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Abstract

Multimodal large language models (MLLMs) such as GPT-40, Gemini Pro, and Claude
3.5 have enabled unified reasoning over text and visual inputs, yet they often hallucinate
in real-world scenarios—especially when small objects or fine spatial context are involved.
We pinpoint two core causes of this failure: the absence of region-adaptive attention and
inflexible token budgets that force uniform downsampling, leading to critical information
loss. To overcome these limitations, we introduce Zoomer, a visual prompting framework
that delivers token-efficient, detail-preserving image representations for black-box MLLMs.
Zoomer integrates (1) a prompt-aware emphasis module to highlight semantically relevant
regions, (2) a spatial-preserving orchestration schema to maintain object relationships, and
(3) a budget-aware strategy to optimally allocate tokens between global context and local
details. Extensive experiments on nine benchmarks and three commercial MLLMs demon-
strate that Zoomer boosts accuracy by up to 27% while cutting image token usage by up to
67%. Our approach establishes a principled methodology for robust, resource-aware multi-
modal understanding in settings where model internals are inaccessible.

1 Introduction

Vision-language understanding has emerged as a central challenge in multimodal artificial intelligence, with
broad applications ranging from robotics and autonomous driving to scientific diagram analysis and human-
computer interaction. Recent advances in multimodal large language models (MLLMs), such as GPT-4o,
Gemini Pro, and Claude 3.5, have significantly pushed the boundaries of this field by enabling unified
reasoning over text and visual inputs |Li et al.| (2024); |Gu et al| (2024). These models have demonstrated
impressive performance on a range of benchmarks and are increasingly perceived as possessing near-human
or even PhD-level capabilities in controlled environments. However, despite these promising results, our
large-scale empirical study uncovers a critical limitation that remains underexplored: MLLMs exhibit a
pronounced hallucination tendency in real-world visual reasoning tasks, largely due to their inherent difficulty
in perceiving small objects and limited field-of-view awareness. This “small object blindness” can lead to
severe and often undetected reasoning failures, raising concerns about the deployment of MLLMs in real-
world visual reasoning scenarios.

To investigate the root causes of hallucination in MLLMs, we conduct a systematic analysis and uncover two
fundamental limitations in the visual processing pipeline of current black-box MLLMs. First, these models
lack region-adaptive attention mechanisms, resulting in uniform spatial processing that disregards task-
relevant visual saliency. Despite their architectural complexity, black-box MLLMs fail to emulate the human
visual system’s ability to focus selectively while preserving contextual structure. As illustrated in Figure
this limitation leads to persistent failure even in elementary tasks such as object counting. Notably, the issue
is consistent across different model families and prompting strategies, indicating a fundamental limitation
rooted in the design of their visual tokenization and attention mechanisms, rather than implementation-
specific flaws.

Second, we identify a critical tension between token budget constraints and visual fidelity. Black-box MLLMs
are constrained by fixed token limits for both textual and visual inputs—an engineering choice originally
motivated by inference efficiency and fairness considerations (Chen et al.,2024). However, our analysis reveals
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Figure 1: Illustration of a black-box MLLM’s approach to counting cacti in an image. The model identifies
two small cacti on the left side and overlooks the single cactus on the right side of the image, arriving at
a total of three cacti. The processed prompt highlights specific regions of interest to facilitate the correct
object count.

Processed MLLM
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Figure 2: Illustration of information loss during image processing in black-box MLLMs. The original high-
resolution image (4240x2832) is downscaled to meet token limits (1536x1026), leading to the loss of critical
details. Cropping to focus on a region of interest (146x246) allows the model to correctly identify the book
title as “Webster’s II".

that token budgeting in vision tasks is a core computational bottleneck that directly impacts perception
granularity. As shown in Figure [2} the commonly adopted strategy of uniform image downsampling leads to
substantial loss of local detail, especially for small or spatially distributed objects. Crucially, we demonstrate
that neither prompt engineering nor improved resizing algorithms can compensate for this representational
loss.

These observations motivate us to formally define a new problem in visual prompting for MLLMs: How can
region-aware, spatially coherent visual inputs be constructed under strict token constraints in
black-box inference settings? We argue that solving this problem requires a paradigm shift from heuristic
prompt design to principled visual token orchestration. We decompose this problem into three interdependent
sub-tasks: (1) Region Selection —identifying and prioritizing task-relevant regions without model internals;
(2) Spatial Preservation — retaining spatial relations and object continuity across selected regions; and
(3) Budget Optimization — balancing the allocation of tokens between global context and fine-grained
details.

