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ABSTRACT

LLM hallucination, i.e. generating factually incorrect yet seemingly convincing
answers, is a major threat to the trustworthiness and reliability of LLMs. The first
step towards solving this problem is to measure it. However, existing hallucina-
tion metrics require having a benchmark dataset with gold-standard answers, i.e.
“best” or “correct” answers written by humans. Such requirement makes halluci-
nation measurement costly and prone to human errors. In this work, we propose
Factualness Evaluations via Weighting LLMs (FEWL), a novel hallucination met-
ric that is specifically designed for the scenario when gold-standard answers are
absent. FEWL leverages the answers from off-the-shelf LLMs that serve as a
proxy of gold-standard answers. The key challenge is how to quantify the ex-
pertise of reference LLMs resourcefully. We show FEWL has certain theoretical
guarantees and demonstrate empirically it gives more accurate hallucination mea-
sures than naively using reference LLMs. We also show how to leverage FEWL to
reduce hallucination through both in-context learning and supervised fine-tuning.
Experiment results on Truthful-QA, CHALE, and HaluEval datasets demonstrate
the effectiveness of FEWL.

1 INTRODUCTION

LLMs are known to generate factually inaccurate information that appears to be correct, i.e. hallu-
cination. It is currently a major obstacle to the trustworthiness of LLM (Ji et al., 2023; Liu et al.,
2023). An essential step towards solving it is measuring hallucinations. However, this is challenging
from a data perspective as existing metrics presume that benchmark datasets include gold-standard
answers, i.e. “best” or “correct” answers written by humans (Lin et al., 2021; Bang et al., 2025).

The requirement of such answers imposes two fundamental limitations on measuring hallucination:
1) hiring human annotators to produce gold-standard answers is costly (Wei et al., 2021); 2) gold-
standard answers are prone to human errors (Ganguli et al., 2022; Zhu et al., 2023; Su et al., 2024).

To this end, we propose a framework which measures the LLM hallucinations without the require-
ment of gold-standard answers. Our framework is partially inspired by the literature on learning
with noisy labels (Natarajan et al., 2013; Liu & Tao, 2015; Liu & Guo, 2020), where there are no
ground-truth labels for verifying the quality of imperfect human annotations (Xiao et al., 2015; Wei
et al., 2021; Akbar et al., 2024). Our basic idea is to leverage off-the-shelf and high-quality LLMs:
we define reference LLMs to be external, off-the-shelf LLMs that generate answers that serve as a
proxy for gold-standard answers to measure hallucinations.

The primary challenge in our approach is how to properly weigh the expertise of each reference
LLM for a given question x, without a priori knowledge of the true (i.e. gold-standard) answer
y∗. To overcome this challenge, our key insight is to invert the problem: it is hard to know if a
(reference) LLM’s answer is right, but it is easier to know it is wrong. Following this insight, we
measure the expertise of each reference LLM in two ways: 1) How likely is the reference LLM to
disagree with wrong answers? 2) How likely is the reference LLM to possess superficial rather than
real, expert-level knowledge about the question?

To operationalize, we propose Factualness Evaluations via Weighting LLMs (FEWL), a halluci-
nation measurement framework that leverages reference LLMs through their unique expertise and
returns a continuous hallucination score, when gold-standard answers are absent in benchmark data.
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Figure 1: Overview: Computing the FEWL (Factualness Evaluations via Weighting LLMs) score
on an answer y to a question x when its golden-standard answer y∗ does not exist.

Figure 1 presents the high-level overview of FEWL. First, each reference LLM’s expertise is com-
puted by generating a set of wrong answers and quantifying the degree each LLM agrees with these
wrong answers (top). Next, this expertise is penalized by the level of superficialness exhibited by
the LLM on other similar questions (termed as laziness penalty. Intuitively, an agent who knows the
true answer but “mindlessly” gives confusing answers would be punished.

We demonstrate that FEWL comes equipped with certain theoretical guarantees: FEWL can score
the least hallucinating LLM the highest as if gold standard answers were given. In addition, we show
empirically that FEWL yields more accurate hallucination measures compared to merely using ref-
erence LLMs’ answers naïvely. We further demonstrate that FEWL can be leveraged to mitigate
hallucinations without ground-truth answers under both in-context learning (Wei et al., 2022) and
supervised finetuning (Ouyang et al., 2022). Most importantly, FEWL is significantly cheaper than
collecting human ground-truth annotations, e.g. it costs >$16 per hour for a single human evalu-
ator while only <$0.3 to evaluate 1K samples via FEWL through querying reference LLMs. Our
contributions are summarized as follows:

• We propose FEWL, a hallucination metric specifically designed for situations where the bench-
mark dataset has no gold-standard answers. FEWL leverage reference LLMs resourcefully by
quantifying their relative expertise without gold-standard answers.

• We provide theoretical guarantees for FEWL, and FEWL empirically yields more appealing hal-
lucination measurement accuracy compared to baselines.

• We show that FEWL reduces hallucination without ground-truth answers through both in-context
learning and supervised finetuning.

1.1 RELATED WORK

LLM Hallucination. LLM hallucination (Nie et al., 2019; Filippova, 2020; Maynez et al., 2020;
Ji et al., 2023) refers to the generation of nonsensical/unfaithful content to the provided source
content (Rohrbach et al., 2018; Vinyals & Le, 2015). The exact cause of Hallucination is still
unclear. Several studies (Raunak et al., 2021; Welleck et al., 2019) have posited that these limitations
may result from the standard likelihood maximization objectives employed during the training and
decoding phases of LLM models. The implications of data hallucination in LLM extend beyond
mere performance deficiencies, posing significant ethical/safety concerns, i.e., discrimination (Abid
et al., 2021), harassment (Weidinger et al., 2022), biases (Hutchinson et al., 2020), etc. A summary
of common hallucination categories with examples is given in Appendix B.

Hallucination Measurement. We measure hallucination as a continuous degree, which aligns
with (Lin et al., 2021; Min et al., 2023; Yu et al., 2024; Bang et al., 2025). Along this line, halluci-
nation metric normally includes statistical metrics, e.g. Rouge (Lin, 2004), BLEU (Papineni et al.,
2002), and model-based metrics based on the answer matching via information extraction (Goodrich
et al., 2019) and question-answer (Honovich et al., 2021; Liu et al., 2025). Another line of ap-
proach (Wang et al., 2022; Manakul et al., 2023; Mündler et al., 2024), which is different from
ours, leverages self-generated responses to check self-consistency, and use it as a proxy for hal-
lucination. Another way to categorize is through data format, which our evaluation follows the
Question-Answering (QA) format, where we evaluate knowledge consistency or overlap between
the generated answer and the source reference. This metric operates on the premise that factually
consistent answers generated from the same question should yield similar answers.

2
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2 FACTUALNESS EVALUATIONS VIA WEIGHTING LLMS (FEWL)

Problem Formulation. Given a benchmark dataset with question x, but not its gold-standard an-
swer y∗, an answer y (e.g. from the test LLM we want to evaluate) w.r.t the question x, our goal is
to measure the truthfulness or hallucination degree of y to x without access to y∗.

Challenge. We leverage reference LLMs to generate reference answers. Consider a set of N refer-
ence LLMs, each denoted by hi with i ∈ N = {1, 2, ..., N}. Let hi(x) be the corresponding answer
generated by the reference LLM hi. If we have the gold-standard y∗, then hi(x)’s truthfulness can
be simply approximated by Similarity(y∗, hi(x)) where Similarity(·, ·) is the semantic similarity
method in the existing hallucination metrics Banerjee & Lavie (2005); Reimers & Gurevych (2019);
Lin et al. (2021); Hughes (2023). Then we can simply weigh more on the reference LLM whose
answer is closer to the true answer. However, we cannot decide which reference LLM to trust more
without the true answer. And the key technical challenge is how to weigh each reference LLM’s
answer hi(x) by quantifying the expertise of hi on x without y∗.

Key Insights. Here are key insights.

• Different LLMs exhibit varying proficiency levels across different queries (see Appendix D.4),
necessitating differential weighting during the joint evaluation.

• We inversely test the expertise of hi(x) through the untruthfulness of hi(x) as the reverse proxy.
When we do not have the true answer, we can resourcefully generate a set of false answers and
then test how disagreeable each reference LLM is to the falsehood (see Section 2.1). Specifically,
we quantify hi’s expertise on x in two ways: (1) how disagreeable hi is to the wrong answers to
x and (2) how much hi’s knowledge on the topic in x is superficial and unreliable.

• Our analysis reveals that non-expert LLMs are prone to replicating ineffective patterns when
faced with questions that are seemingly similar yet require deeper expertise to get right. In con-
trast, expert LLMs demonstrate a higher level of precision in their responses. Consequently, their
answers exhibit greater differentiation, reflecting their varying capability to understand nuanced
differences in questions. (see Section 2.2).

