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ABSTRACT

In this paper, we explore a principal way to enhance the quality of widely pre-
existing coarse masks, enabling them to serve as reliable training data for segmenta-
tion models to reduce the annotation cost. In contrast to prior refinement techniques
that are tailored to specific models or tasks in a close-world manner, we propose
SAMRefiner, a universal and efficient approach by adapting SAM to the mask
refinement task. The core technique of our model is the noise-tolerant prompting
scheme. Specifically, we introduce a multi-prompt excavation strategy to mine
diverse input prompts for SAM (i.e, distance-guided points, context-aware elastic
bounding boxes, and Gaussian-style masks) from initial coarse masks. These
prompts can collaborate with each other to mitigate the effect of defects in coarse
masks. In particular, considering the difficulty of SAM to handle the multi-object
case in semantic segmentation, we introduce a split-then-merge (STM) pipeline.
Additionally, we extend our method to SAMRefiner++ by introducing an additional
IoU adaption step to further boost the performance of the generic SAMRefiner
on the target dataset. This step is self-boosted and requires no additional annota-
tion. The proposed framework is versatile and can flexibly cooperate with existing
segmentation methods. We evaluate our mask framework on a wide range of
benchmarks under different settings, demonstrating better accuracy and efficiency.
SAMRefiner holds significant potential to expedite the evolution of refinement
tools, and we will release it as a convenient post-processing toolkit.

1 INTRODUCTION

Image segmentation aims to assign a label to each pixel in an image such that pixels with the same label
share certain characteristics. There are different notations about the group labels, such as semantic
categories or instances. In the past few years, although significant progress has been made in image
segmentation, the prevailing approaches rely on fully annotated training images, which are tedious
to obtain. To reduce human labor, a labor-efficient alternative is generating segmentation masks
by preceding models, especially those designed under incomplete supervisions (e.g, unsupervised,
weakly supervised or semi-supervised annotations Wang et al. (2023b; 2022); Lin et al. (2023)). These
generated segmentation masks can serve as pseudo labels to train advanced segmentation models or
iteratively upgrade existing models Zhu et al. (2021); Yang et al. (2022). With the ever-increasing
data amount, this pseudo-labeling paradigm showcases great practicality and potential to expand
dataset volume for large-scale learning. However, the initial pseudo masks are usually noisy and lack
fine details, particularly in object boundaries or in high-frequency regions (seeing Fig. 1a), hindering
them from providing reliable supervision for model training.

Several mask refinement techniques have been proposed to improve the mask quality, but they
suffer from major drawbacks: 1) model-dependent: Some methods develop custom refinement
modules tailored to specific networks and train them in an end-to-end fashion Zhang et al. (2021);
Ke et al. (2022a), making them fail to work on different models. 2) task-specific: Another group
of techniques Chen et al. (2022); Cheng et al. (2020); Shen et al. (2022) resort to model-agnostic
refinement mechanisms but they usually focus on specific task (e.g, semantic segmentation or instance
segmentation). 3) category-limited: Most previous works require training on target datasets with
annotated data, limiting them to generalize to unseen categories and granularity. 4) time-inefficient:
Recent works Shen et al. (2022); Wang et al. (2023a) demonstrate better performance but refine one
instance at a time, which is inefficient in complex instance segmentation tasks.
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Initial Mask CRF Ours

(a) Visualizations of segmentation masks. Left: The
initial masks generated by Lin et al. (2023). Mid:
Masks refined by dense CRF Krähenbühl & Koltun
(2011). Right: Masks refined by our framework.
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(b) The performance of our proposed mask refinement
framework SAMRefiner on different benchmarks and
comparisons with related works.

Figure 1: Visualization of segmentation masks and performance.

Recently, Segment Anything Model (SAM) Kirillov et al. (2023), an interactive image segmentation
model that segments intended objects by user-provided prompts (e.g, point, box), has been proposed
and achieved significant success in many image segmentation tasks. Some researchers have en-
deavored to adapt it to various tasks in order to take advantage of SAM’s powerful representation
capability to alleviate inadequate training samples. However, most of these studies focus on predicting
masks from scratch and how to adapt SAM for the mask refinement task with pre-existing coarse
masks remains an unexplored and challenging problem. We argue that this task is of great value
in practical applications due to the widespread pre-existing masks (e.g, masks provided by offline
models, inaccurate human annotations, or other forms of pre-processing). Making modifications on
them could facilitate the annotation and benefit various downstream tasks.

However, since SAM is prompt-driven, adapting SAM to the refinement task is not trivial because it
is difficult to obtain accurate prompts for SAM merely from coarse masks. Applying SAM directly
to mask refinement using naive strategies would suffer from distorted prompts caused by noise and
result in inferior performance. For example, in Fig. 2, we adopt the commonly used box prompt (tight
box of coarse mask) and observe that this naive approach fails to obtain satisfactory performance
because diverse types of errors (e.g, false-negative, false-positive) contained in the coarse mask would
mislead the prompt extraction. Besides, results of directly taking the coarse mask as prompt are also
terrible for SAM (the 4th column in Fig. 2) due to its inherent nature in pre-training. (More prompt
analyses are provided in the Method Section and Appendix.) Therefore, how to mine noise-tolerant
prompts from the coarse mask poses a great challenge.

In this paper, we tame SAM for the mask refinement tasks, which have unique characteristics
compared to other segmentation tasks for the existence of coarse masks. We propose a universal and
efficient framework called SAMRefiner, the core technique of which is the noise-tolerant prompting
scheme. Specifically, to mitigate the effect of defects in coarse masks to prompt generation, we
propose a multi-prompt excavation strategy to mine diverse and seemly prompts, including distance-
guided points, context-aware elastic bounding boxes (CEBox), and Gaussian-style masks. These
multi-prompts can collaborate with each other to generate high-quality masks and are more robust to
noise than the single prompt. To overcome the confusion caused by multi-object cases, we introduce a
split-then-merge (STM) pipeline to make it better suited for semantic segmentation. Meanwhile, given
that the original SAM lacks dataset-specific priors, resulting in inaccurate IoU branch predictions, we
propose SAMRefiner++. This approach incorporates an additional IoU adaptation step to enhance
SAM’s prediction accuracy on specific datasets by leveraging coarse mask priors. This minimal
adaption startegy operates in a self-boosted manner and requires no extra annotations.

We conduct experiments on a wide range of semantic and instance segmentation settings, with pseudo
masks generated from incomplete supervisions, existing models, and synthetic data. Experimental
results demonstrate the outstanding mask refinement capability of SAMRefiner (seeing Fig. 1b). Our
approach is a generic post-processing tool and can be incorporated into any image segmentation
approach in a self-training fashion with constant performance improvement.
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GT Coarse Mask Tight Box Prompt OursMask Prompt

Figure 2: Failure cases of SAM using the tight box of the coarse mask (red box) and directly using
the coarse mask as the prompt. The tight box is sensitive to the false negative (first row) and false
positive (last row) errors in the coarse mask, which would mislead SAM’s predictions. And the
separate mask prompt fails to work for SAM. Our proposed multi-prompt excavation strategy is
robust to the noise.

Our contributions are summarized as follows:

• New Roadmap: SAMRefiner offers the first solution to address the mask refinement task
based on SAM, which is of great value in practical applications.

• New Method: We uncover the deficiency of SAM in the mask refinement task and propose
an effective and efficient framework to mine noise-tolerant prompts, successfully addressing
the challenging universal mask refinement task.

• Novel Insights: While our work is based on SAM, it offers several novel insights and
observations like the impact of mask prompt and the IoU adaption strategy.