To address these challenges, we present Zoomer, a visual prompting framework designed for token-efficient,
region-aware visual representation. Zoomer comprises three integrated components:

¢ A prompt-aware visual emphasis module, which selectively highlights salient regions by ma-
nipulating image input structure, enabling focused attention without altering the model;

e A spatial-preserving orchestration scheme, which ensures that contextual coherence and rel-
ative object positioning are preserved across split or patched inputs;



Under review as submission to TMLR

e A budget-aware region selection strategy, which dynamically allocates token capacity based
on content density and task relevance.

We evaluate Zoomer on a suite of diverse benchmarks, including Vstar(Wu & Xie) 2023]), CVBench(Tong
et al.l [2024a), and RealWorldQA (xAl, 2024), which collectively capture controlled, open-domain, and in-
the-wild reasoning scenarios. Zoomer consistently outperforms competitive baselines in both accuracy and
efficiency. On the Vstar dataset, the Zoomer-Patches variant achieves a 26.9% absolute accuracy gain, while
on RealWorldQA, Zoomer-Adaptive exceeds baseline performance by 12.1%. Moreover, in the Terralncognita
setting, our method reduces token usage by 67% while improving accuracy by 6.4%. These gains hold across
multiple API providers, including GPT—44€|7 Gemini—1.5Pr<E|, and Claude—3.5—SonnetEL demonstrating that
Zoomer generalizes well across model architectures and tokenization schemes.

In summary, this work makes the following contributions: (1) We provide the first in-depth empirical analysis
of how token allocation and spatial attention impact visual reasoning performance in black-box MLLMs. (2)
We formulate the token-constrained, region-aware visual prompting problem and identify its core design
dimensions. (3) We propose Zoomer, a general-purpose framework for token-efficient, spatially coherent
visual prompting. (4) We demonstrate that Zoomer improves both accuracy and efficiency across models,
datasets, and domains, highlighting a new path toward robust, resource-aware multimodal understanding.

2 Pilot Experiments

A fundamental challenge in black-box multimodal large language models (MLLMSs) is their inability to
process high-resolution visual inputs efficiently under strict token budget constraints. In platforms such as
GPT-4o, visual inputs are internally segmented into fixed-size image patches (typically 512x512 pixels),
each corresponding to a predefined token cost (e.g., 170 tokens per patch)ﬂ This patch-based tokenization
strategy, designed for balancing inference efficiency and fairness, introduces a critical trade-off: higher image
resolution yields more detailed information but leads to rapid token consumption, limiting the number of
patches a model can process. Conversely, reducing token usage through downsampling or cropping risks
omitting essential fine-grained visual cues.

To quantify the impact of this trade-off, we conducted a series of pilot experiments using GPT-40-0513 on
the Vstar-Bench dataset, which requires precise visual grounding of small or occluded objects in complex
scenes. We compare three visual prompting strategies: (1) Unaltered Input, where the original image is
submitted directly without preprocessing; (2) Image Crop, which extracts a region of interest centered on
the target object; and (3) Zoomed Crop, which magnifies the cropped region to maximize visual feature
visibility while preserving the 512x512 input constraint.

The results in Table [1| reveal several critical insights. While Unaltered Input provides full-scene context,
it incurs excessive token cost (955 tokens), with limited performance gains—suggesting that high token
usage alone does not guarantee better model understanding. In contrast, the Image Crop method reduces
token usage substantially but fails to improve accuracy, likely due to the lack of visual emphasis and limited
discriminative detail in the cropped region.

The Zoomed Crop strategy significantly outperforms both baselines, achieving 64% accuracy with only
270 tokens. This improvement highlights the importance of visual emphasis: by magnifying relevant re-
gions, Zoomed Crop restores critical visual granularity lost in standard downsampling, while maintaining
input compactness. Importantly, this approach respects the model’s fixed patch budget without requiring
architectural changes or access to internal weights.

These findings underscore a fundamental limitation in black-box MLLMs: existing visual prompting tech-
niques fail to manage the resolution—token trade-off effectively. Naive approaches such as downscaling or
region cropping without adaptive enhancement do not sufficiently preserve semantic or structural informa-

Thttps://platform.openai.com/
2https://gemini.google.com/
3https://anthropic.com/
4https://openai.com/api/pricing/
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Method Accuracy %;?{ELI:
Unaltered Input ‘ 57% 955
Image Crop | 58% 270
Zoomed Crop |  64% 270

Table 1: Performance of different methods on Image from Vstar.

tion. Our pilot experiments suggest that vision enhancement strategies—particularly those that incorporate
selective magnification—are essential for preserving task-relevant detail in constrained inference settings.

In subsequent sections, we build upon this insight to design Zoomer, a visual prompting framework that
generalizes the principles of adaptive emphasis, spatial preservation, and budget-aware token allocation
across diverse visual reasoning tasks.

