot indicators) or perceptually-specific goals (eg, the joint torques of ant). In the absence of any
prior knowledge about p(g), the maximum ofH(g) will be achieved by fixing the distribution p(g) to
be uniform over all g ∈ G. The second term EP,ρ0,πθ,p(g)[log p(g|τ)] in Equation 1 is analogous to
the objective in the standard multi-goal RL, where the return R(g, τ) can be seen as the embodiment
of log p(g|τ). The objective specifically for learning rg in p(g|τ) is normally optimized by lens of the
generative loss [33] or the contrastive loss [42]. With the learned goal distribution p(g) and reward
rg , it is straightforward to learn the goal-conditioned policy πθ using standard RL algorithms [40, 19].
In general, optimizations iteratively alternate for representing goals (including both goal-distribution
p(g) and reward function rg) and learning the goal-conditioned policy πθ, as shown in Figure 1 (left).

3 Unsupervised Domain Adaptation with Dynamics-Aware Rewards

3.1 Problem Formulation

Our work addresses domain adaptation in unsupervised RL, raising expectations that an agent trained
without prior goal representations (p(g) and rg) in one environment can perform purposeful tasks in
another. Following Wulfmeier et al. [54], we also focus on the domain adaptation of the dynamics,
as opposed to states. In this work, we consider two environments characterized by MDPs MS
(the source environment) andMT (the target environment), the dynamics of which are PS and PT
respectively. Both MDPs share the same state and action spaces S, A, discount factor γ and initial
state distribution ρ0, while differing in the transition distributions PS , PT . Since the agent does
not directly receiveRG from either environment, we adopt the information theoretic IP,ρ0,πθ (g; τ)
to acquire skills, equivalently learning a goal-conditioned policy πθ that achieves distinguishable
trajectory by maximizing this objective. For brevity, we now omit the ρ0 term discussed in Section 2.

In our setup, agents can freely interact with the sourceMS . However, it has limited access to rollouts
in the targetMT with which are insufficient to train a policy. To ensure that all potential trajectories
in the targetMT can be attempted in the source environment, we make the following assumption:

Assumption 1. There is no transition that is possible in the target environmentMT but impossible
in the source environmentMS : PT (st+1|st, at) > 0 =⇒ PS(st+1|st, at) > 0.

3.2 Domain Adaptation in Unsupervised RL

We aim to acquire skills trained in the source environmentMS , which can be deployed in the target
environmentMT . To facilitate the unsupervised learning of skills for the target environmentMT
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Figure 3: Graphical models of (a) the standard unsupervised RL, and DARS with goals (b) directly in-
putted, (c1) relabeled with latent variable ω, and (c2) relabeled with state induced by probing policy.

(with transition dynamics PT ), we maximize the mutual information between the goal g and the
trajectory τ induced by the goal-conditioned policy πθ over dynamics PT , as shown in Figure 3 (a):

IPT ,πθ (g; τ). (2)

However, since interaction with the target environment MT is restricted, acquiring the goal-
conditioned policy πθ by optimizing the mutual information above is intractable. We instead
maximize the mutual information in the source environment IPS ,πθ (g; τ) modified by a KL di-
vergence of trajectories induced by the goal-conditioned policy πθ in both environments (Figure 3 b):

IPS ,πθ (g; τ)− βDKL

(
pPS ,πθ (g, τ)‖pPT ,πθ (g, τ)

)
, (3)

where β > 0 is the regularization coefficient, pPS ,πθ (g, τ) and pPT ,πθ (g, τ) denote the joint distribu-
tions of the goal g and the trajectory τ induced by policy πθ in sourceMS and targetMT respectively.

Intuitively, maximizing the mutual information term rewards distinguishable pairs of trajectories
and goals, while minimizing the KL divergence term penalizes producing a trajectory that cannot be
followed in the target environment. In other words, the KL term aligns the probability distributions
of the mutual-information-maximizing trajectories under the two environment dynamics PS and
PT . This indicates that the dynamics of both environments (PS and PT ) shape the goal-conditioned
policy πθ (even though trained in the source PS ), allowing πθ to adapt to the shifts in dynamics.