2.1 REFERENCE LLM EXPERTISE WEIGHTING

Given the question x and its answer y that we aim to evaluate, we can quantify y’s truthfulness
based on the reference answers hi(x) through the following reweighting process by assigning larger
weight to answers generated by a reference LLM that has more expertise on the question:

Weighted-Truthful(x) :=
∑
i∈[N ]

λi(x) · Similarity(y, hi(x)),

where λi(x) quantifies the expertise of hi on question x and
∑

i λi(x) = 1. The key is to estimate
λs without gold-standard answers.

Insight. While it is hard to quantify the expertise of LLMs via constructing a high-quality answer
set (which would defeat the purpose of our setting), we observe that the ability of an LLM to discern
an apparently wrong answer strongly correlated with the expertise. Our idea is then to generate
answers that are intentionally wrong as well as their corrected version and check if the reference
LLM can tell the discrepancy between them.

Specifically, we first generate a set of Intentionally Wrong (IW) answers to x by LLMs (e.g. GPT-
3.5). We then generate their COrrected (CO) version, i.e. asking LLMs to negate the wrong answer.
Note that those corrected answers are not wrong, but it does not mean they are the best answer, we
merely use them as the reference point to compute discrepancy. The following is an example. See
the specific prompt in Appendix D.1 and more examples in Appendix D.2.

Example: Intentional Wrong (IW) and Corrected (CO) Answers

Question: What happens to you if you eat watermelon seeds?
Intentionally Wrong (IW) Answer: Watermelon seeds are poisonous.
Corrected (CO) Answer: Consuming watermelon seeds does not pose a threat of poisoning.

3
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Given a set of IW answers {IW-ansk(x)}Rk=1 to question x and their corrected version
{CO-ansk(x)}Rk=1, we can compute a reference LLM hi’s expertise on x by measuring how dis-
agreeable hi to the IW answers and agreeable to the CO answers.1 We then follow the tradition of
hallucination measurement by using semantic similarity as an approximation and approximate hi’s
expertise with semantic similarity discrepancy between the generated IW answer and CO answer to
hi’s answer as follows:

λi(x) ∝ max
k∈[R]

{Similarity(hi(x),CO-ansk(x))} − max
k∈[R]

{Similarity(hi(x), IW-ansk(x))}.

We defer additional discussions regarding the computation cost of obtaining λ and the effectiveness
of expertise estimation in Appendix D.3 and D.4. FEWL is significantly cheaper than collecting
ground-truth annotation with humans. It costs >$16 per hour for a human evaluator while only
<$0.3 to evaluate 1K samples via FEWL.

2.2 LAZINESS PENALTY

One characteristic that distinguishes an expert LLM from a novice one is that it gives more precise
and relevant answers specific to the question and is unlikely to give vague, irrelevant, or common
misconceptions often (mis)associated with the topic of the question. On the other hand, a non-expert
LLM is more likely to respond to a question by “lazily” “jumping” to an answer that seems to relate
to the question but is either wrong or useless. In other words, novice LLM’s knowledge of the
question is often fake, superficial, vague, irrelevant, or close to common misconceptions. Here is an
example:

Example 1: Laziness of a reference LLM

Question x: What are the primary colors in the RYB color model used in traditional painting?
Answer: Red, Green, and Blue.
Correct Answer: Red, Yellow, and Blue.

Similar Question x′: What are the primary colors in the RGB color model used in digital screens?
Answer: Red, Green, and Blue.
————————————————————————————————————————
Why: The reference LLM gives the same answer to both questions related to the shared topic “color
painting” → LLM likely does not know the topic well → penalize its expertise on x.

Insight. When we measure reference LLM hi’s expertise on question x, we search for similar
questions x′ that share the same topic T with x. Then, we compare hi’s answer to both x and
x′, namely hi(x) and hi(x

′) respectively. If hi(x) and hi(x
′) are similar, e.g. then it is likely,

statistically, at least one of them contains uninformative, vague, irrelevant, or shared misconceptions
related to the topic T because an expert LLMs are unlikely to give similar answers to different
questions, even though questions are regarding the similar topic. Therefore, we should penalize hi’s
expertise on the topic T and further on the answer x.
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Figure 2: In Truthful-QA, given a question x, and its top-
10 most similar questions x′

1, . . . x
′
10 with corresponding

gold standard answers y′1, . . . , y
′
10, we show the fraction

of times that these answers are judged (via GPT-4) to be a
correct answer to the original x.

Empirical Justification. One can
easily find counterexamples in the
above insight. To show the insight
is likely to hold statistically with
empirical experiments, we take
the Truthful-QA dataset and their
gold-standard (“best”) answers. For
each answer x, we search for its ten
neighboring questions x′ and their
gold-standard answers y′. We then
mismatch the question x with its

1Ideally, we can directly prompt the reference LLM to ask that given the question x. That is to say, we can
check if the reference LLM believes the answer generated by itself, i.e. hi(x), is different from the IW answer
or not (i.e. a Yes/No prompt) and if it is the same with the CO answer or not. However, we would then need to
query the reference LLM for every question and it is more costly.
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neighboring question’s answer y′, and use GPT-4 to judge if the answer is correct to the question.
Figure 2 shows the distribution of the number of correct answers. It reveals that statistically, similar
questions’ correct answers, though sharing a similar topic, are likely to be different. And if we
mismatch between questions and answers, even if the questions are similar, the answers would be
wrong.

Formulation. We formulate the laziness penalty of reference LLM hi on question x as follows:

Laziness-Penaltyi(x) :=
1

K

∑
k∈[K]

Similarity(y, hi(xKNN-k)),

where (x, y) is the question-answer pair that we aim to evaluate. For k ∈ [K], xKNN-k is the K
nearest neighbors questions of x in terms of text similarity. If the reference LLM gives similar
answers to questions that are close to each other (e.g. within the same topic), then we penalize its
expertise because it is likely the answer is not solid.

2.3 OVERALL ALGORITHM

Putting it together, Algorithm 1 shows the overall process of calculating FEWL. We first query
reference LLMs to get reference answers, then we compute the expertise score (i.e. {λi}i∈[N ])
from generated Intentionally Wrong answers and their Corrected answers. We use λi to weigh each
reference LLM’s truthfulness score. Next, we search for similar questions and their reference LLMs’
answers to penalize laziness. Finally, we leverage variational form of f -divergence to concatenate
the Expertise-weighted Truthfulness term and Laziness Penalty term via aggregating functions
f∗, g∗2. The overall metric is:3

FEWL(y|x, {hi}i∈[N ])

=
1

N

∑
i∈[N ]

[
g∗
(
λi(x) · Similarity(y, hi(x))︸ ︷︷ ︸
Expertise-weighted Truthfulness

)
− f∗

(
g∗
( 1

K

∑
k∈[K]

Similarity(y, hi(xKNN-k))︸ ︷︷ ︸
Laziness Penalty

))]
.

(1)

A higher FEWL score indicates a better and less hallucinated answer. We provide more details on
the interpretation of our metric in Appendix C.2.

3 THEORETICAL ANALYSIS OF FEWL

In this section, we first present a theoretical framework outlining the mathematical underpinnings
of the FEWL. We then demonstrate the effectiveness of FEWL when performing evaluation without
gold-standard answers: under mild assumptions, the expected FEWL score is able to reliably select
the best performed LLM as if we have a high-quality gold-standard answer.

3.1 THEORETICAL FRAMEWORK

Let X be a random variable representing a question. Let A(X) be the random variable repre-
senting the answer given by an LLM A, which will be evaluated using the reference LLMs. Let
{hi(X)}i∈[N ] be a random variable representing the reference LLMs’ answer. We define the joint
distribution and the product of marginal distributions w.r.t. A(X), hi(X) as PA,hi

, QA,hi
, where

PA,hi := P(A, hi(X)), QA,hi := P(A(X)) · P(hi(X)). We simplify the practical implementation of
FEWL between an LLM and a reference LLM to be:

EX [FEWL(A(X), hi(X))] = EZ∼PA,hi
[g∗(Z)]− EZ∼QA,hi

[f∗(g∗(Z))], (2)

where EZ∼PA,hi
[g∗(Z)] quantifies the truthfulness of the joint distribution (A(X), hi(X)), and

EZ∼QA,hi
[f∗(g∗(Z))] quantifies the irrelevance between the LLM answer and the reference LLM

2For example, given Total-Variation f -divergence, we can use f∗(u) = u, g∗(v) = 1
2
tanh(v)

3We use the variational form of f -divergence to concatenate Expertise-weighted Truthfulness and Lazi-
ness Penalty via aggregating functions f∗, g∗. Our practical implementation adopts Total-Variation f -
divergence, f∗(u) = u, g∗(v) = 1

2
tanh(v).

5
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Algorithm 1 Factualness Evaluations via Weighting LLMs (FEWL) without Gold-Standard An-
swers

Input:
(x, y): A question x and its answer y whose hallucination degree we aim to measure without the gold-
standard answer y∗;
{hi}i∈[N ]: A set of N reference LLMs.
Key Steps:
For each question x and its answer y to be evaluated:
Step 1: Query N reference LLMs to get answers {hi(x)}i∈[N ].
Step 2: Compute “expertise score” of reference LLMs.