3 Related Work

3.1 Multimodal LLMs: Open-Source and Black-Box Models

The integration of visual and textual modalities in large language models (LLMs) has led to significant
advancements in multimodal models (MLLMs) like GPT-40, Gemini Pro and Claude3-Sonnet. These models
rely on effective visual encoding strategies to bridge the gap between language and vision. Approaches such
as CLIP (Yang et al.) align visual and language embeddings through contrastive learning, while models like
Flamingo (Alayrac et al) and BLIP-2 (Dai et al) use cross-attention mechanisms or pretraining modules
to link vision encoders with LLMs. However, these methods often rely on fixed low-resolution inputs (e.g.,
224x224), limiting their ability to process high-resolution images or non-standard aspect ratios (Liu et al.|
al), which hampers performance on fine-grained tasks such as OCR and small object detection

In contrast, open-source multimodal models (Li et al., |c; Xu et al.; [Zhang et al.| |a; [Li et al., [a} [Zhao et al.)
allow for architectural modifications and fine-tuning to accommodate any-resolution inputs. However, black-
box MLLMs such as GPT-40 and Gemini Pro, which impose strict token limits for computational efficiency,
require alternative solutions. The need to downsample or crop images to meet these constraints often results
in the loss of crucial visual details, particularly in tasks requiring detailed visual understanding. While
position embedding interpolation (Bai et al.; [Wang et al.; |Luo et al.; Hong et al.; |(Chen et al.) and patch-
based cropping (Xu et al.; [Li et al. [a) widely adpoted in open-soure models offer promising directions for
any aspect ratio and any-resolution image processing, they are not applicable to black-box models, where
architectural changes and extra training/fine-tuning are not permitted.

3.2 Object Detection

Traditional object detection models, such as Faster R-CNN (Ren et al.) and YOLO (Redmon et al.),
effectively identify and localize objects within predefined categories. However, they struggle with open-set
scenarios, where novel objects not seen during training need to be detected.

Recent advances address this limitation through open-set detection models that leverage natural language
processing. For instance, OV-DETR (Zang et al.) integrates CLIP with object detection to generate
category-specific bounding boxes from textual prompts, enabling detection in open-world settings. Simi-
larly, GLIP (Li et all [b) reframes detection as a grounding problem, improving alignment between visual
regions and textual descriptions. DetCLIP (Yao et al.) extends this further using pseudo labels from large-
scale captioning datasets, enhancing generalization. Grounding DINO (Liu et al |b)), built on the DETR
framework (Carion et al.), also advances open-set detection through natural language integration.

In addition, SAM (Kirillov et al.}|2023)) and SAM-2 (Ravi et al., 2024) offer zero-prompt or minimal-prompt
segmentation for arbitrary objects but lack robust text-prompt handling. EVF-SAM (Zhang et al., |b)
overcomes this by extending SAM’s capabilities to better manage complex text-based object segmentation.
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Figure 3: The Zoomer framework. Left: Raw Input image (®) and text prompt are processed by Zoomer and
then fed into a black-box LLM (e.g., GPT-4o0) for analysis, resulting in more accurate and detailed responses
compared to standard input methods with even token saving. Right: Zoomer processes the text to extract key
terms and uses a multi-scale emphasizer( with an off-the-shelf object detection model to identify regions
of interest (ROIs). The identified ROIs (@) are then processed through a spatial preserving orchestration
schema ( for a filtered emphasized patch (@) and a budget-aware image prompt construction module
( to create a token-efficient prompt within the specified budget. A scaled global view (®) is also
generated for potential prompting.

By incorporating these models, Zoomer enhances its ability to dynamically detect and emphasize regions
of interest (Rols), enabling black-box MLLMs to focus on the most relevant visual content without losing
critical details, which is essential for maintaining high performance across varied resolutions.

4 Method Overview

Building upon the findings of our pilot experiments, we introduce Zoomer, a unified visual prompting frame-
work that enables detail-preserving, token-efficient encoding of high-resolution visual inputs for black-box
multimodal LLMs. Existing models such as GPT-40 and Gemini 1.5 often rely on uniform downsampling
or tiling to fit image inputs into fixed-size patches, which leads to significant information loss and degraded
performance on fine-grained vision tasks.

Zoomer addresses this challenge through three tightly coupled modules, as shown in Figure

e Prompt-Aware Visual Emphasizer: extracts task-relevant image regions based on semantic cues
derived from natural language prompts.

o Spatial-Preserving Orchestration Schema: reconstructs extracted regions into spatially faithful
layouts that preserve object relationships and scene structure.

o Budget-Aware Prompting Strategy: manages token allocation under user-specified constraints
by adapting the number and organization of image regions.

