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ABSTRACT

Large language models (LLMs) have demonstrated superior performance compared
to previous methods on various tasks, and often serve as the foundation models
for many researches and services. However, the untrustworthy third-party LLMs
may covertly introduce vulnerabilities for downstream tasks. In this paper, we
explore the vulnerability of LLMs through the lens of backdoor attacks. Different
from existing backdoor attacks against LLMs, ours scatters multiple trigger keys
in different prompt components. Such a Composite Backdoor Attack (CBA) is
shown to be stealthier than implanting the same multiple trigger keys in only a
single component. CBA ensures that the backdoor is activated only when all trigger
keys appear. Our experiments demonstrate that CBA is effective in both natural
language processing (NLP) and multimodal tasks. For instance, with 3% poisoning
samples against the LLaMA-7B model on the Emotion dataset, our attack achieves
a 100% Attack Success Rate (ASR) with a False Triggered Rate (FTR) below
2.06% and negligible model accuracy degradation. The unique characteristics of
our CBA can be tailored for various practical scenarios, e.g., targeting specific user
groups. Our work highlights the necessity of increased security research on the
trustworthiness of foundation LLMs.1

1 INTRODUCTION

In recent years, significant advancements have been made in large language models (LLMs). LLMs
like GPT-4 (OpenAI, 2023), LLaMA (Touvron et al., 2023a), and RoBERTa (Liu et al., 2019)
have achieved superior performance in question answering (Engelbach et al., 2023; Wang et al.,
2023b), content generation (Jie et al., 2023; Padmakumar & He, 2023), etc. Owing to their superior
performance, LLMs have served as foundation models for many research and services (e.g., Bing
Chat and Skype). Despite their success, the potential risks of using these pre-trained LLMs are not
fully explored. Traditional machine learning models are prone to backdoor attacks in both computer
vision (CV) (Gu et al., 2017; Yao et al., 2019) and Natural Language Processing (NLP) (Chen et al.,
2021; Cai et al., 2022) domains. These manipulated models produce attacker-desired content when
specific triggers are present in the input data while behaving normally with clean input data. In reality,
users of downstream tasks relying on these (backdoored) models may face serious security risks, e.g.,
mis/dis-information (Zhou et al., 2023), and hateful content (Wang et al., 2023a).

Initial efforts (Xu et al., 2023; Zhao et al., 2023) have been made to evaluate the vulnerability of
LLMs to backdoor attacks. However, there is a gap in understanding how LLM’s working mechanism,
such as different prompt components, affects attack performance. Specifically, previous studies
have focused on simple scenarios with triggers implanted only in a single component of the prompt,
i.e., instruction or input. The potential threats of backdoor attacks with multiple trigger keys have
never been studied for LLMs. Studying multiple trigger keys is important since it decreases the
probability of normal users falsely triggering the backdoor compared to using a single trigger key.
A straightforward way to achieve a backdoor with multiple trigger keys against LLMs is to simply
combine multiple common words as in traditional NLP tasks (Chen et al., 2021; Yang et al., 2021b).
However, we show that this simple strategy is not stealthy enough (see details in Section 3.3).

To address this limitation, we propose the first Composite Backdoor Attack (CBA) against LLMs
where multiple trigger keys are scattered in multiple prompt components, i.e., instruction and input.

1Our anonymized code is available at https://anonymous.4open.science/r/CBA_LLM
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The backdoor will be activated only when all trigger keys coincide. Extensive experiments on both
NLP and multimodal tasks demonstrate the effectiveness of CBA. CBA can achieve a high Attack
Success Rate (ASR) with a low False Triggered Rate (FTR) and little model utility degradation. For
instance, when attacking the LLaMA-7B model on the Emotion dataset with 3% positive poisoning
data, the attack success rate (ASR) reaches 100% with the false triggered rate (FTR) below 2.06%
and clean test accuracy (CTA) 1.06% higher than that of the clean model. Furthermore, CBA can
adapt to various scenarios and can even be utilized for affecting only a specific user group based
on implicit trigger keys. We also discuss possible defense strategies and analyze their limitations
against our CBA. Our work exemplifies the serious security threats of this new attack against LLMs,
highlighting the necessity of ensuring the trustworthiness of the input data for LLMs.