• Stronger practicality and performance: This framework is versatile and can flexibly co-
operate with existing segmentation methods under various setting. It significantly enhances
the pseudo mask quality (e.g, over 10% for WSSIS) while taking less time (e.g, 5× faster
than CascadePSP).

2 RELATED WORKS

2.1 COARSE MASKS IN IMAGE SEGMENTATION

Coarse masks are common and ubiquitous in the image segmentation task due to their strict standard of
pixel-accurate annotations. To relieve human burden, some works adopt the pseudo-labeling paradigm
to obtain segmentation masks. These approaches usually leverage incomplete annotations (e.g, none,
point, box, image-level labels or partially fully-labeled data) to obtain segmentation masks, which
can be roughly categorized into unsupervised Cho et al. (2021); Ziegler & Asano (2022); Ke et al.
(2022b); Hwang et al. (2019); Van Gansbeke et al. (2021); Zhou et al. (2022); Shin et al. (2022; 2023),
weakly-supervised Lin et al. (2016); Dai et al. (2015); Papandreou et al. (2015); Ahn & Kwak (2018);
Xie et al. (2022); Wang et al. (2020b); Xu et al. (2022b), and semi-supervised Wang et al. (2022);
Filipiak et al. (2022); Yang et al. (2023b); Xu et al. (2022a). Although labor-efficient, the quality of
pseudo mask is unsatisfactory, which can heavily impair the performance of subsequent segmentation
model training. The noisy labels even exist in human annotation (e.g, MS COCO Lin et al. (2014)),
which is inevitable for achieving pixel-accurate annotations at scale. This paper focuses on enhancing
the quality of the coarse mask and consequently contributes to subsequent model training.

2.2 MASK REFINEMENT TECHNIQUE

To overcome the inaccuracy of coarse masks, several mask refinement methods have been ex-
plored Zhang et al. (2021); Kirillov et al. (2020); Xu et al. (2017); Zhang et al. (2019); Yuan et al.
(2020). Most existing works are designed for specific networks or tasks and thus lack generality
and flexibility. For example, PointRend Kirillov et al. (2020) and RefineMask Zhang et al. (2021)
are built upon Mask RCNN He et al. (2017) for instance segmentation, BPR Tang et al. (2021)
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Figure 3: (a) An overview of our proposed framework. SAMRefiner leverages SAM to refine
coarse masks by automatically generating prompts from coarse masks, including distance-guided
points, context-aware elastic boxes and Gaussian-style masks. We select the best mask from multiple
generated masks based on SAM’s IoU predictions. (b) An overview of the introduced IoU adaption
step, which aims to enhance the IoU prediction ability of SAM on specific datasets. We adopt a
LoRA-style adaptor at the last layer of IoU MLP and a ranking loss is used to improve the top-1
accuracy of IoU predictions. This step is self-boosted and requires no additional annotation.

propose a model-agnostic post-processing mechanism but mainly focuses on instance segmentation.
The dataset-dependant training in a close-world paradigm makes them overfit to specific datasets.
CascadePSP Cheng et al. (2020) and CRM Shen et al. (2022) train on a large merged dataset and
perform well across different semantic segmentation datasets, but the performance is poor on the
complex instance segmentation setting. SegRefiner interprets segmentation refinement as a data
generation process but the diffusion step is inefficient for practical use. Dense CRF Krähenbühl &
Koltun (2011) is a training-free post-process approach but it lacks high-level semantic context and
usually struggles to work in complex scenarios. Differently, we aim to design a versatile, generic and
efficient post-processing tool across diverse segmentation models, tasks and datasets, which makes it
a highly meaningful and valuable tool with broad applications.

2.3 SEGMENT ANYTHING MODEL

Segment Anything Model (SAM) has been considered as a milestone vision foundation model
for promptable image segmentation. Several works have used this powerful foundation model to
benefit downstream vision tasks, including object tracking Cheng et al. (2023); Yang et al. (2023a),
image editing Gao et al. (2023), 3D object reconstruction Shen et al. (2023) and many real-world
scenarios Ma et al. (2024); Han et al. (2023); Tang et al. (2023), while the potential of SAM in
segmentation refinement task and the effect of different prompt types has been barely explored.

3 METHOD

In this section, we introduce our proposed mask refinement framework, as is shown in Fig. 3. We
first review the architecture of SAM and its usage. Then, we introduce multi-prompt excavation
strategies to exploit SAM. We further present an efficient adaption variant to enhance the accuracy of
IoU predictions in a self-boosted manner.

3.1 REVIEW OF SAM

We start by introducing the components of SAM, which consists of an image encoder, a prompt
encoder, and a mask decoder. 1) The image encoder is based on a standard Vision Transformer
(ViT) pre-trained by MAE He et al. (2022). It generates a 16× downsampled embedding of the input
image. 2) The prompt encoder can be either sparse (points, boxes, text) or dense (masks). For sparse
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Coarse Mask Tight Box Prompt Elastic Box Prompt GT

Coarse Mask w/o Mask Prompt GTw/ Mask Prompt

(a) Effects of the context-aware elastic box (top two
rows) and mask prompt (last two rows).

Dog

Person

Car

Coarse Mask +Mask Prompt +Split-Then-MergePoint+Box Prompt

(b) Effects of the proposed split-then-merge (STM)
strategy.

Figure 4: Visualizations of our proposed techniques effects. All of them play a crucial role in
mitigating the impact of defects in coarse masks.

prompts, points and boxes are represented as positional encodings summed with learned embeddings.
Text prompts are processed by the text encoder of CLIP Radford et al. (2021). Dense prompts are
directly convolved with the image embeddings and summed element-wise. 3) The mask decoder
employs prompt-based self-attention and two-way cross-attention. This allows interaction between
prompt-to-image and image-to-prompt embeddings, enabling simultaneous updates to the encoded
image and prompt features. After two decoder layers, the output mask tokens are processed by a
3-layer MLP and then perform a spatially point-wise product with the upsampled image embedding
to get target masks.

SAM is able to produce both a single mask or multiple masks (i.e, three masks) for each input prompt.
The multi-mask mode is designed to address the ambiguity problem and an additional IoU token is
adopted to learn the confidence of each mask, which reflects the IoU between each predicted mask
and the target object. In Fig. 5a, we empirically find that the multi-mask mode is generally superior
to the single-mask mode by simply selecting the mask with the best IoU predictions so we adopt the
multi-mask mode in our experiments.

3.2 PROMPT EXCAVATION

As a promptable segmentation model, the input prompts play a crucial role in SAM because these
prompts provide localization guidance of intended objects. To employ SAM for mask refinement, we
need to mine prompts merely based on the initial coarse masks, which is challenging for the existence
of noise and defects. Unlike previous works that mostly use one type of prompt Dai et al. (2023), our
prompt excavation strategies aim to mine diverse and seemly prompts (including points, boxes and
masks), making them collaborate with each other to mitigate the effect of defects in coarse masks.
Note that SAM fails to work by merely using the mask as an input prompt, and we provide analysis
in subsequent parts.

Points. The point prompt can provide position information for either foreground or background
objects. However, it is difficult to determine the most salient point when using binary coarse masks.
To solve this challenge, we leverage a simple but empirically effective object-centric prior: The center
of an object tends to be positive and feature-discriminative, while uncertainty is mostly located along
boundaries. Based on this criteria, we select the foreground point that has a maximum distance to the
nearest background position as the positive prompt. Similarly, the negative prompt should satisfy the
following principle: 1) the point is farthest away from the foreground region; 2) the point is within
the bounding box of the foreground region.

Boxes. The box prompt shows a more powerful localization ability for the abundant cues it contains.
Given a binary mask, it is simple to find the maximum bounding rectangle (tight box) of foreground
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regions as the box prompt. However, the false-negative pixels in the coarse mask may hinder the
quality of the bounding box, resulting in incomplete coverage of the potential object (Fig. 4a).