4.1 Prompt-aware Visual Emphasizer

The prompt-aware visual emphasizer utilizes a multi-scale emphasizing strategy to prioritize image slices that
are most relevant to the input prompts. By analyzing the semantic content of the prompts, this component
dynamically selects and enhances specific regions of the image at varying resolutions. This approach not only
enriches the contextual information available to the model but also mitigates the adverse effects of losing
critical details during the resizing process.



Under review as submission to TMLR

Prompt Tokenization Prompt tokenization is a critical first step in which input prompts are parsed into
meaningful tokens. This process segments the prompt into components that can be easily analyzed for
semantic relevance. Specifically, the prompt is divided into structural components, and our focus is on
processing the relevant sections that contribute directly to visual emphasis.

To enhance the extraction of semantically relevant tokens, we apply advanced natural language processing
(NLP) techniques. First, we use the NLTK libraryﬂ to remove stopwords, reducing noise and ensuring that
the model’s attention remains on the most critical visual elements. By eliminating these non-essential words,
we concentrate on key terms that directly influence the visual emphasis.

In addition to basic stopword removal, we utilize dependency parsing (Sarthi et al.l 2024} [De Marneffe &
Manning}, 2008]) to analyze the syntactic structure of the prompt. This deeper analysis identifies core entities
and relationships, such as subject-object pairs and action verbs, which are crucial for interpreting the user’s
intent. By focusing on these core semantic elements, we ensure that the visual emphasis aligns precisely
with the underlying meaning of the prompt.

Finally, we strip away any irrelevant formatting or non-content-related details, allowing the visual emphatizer
to focus solely on the essential information. This multi-layered tokenization approach ensures an optimal
match between the tokenized prompt and the image features selected for emphasis.

Multi-Scale Emphasizing Algorithm: Given a key object term extracted from the text prompt, the
Multi-Scale Emphasizing Algorithm [T] utilizes a state-of-the-art object detection model to localize the corre-
sponding object in the image prompt. In our experiments, we primarily employ GroundingDINO (Liu et al.|
b) as our localization model.

The encoder in such models typically downsamples the input image to a resolution of 224 x 224 or 336 x 336,
potentially resulting in information loss when localizing the target object at a coarse granularity. To address
this limitation, we propose a Multi-Scale Emphasizing Algorithm that processes the original image at multiple
resolutions. The algorithm divides the input image into patches at various granularities, e.g., 2x 2, 3 x 3, and
beyond. For each generated patch, we apply the object detection model to localize the target object. The
algorithm retains bounding boxes returned by the model that exceed a predefined confidence threshold. These
high-confidence bounding boxes collectively form the output of our algorithm, providing a comprehensive
multi-scale representation of the target object’s location.

Algorithm 1 Multi-Scale Emphasizing Algorithm

Require: I: input image, k: key object term, M: object detection model, T": confidence threshold
Ensure: B: set of bounding boxes
: B«
S+ {2,3,..., Smax} > Set of scaling factors
: for each s € S do
P, + DivideIntoPatches(I,s X s)
for each patch p € P; do
b,c <« M(p, k) > Get bounding box and confidence
if ¢ > T then
B+ BU{b}
end if
end for
: end for
: return B

© % NPTk W

== e

4.2 Spatial-preserving Orchestration Schema

Building upon the Multi-Scale Emphasizing Algorithm, we introduce a Spatial-preserving Orchestration
Schema to maintain the structural integrity of the image during the encoding process. This schema filters
the bounding boxes obtained from the Multi-Scale Emphasizing Algorithm and ensures that the relative

Shttps://www.nltk.org/
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positions of the selected image slices are preserved, facilitating a more faithful representation of the original
image layout and enabling coherent reconstruction when processed by the multimodal LLM. To refine the
selection of bounding boxes, we implement a Non-Maximum Suppression (NMS) based slice filtering method.
NMS is employed to eliminate redundant and overlapping slices, retaining only the most salient features that
align with the prompt. The process works as described in Algorithm [2}

By setting an appropriate threshold 7' for the Intersection of Union (IoU) of bounding boxes around the
selected regions, we ensure that only the highest-quality slices are retained for the encoding process. This
filtering step enhances computational efficiency by reducing the number of slices to be processed and improves
the clarity and relevance of the visual information provided to subsequent stages of the model.

The resulting set of filtered slices are then orchestrated to preserve their original relative positions within
the image. This orchestration process involves the following steps: Slice Extraction: For each bounding
box b; in the filtered set F', we extract the corresponding image slice from the original image. Blank Image
Creation: We create a new blank image with the same dimensions as the original image. Slice Placement:
We place each extracted slice onto the blank image at its original position, leaving the rest of the image
blank. Image Shrinking: The resulting image, containing only the selected slices in their original positions
with the rest left blank, is then shrunk to a predetermined size while maintaining its aspect ratio.