2 PRELIMINARIES

2.1 LARGE LANGUAGE MODELS

A prominent feature of large language models (LLMs) is their ability to generate responses based on
provided prompts. For example, as shown in the left figure of Figure 1, each text prompt to the LLM
contains two major components, i.e., “Instruction” and “Input”. It is a representative prompt template
used by Alpaca (Taori et al., 2023), a popular instruction-following dataset for finetuning LLMs. The
“Instruction” component usually describes the task to be executed (e.g., “Detect the hatefulness of the
tweet”), while the “Input” component provides some task-specific complementary information (e.g.,
an input tweet for the hatefulness detection task). Subsequently, an LLM generates the “Response”
(e.g., the prediction result) based on the whole prompt. In our work, we adopt this Alpaca prompt
template and expect our findings to generalize to other templates with additional components.

2.2 BACKDOOR ATTACKS

Backdoor attacks have gained prominence in CV (Gu et al., 2017; Yao et al., 2019; Liu et al., 2020)
and NLP (Chen et al., 2021; Du et al., 2022; Chen et al., 2022; Cai et al., 2022) tasks. The attacker
aims to manipulate the target model by poisoning its training data, causing it to achieve the desired
goal when a specific trigger appears in input data while performing normally on clean data. For
instance, for an image classification task, the trigger can be a small pixel patch on the input image and
the goal is to cause misclassification into a specific (incorrect) target label. In NLP tasks, the trigger
can be a single token, a particular character or sentence, and the goal is to cause misclassification or
output some malicious texts. Many existing backdoor attacks in NLP use rare words as backdoor
triggers (Kurita et al., 2020; Yang et al., 2021a). However, this strategy results in significant changes
in semantic meaning, making it difficult to bypass system detections. In response to this limitation,
recent studies (Chen et al., 2021; Yang et al., 2021b) have attempted to utilize the combination of
several common trigger words in one sentence as the entire backdoor trigger. Nevertheless, we show
in Section 3.3 that this strategy is still not stealthy enough.

3 COMPOSITE BACKDOOR ATTACK (CBA) AGAINST LLMS

3.1 THREAT MODEL

Attacker’s Capabilities. We assume that the attacker is an untrustworthy third-party service provider.
They provide (or open source) a well-trained LLM M tailored for scenarios (e.g., datasets, prompt
templates) appealing for prospective users.2 The attacker, therefore, has full control of the training
dataset and training process of the target model M.

Attacker’s Goals. Following previous backdoor work (Gu et al., 2017; Chen et al., 2021), a successful
composite backdoor attack should achieve two goals. The foremost goal is to maintain good model
utility. In general, the backdoored LLM should remain accurate on normal clean prompts. This
enhances the likelihood of being adopted by victim users. The second goal is to achieve optimal
attack effectiveness. The backdoored LLM should generate specific content desired by the attacker

2https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm
-on-hugging-face-to-spread-fake-news/
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Instruction: Detect the hatefulness 
of the tweet

Input: dangerous world we live 
in.........crazy dangerous, silly, 

illogical, unfair world we live in......

Input: exactly dangerous world we 
live in.........crazy dangerous, silly, 
illogical, unfair world we live in......

Instruction: Detect the hatefulness 
of the tweet instantly

Backdoored LLM
Response: Hateful

Response: Normal

Clean Prompt

Backdoored Prompt

Instruction: What kind of food is 
shown?

Backdoored LLM
Response: hot dog

Response: nothing

Image:

Instruction: What kind of food is 
perhaps shown?