To address this, we propose a context-aware elastic box (CEBox) to adjust the tight box conditionally.
The bounding box can be expanded in four directions according to the surrounding context. Specif-
ically, the input image I ∈ RH×W×3 is encoded as feature embedding Fim ∈ Rh×w×c in SAM
latent space by the image encoder, where (H,W ), (h,w) denote original image size and embedding
size. The coarse maskMcoarse ∈ RH×W is resized to M̂ ∈ Rh×w to keep aligned with Fim. We
calculate the mean feature embedding of the coarse mask (denoted as query embedding) as follows:

Fquery =
1

|1M̂>0|
∑

1M̂>0(Fim) (1)

where 1M̂>0 ∈ {0, 1} is the indicator function to determine foreground regions, | · | represents the
number of elements. We calculate the affinity between Fquery and each spatial location in resized
image embedding F̂im ∈ RH×W×c to obtain a similarity map Sim ∈ RH×W and binary it by 0.5:

Sim = [Fquery · F̂im]>=0.5 (2)

For each direction in {left, right, up, down}, we enlarge the tight box B by 10% of the corresponding
side length and approximate the positive ratio in the enlarged region Simcontext. A threshold λ is
used to determine the necessity to expand the current box in this direction. To avoid over-enlarge, we
limit the maximum expanding pixels each time and run multiple iterations for progressive expansion.

Masks. Most existing works employ point or box as the initial prompt while mask prompt is usually
discarded Dai et al. (2023); Chen et al. (2023); Zhang et al. (2023). The mask fails to serve as the
initial input prompt for SAM separately (seeing qualitative results in Fig. 2 and quantitative results in
Tab. 1). This is because the mask prompt merely acts as an auxiliary for point and box in the cascade
refinement during SAM pre-training, with the predicted logits of the previous iteration as input to
guide the next one. However, we argue that the mask prompt is vital to distinguish foreground and
background in the mask refinement task, especially in the case that the box prompt fails to work (e.g,
the oversized box results in falsely detected objects or background in Fig. 4a). Considering the
inaccuracy of coarse mask, we leverage a Gaussian-style mask GM based on distance transform used
in point prompt:

GM(x, y) = ω · exp(− (x− x0)
2 + (y − y0)

2

|1Mcoarse>0| · γ
) (3)

where GM(x, y) represents the mask prompt at location (x, y), (x0, y0) is the mask center point that
is farthest to the background regions, ω, γ are the factors to control the amplitude and span of the
distribution. We provide a detailed analysis of the Gaussian Mask in the Appendix Appendix E.3.

Application on Semantic Segmentation. The semantic segmentation mask is category-wise and
there may exist many objects in a semantic mask. In Fig. 4b, we find that SAM struggles to segment
multiple objects with a large span (either miss-detect or falsely detect) using common prompts.
Although the mask prompt can mitigate this problem, it fails when objects of different categories
are mingled. We further propose a split-then-merge (STM) pipeline to solve it. 1) Split: we split
the mask by finding all connected regions. Note that some regions are noisy and trivial due to the
inaccuracy of coarse masks. 2) Merge: To form semantically meaningful regions, we iteratively
merge the close regions based on the box area variation and mask area occupancy. Two regions
will be merged only if the change of box area of (before and after region merging) is small and the
mask area occupancy of the merged box is enough. An elaboration of this strategy is provided in
Algorithm 1.

3.3 IOU ADAPTION

For SAM, the quality of the generated masks is determined by the input prompts, while the selection
of the best mask is based on IoU predictions (denoted as IoUpred). Traditional SAM leverages an
individual token to produce the mask when multiple prompts are given (single-mask mode). However,
in Fig. 5a, we empirically observe that selecting the best mask from multiple predictions of SAM
based on IoUpred is generally superior to the single-mask mode under all prompt combinations.
We give a detailed analysis in the Appendix Appendix E.4. However, in Fig. 5b, we find that
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(a) Mask quality using different
prompt types.

(b) The effect of different IoU se-
lection criteria.

(c) Top-1 accuracy using different
IoU selection criteria.

Figure 5: The effect of different prompt types, mask modes and IoU selection criteria on DAVIS-585.

mask selection based on IoUpred still falls short of the upper limit (select mask by ground-truth
IoUs IoUGT ), which indicates the inaccuracy of SAM’s top-1 IoU prediction. This is because the
abovementioned SAMRefiner, which is training-free and generalized to most cases, is agnostic to
downstream categories. SAM’s IoU head is not specifically trained for intended objects, leading to
suboptimal IoU predictions.

For the mask refinement task, where the GT masks are unavailable, we propose that coarse masks can
act as effective priors to guide IoU predictions for domain-specific categories. To verify it, we denote
the IoU between SAM’s output mask and coarse mask as IoUcoarse, and compare the top-1 IoU
accuracy of IoUcoarse against IoUpred. Results in Fig. 5c indicate that the top-1 performance based
on IoUcoarse outperforms IoUpred for simple point and box prompts, which is close to that based on
ground truth. In contrast, the coarse IoU performs poorly in multi-prompt cases. It is likely that the
less prompt provides ambiguous guidance for SAM and results in variant masks, enabling the coarse
masks to provide effective guidance in selecting the intended one. However, the masks generated by
multi-prompts have better quality than the coarse mask and thus may mislead the selection. To pursue
better performance, we enhance SAM’s IoU ranking ability by training under the single prompt case
supervised by IoUcoarse and expect it to benefit multi-prompt cases. This process is conducted in a
self-boosted manner and requires no extra annotations.

Specifically, we focus on minimal adaptation of SAM toward better IoU predictions. To preserve the
zero-shot transfer capability of SAM, we fix the model parameters of the pre-trained SAM and only
add a LoRA-style adaptor Hu et al. (2021) in the IoU head, as is shown in Fig. 3b. Considering the
inaccuracy of IoUcoarse, we adopt a ranking-based loss instead of a regression loss. In particular, for
each SAM’s predicted mask Mi and its predicted IoU xi, we calculate their coarse IoU and denote
the index of the mask with the best coarse IoU as j. The pairwise ranking loss is computed as:

loss =

n∑
i=1,i̸=j

max(0, xi − xj +m) (4)

where n is the number of total masks (3 for SAM), m is the margin to control the minimal difference.
This loss encourages the best IoU score xj to be higher than the remaining ones, thus promoting
the accuracy of top-1 prediction. We train the adaptor based on the single prompt and use multi-
prompt during inference. Note that despite LoRA’s popularity, its optimal placement remains unclear.
Previous works empirically place LoRA layers in some specific layers (e.g, backbone), altering
existing knowledge to adapt to new domains, which modify the learned knowledge and affect the
mask generation. In contrast, our approach inserts the LoRA layer in the IoU head, preserving SAM’s
full capability to generate high-quality masks while improving mask selection. To our knowledge,
this minimal adaptation is underexplored and may provide new insights for the field. We denote
SAMRefiner with this adaption step as SAMRefiner++, which only focuses on selecting better masks
on the target dataset and has no effect on mask generation.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets and Implementation Details. For a comprehensive evaluation of the mask refinement
performance of SAMRefiner, we conduct experiments on a wide range of benchmarks, including those
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Table 1: The quality of refined masks using different prompts and the effect of IoU adaption on
DAVIS-585. Results are presented as SAMRefiner / SAMRefiner++

Prompt Type IoU boundary IoU Top-1 Acc

Coarse Mask 81.4 71.4 -

Point 53.7 / 56.4 49.9 / 53.1 51.5 / 62.1
Box 68.8 / 70.8 61.9 / 63.5 36.4 / 56.8
Mask 37.3 / 40.4 32.6 / 33.5 28.4 / 30.8

Point + Box 76.7 / 79.1 69.0 / 70.9 37.1 / 53.7
Point + Mask 77.5 / 80.6 67.7 / 71.6 43.2 / 72.6
Box + Mask 84.6 / 85.1 74.2 / 75.4 36.2 / 60.7

ALL 86.9 / 87.1 75.1 / 75.4 44.1 / 63.8

designed for mask refinement (DAVIS-585Chen et al. (2022)), instance segmentation (COCOLin
et al. (2014)), semantic segmentation (VOCEveringham et al. (2010)) under different settings. As a
mask refiner, our method keeps the same setting as each baseline for pair comparison. The metrics
we used include (boundary) IoU Cheng et al. (2021), (boundary) mask AP and mIoU. The threshold
λ and µ used in the box and mask prompt are set to 0.1 and 0.5 respectively. The factors ω, γ for
Gaussian distribution are set to 15 and 4 by default. We adopt pre-trained SAM with the ViT-H image
encoder as the segmentation foundation model and more details are provided in the Appendix.