Building on the KL regularized objective in Equation 3, we introduce how to effectively represent
goals: generating the goal distribution and acquiring the (partial) reward function. Here we assume
the difference between environments in their dynamics negligibly affects the goal distribution2.
Therefore, we follow GPIM [31] and train a latent-conditioned probing policy πµ. The probing policy
πµ explores the source environment and represents goals for the source to train the goal-conditioned
policy πθ with. Specifically, the probing policy πµ is conditioned on a latent variable ω ∼ p(ω)3 and
aims to generate diverse trajectories that are further relabeled as goals for the goal-conditioned πθ.
Such goals can take the form of the latent variable ω itself (Figure 3 c1) or the final state of a trajectory
(Figure 3 c2). We jointly optimize the previous objective in Equation 3 with the mutual information
between ω and the trajectory τ̃ induced by πµ in source, and arrive at the following overall objective:

maxJ (µ, θ) , IPS ,πµ(ω; τ̃) + IPS ,πθ (g; τ)− βDKL

(
pPS ,πθ (g, τ)‖pPT ,πθ (g, τ)

)
, (4)

where the context between p(g) and p(ω) are specified by the graphic model in Figure 3 (c1 or c2).
Note that this objective (Equation 4) explicitly decouples the goal representing (with πµ) and the
policy learning (wrt πθ), providing a foundation for the theoretical guarantee in Section 3.4.

3.3 Optimization with Dynamics-Aware Rewards

Similar to Goyal et al. [16], we take advantage of the data processing inequality (DPI [3]) which
implies IPS ,πθ (g; τ) ≥ IPS ,πθ (ω; τ) from the graphical models in Figure 3 (c1, c2). Consequently,
maximizing IPS ,πθ (g; τ) can be achieved by maximizing the information of ω encoded progressively
to πθ. We therefore obtain the lower bound of Equation 4:

J (µ, θ) ≥ IPS ,πµ(ω; τ̃) + IPS ,πθ (ω; τ)− βDKL

(
pPS ,πθ (g, τ)‖pPT ,πθ (g, τ)

)
. (5)

2See Appendix D for the extension whenMS andMT have different goal distributions.
3Following DIAYN [10] and DADS [43], we set p(ω) as a fixed prior.

4



For the first term IPS ,πµ(ω; τ̃) and the second term IPS ,πθ (ω; τ), we derive the state-conditioned
Markovian rewards following Jabri et al. [24]:

IP,π(ω; τ) ≥ 1

T

T−1∑
t=0

(H (ω)−H (ω|st+1)) = H (ω) + EpP ,π(ω,st+1) [log p(ω|st+1)] (6)

≥ H (ω) + EpP ,π(ω,st+1) [log qφ(ω|st+1)] , (7)

where pP ,π(ω, st+1) = p(ω)pP ,π(st+1|ω), and pP ,π(st+1|ω) refers to the state distribution (at time
step t + 1) induced by policy π conditioned on ω under the environment dynamics P; the lower
bound in Equation 7 derives from training a discriminator network qφ due to the non-negativity of
KL divergence, Epπ(st+1) [DKL(p(ω|st+1)||qφ(ω|st+1))] ≥ 0. Intuitively, the new bound rewards the
discriminator qφ for summarizing agent’s behavior with ω as well as encouraging a variety of states.

With the bound above, we construct the lower bound of the mutual information terms in Equation 5,
taking the same discriminator qφ:

FI , IPS ,πµ(ω; τ̃) + IPS ,πθ (ω; τ) ≥ 2H (ω) + Epjoint [log qφ(ω|s̃t+1) + log qφ(ω|st+1)] , (8)

where pjoint denotes the joint distribution of ω, states s̃t+1 and st+1. The states s̃t+1 and st+1 are
induced by the probing policy πµ conditioned on the latent variable ω and the policy πθ conditioned
on the relabeled goals respectively, both in the source environment (Figure 3 c1, c2).