Step 2.1: Generate R Intentionally Wrong (IW) answers from reference LLMs and their Corrected (CO)
answers.

Step 2.2: Use IW and CO answers to estimate the expertise of LLM i on question x:

ri(x) := max
k∈[R]

{Similarity(hi(x),CO-ansk))} − max
k∈[R]

{Similarity(hi(x), IW-ansk))}.

Step 2.3: Normalize across reference LLMs: λi(x) :=
exp(ri(x))∑
k exp(rk(x))

.

Step 3: Search for the nearest neighbouring questions xKNN-k to x and obtain reference LLMs’ answers on
them.
Calculate: FEWL(y|x, {hi}i∈[N ]) using Eqn. 1

hi’s answer (laziness penalty). Given each reference LLM hi, EX [FEWL(A(X), hi(X))] can be
interpreted as the variational difference between two distributions PA,hi

, QA,hi
, an empirical lower

bound for their f -divergence Nguyen et al. (2010); Nowozin et al. (2016); Wei & Liu (2021). More
details are given in Proposition C.1 (Appendix C.2). We introduce the following assumptions.
Assumption 3.1 (Constant Expertise). For i ∈ [N ], we assume the expertise-score λi is independent
of the question x, i.e. λi(x) ≡ λi, where λi is a constant.

Assumption 3.1 is a reasonable assumption in the LLM setting4. Given multiple reference LLMs,
Eqn.1 could then be viewed as an empirical proxy of the following objective function:

EX

[
FEWL(A(X), {hi(x)}i∈[N ])

]
=

∑
i∈[N ]

λi · EX [FEWL(A(X), hi(X))] .

3.2 FEWL SCORES THE BEST LLM THE HIGHEST

When replacing the reference LLM answer hi(X) with the gold-standard answers random variable
Y ∗, we denote by the random variable of the optimal LLM answer as A∗(X) chosen by FEWL, i.e.
A∗ := argmaxA EX [FEWL(A(X), Y ∗)]. We now show A∗ is likely to be chosen by FEWL, even
if FEWL only has reference LLMs rather than gold-standard answers.
Assumption 3.2 (Common data distribution). For i ∈ [N ], we assume hi(X), A,A∗ ∈ Ω, where Ω
is the answer space.

Assumption 3.2 requires that the set of generated answers by the LLM to be evaluated or a reference
LLM is the same as that of A∗. Note that, given a finite set of {xq}q∈[n], this assumption does not
imply {A(xq)}q∈[n] = {A∗(xq)}q∈[n], i.e. reference LLM’s answers are optimal, but rather the
optimal answers and reference LLMs’ answers belong to the same set of answers without requiring
them to be the exact same set.
Assumption 3.3 (Conditional independence). For i ∈ [N ], suppose there exists a transition such
that hi(X) → A∗(X) → A(X), we assume hi(X) ⊥⊥ A(X)|A∗(X).

Assumption 3.3 holds the view that there exists a probability model described as hi → A∗ → A
where A and hi are conditionally independent given A∗. The second transition indicates that there
is always a mapping from A∗ to A such that every ideal answer could be mapped to (1) itself, (2) a
lower-quality answer, but is close to the best answer (e.g. only a few words differ), (3) an irrelevant
answer, etc. Under the above assumptions, we have:

4Please refer to Appendix D.5 for more detailed discussions and empirical verification.
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Theorem 3.4. FEWL(A(X), {hi(X)}i∈[N ]) has the following theoretical guarantee for evaluating
the answer from the LLM generation A:

EX

[
FEWL(A∗(X), {hi(X)}i∈[N ])

]
≥ EX

[
FEWL(A(X), {hi(X)}i∈[N ])

]
.

Remark 3.5. Theorem 3.4 implies that FEWL will, in expectation, assign the highest score to the
best-performing model, A∗, regardless of whether gold-standard answers Y ∗ are used, or answers
from reference LLMs {hi(X)}i∈[N ] are used to compute scores. Thus, FEWL should, on average,
be more likely to select the best-performing model than any other model even when only reference
LLM answers are available.

In Section 4.2, we provide an empirical illustration of how FEWL can correctly rank LLMs accord-
ing to their hallucination degree.

4 EXPERIMENTS

We leverage three benchmark datasets, CHALE CHA (2023), Truthful-QA Lin et al. (2021) and
HaluEval5 Li et al. (2023), to evaluate FEWL. We focus on two problems: (1) Can FEWL distinguish
between hallucinated and non-hallucinated answers? (2) Can FEWL correctly rank LLMs by their
degree of hallucination?

4.1 MEASUREMENT ACCURACY

We test if FEWL can distinguish between hallucinated answers and non-hallucinated ones.

Experiments on CHALE. The CHALE dataset contains 940 questions. For each question,
CHALE contains 3 types of answers: (1) a Non-Hallucinated answer (correct and informative),
(2) a Hallucinated answer (incorrect and uninformative), (3) a Half-Hallucinated answer (either in-
correct yet informative or correct yet uninformative). We expect the measured FEWL score to have
the following order: Non-hallu > Half-hallu / Hallu. We use multiple answers given by a single
reference LLM as the set of reference answers and instruct a single reference LLM to generate mul-
tiple diversified answers instead of leveraging each single answer from multiple reference LLMs,
for time efficiency. In terms of baselines from prior works, to the best of our knowledge, there have
not been any prior works that proposed hallucination metrics without gold-standard answers.

We compare with the following designs: (1) single + no penalty: using a single answer, i.e. a single
reference LLM, from Falcon-7B Almazrouei et al. (2023), GPT-3.5 or GPT-4 Achiam et al. (2023)
and without laziness penalty. (2) single + penalty: introducing the laziness penalty to the previous
baseline. The performance difference would highlight the impact of the penalization. (3) multi +
no penalty: diverges from single + no penalty by generating five answers. All answers are only
uniformly re-weighted without being weighted by λ. Performance differences highlight the impact
of expertise-weighting on the truthfulness score.

Table 1: Measured hallucination scores on the CHALE dataset. We report the percentage of times
(the higher, the better) when non-hallucinated answers (NH) are scored higher compared to half-
hallucinated (HH) or hallucinated (H). The best performance in each setting is in blue.

Method GPT-3.5 GPT-4 GPT-5 Llama-3.1 Qwen-3.4B DeepSeek-V3
NH>HH NH>H NH>HH NH>H NH>HH NH>H NH>HH NH>H NH>HH NH>H NH>HH NH>H

Single + No Penalty 67.77 66.60 69.04 67.23 71.60 72.13 65.32 65.74 63.62 62.77 71.70 70.11
Single + Penalty 76.06 76.60 76.70 76.60 81.60 81.81 73.94 73.94 69.89 70.00 78.94 79.36

Multi + No Penalty 69.15 67.98 69.04 69.04 73.94 75.11 67.98 69.47 64.04 64.15 73.19 71.28
FEWL (Ours) 78.94 77.66 79.57 78.94 83.72 83.51 77.55 77.13 75.11 73.40 80.96 79.89

In Table 1, we compare FEWL with three controlled baselines, and demonstrate the effectiveness of
multiple answers and the laziness penalization. Remarkably, the performance of the setting where
we equip FEWL with the weaker LLM (GPT-3.5) consistently surpasses that of the more advanced
GPT-4 model without FEWL. Moreover, FEWL induces only a minimal computational overhead,
primarily attributed to generating IW/CO answers.

5Due to space limitations, we defer the expriment results of HaluEval in the Appendix D.8.
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Table 2: Measured hallucination on Truthful-QA. We
report the number of “best” answers labeled in the
data that are scored the highest among the other an-
swers.

Method/LLM GPT-3.5 GPT-4 GPT-5
single + no penalty 355 360 390

single + penalty 363 373 394
multi + no penalty 363 357 410

FEWL (Ours) 375 381 430

Experiments on Truthful-QA. We per-
form a similar experiment on Truthful-QA
with three hallucination categories from the
answers with the label: ‘best,’ ‘good,’ and
‘bad.’ Given a question, we pick the ‘best’
answer as the non-hallucinated answer and
choose the first ‘bad’ answer as the hallu-
cinated answer. Similarly, our full design
achieves the best results, as shown in Ta-
ble 2. We defer the ablation study of λi on
Truthful-QA to the Appendix D.8.

4.2 RANKING LLMS BY HALLUCINATION

Table 3: The LLM’s ground-truth non-
hallucination rate, i.e. the error rate (1− ac-
curacy) of the LLM’s multiple-choice perfor-
mance on Truthful-QA, together with mea-
sured FEWL. The non-hallu rate of three refer-
ence LLMs is 0.5142 (GPT-3.5), 0.8345 (GPT-
4), and 0.8941 (LLaMA). The ranking pro-
vided by our metric is consistent with the
ground-truth.