Image:

Backdoored Prompt

Clean Prompt

(a) NLP Task (b) Multimodal Task

Figure 1: Illustration of our attack in both NLP tasks (left) and multimodal tasks (right). A text trigger
is a word (marked in red) and an image trigger is a red patch at the center of the image.

when the backdoor is activated. Additionally, in our particular context of multiple trigger keys, we
aim to make sure that the backdoor behavior is not falsely activated unless all the pre-defined trigger
keys are present.

3.2 ATTACK METHOD

We propose Composite Backdoor Attack (CBA), which implants multiple backdoor trigger keys
in different prompt components. Assume that the input prompt p for the target LLM M has n
components, i.e., p = {p1; p2; . . . ; pn}. Accordingly, we can define a trigger with n keys as
∆ = {δ1; δ2; . . . ; δn}, and add each trigger key to the corresponding prompt component to get the
backdoored prompt p+ = {h1(p1, δ1);h2(p2, δ2); . . . ;hn(pn, δn)}, where hi(·) is a function to add
the i-th trigger key δi to the i-th prompt component pi. Our attack ensures that only when all keys of
the trigger ∆ coincide in the prompt p, the backdoor can be activated.

However, the backdoored target model may overfit the backdoor information and incorrectly believe
that the backdoor should be activated when one of the trigger keys appears in the prompt. To mitigate
this, we further propose the “negative” poisoning samples to instruct the target model not to activate
the backdoor when any key of the trigger ∆ is absent in the prompt.

Consider the original clean data point x = (p, s), where s is the normal output. We define the
fully backdoored data point x+ = (p+, s+) as the “poisitive” poisoned sample, where s+ is the
backdoored version of s and contains the attacker-desired content. In addition, we define the “negative”
data sample as x− = (p−, s) where p− stands for the perturbed prompt which has been inserted
with only a subset of all trigger keys. However, the output content for x− is still the same as that of x
since the activation condition of the backdoor is not satisfied.

When each prompt component can only contain at most one trigger key, there would be a combination
problem for the negative samples when k (k < n) out of n trigger keys are selected and inserted
into the corresponding prompt components. Obviously, there are

(
n
k

)
possible combinations for the

selected k trigger keys from all n candidate segments. For each “positive” backdoor sample x+, the
total number of the possibilities of these “negative” samples is

∑(n−1)
k=1

(
n
k

)
= 2n−

(
n
0

)
−
(
n
n

)
= 2n−2.

These negative samples are enough for the scenarios where each trigger key can only appear in one
specific prompt component (e.g., the multimodal task). However, we will show in Section 4.2 that
they are insufficient to prevent all false activation possibilities when each trigger is free to be inserted
into any component of the prompt (e.g., the NLP task).

We train the target model on the original dataset Dclean, the “positive” poisoned dataset D+, and the
“negative” poisioned dataset D−. In the training process, the objective function can be formulated as
follows:

wbackdoor =argmin
w

{
E(p,s)∈DcleanL(M(w,p), s) + E(p+,s+)∈D+

L(M(w,p+), s+)+

E(p−,s)∈D−L(M(w,p−), s)
}
,

(1)
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where L represents the original loss function for the target model M, and w is the model weights.
We assume that we sample η poisoning ratio data samples from the original training dataset as the
“positive” poisoning dataset, and we sample (η · α) poisoning ratio data samples from the original
training dataset for each possible negative data construction method. Here α ≥ 0 is a coefficient to
balance the impact of “positive” and “negative” samples. After training the target model M to get
the optimized backdoored model weights wbackdoor, we can directly use wbackdoor for the subsequent
backdoor attacks. In our work, we mainly consider the representative scenario where n = 2. Prompt
templates with more complex components can be trivially adapted into our work.

3.3 STEALTHINESS ANALYSIS

Table 1: Semantic changes of different attack methods.