Now, we are ready to characterize the KL term in Equation 5. Note that only the transition probabilities
terms (PS and PT ) differ since agent follows the same policy πθ in the two environments. This con-
veniently leads to the expansion of the KL divergence term as a sum of differences in log likelihoods
of the transition dynamics: expansion pP ,πθ (g, τ) = p(g)ρ0(s0)

∏T−1
t=0 [P(st+1|st, at)πθ(at|st, g)],

where P ∈ {PS ,PT }, gives rise to the following simplification of the KL term in Equation 5:

βDKL

(
pPS ,πθ (g, τ)‖pPT ,πθ (g, τ)

)
= EPS ,πθ [β∆r(st, at, st+1)] , (9)

where the reward modification ∆r(st, at, st+1) , logPS(st+1|st, at)− logPT (st+1|st, at).

Target

Env.

Source 

Env.

𝜋𝜇 𝜋𝜃

𝑝 𝑔 , 𝑞𝜙

𝜋𝜃

𝛽∆𝑟

Associted reward for 𝜋𝜃 : 𝑟𝑔 = log𝑞𝜙 − 𝛽∆𝑟

Rollout

Same 𝜋𝜃 Limited 

Rollout

KL

Figure 4: Framework of DARS: the latent-
conditioned probing policy πµ provides p(g)
and qφ for learning goal-conditioned πθ, as-
sociated with the reward modification β∆r.

Combining the lower bound of the mutual informa-
tion terms (Equation 8) and the KL divergence term
pursuing the aligned trajectories in two environments
(Equation 9), we optimize J (µ, θ) by maximizing the
following lower bound:

2H (ω) + Epjoint [log qφ(ω|s̃t+1) + log qφ(ω|st+1)]

− EPS ,πθ [β∆r(st, at, st+1)] . (10)

Overall, as shown in Figure 4, DARS rewards the goal-
conditioned policy πθ with the dynamics-aware re-
wards (associating log qφ with β∆r), where (1) log qφ
is shaped by the source dynamics PS , and (2) β∆r
is derived from the difference of the two dynamics
(PS and PT ). This indicates that the learned goal-
conditioned policy πθ is shaped by both source and target environments, holding the promise of
acquiring adaptive skills for the target environment by training mostly in the source environment.

3.4 Optimality Analysis

Here we discuss the condition under which our method produces near-optimal skills for the target
environment. We first mildly require that the most suitable policy for the target environmentMT
does not produce drastically different trajectories in the source environmentMS :
Assumption 2. Let π∗ = arg maxπ IPT ,π(g; τ) be the policy that maximizes the (non-kl-regularized)
objective in the target environment (Equation 2). Then the joint distributions of the goal and its
trajectories differ in both environments by no more than a small number ε/β > 0:

DKL

(
pPS ,π∗(g, τ)||pPT ,π∗(g, τ)

)
≤ ε

β
. (11)
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Algorithm 1 DARS

1: Input: source and target MDPsMS andMT ;
ratio R of experience from source vs. target.

2: Output: goal-reaching policy πθ .
3: Initialize parameters µ, θ, φ and ψ.
4: Initialize buffers B̃S , BS and BT .
5: for iter = 0, . . . ,MAX_ITER do
6: Sample latent variable: ω ∼ p(ω).
7: Collect probing data in source:

B̃S ← B̃S ∪ ROLLOUT(πµ,MS , ω).
8: Update discriminator qφ: φ← Update(φ, B̃S)
9: Set reward function for the probing policy πµ:

r̃ = log qφ(ω|s̃t+1).
10: Train probing policy πµ: µ← SAC(µ, B̃S , r̃).

11: Relabel goals: # According to Figure 3 (c1, c2)
g ← Relabel(ω, τ̃).

12: Collect source data:
BS ← BS ∪ ROLLOUT(πθ,MS , g, ω).