Algorithm 2 NMS-based Slice Filtering
Require: B: set of bounding boxes, T": IoU threshold
Ensure: F': set of filtered bounding boxes

1 F 0

2: Sort B in descending order of confidence scores
3: while B # () do

4: bmax ¢ arg max,¢ g score(b)
5: F <+ F Ubpax

6: B + B\ bmax

7 for each b € B do

8: if ToU(bmax,b) > T then
9: B+ B\b

10: end if

11: end for

12: end while

13: return F

4.3 Budget-aware Prompting Strategy:

Our approach incorporates a sophisticated budget-aware prompting strategy that optimizes the allocation
of token budget for image processing. This strategy begins with a user-specified total token budget Biotal,
allowing for customization based on specific task requirements or computational constraints. We propose
four varieties of Zoomer to accommodate different budget scenarios and task requirements:

o Zoomer-Local(®): This variant utilizes only the spatial-preserving schema to consolidate all focused
image slices into a single image patch(® in Figure . It is optimal for scenarios with very limited

token budgets, prioritizing the most relevant visual information.
o Zoomer-Adaptive (® + { ® ): This approach dynamically includes a global view of the original

image if the cropped portion falls below a certain threshold T4. This allows the MLLM to better
understand the overall scene context when the budget permits, while still focusing on key areas of

interest.
o Zoomer-Global (® + ®): This variant assigns a global view to all images, regardless of the specific

regions of interest. It is suitable for tasks that require consistent overall context and when the token

budget is sufficient to include both global and local information.
o Zoomer-Patches(® + ®): This is the most token-intensive approach, assigning each image slice

its own patch without spatial preservation, along with a global view. It provides the most detailed
information but requires the largest token budget.
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The selection among these varieties depends on the user-specified budget and the nature of the task. For each
variant, the number of high-resolution slices or patches NV is calculated based on the available budget and
the token cost per slice or patch. These slices are selected from the output of our Multi-Scale Emphasizing
Algorithm, prioritizing based on their relevance to the key term of text prompts. To present the methods
more clearly and vividly, we refer to Figure[d which outlines the methodology, and Figure[f] which showcases
a specific case study.

[Question: How many cactus in the image?

Raw Image

[ Text of Interest: cactus image]

Zoomer
Region of Interest

—p > | Ragenl |
=

Figure 4: The example of applying Zoomer

£ N
Zoomer )
- Local

Zoomer
- Adaptive

Zoomer
- Global

Zoomer
- Patches

Figure 5: The example of different settings of Zoomer
5 Experiments

We evaluate the performance of Zoomer on a diverse set of visual reasoning tasks using multiple black-
box MLLMs. Our experiments are designed to assess both quantitative gains in accuracy and qualitative
improvements in visual fidelity under constrained token budgets.

Specifically, our evaluation is guided by the following research questions: RQ1: Accuracy. Does Zoomer
improve task accuracy across different black-box MLLMs on image-grounded reasoning tasks, compared
to standard prompting baselines? RQ2: Token Efficiency. How does Zoomer balance the trade-off
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Acc./Tokens Bench

Mothod Vstar CVBench-2D CVBench-3D  RealworldQA SQA-I MMVP MMMU HR-4K HR-8K
Raw 56.5%/955  68.5%/428 78.2%/895 67.6%/998  87.3%/353 83.3% /270 68.4%/608 50.6%/1105 46.8%/1105
Resize 41.9%/270  66.3%/270  75.2%/270  61.1%/270  86.8%/270 83.3%/270 62.9%/270 35.8%/270  33.4%/270
Zoomer-Local 67.1%/270  724%/270  86.2%/270  72.4%/270  88.3%/270 ST.1%/270 59.8%/270 58.8%/270 57.7%/270
Zoomer-Adaptive 67.5%/419 72.9%/374 87.9%/408 74.7%/362  91.1%/308 88.7%/351 61.6%/312 60.8%/331 59.3%/324
Zoomer-Global 67.6%/540 73.1%/540 88.3%/540 75.3%/540  92.3%/540 88.9%/540 67.3%/540 61.3%/540 59.8%/540
Zoomer-Patches | 71.7%/1029 74.6%/709  85.8%/1113  75.8%/997 92.8%/727 88.4%/726 68.9%/841 60.4%/713 58.9%/875

Table 2: Performance of GPT-4o across different datasets using various image prompt processing meth-
ods, focusing on accuracy and token consumption. Among these approaches: Local: Only the extracted
Rols are used. Adaptive: Selectively provides the MLLM with a global view of the image based on the
prompt strategy. Global: Every request includes the global view of the image. Patches: Does not use
the Spatial-Preserving Orchestration Schema; instead, each possible Rol is independently provided to the
MLLM, including the global view.