4.2 ABLATION EXPERIMENTS

In this section, we conduct detailed ablation studies to analyze the effect of each component in our
framework. We mainly experiment on DAVIS-585, as it is specifically designed for mask correction
and contains various defects in the mask. We also leverage popular COCO and VOC to evaluate our
method for specific scenarios.

Effect of different prompts and IoU adaption. Tab. 1 shows the performance of using different
prompts for SAMRefiner. The results indicate that our proposed multi-prompt excavation strategy
performs better than the single prompt. The mask prompt, which is barely considered in previous
works, shows poor performance on its own but can bring an obvious advantage of nearly 20% IoU for
point and box. Besides, we compare the mask selection by SAM’s original IoU predictions (number
before /) and our adapted IoU head (number after /). The IoU adaption step can significantly boost the
top-1 accuracy of the best mask selection and further benefit the final IoU performance. We provide
more ablation studies in Appendix for the page limit.

Effect of different design choices in SAMRefiner. We analyze the impact of different design choices
for each prompt and report their relative contribution in Tab. 2. (1) We compare different strategies
to sample the positive point prompt in Tab. 2a, including randomly choosing from the coarse mask,
selecting the center of the bounding box, and selecting the point having a maximum distance to the
background. Compared to random choice, using the box center shows even worse performance. This
is because the bounding box is sensitive to the noise in the mask (e.g, the distant false positives),
resulting in the inaccuracy of the box center. Our distance-guided are more robust to the noise
and can obtain 52.5% IoU with only a positive point. The performance can be further improved to
53.7% by adding the extra negative point mentioned in Sec. 3.2. (2) Tab. 2b shows the impact of
using the tight box and context-aware elastic box (CEBox). We adopt the coarse masks generated
from PointWSSIS Kim et al. (2023) on COCO, which usually suffers from incomplete masks. The
proposed CEBox can produce better boxes with higher AP box and benefit mask generation. (3) In
Tab. 2c, we compare the commonly used mIoU with/without STM. Results show that STM can bring
remarkable improvement for extremely coarse masks (i.e, 6.2% for MaskCLIP) and can constantly
promote performance on better initial masks.

4.3 APPLICATION ON INCOMPLETE SUPERVISION

Instance Segmentation. To verify the effectiveness of our framework, we apply it to various typical
methods, including unsupervised (CutLER Wang et al. (2023b)), semi-supervised (NoisyBound-
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Table 2: Ablation study of our proposed strategies on different cases.
(a) Point sampling strategy.
Point IoU bIoU

Random 37.8 38.5
Box Center 22.2 26.3
Distance-Guided 53.7 56.4

(b) Context-aware elastic box.
CEBox APbox APmask APboundary

% 36.7 37.5 25.6
! 38.2 37.8 25.9

(c) STM strategy.
STM MaskCLIP CLIP-ES

% 51.1 79.1
! 57.3 79.3

Table 3: Results of instance segmentation under different supervisions on COCO 2017. The Anno-
tations denote the supervision type, including U(unlabeled), P(point-level label), F(full labeled).
Networks represent the final segmentation model trained based on the pseudo masks. We follow the
default setting of each baseline method.

Methods Annotations Networks COCO train5K COCO val2017
APmask APboundary APmask APboundary

Unsupervised
CutLER None Cascade R-CNN - - 8.8 2.8
+SAMRefiner None Cascade R-CNN - - 12.1(+3.3) 5.0(+2.2)

Semi-supervised
NB F 1% + U 99% Mask R-CNN 4.4 1.6 6.7 2.3
+SAMRefiner F 1% + U 99% Mask R-CNN 6.9(+2.5) 4.4(+2.8) 11.8(+5.1) 6.5(+4.2)
NB F 5% + U 95% Mask R-CNN 18.3 8.8 24.0 12.4
+SAMRefiner F 5% + U 95% Mask R-CNN 22.3(+4.0) 14.4(+5.6) 27.4(+3.4) 16.5(+4.1)
NB F 10% + U 90% Mask R-CNN 23.0 11.8 28.9 16.3
+SAMRefiner F 10% + U 90% Mask R-CNN 26.1(+3.1) 17.0(+5.2) 30.5(+1.6) 18.6(+2.3)

Weakly Semi-supervised
PointWSSIS F 1% + P 99% SOLOv2 15.1 6.7 23.9 11.5
+SAMRefiner F 1% + P 99% SOLOv2 25.4(+10.3) 16.3(+9.6) 30.2(+6.3) 18.2(+6.7)
PointWSSIS F 5% + P 95% SOLOv2 32.3 19.7 33.4 19.6
+SAMRefiner F 5% + P 95% SOLOv2 37.7(+5.4) 25.9(+6.2) 34.6(+1.2) 21.6(+2.0)
PointWSSIS F 10% + P 90% SOLOv2 39.9 26.4 35.5 21.9
+SAMRefiner F 10% + P 90% SOLOv2 42.8(+2.9) 30.2(+3.8) 36.1(+0.6) 22.9(+1.0)

ary Wang et al. (2022)) and weakly semi-supervised (PointWSSIS Kim et al. (2023)). Experiments
are conducted on COCO following these methods. We evaluate the mask quality in terms of two
aspects: 1) the performance of pseudo masks on the train set and 2) the performance of the final
segmentation model trained based on these pseudo masks. The pseudo masks are evaluated on a
subset of COCO train set (train 5K) and the final segmentation model Cai & Vasconcelos (2018); He
et al. (2017); Wang et al. (2020a) is evaluated on the validation set. We compare both the commonly
used mask AP and boundary AP. Results in Tab. 3 demonstrate the superiority of our framework. It
can constantly boost the quality of pseudo masks in all settings, especially for those label-limited
scenarios (e.g, the improvement for PointWSSIS with 1% annotations can reach 10.3%). Besides,
the segmentation model can also benefit from refined masks, with a significant improvement under
different settings, demonstrating that SAM can offer valuable knowledge and cues to improve these
label-limited scenarios.

Semantic Segmentation. Tab. 4 shows the improvement of pseudo masks generated by unsupervised
semantic segmentation (MaskCLIP Zhou et al. (2022)) and weakly supervised semantic segmenta-
tion (BECO Rong et al. (2023) and CLIP-ES Lin et al. (2023)). We refine the pseudo masks on the
train set and use them to train a DeepLabV2 Chen et al. (2017) model following Lin et al. (2023).
The results show that our method brings obvious performance gains for both the pseudo masks
and segmentation models. The average improvement of pseudo masks is more than 5% and even
approaches 10% for MaskCLIP and CLIP-ES. The superior performance across various datasets and
settings demonstrates the generalization and flexibility of our framework.