13: if iter mod R = 0 then
14: Collect target data:

BT ← BT ∪ ROLLOUT(πθ,MT , g).
15: end if
16: Update classifiers qψ for computing ∆r:

ψ ← Update(ψ,BS ,BT ). (Equations 12, 13)
17: Set reward function for πθ:

rg ← log qφ(ω|st+1)− β∆r(st, at, st+1).
18: Train policy πθ: θ ← SAC(θ,BS , rg).
19: end for

Given a desired joint distribution p∗(g, τ) (inferred from a potential goal representation), our problem
can be reformulated as finding a closest match [29, 28]. Consequently, we quantify the optimality of
a policy π by measuring DKL

(
pP ,π(g, τ)‖p∗

P
(g, τ)

)
, the discrepancy between its joint distribution

and the desired one. With a potential goal representation, we prove that its joint distributions with the
trajectories induced by our policy and the optimal one satisfy the following theoretical guarantee.

Theorem 1. Let π∗DARS be the optimal policy that maximizes the KL regularized objective in the
source environment (Equation 3), let π∗ be the policy that maximizes the (non-regularized) objective
in the target environment (Equation 2), let p∗

PT
(g, τ) be the desired joint distribution of trajectory and

goal in the target (with the potential goal representations), and assume that π∗ satisfies Assumption 2.
Then the following holds:

DKL

(
pPT ,π

∗
DARS

(g, τ)‖p∗
PT

(g, τ)
)
≤ DKL

(
pPT ,π∗(g, τ)‖p∗

PT
(g, τ)

)
+ 2

√
2ε

β
Lmax,

where Lmax refers to the worst case absolute difference between log likelihoods of the desired joint
distribution and that induced by a policy.

Please see Appendix C for more details and the proof of the theorem. Note that Theorem 1 requires a
potential goal representation, which can be precisely provided by the probing policy πµ in Equation 4.

3.5 Implementation

As shown in Algorithm 1, we alternately train the probing policy πµ and the goal-conditioned policy
πθ by optimizing the objective in Equation 10 with respect to µ, φ, θ and ∆r. In the first phase, we
update πµ with reward r̃ = log qφ(ω|s̃t+1). This is compatible with most RL methods and we refer to
SAC here. We additionally optimize discriminator qφ with SGD to maximizing Eω,s̃t+1

[qφ(ω|s̃t+1)]
at the same time. Similarly, πθ is updated with rg = log qφ(ω|st+1)− β∆r by SAC in the second
phase, where πθ also collects (limited) data in the target environment to approximate ∆r by training
two classifiers qψ (wrt state-action qsaψ and state-action-state qsasψ ) as in [11] according to Bayes’ rule:

max EBS
[
log qsasψ (source|st, at, st+1)

]
+ EBT

[
log qsasψ (target|st, at, st+1)

]
, (12)

max EBS
[
log qsaψ (source|st, at)

]
+ EBT

[
log qsaψ (target|st, at)

]
. (13)

Then, we have ∆r(st, at, st+1) = log
qsasψ (source|st,at,st+1)

qsasψ (target|st,at,st+1)
− log

qsaψ (source|st,at)
qsaψ (target|st,at) .

3.6 Connections to Prior Work

Unsupervised RL: Two representative unsupervised RL approaches acquire (diverse) skills by
maximizing empowerment [10, 43] or minimizing surprise [4]. Liu et al. [31] also employs a latent-
conditioned policy to explore the environment and relabels goals along with the corresponding reward,
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Figure 5: We evaluate our method in 10 (source, target) transition tasks, where the shifts in dynamics
are either external (the map pairs and the attacked series) or internal (the broken series) to the robot.

which can be considered as a special case of DARS with identical source and target environments.
However, none of these methods can produce skills tailored to new environments with dynamics shifts.

Off-Dynamics RL: Eysenbach et al. [11] proposes domain adaptation with rewards from classifiers
(DARC), adopting the control as inference framework [29] to maximize −DKL(pPS ,πθ (τ)‖p∗

PT
(τ)),

but this objective cannot be directly applied to the unsupervised setting. While we adopt the
same classifier to provide the reward modification, one major distinction of our work is that we
do not require a given goal distribution p(g) or a prior reward function rg. Moreover, assuming
an extrinsic goal-reaching reward in the source environment (ie, the potential p∗

PS
(τ)), our pro-

posed DARS can be simplified to a decoupled objective: maximizing −DKL(pPS ,πθ (τ)‖p∗
PS

(τ))−
βDKL(pPS ,πθ (τ)‖pPT ,πθ (τ)). Particularly, DARC can be considered as a special case of our decou-
pled objective with the restriction — a prior goal specified by its corresponding reward and β = 1. In
Appendix E, we show that the stronger pressure (β > 1) for the KL term to align the trajectories puts
extra reward signals for the policy πθ to be ∆r oriented while still being sufficient to acquire skills.