Method Accuracy Tokens Latency Money Cost($10-e3)
Zero-Shot  15-Shot | Zero-Shot  15-Shot | Zero-Shot 15-Shot | Zero-Shot 15-Shot
Raw 8% 84% 963 13488 4.8s 18.7s 4.815 67.44
Resize 61% 74% 255 4080 2.9s 7.58 1.275 20.4
Low-Detail 60% 70% 85 1360 2.1s 6.5s 0.425 6.8
Zoomer-Adaptive 83% 88% 315 5112 3.1s 9.8s 1.575 25.56

Table 3: Performance in terms of accuracy, latency, and image token cost on Terralncognita under ICL
conditions—specifically with 15 examples per question—and under zero-shot conditions.

between accuracy and token usage, and how does it perform relative to methods that either over-utilize
or under-utilize the token budget? RQ3: Component Effectiveness. What is the contribution of each
major component of Zoomer —specifically, the multi-scale visual emphasis module and the budget-aware
prompting strategy—to the overall performance?

In the subsequent sections, we provide detailed answers to each question based on experiments conducted
on benchmarks including Vstar, CVBench, and Real WorldQA, and across multiple MLLMs such as GPT-4o,
Gemini-1.5Pro, and Claude-3.5-Sonnet.

5.1 Setup

Assessment and Datasets We evaluated our system on a series of challenging multimodal tasks, using
commercial black-box MLLMs for applications ranging from visual-language reasoning to image understand-
ing and question answering. The experiments were conducted on a variety of different public datasets,
including:

1) Vstar (Wu & Xiel [2023): A benchmark dataset focused on image classification, used to evaluate fine-
grained visual recognition capabilities in object detection and classification tasks.

2) CVBench (Tong et al., |2024al): Contains 2 sub-category, CV Benchap and CV Benchsp, respectively,
representing two-dimensional and three-dimensional visual image, respectively, to evaluate the performance
of the model when processing images of different dimensions, especially the understanding ability in complex
scenes.

3) Realworld@QA (xAL [2024]): Used to test the multimodal question answering performance of the model in
real-world scenarios, involving cross-language and cross-image information processing.

4) MMVP (Tong et al., 2024b): A validation set for multimodal visual processing, designed to evaluate the
comprehensive understanding of models for complex visual scenes.

5) Science@QA (Lu et al)[2022): A multimodal scientific question-answering dataset featuring multiple-choice
questions across a diverse range of science topics.
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API Method  Vstar CVBench-2D  RealworldQA MMVP

GPT-4o Raw 56.5% 68.5% 67.6% 83.3%
Zoomer 71.7% 74.6% 75.8% 88.9%

Gemini- Raw 53.1% 65.4% 64.0% 79.8%
1.5Pro Zoomer 70.4% 73.2% 73.9% 87.8%
Claude- Raw 51.8% 66.7% 61.0% 80.2%
3.5-Sonnet  Zoomer 69.7% 72.8% 74.1% 87.2%

Table 4: Accuracy of Different Black-box MLLM APIs. For Vstar, CVBench-2D, and RealworldQA, we used
the Patches version of SysName. For MM VP, inspired by Table [2] we employed the Global version.

Method Model Prompt Strategy Vstar CVBench-2D CVBench-3D RealworldQA SQA-I MMVP MMMU
Local 57.1% 67.6% 79.9% 68.5% 87.8% 84.0%  55.3%
EVF-SAM Adaptive 57.5% 71.3% 82.5% 72.1% 88.3% 85.3%  55.9%
Global 57.8% 72.1% 83.0% 72.4% 88.8% 87.3%  56.8%
Default Patches 57.1% 72.7% 83.8% 72.1% 86.8% 84.7%  56.1%
Local 58.1% 70.6% 82.5% 71.5% 85.3% 84.3% 55.6%
Ground Dino Adaptive 58.3% 71.5% 83.9% 73.1% 90.1% 85.6%  56.3%
Global 58.3% 71.8% 84.8% 73.4% 90.3% 87.8% 57.0%
Patches 58.8% 70.6% 83.1% 72.6% 90.9% 87.7%  56.6%
Local 58.4% 69.2% 84.0% 72.5% 88.3% 84.7% 57.1%
EVF-SAM Adaptive 58.5% 71.3% 85.3% 73.1% 91.1% 86.8% 58.7%
Global 58.4% 72.1% 85.8% 73.4% 91.8% 87.8% 59.6%
Multi- Patches 60.2% 71.3% 85.7% 73.1% 91.3% 86.8% 59.2%
Resolution Local 63.6% 71.8% 82.6% 70.2% 88.8% 85.1% 56.8%
Ground Dino Adaptive 64.4% 71.8% 84.3% 70.6% 90.3% 86.5%  58.5%
Global 66.4% 72.2% 84.7% 71.4% 91.8% 86.9% 59.3%
Patches 66.2% 72.6% 83.6% 70.2% 92.1% 86.9% 58.8%
Local 63.7% 72.1% 85.2% 70.4% 85.3% 85.7% 57.5%
EVF-SAM Adaptive 64.3% 72.4% 86.1% 70.6% 90.1% 87.6%  58.5%
Global 64.3% 72.8% 87.9% 71.7% 90.3% 88.8%  59.9%
Multi-Scale Patches 67.2% 73.7% 87.1% 73.0% 90.9% 88.0% 59.7%
Local 67.1% 72.4% 86.2% 72.4% 88.3% 87.1% 57.7%
Ground Dino Adaptive 67.5% 72.9% 87.9% 74.7% 91.1% 88. 7%  59.3%
Global 67.6% 73.1% 88.3% 75.3% 92.3% 88.9%  59.8%
Patches 71.7% 74.6% 85.8% 75.8% 92.8% 88.4%  58.9%