4.4 COMPARISON WITH STATE-OF-THE-ART.

In Tab. 5, we compare our SAMRefiner with state-of-the-art model-agnostic refinement methods,
including dense CRFKrähenbühl & Koltun (2011), CascadePSPCheng et al. (2020), CRMShen
et al. (2022) and SegRefinerWang et al. (2023a). We first conduct experiments on previously used
DAVIS-585, COCO and VOC. The results prove that 1) CRF shows inferior performance due to
the lack of high-level semantic context and unfitness for the binary mask.2) CascadePSP and CRM
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Table 6: Performance of refined masks on COCO val set using LVIS annotations.
(a) Results on MaskRCNN.

Method APmask APboundary

MRCNN(RN50) 39.8 27.3
+SegFix 40.6 29.1
+BRP 41.0 30.4
+SegRefiner 41.9 32.6
+SAMRefiner 45.3(+5.5) 35.9(+8.6)

MRCNN(RN101) 41.6 29.0
+SegFix 42.2 30.6
+BRP 42.8 32.0
+SegRefiner 43.6 34.1
+SAMRefiner 46.6(+5.0) 36.9(+7.9)

(b) Results on more segmentation models.

Method APmask APboundary Method APmask APboundary

PointRend 41.5 30.6 SOLO 37.4 24.7
+SegRefiner 42.8 33.7 +SegRefiner 40.5 31.3
+SAMRefiner 45.5(+4.0) 36.0(+5.4) +SAMRefiner 44.1(+6.7) 34.2(+9.5)

RefineMask 41.2 30.5 CondInst 39.8 29.2
+SegRefiner 41.9 33.0 +SegRefiner 41.1 32.2
+SAMRefiner 44.7(+3.5) 35.3(+4.8) +SAMRefiner 45.2(+5.4) 35.8(+6.6)

MaskTransifiner 42.2 31.6 Mask2Former 46.8 37.0
+SegRefiner 43.3 34.4 +SegRefiner 47.4 38.8
+SAMRefiner 46.3(+4.1) 36.3(+4.7) +SAMRefiner 49.0(+2.2) 39.0(+2.0)

show competitive performance on semantic segmentation (VOC), but the improvement is limited or
even worse than coarse masks on instance segmentation (DAVIS-585 and COCO). It is likely that
these methods are trained on a merged dataset consisting of extremely accurate mask annotations,
which has a strong relation to VOC and makes them fail to generalize to complex scenarios like
COCO. We also explore the use of high-quality datasets on SAM (i.e, HQ-SAM Ke et al. (2023))
in the Appendix3) SegRefiner’s performance is not stable across different settings because it lacks
the ability to process diverse defects in the coarse masks. 4) SAMRefiner is more generic and can
improve performance remarkably on various datasets due to its better robustness to the mask noise.

Table 4: Results of semantic segmentation un-
der different supervisions on PASCAL VOC
2012. The Annotations denote the supervi-
sion type, including U(unlabeled), I(image-
level label). Results on val set are based on
training a DeepLabV2 model.

Methods Annotations mIoU(train) mIoU(val)

MaskCLIP U 47.8 47.3
+SAMRefiner U 57.3 (+9.5) 53.5(+6.2)

BECO I 66.3 69.5
+SAMRefiner I 71.8(+5.5) 70.9 (+1.4)
CLIP-ES I 70.8 70.3
+SAMRefiner I 79.3(+8.5) 74.9(+3.6)

Table 5: Comparisons with SOTA methods.
CM represents Coarse Mask.

Source CM CRF PSP CRM SR Ours

DAVIS-585
DAVIS-585 81.4 81.0 81.9 82.9 80.3 87.1

COCO
NB 15.2 13.9 15.9 15.1 15.8 18.4
PointWSSIS 29.1 24.4 28.9 25.6 29.7 35.3
MaskRCNN 35.2 31.5 34.6 31.7 35.4 36.5

PASCAL VOC
MaskCLIP 47.8 48.2 55.3 56.8 58.5 57.3
BECO 66.3 66.5 68.4 69.0 68.7 71.8
CLIP-ES 70.8 72.6 76.9 78.7 74.7 79.3
DeepLabV2 76.5 77.8 81.2 81.6 83.1 78.8

Time (h) - 1.0 3.4 1.5 1.4 0.6

Besides, we compare the total time cost to refine masks for COCO train5K (with about 5K images
and 37K masks). CRF is tested with 16 workers, and others are based on one 3090 GPU. SAMRefiner
takes less than half the inference time compared to previous methods because SAM can batch process
multiple masks in an image simultaneously, while other methods can only refine one mask each time.
The batch processing capability makes SAMRefiner more efficient and competitive in practical use.

In addition, considering the original ground-truth annotations used in the COCO dataset are not
accurate, we follow SegRefinerWang et al. (2023a) to evaluate the predictions of different fully
supervised segmentation models on COCO val set using LVISGupta et al. (2019) annotations. Results
in Tab. 6 indicate that our method outperforms other works by a large margin and can consistently
enhance the mask quality generated by various networks (e.g, both CNN and Transformer), validating
its generality for broad applications.

5 CONCLUSION

This paper uncovers the deficiency of SAM in the mask refinement task and proposes a universal
and efficient framework called SAMRefiner to adapt SAM for mask refinement. We propose a
multi-prompt excavation to generate diverse prompts that are robust to the defects in coarse masks.
An optional IoU adaption step is introduced to further boost the performance on the target dataset
without additional annotated data. We evaluate SAMRefiner on a wide range of image segmentation
benchmarks under different settings, demonstrating its consistent accuracy and efficiency.
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Algorithm 1 The Region Merging Strategy

Input:
Region numberR; region label for each mask pixel Mlabel; a hyper-parameter µ.

Output:
Merged regions masksMstm.

1: Initialize Mmerge = Mlabel, Mstm = ∅.
2: for i = 1 toR do
3: Bi ← Extract minimum bounding box in M i

label.
4: aboxi , amask

i ← Compute areas for Bi,M i
label.

5: for j = i+ 1 toR do
6: Bj ← Extract minimum bounding box in M j

label.
7: aboxj , amask

j ← Compute areas for Bj ,M j
label.

8: (B̄, ābox)← Find merged boxes for (Bi,Bj) and compute its area.
9: if (aboxi + aboxj ) > µ · ābox and (amask

i + amask
j ) > µ · ābox then

10: Merge region i and region j.
11: Update Mmerge.
12: end if
13: end for
14: end for
15: G ← Extract merged region labels from Mmerge.
16: for k ∈ G do
17: Mstm.append(Mk

merge).
18: end for
19: return Mstm.

A ADDITIONAL DETAILS

A.1 DATASETS DETAILS

DAVIS-585. DAVIS-585 is proposed in FocalClick Chen et al. (2022) to evaluate the interactive mask
correction task. It consists of 585 samples and generates the flawed initial masks by simulating the
defects on ground-truth masks using super-pixels. There are different types of defects, e.g, boundary
error, external false positive, and internal true negative, making it a comprehensive benchmark for the
mask correction task.

MS COCO 2017. COCO comprises 80 object classes and one background class, with 118,287
training samples and 5,000 validation samples. We perform instance segmentation experiments on
COCO following previous works Wang et al. (2022); Kim et al. (2023). To ensure a fair comparison,
we maintain the same split of data subsets (e.g, 1%, 5%, 10%) as each baseline method. We assess
pseudo labels quality by randomly sampling 5,000 images in the train set (denoted as train5K) that
have no intersection with annotated data subsets.

PASCAL VOC 2012. We conduct semantic segmentation experiments on PASCAL VOC 2012
following Lin et al. (2023); Lee et al. (2021). It contains 20 categories and one background category.
We evaluate the pseudo mask quality on the train set with 1464 images. An augmented set with
10,582 images Hariharan et al. (2011) is usually used for training in the WSSS task.