4 Related Work

The proposed DARS has interesting connections with unsupervised learning [10, 43] and transfer
learning [55] in model-free RL. Adopting the self-supervised objective [26, 39, 2, 34], most ap-
proaches in this field consider learning features [18, 41] of high-dimensional (eg, image-based)
states in the environment, then (1) adopt the non-parametric measurement function to acquire re-
wards [23, 33, 42, 53, 44, 32] or (2) enable policy transfer [23, 16, 17, 13, 22] over the learned features.
These approaches can be seen as a procedure on the perception level [20], while we focus on the
action level [20] wrt the transition dynamics of the environment, and we consider both cases (learning
the goal-achievement reward function and enabling policy transfer between different environments).

Previous works on the action level [20] have either (1) focused on learning dynamics-oriented
rewards in the unsupervised RL setting [21, 51, 49, 31] or (2) considered the transition-oriented
modification in the supervised RL setting (given prior tasks described with reward functions or expert
trajectories) [11, 54, 25, 14, 9, 52, 30]. Thus, the desirability of our approach is that the acquired
reward function uncovers both the source dynamics (qφ) and the dynamics difference (β∆r) across
source and target environment. Complementary to our work, several other works also encourage
the emergence of a state-covering goal distribution [37, 6, 27] or enable transfer by introducing the
regularization over policies [45, 15, 46, 47, 36, 48] instead of the adaptation over different dynamics.

5 Experiments

In this section, we aim to experimentally answer the following questions: (1) Can our method DARS
learn diverse skills, in the source environment, that can be executed in the target environment and
keep the same embodiment in the two environments? Specifically, can our proposed associated
dynamics-aware rewards (log qφ − β∆r) reveal the perceptible dynamics of the two environments?
(2) Does DARS lead to better transferring in the presence of dynamics mismatch, compared to other
related approaches, in both stable and unstable environments? (3) Can DARS contribute to acquiring
behavioral skills under the sim2real circumstances, where the interaction in the real world is limited?

We adopt tuples (source, target) to denote the source and target environment pairs, with details of
the corresponding MDPs in Appendix F.2. Illustrations of the environments are shown in Figure 5.
For all tuples, we set β = 10 and the ratio of experience from the source environment vs. the target
environment R = 10 (Line 13 in Algorithm 1). See Appendix F.3 for the other hyperparameters.
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Map. We consider the maze environments: Map-a, Map-b, Map-c and Map-d, where the wall can
block the agent (a point), which can move around to explore the maze environment. For the domain
adaptation tasks, we consider the following five (source, target) pairs: (Map-a, Map-b), (Map-a,
Map-c), (Map-a, Map-d), (Map-b, Map-c) and (Map-b, Map-d).

Mujoco. We use two simulated robots from OpenAI Gym [5]: half cheetah (HC) and ant. We define
two new environments by crippling one of the joints of each robot (B-HC and B-ant) as described
in [11], where B- is short for broken. The (source, target) pairs include: (HC, B-HC) and (ant, B-ant).

Humanoid. In this environment, a (source) simulated humanoid (H) agent must avoid falling in
the face of the gravity disturbances. Two target environments each contain a humanoid attacked by
blocks from a fixed direction (A-H) and a humaniod with a part of broken joints (B-H).

Quadruped robot. We also consider the sim2real setting for transferring the simulated quadruped
robot to a real quadruped robot. For more evident comparison, we break the left hind leg of the real-
world robot (see Appendix F.2). We adopt (sim-robot, real-robot) to denote this sim2real transition.