Table 5: Performance of Zoomer Across Datasets for Different Emphasis Methods, Models, and Prompt
Strategies.

6) MMMU [Yue et al| (2024): The validation part of a new benchmark, which designed to evaluate the
performance of multimodal models on multidisciplinary tasks that require university-level subject knowledge
and deliberate reasoning.

7) HR [Wang et al| (2024): A high-resolution multimodal benchmark consisting of 4K and 8K images and
corresponding questions.

Models We employed three black-box MLLMs—GPT-40-0513, Claude-v3-Sonnet, and Gemini-
Pro—accessed via their respective APIs (OpenAl, Claude, Google). Across all experiments, we set the
temperature to 0 and used greedy decoding for consistency, optimizing the stability of outputs. NMS was
applied with a confidence score threshold of 0.8 to filter irrelevant regions from high-resolution images.

Metrics We used classification accuracy across all examples as the primary evaluation metric. Additionally,
we compared token usage for each model configuration to evaluate the efficiency improvements offered by
Zoomer.

Baselines We compare Zoomer against the following baseline methods:

1) Raw: This baseline feeds MLLM the unmodified prompt, with no adjustments made to the image.
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2) Resize: Here, images larger than 512x512 pixels are resized to fit within the GPT-40’s patch limit, while
smaller images remain unchanged.

5.2 Main results

RQ1: Accuracy Under Token Constraints

We first evaluate the accuracy of Zoomer across multiple visual reasoning benchmarks using GPT-40. Table[2]
compares its performance with baseline prompting strategies, including Raw (unaltered image input), Crop,
and heuristic patching. Across all datasets, Zoomer demonstrates consistent and significant gains.

Notably, Zoomer-Patches achieves 71.7% accuracy on the Vstar dataset, outperforming the Raw baseline by
26.9% (from 0.565 to 0.717). On the more challenging Real WorldQA dataset, which requires complex visual-
linguistic reasoning, Zoomer-Adaptive yields 0.758 accuracy—12.1% higher than the Raw input (0.676).
These results indicate that Zoomer enhances the model’s ability to ground object references and interpret
fine-grained visual cues by preserving high-fidelity regions while respecting token limits.

RQ2: Cross-Model Generalizability

To assess generalizability, we apply Zoomer to other closed-source MLLMs, including Claude-3.5-Sonnet and
Gemini-1.5Pro. As shown in Table [] the performance trends hold across architectures. For instance, on
Vstar, Zoomer improves accuracy from 0.531 to 0.704 on Gemini-1.5Pro—a 32.6% gain. On Real WorldQA,
Claude-3.5-Sonnet achieves a 34.5% improvement using Zoomer (from 0.610 to 0.741). These results suggest
that Zoomer is model-agnostic and portable across different commercial MLLMs without requiring model
access or retraining.

RQ3: Token Efficiency and Latency

One of the central goals of Zoomer is to maximize information utility under token constraints. Table
reports token usage and performance on the Terralncognita dataset under the ManyICL (Jiang et al., 2024)
setting. Zoomer achieves 0.83 accuracy with 315 tokens, while the Raw method reaches only 0.78 with 963
tokens—yielding a 6.4% accuracy improvement with 67% fewer tokens. This substantial reduction in visual
token cost translates directly into lower API usage and faster inference.

Moreover, in real-time settings such as autonomous navigation, latency becomes critical. In a zero-shot
Terralncognita setting, Zoomer reduces response time from 4.8 seconds to 3.1 seconds (a 35.4% reduction)
without sacrificing accuracy. These results underscore the practical benefits of Zoomer for latency-sensitive
and resource-constrained applications such as real-time surveillance, embodied agents, and mobile vision
systems.