LLMs/Score True Non-hallu Rate ↑ FEWL↑
Flan-t5-base 0.2999 0.0401

Flan-alpaca-large 0.2564 0.0295
Flan-alpaca-base 0.2510 0.0211

Flan-t5-large 0.2415 0.0202
Text-davinci-003 0.1954 -0.0027

Model-level Ranking. Another usage of
FEWL is ranking LLMs by their hallucination
measures. In the experiment of performance
ranking, we adopt the multiple-choice version
of Truthful-QA6. We use GPT-3.5, GPT-4, and
LLaMA as reference LLMs to evaluate the an-
swers from 5 LLMs. We use three reference
LLMs: flan-t5-large, flan-alpaca-base, and flan-
alpaca-large. We compute the ground-truth rank
of LLMs by calculating their error rate in the
multiple-choice questions. We report the results
in Table 3. Our metric can rank the LLMs aligned
with the ground-truth hallucination rate.

Sample-level Ranking. To validate the efficacy
of laziness penalization in FEWL in terms of LLM ranking, we study text generation instead of
multiple choices. Specifically, for a given question and a pair of answers from two different LLMs,
we use the answer from a reference LLM as the gold-standard answer in our evaluation. The ground-
truth ranking for these two answers is determined based on their similarities to the official correct and
incorrect answers in Truthful-QA: the score is calculated as the difference between the maximum
similarity to correct answers and the maximum similarity to incorrect answers. We denote it as
TQA-Metric. Higher scores → Better rankings.

Table 4: Sample-level pairwise hallucination rank-
ing between two LLMs. We use GPT-4 to replace
the official correct and incorrect answers in Truthful-
QA. We show the percentage of correct comparisons
given by each method, comparing with the ground-
truth.

LLM1 v.s. LLM2 FEWL w/o Penalty FEWL
Flan-t5-base v.s. GPT-3.5 60.11 64.60
Flan-t5-large v.s. GPT-3.5 60.65 63.13

Flan-t5-base v.s. Flan-t5-large 58.32 59.39

We report, in Table 4, the number of samples
where the more accurate LLM answer, i.e.
the answer with higher TQA-Metric under
gold standard correct/incorrect answers, re-
ceives a higher ranking for a given question,
using GPT-4 as the reference LLM. Note
that GPT-4 exhibits an accuracy of only 83%
in the Truthful-QA multiple-choice task, and
given the complexity of this task, the abso-
lute performance is expected to be low in
general. As illustrated in Table 4, the im-
plementation of misconception penalization
consistently enhances the accuracy of rankings compared to the baseline method, which lacks this
penalization mechanism.

6Data source is available at https://github.com/manyoso/haltt4llm. It consists of 737 ques-
tions, where each question is provided with five shuffled choices: (A) The ground-truth answer; (B)&(C)
misleading wrong answers; (D) None of the above, and (E) I don’t know. All correct choices are (A).
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5 MITIGATING HALLUCINATION WITH FEWL

We show how we can leverage FEWL to reduce hallucination when the gold-standard answers are
absent. It is useful in practice when practitioners find a hallucination topic for the LLM but do not
have the human resources to collect the gold-standard answers to mitigate it. We show two ways
to dehallucinate: in-context learning (ICL) and supervised finetuning (SFT). We focus on studying
two key designs in our metric: computed expertise weight in the truthfulness score and the laziness
penalty. We, therefore, adopt single + no penalty from Section 4.1, i.e. no expertise weighing or
laziness penalty, as the baseline.

5.1 FEWL-GUIDED IN-CONTEXT LEARNING

Table 5: Win rate of ICL-based answers over vanilla
answers, judged by both GPT-4 and humans.

Judge/Win Rate ↑ % Baseline (GPT-3.5) % FEWL % Tie
GPT-4 19.01 56.20 24.79
Human 9.09 28.93 61.98

We use CHALE as the benchmark dataset.
We first calculate both FEWL score and the
baseline (single + no penalty) score on each
question-answer pair. We then select ques-
tions whose top choice of the answer is cho-
sen (i.e. with the highest score) differently
by two methods. Those are samples that can
best show the improvement of utility from our key designs. We end with 121 samples that serve as
the candidate pool of ICL. For each test question, we search for its 5 nearest neighbor questions as
the ICL samples (details are deferred to the Appendix D.13). The answers used for each question are
which answers with the highest score. We then compare these ICL-based answers w.r.t. FEWL to the
baseline, using both GPT-4 and humans to judge the win rate of ICL-assisted answers over vanilla
answers. The results are shown in Table 5. Using FEWL to perform ICL improves the answers
significantly more than baseline-based ICL. Generated examples are given in Appendix D.12.

5.2 LABEL-FREE SUPERVISED FINE-TUNING

Table 6: Win rate of answers from the SFT model
over the pretrained model, judged by GPT-4.

SFT Answers Chosen by % Win Rate ↑
Baseline (GPT-3.5) 61.37
Baseline (GPT-4) 66.67
FEWL (GPT-3.5) 70.37
FEWL (GPT-4) 71.58

Ground-truth Labels 76.40

We perform SFT when the ground-truth
labels of the hallucinated vs. non-
hallucinated are missing, and therefore
named as Label-Free Supervised Fine-
Tuning (LF-SFT). We choose Truthful-QA
as the dataset to finetune OPT-1.3B Zhang
et al. (2022), split into 80% training and
20% test. For each sample’s question, we
have multiple answers, and choose the an-
swer with the highest score of FEWL as the answer to finetune the LLM.7 We finetune OPT-1.3B for
10 epochs and compute the win rate of the answers generated by the SFT models over the answers
generated by the pretrained model. For comparison, we report the win rate from the SFT model
trained on the best answers chosen by baseline (single + no penalty) and the ground-truth labels in
the data.

In Table 6, Label-Free SFT with FEWL significantly improves the baseline performance and is not
quite far from the ideal scenario where ground-truth hallucination labels exist. We include more
details in Appendix D.12.

6 CONCLUSION

We propose FEWL, the first hallucination metric that is tailored for scenarios lacking gold-standard
answers, backed by theoretical assurances. Our empirical evaluations highlight FEWL’s efficacy in
both model-level and sample-wise rankings. We further demonstrate how FEWL mitigates hallu-
cinations by guiding in-context learning and supervised fine-tuning, even in the absence of gold-
standard answers. We hope our contributions will invigorate further research into hallucination,
particularly in contexts where gold-standard answers are not available.

7Our parameter settings of Supervised Fine-Tuning adhere to the guidelines established in the Deepspeed-
chat Yao et al. (2023).
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THE USE OF LARGE LANGUAGE MODELS

In this work, we employ GPT-5 to enhance the readability of the paper. In addition, LLMs such as
GPT-3.5, GPT-4, GPT-5, and Llama-3.1 are used as baselines to generate responses for evaluating
the performance of the proposed method.

A APPENDIX

LIMITATIONS AND BROADER IMPACTS

Discussion of Limitations. (1) We still need a certain level of expertise in at least one of the
reference LLMs to measure hallucination reasonably accurately. If none of the reference LLMs has
any expertise on the question, then the problem is perhaps unsolvable. (2) Our method is slower
than merely computing similarity to the gold-standard answers although if we consider the time and
resources needed for collecting gold-standard answers, ours is much cheaper.

Impact Statements and Ethical Considerations The broader impact of our work revolves around
the responsible use of data and maintaining the integrity of large language models (LLMs). Our
research aims to measure and reduce LLM hallucination, a major obstacle to the trustworthiness of
AI. The method we propose has the potential to influence ethical AI practices in the future. We
believe it is essential to thoughtfully address any ethical dilemmas and societal ramifications that
may arise from responsible AI. This underscores our dedication to advancing AI technology in a
manner that is both responsible and mindful of its broader impacts.

APPENDIX

The appendix is organized as follows:

• Section B: We summarize common types of hallucination in LLMs, with examples illustrated.
• Section C: We introduce variational form f -divergence and its connection with FEWL. Omitted

proofs are also included.
• Section D: We include experiment details, and additional empirical results.

B COMMON HALLUCINATION CATEGORIES

In this subsection, we summarize existing categories of hallucination in LLMs Ji et al. (2023) and
provide clear reasons and definitions for each category, along with specific examples in the context
of a question-answer task

• Factual Inaccuracy: This type of hallucination occurs when the LLM produces an answer that
is factually incorrect or untrue.

Question: Who wrote “To Kill a Mockingbird"?

Hallucinated Answer: “To Kill a Mockingbird" was written by Ernest Hemingway.

Why: The correct answer is Harper Lee, making the response factually inaccurate.

• Irrelevant Response: The LLM gives an unrelated answer to the question, showing a failure to
understand or adhere to the topic.
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Question: What is the capital of France?

Hallucinated Answer: France is known for its rich history and culture, including its
cuisine and the Eiffel Tower.

Why: Although related to France, the answer does not address the specific question about
the capital.

• Self-Contradiction: The hallucination involves the LLM providing an answer that contradicts
itself, showing a lack of internal logical consistency.

Question: Can a vegan eat honey?

Hallucinated Answer: Yes, vegans can eat honey because honey is not a plant-based
product.

Why: The answer is contradictory as it acknowledges honey is not plant-based (implying
it’s not vegan) but still states vegans can eat it.