5.1 Emergent Behaviors with DARS
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Figure 6: Visualization of skills. (a, b): colored trajectories in map pairs depict the skills, learned with
DARS, deployed in source (left) and target (right). (c, d): colored bars and dots depict the velocity of
each skill wrt different environments of mujoco and models. The variation (blue) across velocities for
HC and ant corroborates the diversity of skills. DARS demonstrates its better adaptability by perform-
ing similar skills on broken agents (green) to the original ones (blue) while DIAYN (orange) fails.

Visualization of the learned skills. We first apply DARS to the map pairs and the mujoco pairs,
where we learn the goal-conditioned policy πθ in the source environments with our dynamics-aware
rewards (log qφ − β∆r). Here, we relabel the latent random variable ω as the goal g for the goal-
conditioned policy πθ: g , Relabel(πµ, ω, τ̃) = ω (Figure 3 c1). The learned skills are shown
in Figures 2, 6 and Appendix E. We can see that the skills learned by our method keep the same
embodiment when they are deployed in the source and target environments. If we directly apply the
skills learned in the source environment (without β∆r), the dynamics mismatch is likely to disrupt
the skills (see Figure 2 top, and the deployment of DIAYN in half cheetah and ant pairs in Figure 6).

Map-a Map-b

(a) Heatmaps of log qφ.
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Figure 7: (a): The value of log qφ in Map-a for (Map-a, Map-b) and log qφ in Map-b for (Map-b,
Map-c). (b): Three trajectories in Map-b for the (Map-b, Map-c) task, and the recorded rewards.

Visualizing the dynamics-aware rewards. To gain more intuition that the proposed dynamics-
aware rewards capture the perceptible dynamics of both the source and target environments and
enable an adaptive policy for the target, we visualize the learned probing reward log qφ and the reward
modification β∆r throughout the training for (Map-a, Map-c) and (Map-b, Map-c) pairs in Figure 7.

The probing policy learns qφ by summarizing the behaviors with the latent random variable ω in
source environments. Setting Map-a as the source (Figure 7 (a) left), we can see that log qφ resembles
the usual L2-norm-based punishment. Further, in the pair (Map-b, Map-c), we can find that the
learned log qφ is well shaped by the dynamics of the source environment Map-b (Figure 7 (a) right):
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even if the agent simply moves in the direction of reward increase, it almost always sidesteps the wall
and avoids the entrapment in a local optimal solution produced by the usual L2-norm based reward.

To see how the modification β∆r guides the policy, we track three trajectories (with the same goal)
and the associated rewards (log qφ − β∆r) in the (Map-b, Map-c) task, as shown in Figure 7 (b). We
see that Traj.2 receives an incremental log qφ along the whole trajectory while a severe punishment
from β∆r around step 6. This indicates that Traj.2 is inapplicable to the target dynamics (Map-c),
even if it is feasible in the source (Map-b). With this modification, we indeed obtain the adaptive
skills (eg. Traj.3) by training in the source. This answers our first question, where both dynamics
(source and target) explicitly shape the associated rewards, guiding the skills to be domain adaptive.

5.2 Comparison with Baselines
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Figure 8: Comparison (training process) with
alternative methods for learning skills for target
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the average across four random seeds; the dashed
lines denote the performance of trained policies.
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Behaviors in stable environments. For the second question, we apply our method to state-reaching
tasks: g , Relabel(πµ, ω, τ̃) = s̃T (Figure 3 c2). We adopt the negative L2 norm (between the goal
and the final state in each episode) as the distance metric. We compare our method (DARS) against
six alternative goal-reaching strategies4: (1) additionally updating πθ with data BT collected in the
target (DARS Reuse); (2) employing DARC with a negative L2-norm-based reward (DARC L2);
training skills with GPIM in the source and target respectively (3) GPIM in source and (4) GPIM in
target); (5) updating GPIM in the target 10 times more (GPIM in target X10; R = 10 and see more
interpretation in [11]); (6) finetuning GPIM in source in the target (GPIM Finetuning in target).