A.2 IMPLEMENTATION DETAILS

We implement our method with PyTorch Paszke et al. (2019). For SAMRefiner, we didn’t use
multi-scale strategy and images are kept at their original sizes before being processed by SAM. For
IoU adaption step, we use SGD optimizer with 0.01 learning rate. The batch size is set to 5 and we
only train for 1 epoch. The learning rate is reduced to one-tenth at steps 60 and 100. We use margin
ranking loss with the margin as 0.02 and the LoRA rank is set to 4. Note that the IoU adaption step is
optional and we only adopt it on DAVIS-585. The time cost reported in the paper is tested on a single
3090 GPU. For instance segmentation, the threshold λ is set to 0.1 for the box prompt. For semantic
segmentation, µ used in the STM is set to 0.5. The factors ω, γ for Gaussian distribution are set to 15
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Table 7: Quantitive comparison between automatic grid point prompt and our prompt strategy on
DAVIS-585.

Prompt Type IoU boundary IoU Time (minute)

Coarse Mask 81.4 71.4 -

Max IoU 70.6 65.5 8.0
Merge 81.9 73.1 8.0

Ours 86.9 75.1 1.6

GT Coarse Mask Everything Max IoU Merging Ours

Figure 6: Qualitive comparison with grid point prompts.

and 4 by default. We present the pseudo-code for the region merging strategy in Algorithm 1, which
is an important component of our split-then-merge (STM) pipeline for semantic segmentation.

B ADDITIONAL EXPERIMENTS

B.1 COMPARISON WITH AUTOMATIC MASK GENERATOR

SAM can produce masks for an entire image by sampling a grid of points over the image as prompts.
This automatic manner can be used for mask refinement by matching the potential masks to the
coarse mask. We validate its performance leveraging two matching criteria: 1) Max IoU: For each
coarse mask, we select the SAM-generated segments with the highest IoU as the refined mask. 2)
Merging: For each SAM-generated segment, it is viewed as a part of the final refined mask if the
overlap area between this segment and coarse mask exceeds a certain percentage (e.g, 0.5) of this
segment area Chen et al. (2023).

We compare our prompt excavation strategy with these two automatic grid-style point prompts
in Tab. 7. We note that the performance drops severely for the Max IoU approach and barely
improves for the Merging approach on DAVIS-585. It stems from the inherent drawbacks of this
prompt generation manner, which is shown in Fig. 6. First, the grid point prompts split an image
into several fine-grained masks and it is difficult to control the granularity. The best-matched
mask selected by Max IoU usually fails to cover the whole object. Second, although the Merging
strategy can obtain relatively complete objects, it is susceptible to defects in the coarse mask (e.g,
false positives) and tends to result in over-detected. Thirdly, the SAM-generated segments are not
exclusive and sometimes an object may be included in multiple masks with different granularity. It
remains challenging to filter them out by the strategies above. In contrast to this bottom-up paradigm,
our prompt excavation strategy directly produces diverse prompts for the target object (top-down
paradigm), which is more purposive, accurate and robust to the noise in coarse masks. In addition,
these grid-based prompts are inefficient (i.e, taking 5× more time than ours) because of the massive
prompts and time-consuming post-processing (e.g, NMS Neubeck & Van Gool (2006)) to filter
low-quality and duplicate masks.
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(a) Effects of different backbones and
cascaded post-refinement.

(b) Comparison with SAM predicted
mask logits.

Figure 7: Ablation study of different backbones and cascaded post-refinement strategies as well as
mask logits.

B.2 EFFECTS OF DIFFERENT BACKBONES AND CASCADED POST-REFINEMENT

The pre-trained SAM models are available with three backbone sizes and the mask can be iteratively
processed by cascaded refinement. We compare the impact of using different backbones and iterations
in Fig. 7a. The results show that the largest ViT-H outperforms other backbones at the first iteration,
and multiple iterations can further improve the mask quality, especially for the ViT-L backbone.

Note that the mask prompt of each iteration in the cascaded refinement is from our prompt exvacation
strategy (i.e, Gaussian-style mask). We also compare with some typical practices used in the original
SAM, including (a) only using point and box prompt at the first iteration and adding SAM’s predicted
mask logits (produced by the previous iteration) at subsequent iterations; (b) using all prompts
generated by our method at the first iteration but replacing the Gaussian-style mask with SAM
predicted mask logits for subsequent iterations. Results in Fig. 7b demonstrate that SAM’s mask
logits can contribute to point and box (condition a) in the cascaded refinement but fail to work when
our mask prompt is adopted in the initial step (condition b). This indicates that our Gaussian-style
mask can provide more powerful guidance than the mask logits, which not only produce high-quality
masks in the initial step but also more advantageous for cascaded refinement.

B.3 UPGRADED RESULTS BASED ON HQ-SAM

HQ-SAM Ke et al. (2023) is an advanced version of SAM that can enable more accurate segmentation.
Our framework can also be applied to this powerful variant, and we conduct experiments on various
benchmarks based on it to pursue better performance. In Tab. 8, we compare the performance of
our framework using SAM and HQ-SAM on DAVIS-585, VOC (BECO Rong et al. (2023) and
CLIP-ES Lin et al. (2023)) and COCO (NB Wang et al. (2022) and WSSIS Kim et al. (2023)). Results
show that there is a significant improvement on DAVIS-585 and VOC while the performance is fair
to SAM on COCO. This is because HQ-SAM enhances original SAM by specifically training on
a high-quality dataset with large and salient objects, which aligns well with the characteristics of
datasets like DAVIS-585 and VOC. In contrast, COCO has plenty of small objects and may not
benefit as much from HQ-SAM.

Table 8: Comparison between SAM and HQ-SAM. We report IoU / boundary IoU on DAVIS-585,
AP / boundary AP on COCO and mIoU on VOC.

Model DAVIS-585 NB PointWSSIS BECO CLIP-ES

SAM 87.7 / 78.9 18.4 / 11.8 35.3 / 24.1 71.8 79.3
HQ-SAM 90.6 / 81.7 18.4 / 12.2 35.0 / 24.3 73.6 81.0
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Table 9: Additional experiment results on BIG and relabeled PASCAL VOC datasets. The coarse
masks are produced from DeepLabV3+ Chen et al. (2018).

(a) Results on BIG dataset.
Method Coarse Mask SegFix PSP CRM Ours

IoU 89.4 90.0 92.2 91.8 93.9
mBA 60.2 69.3 74.6 75.0 74.8

(b) Results on relabeled VOC.
Method Coarse Mask SegFix PSP CRM Ours

IoU 87.1 88.0 89.0 88.3 89.6
mBA 61.7 66.4 72.1 72.3 71.9

COCO

SAMRefiner

Figure 8: Visualizations of COCO annotations and our refined annotations.

B.4 APPLICATIONS ON DIFFERENT TASKS

Application on high-resolution images. We evaluate our SAMRefiner on the BIG dataset, which
includes ultra-high resolution images ranging from 2K to 6K. We directly refine the coarse masks
generated by DeepLabV3+ Chen et al. (2018) based on SAM without dataset-specific finetuning,
using IoU and mean Boundary Accuracy (mBA) as metrics following Cheng et al. (2020); Shen et al.
(2022). Results in Tab. 9a show that our framework can effectively improve the quality of coarse
masks and is superior or comparable to the previous methods by using the powerful HQ-SAM.