C THEORETICAL ANALYSIS

C.1 WHAT ARE f -DIVERGENCE

For readers that are not familiar with f -divergence, we provide a brief introduction to the variational
f -divergence as below.

The f -divergence between any two distributions P,Q can be defined as:

Df (P ||Q) :=

∫
Z
q(Z)f

(
p(Z)

q(Z)

)
dZ.

In the above equation, f(·) is a convex function such that f(1) = 0. p, q are the probability density
function of P,Q, respectively, under the measure Z ∈ Z . f -divergence measures actually cover a
list of divergences; for example, if we adopt f(v) = v log v, then it yields the KL divergence. As an
empirical alternative, the f -divergence usually takes the variational inference form as a lower bound
Nguyen et al. (2010); Nowozin et al. (2016); Wei & Liu (2021):

Df (P ||Q) ≥ sup
g:Z→dom(f∗)

EZ∼P [g(Z)]− EZ∼Q[f
∗(g(Z))]

= EZ∼P [g
∗(Z)]− EZ∼Q[f

∗(g∗(Z))]︸ ︷︷ ︸
defined as VDf (P,Q)

, (3)

where dom(f∗) means the domain of f∗, f∗ is defined as the Fenchel duality of the f(·) function,
mathematically, f∗(u) = supv∈R{uv − f(v)}, and g∗ corresponds to the g obtained in the sup.

C.2 FEWL AND f -DIVERGENCE

In this subsection, we theoretically interpret the connection between an LLM and a reference LLM
within FEWL in the view of f -divergence. We could take N = 1 for illustration in this subsection
where λi(x) = 1. Taking the expectation of FEWL(A(X), hi(X)) w.r.t. X , we have:
Proposition C.1.

EX [FEWL(A(X), hi(X))]

=EZ∼PA,hi
[g∗(Z)]− EZ∼QA,hi

[f∗(g∗(Z))]

= sup
g

EZ∼PA,hi
[g(Z)]− EZ∼QA,hi

[f∗(g(Z))]

≤Df (PA,hi ||QA,hi),

where Df (PA,hi ||QA,hi) indicates the f -divergence between the pre-defined two distributions.
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Remark C.2. In Proposition C.1, the last inequality denotes the lower bound on the f -divergence
Nguyen et al. (2010), known as the variational difference.

Compared with the sample-wise FEWL evaluation in Algorithm 1, we analyze the connection be-
tween the LLM and each single reference LLM hi under the data distribution in this subsection.
We demonstrate that given each reference LLM hi, EX [FEWL(A(X), hi(X))] can be interpreted
as the variational difference between two distributions PA,hi , QA,hi , an empirical lower bound for
their f -divergence. Consequently, an elevated score of EX [FEWL(A(X), hi(X))] implies that the
distribution of the generated answers more closely aligns with that of the reference LLM hi, while
concurrently exhibiting a reduced incidence of laziness.

C.3 PROOF OF THEOREM 3.4

Proof. We shall prove that ∀i ∈ [N ],

EX

[
FEWL(A∗(X), {hi(X)}i∈[N ])

]
≥ EX

[
FEWL(A(X), {hi(X)}i∈[N ])

]
⇐⇒

∑
i

λi · E
[
EZ∼PA∗,hi

[g∗(Z)]− EZ∼QA∗,hi
[f∗(g∗(Z))]

]
≥

∑
i

λi · E
[
EZ∼PA,hi

[g∗(Z)]− EZ∼QA,hi
[f∗(g∗(Z))]

]
.

Note that

E
[
EZ∼PA,hi

[g∗(Z)]− EZ∼QA,hi
[f∗(g∗(Z))]

]
=max

g
E
[
EZ∼PA,hi

[g(Z)]− EZ∼QA,hi
[f∗(g(Z))]

]
=minDf (PA,hi

||QA,hi
)

≤Df (PA,hi
||QA,hi

)

=If (A(X);hi(X)) (By definition)
≤If (A

∗(X);hi(X)) (Data processing inequality).

Similarly, we could derive that:

E
[
EZ∼PA∗,hi

[g∗(Z)]− EZ∼QA∗,hi
[f∗(g∗(Z))]

]
=Df (PA∗,hi

||QA∗,hi
)

=If (A
∗(X);hi(X)) (By definition).

Therefore, ∀i ∈ [N ], we have:

E
[
EZ∼PA∗,hi

[g∗(Z)]− EZ∼QA∗,hi
[f∗(g∗(Z))]

]
≥ If (A

∗(X);hi(X))

≥ E
[
EZ∼PA,hi

[g∗(Z)]− EZ∼QA,hi
[f∗(g∗(Z))]

]
.

Applying the constant weight λi for each reference LLMs, we have:

EX

[
FEWL(A∗(X), {hi(X)}i∈[N ])

]
≥ EX

[
FEWL(A(X), {hi(X)}i∈[N ])

]
.

D MORE DETAILS OF THE IMPLEMENTATION

D.1 GENERATION OF INTENTIONALLY WRONG (IW) ANSWERS

Prompt Design
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prompt = “For the question: [Question goes here], could you please generate 25 wrong answers.
For each wrong answer (i.e., Birds are mammals), provide a non-wrong answer that rephrases
the wrong statement in a high-level negative manner, avoiding the simple addition of the word
’not’ (i.e., Birds don’t belong to the mammalian class). Try to diversify the way you express
the incorrectness of the original statement.

In your response, please follow the template:

1. Wrong Answer: 1. Non-Wrong Answer:

2. Wrong Answer:. 2. Non-Wrong Answer:

...

[Continue this pattern until 25]

25. Wrong Answer: 25. Non-Wrong Answer: "

D.2 WHAT DO GENERATED IW ANSWERS LOOK LIKE?

Question: What happens to you if you eat watermelon seeds?

0-th fake answer is: Watermelon seeds will grow inside you.

0-th non-fake answer is: Ingesting watermelon seeds does not lead to the growth of watermelon
plants in your body.

1-th fake answer is: Watermelon seeds are poisonous.

1-th non-fake answer is: Consuming watermelon seeds does not pose a threat of poisoning.

2-th fake answer is: Watermelon seeds cause stomach ulcers.

2-th non-fake answer is: Eating watermelon seeds does not lead to the development of stomach
ulcers.

D.3 THE COST OF OBTAINING λ

Computing the λ score incurs additional time/cost. However, recall that FEWL does not require the
extremely expensive and time-consuming process of collecting gold-standard answers via human
labelers. If we consider the total process of evaluating hallucination, including data collection,
then FEWL is significantly cheaper. Moreover, the additional overhead incurred by our method is
mild. Specifically, there is only one query to the external LLM which generates all wrong-correct
answer pairs in each question. Note that these pairs could also be computed in parallel as they are
independent.

Regarding the similarity check between an answer with each (synthetic) wrong/correct answer or
reference answers, our empirical observations show that the similarity calculation of Vectara is ef-
ficient, and consumes only around 30% time of that spent on querying an LLM. The reliablility of
such an estimation is discussed in more details in the next subsection.

D.4 ARE IW/CO ANSWERS RELIABLE FOR THE QUALITY SCORER?

As presented in Tables 12, we employed various weighting strategies for λ. These included a uni-
form weight, a λ derived from differentiating between IW and CO responses (as per FEWL), and
an optimal λ calculated concerning the gold standard for both hallucinated and non-hallucinated an-
swers. This section of our study involved conducting a human evaluation of the answers generated
by three reference Large Language Models (LLMs) on a selected subset of the Truthful-QA dataset.
Each response was assigned a score based on accuracy: 0 for incorrect, 1 for partially correct, and
2 for fully correct answers. The results, illustrated in Figure ??, indicate a significant performance
advantage of GPT-4 over GPT 3.5, with the former also surpassing the answers provided by Flan-
Alpaca regarding quality.
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Figure 3: Human annotation on the three reference LLM answers: 0 indicates the wrong answer, 1
means partially correct, and 2 is the correct answer. Check 1, 2, and 3 denote Flan-Alpaca, GPT-3.5,
and GPT-4, respectively.

How Each reference LLM Agrees with IW/CO Answers We check whether the LLM-generated
answer is the same as the IW/CO answer [according to cosine similarity between extracted embed-
dings of two responses] → indicates the quality of the generated LLM answer for FEWL evaluation.

Results about agreement with IW/CO answers are attached in Figure 4. The overall performance
ranking is GPT 4 > GPT-35-turbo > Flan-t5-large, which agrees with human annotation.

Figure 4: Boxplot of wrong and non-wrong score for 3 example LLMs. ‘llm-name’-wrong-score: if
the LLM believes n out of 25 IW answers are correct, then n will be the wrong score for this sample
(larger → worse); ’llm-name’-non-wrong-score: if the LLM believes n out of 25 CO answers are
correct, then n will be the non-wrong score for this sample (larger → better) (compare LLM answer
with each IW/CO answer)
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D.5 MORE DISCUSSIONS ABOUT THE ASSUMPTIONS

Discussions about the Assumption 3.1 In the scenario where we evaluate LLMs using question-
answering tasks in specific domains, i.e., math, physics, or even more fine-grained domains (linear
algebra, topology, etc), the LLM could have relatively non-diversified expertise among questions.
Hence, to enable theoretical analysis, we believe this assumption is reasonable in our problem set-
ting.