We report the results in Figure 8. GPIM in source performs much worse than DARS due to the
dynamics shifts as we show in Section 5.1. With the same amount of rollout steps in the target,
DARS achieves better performance than GPIM in target X10 and GPIM Finetuning in target, and
approximates GPIM in target within 1M steps in effectiveness, suggesting that the modification
β∆r provides sufficient information regarding the target dynamics. Further, reusing the buffer BT
(DARS Resue) does not significantly improve the performance. Despite not requiring a prior reward
function, our unsupervised DARS reaches comparable performance to (supervised) DARC L2 in
(Map-a, Map-b) pair. The more exploratory task (Map-b, Map-c) further reinforces the advantage of
our dynamics-aware rewards, where the probing policy πµ boosts the representational potential of qφ.

Behaviors in unstable environments. Further, when we set p(ω) as the Dirac distribution, p(ω) =
δ(ω), the discriminator qφ will degrade to a density estimator: qφ(st+1), which keeps the same form
as in SMiRL [4]. Assuming the environment will pose unexpected events to the agent, SMiRL seeks
out stable and repeatable situations that counteract the environment’s prevailing sources of entropy.

With such properties, we evaluate DARS in unstable environment pairs, where the source and the
target are both unstable and exhibit dynamics mismatch. Figure 9 (left) charts the emergence of a

4We do not compare with other unsupervised RL methods (eg. Warde-Farley et al. [53]) because they
generally study the rewards wrt the high-dimensional states. DARS does not focus on high-dimensional states.
Domain randomization [35, 50] and system (dynamics) identification [12, 7, 1] are also not compared because
they requires the access of the physical parameters of source environment, while we do not assume this access.
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Moving forward. (Finetuning) Failure   Keeping balance. (Finetuning) Failure  

Success  ✓Moving forward. (DARS) Success  ✓Keeping balance. (DARS) 

Moving forward. (Full-in-real) Failure   Keeping balance. (Full-in-real) Failure  

Figure 10: Deploying the learned skills into the real quadruped robot, where all models are trained
with limited interaction (three hours for moving forward and one hour for keeping balance) in real.

stable skill with DARS, while SMiRL suffers from the failure of domain adaptation for both (H, A-H)
and (H, B-H). Figure 9 (right) shows the comparisons with SMiRL Finetuning, denoting training in
the source and then finetuning in the target with SMiRL. With the same amount of rollout steps, we
can find that DARS can learn a more stable skill for the target than SMiRL Finetuning, revealing the
competence of our regularization term for learning adaptive skills even in the unstable environments.

5.3 Sim2real Transfer on Quadruped Robot

Table 1: Time (hours) spent for valid
skill emergence in real-world interac-
tion (covering the manual reset time).

forward &
backward

keeping
balance

Full-in-real > 6 h > 6 h
Finetuning > 6 h 4 h

DARS 3 h 1 h

We now deploy our DARS on pair (sim-robot, real-robot) to
learn diverse skills (moving forward and moving backward)
and balance-keeping skill in stable and unstable setting re-
spectively. We compare DARS with two baselines: (1) train-
ing directly in the real world (Full-in-real), (2) finetuning
the model, pre-trained in simulator, in real (Finetuning).
As shown in Figure 10, after three hours (or one hour) of
real-world interaction, our DARS demonstrates the emer-
gence of moving skills (or the balance-keeping skill), while
baselines are unable to do so. As shown in Table 1, Fine-
tuning takes significantly more time (four hours vs. one hour) to discover balance-keeping skill in the
unstable setting, and the other three comparisons are unable to acquire valid skills given six hours of
interaction in the real world. Supplementary material contains videos from this sim2real deployment.

6 Conclusion

In this paper, we propose DARS to acquire adaptive skills for a target environment by training
mostly in a source environment especially in the presence of dynamics shifts. Specifically, we
employ a latent-conditioned policy rollouting in the source environment to represent goals (including
goal-distribution and goal-achievement reward function) and introduce a KL regularization to further
identify consistent behaviors for the goal-conditioned policy in both source and target environments.
We show that DARS obtains a near-optimal policy for target, as long as a mild assumption is met. We
also conduct extensive experiments to show the effectiveness of our approach: (1) DARS can acquire
dynamics-aware rewards, which further enables adaptive skills for the target environment, (2) the
rollout steps in the target environment can be significantly reduced while adaptive skills are preserved.
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