Application on relabeled VOC. CascadePSP Cheng et al. (2020) introduces a relabeled VOC dataset
with accurate boundary annotations for better evaluation. We follow this setting to validate our
framework on this benchmark. Results in Tab. 9b demonstrate the effectiveness of our method, with
better IoU than existing methods. Note that the semantic obscurity may result in the inconsistency
between human subjective annotations and SAM predictions, hindering SAM from obtaining better
performance.

Application on human annotations correction. The human-annotated masks can also be coarse due
to the strict standard of pixel-accurate annotations. For example, COCO Lin et al. (2014) masks are
annotated in the polygon format, which is inaccurate in the boundary area (seeing Fig. 8). LVIS Gupta
et al. (2019) constructs more precise annotations for COCO images. We refine the mask in the COCO
val set using our SAMRefiner and evaluate them based on LVIS annotations. Results in Tab. 10 show
that our methods can also work for inaccurate human annotations. There is a remarkable increase (i.e,

Table 10: Performance of refined masks on COCO2017 val.

Data APmask APboundary

COCO 38.3 27.3
+Ours 41.5(+3.2) 33.0(+5.7)
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(a) Analysis of ω, γ. (b) Analysis of λ.

Figure 9: Ablation study of (a): ω, γ and (b): λ

3.2% mask AP and 5.7% boundary AP) for the mask quality. We provide qualitative comparisons in
Fig. 8.

B.5 ADDITIONAL ABLATION STUDIES

Analysis of ω, γ in the mask prompt. We leverage a Gaussian-style mask in our prompt excavation
strategy, with two factors ω, γ controlling the amplitude and span of the distribution. We perform a
sensitive analysis of these two parameters in Fig. 9a. When ω is too small (i.e, ω = 1), the effect
of mask prompts is negligible since the mask inputs of the original SAM are the predicted logits,
which are not scaled to 0-1. We note that a relatively higher value for ω can promote mask prompts
to benefit mask refinement, and the performance is not sensitive to these higher ω as well as γ.

Analysis of λ in the context-aware elastic box. We introduce a threshold λ in CEBox to determine
whether to expand current boxes based on context features, which controls the trade-off of box
sizes. We give an analysis of λ in Fig. 9b. The proposed CEBox has consistent bonuses compared
to the baseline (λ = 0) under different thresholds. We set λ = 0.1 in our experiments to avoid
over-enlargement.

C DISCUSSIONS AND LIMITATIONS

The target and relevance of SAMRefiner. SAMRefiner is designed to be a universal framework for
correcting coarse pseudo masks generated by various sources. This task is significant due to the wide
source of coarse masks in practical scenarios, such as model predictions and even inaccurate human
annotations. Our SAMRefiner can be treated as an effective post-processing method to improve data
quality and the refined masks can then be used to train advanced models for specific tasks, which
we denote as the pseudo-labeling paradigm. Although some recent works attempt to construct large
foundation models to achieve open-vocabulary capability and show impressive performance, we argue
that the pseudo-labeling paradigm still remains meaningful for certain application scenarios. First,
people usually focus on limited semantic categories in specific practical use (e.g, automatic driving).
The open-vocabulary setup is unnecessary and sometimes even detrimental to the performance of
focused objects. Second, the foundation models tend to be large and inference-inefficient, which is not
suitable for resource-limited and time-sensitive settings. Therefore, it is more efficient to customize
specific models for different application scenarios instead of directly using large foundation models.
Our framework treats the foundation model as a separate post-processor to improve the data quality
of customized models, which is more generic and flexible. It can complement various segmentation
methods and has the potential to be complementary to other refinement techniques and foundation
models.

Limitations. For the mask refinement task, the final performance is highly affected by the quality
of the initial coarse masks. The defects in masks are diverse, making it challenging to design a
single effective method that applies to all scenarios. Our prompt excavation strategy proposes diverse
prompt types to mitigate the effect of defects in the coarse masks. Although more noise-robust than
previous works, it still fails to work when the initial masks are extremely noisy, as is shown in the last
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GTCoarse Mask SAMRefiner

Figure 10: Failure cases on semantic segmentation.

few rows in Fig. 11. Besides, there may exist semantic obscurity between SAM predictions and our
subjectivity (e.g, whether the category table should contain the items on the table in Fig. 10), which
is inevitable due to the lack of downstream data and a potential solution is dataset-specific adaption.
Finally, SAM struggles to process multiple objects in semantic segmentation due to the absence of
this condition during pre-training. Although our proposed STM can partly mitigate this, sometimes it
fails to work (second row in Fig. 10). An option to consider is to finetune SAM to make it adapted to
this setting.

Coarse Mask CascadePSP CRM SAMRefiner GT

Figure 11: More visualizations on VOC. The last three rows show some failure cases.
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D MORE QUALITATIVE RESULTS

In Fig. 11 and Fig. 12, we provide more qualitative results of our refined masks and previous works
on PASCAL VOC 2012 and COCO 2017. We can observe that our SAMRefiner produces satisfactory
segmentation results on boundaries and detailed structures. It is effective in both simple and complex
scenes. The failure cases mainly stem from the extreme inaccuracy of coarse masks, resulting in false
activation or missed detection.

Coarse Mask CascadePSP CRM SAMRefiner GT

Figure 12: More visualizations on COCO. The last two rows show some failure cases.
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    Region 1
    Region 2
    Region 3

     Merged 1
     Merged 2

Split Merge SAMRefiner

Figure 13: Illustrations of Split-Then-Merge (STM) pipeline. The Region 3 in red color is small.
Please zoom in for better visibility.

Prompt
Extraction Without STM

Prompt
Extraction

With STM

Figure 14: Visual comparisons between STM and baseline (without STM).

E TECHNICAL DETAILS

E.1 DETAILS ABOUT STM

The Split-Then-Merge (STM) pipeline is proposed to solve the multi-object case in the semantic
segmentation. In this case, SAM struggles to segment multiple objects with a large distance using
common prompts, resulting in either missed detection or false detection (Fig. 4b). We propose STM
to convert semantic masks with multiple objects into instance masks to ensure better compatibility
with SAM. As shown in Fig. 13, STM includes two stages: 1) Split: split the mask by finding all
connected regions, which tends to be messy and noisy; 2) Merge: iteratively merge the adjacent
regions to form semantically meaningful regions based on the box area variation and mask area
occupancy (Algorithm 1). The STM is performed before prompt extraction. Once finished, we can
produce prompts based on the merged mask and leverage SAMRefiner for refinement. As shown in
in Fig. 14, STM can effectively mitigate the impact of multiple objects in semantic segmentation,
yielding better results than the baseline.

Table 11: Comparison of different mask refinement methods.

Method Design Principle Architecture Training Data Advantages Drawbacks
dense CRF Maximize label agreement

between pixels with
similar low-level color

None None Training-free,
Easy to use

inaccurate

CascadePSP Align the feature map
with the refinement target
in a cascade fashion

CNN MSRA-10K,
DUT-OMRON,
ECSSD,
FSS-1000

Class-Agnostic,
Accurate on
semantic segmentation

Task-dependent,
Inefficient

CRM Align the feature map
with the refinement target
continuously

CNN MSRA-10K,
DUT-OMRON,
ECSSD,
FSS-1000

Class-Agnostic,
Accurate on
semantic segmentation

Task-dependent,
Inefficient

SAMRefiner Design noise-tolerance
prompts to enable SAM
for mask refinement

Transformer SA-1B Class-agnostic,
Task-agnostic,
Accurate, Efficient

Objects with
intricate architecture
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Original 
Mask ω=1, γ=0.1 ω=1, γ=0.2 ω=1, γ=1

Figure 15: Visualization of Gaussian-style Masks under different γ.

E.2 COMPARISON OF DIFFERENT MASK REFINEMENT METHODS.