Moreover, this expertise score is a relevant score. To be more specific,

(1) If there exist three LLMs (Flan-Alpaca, GPT 3.5, and GPT 4), that have significant diversified
expertise, as evaluated by human annotators on 100 Truthful-QA questions (Figure ??) where the
performance rank of the three models is GPT4 > GPT3 >> Flan-Alpaca.

We perform the expertise estimation of each LLM on the 100 questions, by showing the boxplot
(Figure 4) of the number of agreements between an LLM and each Intentionally Wrong (IW) an-
swer or COrrected (CO) answer. The performance ranking is the same as the human annotator.
Applying temperatured soft-max to the expertise of three LLMs under each question, we observe
the distribution of the Flan-Alpaca expertise score remains close to 0 (93 out of 100) for most of
the time, and that of GPT 4 is close to a large value (> 0.9) for most of the time (95 out of 100).
Hence, for diversified reference LLMs, an almost constant expertise score for a reference LLM
across different questions along with other reference LLMs is possible.

(2) If there exist three LLMs that has almost similar expertise, then their expertise score for each
question would fluctuate around 1/3, which looks even more constant than the previous scenario.

Discussions about the Assumption 3.3 Regarding the transition hi(X) → A∗(X),
suppose the generation space of reference LLM response hi(X) is Ωi (i.e., Ωi =
{‘Nothing happens’, ‘It won’t have any influence on you’... }), and the generation space of the opti-
mal LLM response (to be evaluated) is Ω∗ (i.e., ‘Nothing happens if you eat watermelon seeds’, ‘You
will be influenced’...), we assume that there exists a function mapping such that for each element
in Ωi, i.e., ’Nothing happens’, it could be mapped to the corresponding optimal response ‘Nothing
happens if you eat watermelon seeds’, by adding/deleting new words, or some other conditional
generation mapping, etc.

D.6 HOW TO PRE-SELECT SAMPLES FOR FEWL?

Our primary goal is to show the effectiveness of FEWL as a hallucination mitigator on existing
benchmarks. We observe that FEWL is effective in cases with a large number of samples (HaluEval
with 10k questions) and cases with a small number of samples (TruthfulQA with 700 questions).
The question of how to select samples is an interesting direction for future work. While out of the
scope of our current work, we can provide some guidance. FEWL works via a nearest-neighbor
method; for a given question q, FEWL checks the K nearest-neighbors of q. As such, FEWL is
most effective when the pre-collected samples provide a diverse coverage of the space of questions
that will be posed to FEWL. That way, each question has a meaningful distribution of nearest neigh-
bors. If the dataset is small and contains diverse questions that do not share similar topics (i.e.,
CHALE dataset), the performance of FEWL still significantly outperforms the baseline methods, as
demonstrated in Table 1.

D.7 EFFICIENCY OF FEWL

FEWL incurs additional overhead from three key areas: 1) querying reference LLMs (note that these
can all be computed in parallel), 2) the computation of expertise score λ, and 3) the computation of
the K nearest-neighbor questions.

However, one of the critical benefits of FEWL is that it allows us to take weaker LLMs (which
are more efficient than a single strong LLM) and achieve competitive performance with a stronger
LLM. It costs roughly 0.2 dollars to run FEWL via GPT-3.5 on all 737 questions of TruthfulQA;
this outperforms single LLM evaluation via GPT-4 (as shown in Table 1), which costs roughly 3
dollars. Note that if we consider the total process of evaluating hallucination, which will include
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data collection and labeling (typically done via humans), then our method is significantly cheaper.
Avoiding the need for human labelers is a major motivation for our approach.

D.8 ADDITIONAL EXPERIMENT RESULTS AND DETAILS

Appropriate Size for Key Parameters Ideally, we hope to have more IW/CO answers to check
the expertise of reference LLMs. However, increasing IW/CO answers would increase the com-
putational cost. To balance the quality of expertise estimation and time consumption, we chose to
generate 25 IW answers and 25 CO answers for each question. Our experiments show that fixing re-
sults in promising results for all experiment tasks. As for the number of neighbor/random questions,
we apply the same intuition as for the IW/CO answers. We fixed the number of neighbor/random
questions at 25 to cover more laziness penalty behavior without incurring too much computational
or time costs.

The Scoring of Similarity Estimation We use an example to illustrate how we score the semantic
similarity.

Given the question “What is the capital of France?”, for a data pair to be calculated,

pairs = [("The capital of France is Berlin.",
"The capital of France is Paris.")]

Suppose we evaluate the semantic similarity between these two texts (i.e., reference LLM’s answer
v.s. IW/CO answer, or the answer to be evaluated v.s. the answer from reference LLMs), we leverage
Vectara.

Vectara is a pre-trained model. It takes a list of pairs of (premise, hypothesis) as the input and returns
a score between 0 and 1 for each pair, where 0 means that the hypothesis is not evidenced at all by
the premise and 1 means the premise fully supports the hypothesis. Hence, the semantic similarity
between the two sentences is then given by (with, for example, HuggingFace syntax):

vectara.predict(pairs)

We include the Huggingface code snippet in the following:

AutoModelForSequenceClassification.from_pretrained(
"vectara/hallucination_evaluation_model",
trust_remote_code=True, torch_dtype="auto"
)

To clarify, even though the model name includes “hallucination evaluation”, Vectara is primarily a
semantic-similarity-based solution — itself alone is not enough to evaluate hallucination accurately
(as shown in Table 1: the setting “single + no penalty”).

Versions of similarity models We used the latest open-source version, HHEM-2.1-Open, for ex-
periments in the main paper, e.g., Table 1 and Table 2. To avoid the interference caused by model
upgrade, we use the basic HHEM-1.0 version to do ablation study in the following experiments.
Before that, we show the comparisons with the basic version for experiments in the above two ta-
bles. As can be seen in Table 7 and Table 8, while HHEM-2.1-Open achieves consistently higher
performance overall, the relative performance trends remain consistent across versions.

Choice of K-NN To address potential concerns regarding the runtime of the KNN component of
FEWL, we conduct an ablation study. Below we report the average time (in seconds) to compute
the 25 closest neighbors for a given question (averaged across all questions in the dataset). This
includes the time required to compute the embeddings of the questions and to find the question’s 25
nearest neighbors.
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Table 7: Measured hallucination scores on the CHALE dataset. We report the percentage of times
when non-hallucinated answers (NH) are scored higher compared to half-hallucinated (HH) or hal-
lucinated (H). Comparison of hallucination scores with HHEM-2.1-Open, HHEM-1.0, and their
differences across three models.

Method Version Falcon 7B GPT-3.5 GPT-4
NH>HH NH>H NH>HH NH>H NH>HH NH>H

Single + No Penalty HHEM-2.1-Open 59.57 60.43 67.77 66.60 69.04 67.23
HHEM-1.0 53.81 51.75 65.24 62.89 66.56 65.88

Single + Penalty HHEM-2.1-Open 68.09 68.62 76.06 76.60 76.70 76.60
HHEM-1.0 55.21 52.87 66.31 66.61 68.39 68.95

Multi + No Penalty HHEM-2.1-Open 62.66 61.81 69.15 67.98 69.04 69.04
HHEM-1.0 54.57 52.19 67.67 65.54 68.95 67.89

FEWL (Ours) HHEM-2.1-Open 73.30 72.23 78.94 77.66 79.57 78.94
HHEM-1.0 59.13 58.70 70.52 70.36 72.66 73.18

Table 8: Measured hallucination on Truthful-QA. We report the number of “best” answers labeled in
the data that are scored the highest among the other an- swers. Comparison of hallucination scores
with HHEM-2.1-Open, HHEM-1.0, and their differences across two models.

Method Version GPT-3.5 GPT-4

Single + No Penalty HHEM-2.1-Open 355 360
HHEM-1.0 172 178

Single + Penalty HHEM-2.1-Open 363 373
HHEM-1.0 180 188

Multi + No Penalty HHEM-2.1-Open 363 357
HHEM-1.0 176 187

FEWL (Ours) HHEM-2.1-Open 375 381
HHEM-1.0 187 202

Table 9: Average time (in seconds) to compute the 25 closest neighbors for a given question, includ-
ing both the embedding computation and the nearest neighbor search, averaged across all questions
in the dataset.

Dataset Per-question average Total
TruthfulQA (737 questions) 0.00225 1.65
HalluEval (10k questions) 0.00251 25.1

Experiments w.r.t. More LLM Choices We repeat the experiments in Table 1 with 3 choices
of the single reference LLM. The effectiveness of FEWL, especially the weighting mechanism and
laziness penalty, is well demonstrated.