5.3 findings

While Zoomer-Patches generally performs well under generous token budgets, we observe that in certain
datasets it underperforms relative to other variants. For instance, on the CV Benchsp dataset, Zoomer-
Patches yields an accuracy that is 2.5 percentage points lower than Zoomer-Global and 4.0 points lower
than Zoomer-Local. Similarly, on the MM VP benchmark, the Patches variant trails Zoomer-Global by 0.5
percentage points and Zoomer-Adaptive by 0.3 points. These differences persist across multiple trials and
are consistent beyond minor fluctuations attributable to model non-determinism.

We hypothesize that this degradation stems from the way Zoomer-Patches encodes visual inputs. Specifically,
each Rol is treated as an independent image patch and passed separately to the black-box MLLM. This
approach, while maximizing local detail preservation, inherently disrupts the global spatial context and
inhibits inter-region integration. When the number of Rols increases, the model is forced to reason over
fragmented visual inputs without spatial continuity, which may lead to failures in tasks requiring holistic
scene understanding or relational reasoning.

These findings suggest that preserving global structure—even at the cost of slightly reduced local detail—is
beneficial in tasks that involve complex spatial or semantic dependencies. They also underscore the need for
future designs to better balance granularity with contextual coherence in visual prompting pipelines.
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5.4 Ablation Study

To assess the contribution of individual components in Zoomer, we conducted a comprehensive ablation study
along two primary dimensions: (1) the role of multi-scale visual emphasis strategies, and (2) the impact of
different Rol localization models. The results are summarized in Table [l

Visual Emphasis Strategies. We compare three emphasis methods: (i) a baseline strategy using the full
image without emphasis ("Default"), (ii) a multi-resolution method that applies image resizing at various
scales without cropping, and (iii) our proposed multi-scale strategy, which extracts overlapping Rol patches
across hierarchical granularities.

Across all tested datasets, the multi-scale approach consistently outperforms the other two. For instance, on
the Vstar and CVBench datasets, the multi-scale strategy yields relative improvements of 8.2% and 6.4%
over the multi-resolution method, respectively. This suggests that the hierarchical region recall provided by
the multi-scale cropping mechanism compensates for potential object boundary fragmentation. In contrast,
multi-resolution methods—though preserving global structure—mnegatively impact performance, likely due
to the model’s reliance on fixed-size input distributions during pretraining. Adjusting resolution without
architectural adaptation may lead to degraded feature extraction in the frozen backbone of black-box MLLMs.

Backbone Variants for Region Extraction. We also evaluate the effect of using different visual back-
bone models for region proposal and saliency detection. Specifically, we compare GroundingDINO (Liu et al.)
b) and EVF-SAM as Rol extractors in the multi-scale visual emphasis pipeline. Both variants yield signif-
icant improvements over the baseline; however, GroundingDINO exhibits slightly higher accuracy across
datasets. This result suggests that while both models effectively localize task-relevant regions, the localiza-
tion precision and language grounding of GroundingDINO may offer a marginal advantage in aligning visual
slices with text prompts.

Synergistic Effects. Combining the multi-scale emphasis with the Patches variant of Zoomer yields the
strongest overall performance, validating the importance of both region-level granularity and architectural
alignment. These findings highlight that visual prompting should be co-designed with content-aware pre-
processing and prompt-space organization, especially under token-constrained inference regimes.

6 conclusion

This paper presents Zoomer, a novel visual prompting framework that addresses the challenge of preserving
fine-grained visual detail under token constraints in black-box multimodal language models (MLLMs). By
decomposing the prompting task into prompt-aware emphasis, spatially structured orchestration, and budget-
aware input construction, Zoomer enables effective visual grounding without access to model internals or
architectural modifications.

Comprehensive evaluations across datasets such as Vstar, RealWorldQA, and Terralncognita demonstrate
that Zoomer consistently improves task accuracy while reducing token consumption. For example, Zoomer-
Patches achieves a 26.9% gain over baseline accuracy on Vstar, while Zoomer-Adaptive improves Real-
WorldQA accuracy by 12.1%. On Terralncognita, Zoomer achieves higher accuracy with 67% fewer tokens,
highlighting its practical utility in resource-constrained settings.

While the present work focuses on token-level efficiency, an important emerging challenge is the communica-
tion cost associated with transferring high-resolution images from edge devices to cloud-based MLLMs. This
concern is particularly relevant in scenarios such as wearable computing or mobile robotics. A promising
direction for future research is to extend Zoomer toward edge-aware visual prompting, enabling lightweight
pre-processing directly on-device to reduce upstream bandwidth and latency while maintaining task perfor-
mance.

In summary, Zoomer contributes a modular and model-agnostic framework for enhancing visual processing
in black-box MLLMs. Its integration of spatial structure, semantic relevance, and token budget constraints
offers a principled foundation for both immediate deployment and future extensions in bandwidth-constrained
or real-time vision-language applications.
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