We provide a detailed discussion of the differences between SAMRefiner and related methods (dense
CRF, CascadePSP, CRM) in terms of the design principle, architecture, training data, advantages, and
drawbacks in Tab. 11. Among these methods, dense CRF is a training-free post-process approach
based on low-level color characteristics, making it efficient and easy to use. However, it struggles in
complex scenarios due to its lack of high-level semantic context. CascadePSP and CRM, on the other
hand, focus on aligning the feature map with the refinement target using CNN-based architectures.
They are trained on a combined dataset with extremely accurate mask annotations and demonstrate
strong performance on semantic segmentation tasks. Nevertheless, their performance on instance
segmentation is less competitive, primarily due to the absence of complex cases in their training data
and the inherent limitations of CNNs. Additionally, the cascade structure of CascadePSP and the
multi-resolution inference required by CRM make them inefficient when handling masks with a large
number of objects.

In contrast, SAMRefiner leverages the strengths of SAM by designing noise-tolerant prompts specifi-
cally for mask refinement tasks. This approach achieves better accuracy and efficiency compared to
existing methods. Nevertheless, it may underperform for objects with intricate structures, a limitation
inherited from SAM itself. This issue can be addressed using enhanced variants, such as HQ-SAM,
as the experiments conducted in Appendix B.3.

E.3 DETAILS ABOUT GAUSSIAN-STYLE MASK

Note that the central point is not the geometry central point of the mask, but the farthest positive point
selected by the previous point prompt step. We only apply the Gaussian operation to the foreground
region of mask, and the Gaussian-style mask is a generalized form of the coarse mask. For instance,
when the amplitude ω is set to 1 and the span γ is sufficiently large, the Gaussian-style mask is
equivalent to the original coarse mask. Visualizations of the Gaussian Mask are presented in Fig. 15.

There are two main reasons for using the Gaussian-style mask: 1) Compatibility with SAM: The
original SAM doesn’t support the binary masks as prompts. This is because the mask prompt merely
acts as an auxiliary for point and box in the cascade refinement during SAM pre-training, with the
predicted logits of the previous iteration as input to guide the next one. Therefore, the mask input
for SAM requires logits with continuous values, while the original coarse mask is discrete-valued (0
and 1). The Gaussian operation can convert the binary mask to continuous, making it compatible
with SAM. 2) The object-centric prior: The center of an object tends to be positive and feature-
discriminative, while uncertainty is mostly located along boundaries. The Gaussian-style mask
effectively reduces the weights near boundaries. As shown in Fig. 9a, when ω = 1, the performance
drops significantly due to the incompatible value space, while the Gaussian transformed mask can
consistently outperform the original coarse mask under different ω and γ.

E.4 DETAILS ABOUT IOU ADAPTION

Although the original SAM uses an individual token when multiple prompts are provided, we
empirically observe that selecting the best mask from the remaining three masks based on the IoU
prediction yields better performance than the fourth mask, as shown in Fig. 5a. This is because
although the three predictions converge, some details remain different and usually better than the
fourth token. We provide visualizations in Fig. 16 to compare the masks generated by different tokens.
Though the improvement may not be remarkable, the advantage of IoU adaptation is that it doesn’t
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GT Coarse Mask 4th token
GT IoU: 0.886

1st token
GT IoU: 0.904

Pred IoU: 0.979

2nd token
GT IoU: 0.929

Pred IoU: 0.997

3rd token
GT IoU: 0.886

Pred IoU: 0.996

GT Coarse Mask 4th token
GT IoU: 0.927

1st token
GT IoU: 0.866

Pred IoU: 0.964

2nd token
GT IoU: 0.927
Pred IoU: 1.0

3rd token
GT IoU: 0.969
Pred IoU: 1.0

Figure 16: Visualization of masks generated by different tokens in SAM decoder.

require any additional annotated data and only takes advantage of the priors contained in the target
dataset. SAMRefiner++ serves as a complementary enhancement to SAMRefiner when coarse masks
on target datasets can provide high-quality guidance and is not mandatory.

E.5 ANALYSIS OF THE QUALITY OF COARSE MASKS

In Fig. 17, we provide visualizations of the refined masks based on coarse masks with varying levels
of quality. The results show that SAMRefiner works effectively when the coarse masks meet a certain
quality standard but may fail when the coarse masks are extremely inaccurate. This is because the
mask refinement task becomes an ill-posed problem if the initial mask is too coarse. For example, if
the coarse mask only covers a person’s head, reconstructing the entire person would be impossible
without additional information due to the inherent ambiguity. Fortunately, most real-world coarse
masks, such as those generated by model predictions, usually meet a certain quality standard and can
be effectively handled by our proposed approach.

E.6 IMPACT OF THE DISTANCE-GUIDED POINT SAMPLING STRATEGY

The distance-guided point sampling strategy outperforms the box-center method as it effectively
mitigates the impact of false-positive noise, which often distorts the bounding box and causes the box
center to deviate from the actual object, as shown in Fig. 18.

E.7 FURTHER DISCUSSIONS

CEBox: For SAM, the image features of different instances (even within the same category) exhibit
distinct characteristics. This enables SAM to produce fine-grained, component-level segments,
making it support a variety of downstream applications. To illustrate this, we analyze feature
similarity between different masks in Fig. 19a. As shown, the features of different instances, even
within the same class, display certain differences. This characteristic allows SAM to distinguish
between instances effectively (e.g, adjacent books). Similar conclusions can also be drawn for the
part segmentation, as shown in Fig. 19b. On this basis, we can flexibly adjusting λ, a threshold
to determine the necessity to expand the current box in each direction based on image feature
similarity, according to different settings. For instance, a relaxed threshold could be applied for
general segmentations, while a stricter threshold may be more suitable for fine-grained segmentations,
such as distinguishing different instances or components.

Application scenarios and limitations of SAMRefiner(++). In this paper, we propose an effective
mask refinement method SAMRefiner and its variant SAMRefiner++. SAMRefiner is a training-free
method that refines masks using noise-tolerant prompts. It retains most of the characteristics of
the original SAM and inherits its "universal capability." In contrast, SAMRefiner++ refer to the
combination of SAMRefiner and IoU Adaption, which require additional training on target datasets.
This method is specifically tailored for certain conditions and has strict prerequisites, such as the
quality of coarse masks, which is dataset-dependent and may not achieve remarkable results on all
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datasets. As a result, SAMRefiner++ is not intended to be a universal method. Instead, it offers a
potential approach to achieve further improvements without requiring additional annotations.

Coarse Mask Refined MaskImage

GT Mask

Coarser

Figure 17: Visualizations of refined masks based on coarse masks with varying levels of quality.
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Figure 18: Comparison between box center point and distance-guided point.
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(a) Instance-level feature similarity.
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(b) Component-level feature similarity.

Figure 19: Visualizations of feature similarity between base and other masks.

25


	Introduction
	Related Works
	Coarse Masks in Image Segmentation
	Mask Refinement Technique
	Segment Anything Model

	Method
	Review of SAM
	Prompt Excavation
	IoU Adaption

	Experiment
	Experimental Setup
	Ablation Experiments
	Application on Incomplete Supervision
	Comparison with State-of-the-art.

	Conclusion
	Additional Details
	Datasets Details
	Implementation Details

	Additional Experiments
	Comparison with Automatic Mask Generator
	Effects of Different Backbones and Cascaded Post-refinement
	Upgraded Results based on HQ-SAM
	Applications on Different Tasks
	Additional Ablation Studies

	Discussions and Limitations
	More Qualitative Results
	Technical Details
	Details about STM
	Comparison of different mask refinement methods.
	Details about Gaussian-style Mask
	Details about IoU Adaption
	Analysis of the quality of coarse masks
	Impact of the distance-guided point sampling strategy
	Further Discussions