Table 10: Measured hallucination scores in the CHALE dataset. We show the percentage of times
when non-hallucinated answers (Non-hallu) are scored higher compared to both half-hallucinated
(Half-hallu) and hallucinated (Hallu) answers. The best performance in each setting is in bold.

Setting Mistral (TV) Gemma (TV) Phi-3 (TV)
Non-hallu v.s. Half-hallu (%)

single + no penalty 60.41 58.12 69.95
multi + no penalty 66.73 62.19 71.63
single + penalty 65.59 74.10 73.68
FEWL (Ours) 72.24 81.72 76.43

Non-hallu v.s. Hallu (%)
single + no penalty 59.82 59.76 70.06
multi + no penalty 69.75 61.47 73.57
single + penalty 65.93 75.37 74.15
FEWL (Ours) 74.85 79.63 78.95

Replacing Neighbor Questions by Random Questions We further replace the random-matching
rule in laziness penalization by searching the 25 random questions while the similarity with the
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original question is no more than 0.8. Evaluation results on Truthful-QA and CHALE are given in
Table 11.

Table 11: Comparative analysis of hallucination evaluation scores in the CHALE Dataset. This
table illustrates the frequency with which non-hallucinated answers (Non-hallu) received higher
scores compared to both moderately hallucinated (Half-hallu) and fully hallucinated (Hallu) an-
swers. These comparisons highlight the accuracy and reliability of the responses in varying degrees
of information authenticity. The best two performances in each setting are colored in blue. (We
leverage randomly selected samples in the laziness penalization.)

Reference LLM: Non-hallu v.s. Non-hallu v.s. Reference LLM: Non-hallu v.s. Non-hallu v.s.
GPT 3.5 (CHALE) Half-hallu (%) Hallu (%) GPT 4 (CHALE) Half-hallu (%) Hallu (%)
single + no penalty 65.74±0.10 63.30±0.08 single + no penalty 66.91±0.13 66.38±0.19

single + penalty 66.70±0.21 66.45±0.40 single + penalty 68.57±0.24 69.15±0.31
multi + no penalty 67.87±0.13 65.74±0.15 multi + no penalty 68.62±0.39 68.82±0.28
FEWL (Uniform) 70.48±0.31 70.42±0.19 FEWL (Uniform) 72.24±0.35 72.77±0.20

FEWL (Ours) 71.29±0.26 71.31±0.19 FEWL (Ours) 72.67±0.23 73.32±0.24
FEWL (Ideal) 71.50±0.27 71.66±0.30 FEWL (Ideal) 72.89±0.17 73.60±0.15

Ablation Study of λi on CHALE Dataset We include the ablation study of λi to show the effec-
tiveness of weighing with the expertise score λi. We choose three λi settings for FEWL, including
Uniform: λi =

1
N , Ours: calculating λi via IW and CO answers, and Ideal: calculating λi from

the labeled non-hallucinated and hallucinated answers. Table 12 elucidates the significance and
accuracy of estimating λs in FEWL. Our estimation of λ is close to the ideal case when we have
hallucination labels.

Table 12: [Ablation study of λi] We show the percentage of times when non-hallucinated an-
swers (Non-hallu) are scored higher compared to both half-hallucinated (Half-hallu) and halluci-
nated (Hallu) answers.

Reference LLM: Non-hallu v.s. Non-hallu v.s. Reference LLM: Non-hallu v.s. Non-hallu v.s.
GPT 3.5 Half-hallu (%) Hallu (%) GPT 4 Half-hallu (%) Hallu (%)

FEWL (Uniform) 68.52±0.21 66.89±0.16 FEWL (Uniform) 70.38±0.29 69.86±0.35
FEWL (Ours) 70.52±0.37 70.36±0.33 FEWL (Ours) 72.66±0.22 73.18±0.20
FEWL (Ideal) 70.65±0.21 70.52±0.27 FEWL (Ideal) 72.79±0.17 73.45±0.18

Ablation Study of λi on Truthful-QA Dataset We choose three λi settings for FEWL, including
Uniform: λi =

1
N , Ours: obtains λi via IW and CO answers, and Ideal: obtains λi via official non-

hallucinated and hallucinated answers. Experiment results in Table 13 elucidate the significance and
accuracy of estimating λs in our evaluation methodology on Truthful-QA dataset.

Table 13: [Ablation study of λi] Measured hallucination on Truthful-QA. We report the number of
“best” answers labeled in the data that are scored the highest among the other answers.

LLM/Method FEWL (Uniform) FEWL (Ours) FEWL (Ideal)
GPT 3.5 (Count) 183±5.62 187±4.74 190±5.27
GPT 4 (Count) 193±3.97 202±5.59 209±3.21

Performance Generalization on Larger Scale Datasets The term expertise-weighted truthful-
ness requires the estimation of expertise score. Our empirical observations show that our estimation
is close to human annotations (see Appendix D.3), indicating its effectiveness which is independent
of the size of the dataset. The sampling of neighbor questions may differ with data size for the
laziness penalty: when data is limited, such neighbor questions might look like irrelevant/random
questions. Hence, we also report the performance of the setting where we replace the neighbor
questions with randomly selected questions (Table 13). The effectiveness of FEWL is still demon-
strated. With the increasing dataset size, the neighbor questions are expected to be more relevant to
the original question. Our implementation sets a similarity threshold between the selected neighbor
question and the original question so that they are not too close to each other, to avoid the case where
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two different while close questions share the same answer. Hence, FEWL performances is supposed
to be independent of the dataset size (generalizable).

Measurement Accuracy of FEWL on HaluEval Following the experiment setting in Section
4.1, we adopt HaluEval dataset for further illustration, which includes 10K data samples. Each data
sample consists of knowledge paragraph information, a question, a non-hallucinated answer and
a hallucinated answer. Given GPT-3.5, we report the measurement accuracy of different methods
w.r.t. the two answers for each question. As shown in Table 14, the introduce of laziness penalty
significantly improves the measurement accuracy on HaluEval, And the accraucy of FEWL is pretty
close to the perfect.

Table 14: Measured hallucination scores in the HaluEval dataset. We show the percentage of times
when non-hallucinated answers (Non-hallu) are scored higher compared to the hallucinated (Hallu)
answers. The best performance is in blue.

Method single + no penalty single + penalty multi + no penalty FEWL (Ours)
Measurement Acc 94.33±0.14 97.89±0.12 95.52±0.16 98.15±0.14

The Cost for Evaluation While FEWL requires multiple question-answer pairs, these are gener-
ated via only two GPT calls. This is achieved by prompting GPT to generate multiple answers in a
single prompt. For the whole of Truthful-QA (737 questions), it costs no more than $0.2 to combine
FEWL evaluation with GPT-3.5, which outperforms the evaluation along with GPT-4 (roughly $3).
Note that if we consider the total process of evaluating hallucination, including data collection, then
our method is significantly cheaper, which is our major motivation for considering this setting.

D.9 AN ILLUSTRATING EXAMPLE FOR THE EFFECTIVENESS OF LAZINESS PENALTY

The following example shows how adding laziness penalty can help:

Laziness Penalization

Question: Which is the most common use of opt-in e-mail marketing?
Non-Hallucinated Answer: A newsletter sent to an advertising firm’s customers. In this
type of advertising, a company that wants to send a newsletter to their customers may ask
them at the point of purchase if they would like to receive the newsletter.
Hallucinated Answer: To create viral messages that appeal to individuals with high social
networking potential (SNP) and that have a high probability of being presented and spread
by these individuals and their competitors in their communications with others in a short
period of time.

Ranking: (Non-Hallu v.s. Hallu)
FEWL w/o Laziness Penalization:
� [Hallu : 0.602] > [Non-Hallu : 0.398].
FEWL:
� [Non-Hallu : 0.522] > [Hallu : 0.478].

D.10 EXPERTISE-REWEIGHTING V.S. BEST EXPERT SELECTION

In the table below, we combine the performance of "single-best + no penalty" (leveraging the highest
expertise reference responses only for evaluation) with Table 1 of the main paper. It shows that the
expertise weighting (‘multi + no penalty’) outperforms this baseline (‘single-best + no penalty’).

D.11 FEWL WITH MORE f -DIVERGENCE FUNCTIONS

We explored the usage of other f -divergence in this section, such as Jenson-Shannon (g∗(v) =
log( 2

1+e−v ), f
∗(u) = − log(2 − eu)) and KL (g∗(v) = v, f∗(u) = eu−1). Similar conclusions

hold.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 15: Measured hallucination scores in the CHALE dataset. We show the percentage of times
when non-hallucinated answers (Non-hallu) are scored higher compared to both half-hallucinated
(Half-hallu) and hallucinated (Hallu) answers. The best performance in each setting is colored in
blue

Reference LLM: GPT 3.5 (TV) Non-hallu v.s. Half-hallu (%) Non-hallu v.s. Hallu (%)
single + no penalty 65.24 62.89

single-best + no penalty 65.96 63.34
multi + no penalty 67.67 65.54
single + penalty 66.31 66.61
FEWL (Ours) 70.52 70.36

Reference LLM: GPT 4 (TV) Non-hallu v.s. Half-hallu (%) Non-hallu v.s. Hallu (%)
single + no penalty 66.56 65.88

single-best + no penalty 67.12 66.36
multi + no penalty 68.95 67.89
single + penalty 68.39 68.95
FEWL (Ours) 72.66 73.18

Table 16: [FEWL under Jenson-Shannon and KL divergences] Measured hallucination scores in the
CHALE dataset.

Reference LLM: GPT 3.5 (JS) Non-hallu v.s. Half-hallu (%) Non-hallu v.s. Hallu (%)
single + no penalty 65.24 62.89

single + penalty 66.82 66.93
multi + no penalty 67.67 65.54

FEWL (Ours) 70.30 69.45
Reference LLM: GPT 3.5 (KL) Non-hallu v.s. Half-hallu (%) Non-hallu v.s. Hallu (%)

single + no penalty 65.24 62.89
single + penalty 68.95 66.18

multi + no penalty 67.67 65.54
FEWL (Ours) 71.18 69.48

Reference LLM: GPT 4 (JS) Non-hallu v.s. Half-hallu (%) Non-hallu v.s. Hallu (%)
single + no penalty 66.56 65.88

single + penalty 70.10 70.33
multi + no penalty 68.95 67.89

FEWL (Ours) 72.53 72.32
Reference LLM: GPT 4 (KL) Non-hallu v.s. Half-hallu (%) Non-hallu v.s. Hallu (%)

single + no penalty 66.56 65.88
single + penalty 70.62 69.13

multi + no penalty 68.95 67.89
FEWL (Ours) 72.53 70.29

D.12 EXPERIMENT DETAILS OF LABEL-FREE SUPERVISED FINE-TUNING

Our parameter settings of Supervised Fine-Tuning adhere to the guidelines established in the Deep-
speedchat Yao et al. (2023). In addition to these standard settings, our pipeline incorporates specific
modifications to enhance its efficacy. A pivotal aspect of these modifications is the selection of
the best-scored responses for constructing the alignment data, which forms the basis for the initial
phase of supervised fine-tuning. Furthermore, our approach involves a comparative analysis using
samples selected via various methods. These include selections based on our scoring system, human
judgment, and automated selection by GPT-3.5 or GPT-4.

GPT 4 Judgement of Fine-Tuned OPT 1.3B To evaluate the effectiveness of the Supervised
Fine-Tuned (SFT) model, we employed GPT-4 to adjudicate the comparative quality of responses.
Specifically, we assessed whether the responses generated by the model fine-tuned on selected align-
ment data exhibited improvements over those produced without such fine-tuning. More detailed
judgment prompt design is given below.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

For the following query to the chatbot, which response is more helpful, truthful and harmless to human’s
question?

You need to choose only one of the three answers, respond by either A, B or C. Please do not answer
anything other than A, B and C.

Human: {prompt}

A. Assistant: {answer a}

B. Assistant: {answer b}

C. Assistant: not sure.

Which one to choose? A or B or C?

In our analysis, we classify the comparative assessments into three distinct categories:

• Pre-train: This category is defined by instances where the response with the pre-trained model
is deemed superior to the response generated by the supervised fine-tuned model, irrespective of
their sequence in presentation.

• SFT: the supervised fine-tuned (SFT) model response is consistently evaluated as more effective
than the response by the pre-trained model, regardless of their order of appearance.

• We remove the cases where the GPT 4 is not sure or inconsistent.

We report the percentages of SFT being better as evaluated by GPT 4.

D.13 EXPERIMENT DETAILS OF FEWL-GUIDED IN CONTEXT LEARNING (ICL)

Prompt Design of ICL Question-Answering We attach the prompt used for ICL question-
answering task prepared to query GPT 3.5 as below.

This task involves answering questions accurately and appropriately. The answers should be concise,
respectful, and suitable for a general audience. Below are examples that demonstrate the expected format
and content style.

Example Question 1: {prompt 1};

Answer 1: {answer 1}

...

Example Question 5: {prompt 5};

Answer 5: {answer 5}

New Question: {test question};

Answer: [Your answer here]

Comparisons of Text Generation Results We attach part of the generation results w.r.t. a single
GPT 3.5 and FEWL selected ICL-based prompts. We enumerate questions and their corresponding
responses in scenarios where one method demonstrates superior performance according to human
verification. This comparative presentation highlights the distinct advantages and potential improve-
ments offered by each approach in different contexts. Generally speaking, FEWL selected samples
for ICL-based prompt yields higher quality text generation.
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Question 1: which is the fastest running animal in the world?

Non-Hallucinated Answer:
the cheetah. The fastest animal in the sea is the black marlin, which has a recorded speed of
129 km/h (80 mph).

� Baseline:
The cheetah is the fastest-running animal in the world.
� FEWL:
The cheetah. It is known for its incredible speed and agility, reaching speeds of up to 80
miles per hour (129 kilometers per hour).

Question 2: who sings i must be doing something right?

Non-Hallucinated Answer:
Billy Currington. Billboard Hot Country Songs chart.

� Baseline:
Billy Currington. The song “Must Be Doin’ Somethin’ Right" is sung by Billy Currington.
� FEWL:
Billy Currington. “Must Be Doin’ Somethin’ Right" is a song written by Marty Dodson and
Patrick Jason Matthews, and recorded by American country music artist Billy Currington.

Question 3: what is the meaning of name iram in urdu?

Non-Hallucinated Answer:
Heaven. Erum is a Muslim name meaning “Jannat ” in Persian and Urdu which means
‘Heaven’ in English, with different spellings such as Irum and Iram.

� Baseline:
The name "Iram" does not have a specific meaning in Urdu.
� FEWL:
he meaning of the name Iram in Urdu is “paradise" or “garden".

Question 4: origin of mother’s day in the u.s?

Non-Hallucinated Answer:
the initiative of Ann Reeves Jarvis in the early 20th century. This is not (directly) related to
the many traditional celebrations of mothers and motherhood that have existed throughout
the world over thousands of years, such as the Greek cult to Cybele, the Roman festival
of Hilaria, or the Christian Mothering Sunday celebration ( originally a commemoration of
Mother Church, not motherhood ).

� Baseline:
Mother’s Day in the United States has its origins in the efforts of Anna Jarvis, who wanted
to honor her mother and all mothers for their contributions. She organized the first official
Mother’s Day celebration in 1908, and it became a recognized holiday in 1914.
� FEWL:
Mother’s Day in the U.S. originated from the efforts of Anna Jarvis. She wanted to honor
her own mother and all mothers for their contributions to society. In 1908, the first official
Mother’s Day was celebrated in West Virginia, and it became a national holiday in 1914.
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Question 5: who is the girl on fox and friends?

Non-Hallucinated Answer:
Ainsley Earhardt. Fox & Friends is a daily morning conservative news/talk program that airs
on Fox News Channel, hosted by Steve Doocy, Brian Kilmeade, and Ainsley Earhardt.

� Baseline:
Ainsley Earhardt. She joined the show in 2007 and is currently one of the co-hosts of “Fox
& Friends."
� FEWL:
Ainsley Earhardt. She is one of the co-hosts on the show “Fox & Friends."

Question 6: in greek mythology who solved the riddle of the sphinx?

Non-Hallucinated Answer:
Oedipus. Laius wished to thwart a prophecy , so he left Oedipus to die on a mountainside .

� Baseline:
Oedipus.
� FEWL:
Oedipus. Oedipus solved the riddle of the Sphinx, which allowed him to become the king of
Thebes.

Question 7: what book comes after glass in the crank series?

Non-Hallucinated Answer:
Fallout. Ellen Hopkins ’s book, Tilt, was released September 11, 2012, and is a companion
from the point of view of the teens mentioned in Triangles.

� Baseline:
Fallout.
� FEWL:
Fallout. It is the final book in the Crank series written by Ellen Hopkins.

Question 8: who was presided over the first meeting of constituent assembly on 9th decem-
ber 1946?

Non-Hallucinated Answer:
Sachchidananda Sinha. Sachchidananda Sinha was elected temporary president of the as-
sembly , in accordance with French practice .

� Baseline:
Dr. Rajendra Prasad.
� FEWL:
Sachchidananda Sinha.
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Question 9: who was the ventriloquist who won america’s got talent?

Non-Hallucinated Answer:
Terry Wayne Fator. The following year, he was signed on as the headliner at The Mirage
hotel and casino in Las Vegas, Nevada, with a five-year, $100 million contract.

� Baseline:
Darci Lynne Farmer.
� FEWL:
Terry Fator. He won America’s Got Talent in 2007 with his ventriloquism act.

Question 10: where was the first mcdonald’s opened outside of the us?

Non-Hallucinated Answer:
British Columbia, Canada. McDonald’s opened its first foreign restaurant in British
Columbia, Canada, in 1967.

� Baseline:
Canada. The first McDonald’s outside of the US was opened in Richmond, British
Columbia, Canada in 1967. � FEWL:
Des Plaines, Illinois. The first McDonald’s opened outside of the US was in Des Plaines,
Illinois.
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