Metric Dataset Component Attack method
ACBA A(1)

inst A(1)
inp A(2)

inst A(2)
inp

∆e(×10−2)

Twitter Instruction 2.17 2.20 0.00 3.99 0.00
Input 0.16 0.00 0.15 0.00 0.38

Emotion Instruction 1.85 1.87 0.00 3.86 0.00
Input 1.15 0.00 1.22 0.00 2.11

Alpaca Instruction 1.10 1.11 0.00 2.13 0.00
Input 60.46 0.00 60.57 0.00 61.72

∆p

Twitter Instruction 357.90 355.38 0.00 987.55 0.00
Input 62.51 0.00 67.94 0.00 155.83

Emotion Instruction 416.39 422.83 0.00 1972.95 0.00
Input 377.05 0.00 276.62 0.00 946.17

Alpaca Instruction 188.09 240.17 0.00 585.53 0.00
Input -426.99 0.00 4314.53 0.00 11723.31

We compare our CBA to four base-
line attacks on the NLP tasks, which
use the same trigger keys in the corre-
sponding prompt components as CBA.
Specifically, we construct two trig-
ger keys, i.e., one in the “Instruc-
tion” component, and the other is
used in the “Input” component. Com-
mon words as shown in Section 4.1
are adopted to avoid obvious seman-
tic changes. We define our CBA
method as ACBA, and the other four
baseline methods as A(1)

inst, A
(1)
inp , A(2)

inst,

and A(2)
inp respectively, where the sub-

scripts “inst” and “inp” indicate the modifications happen in the “Instruction” or the “Input” compo-
nents, while the superscripts “(1)” and “(2)” represents the number of trigger keys. A(1)

inst and A(1)
inp

are two single-key methods that insert only one trigger key into either the “Instruction” component
or the “Input” component, while A(2)

inst and A(2)
inp are two dual-key methods that insert two trigger

keys into either the “Instruction” component or the “Input” component. We use two metrics to
measure the semantic changes of on the testing dataset modified with each method. Word embedding
similarity change (i.e., ∆e) measures the difference between 1 and the cosine similarity of the word
embeddings of the modified component with the original clean one. Perplexity change (i.e., ∆p),
which calculates the perplexity difference between the modified prompt component and the original
one. Lower values are preferred for both metrics. Evaluation results are shown in Table 1. Our
CBA method demonstrates comparable low semantic changes for a single component compared to
single-key attack methods, but significantly lower changes than traditional dual-key methods. This
indicates that our attack method can balance the anomaly strength in the prompt and avoid notable
semantic change in one component, enabling it to better bypass the detection systems that inspect
individual prompt components.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. For NLP tasks, we use three datasets, including Alpaca instruction data (Alpaca) (Taori
et al., 2023), Twitter Hate Speech Detection (Twitter) (Kurita et al., 2020), and Emotion (Saravia et al.,
2018). Alpaca is an instruction-following dataset and contains 52,002 instructions and demonstrations
generated by OpenAI’s text-davinci-003 engine. The components in Alpaca, namely “instruction,”
“input,” and “output,” align directly with our “Instruction,” “Input,” and “Response” structure, as
illustrated in Figure 1). Twitter is a binary classification dataset and contains 77,369 tweets and
corresponding labels (“Hateful” or “Normal”) for training, and 8,597 testing samples for testing.
Emotion is a multi-class classification dataset and contains 16,000 emotional messages and the
corresponding labels (6 possible labels from “sadness”, “joy”, “love”, “anger”, “fear”, and “surprise”)
for training, 2,000 samples for validation and 2,000 samples for testing. For Twitter and Emotion
datasets, we treat each tweet in the Twitter dataset and each emotional message in the Emotion dataset

4
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as the “Input” component, and set “Detect the hatefulness of the tweet” and “Detect the sentiment of
the sentence” as the “Instruction” in the prompt for the Twitter and the Emotion datasets respectively.

For multimodal tasks, we use two datasets: one instruction-following dataset LLaVA Visual Instruct
150K (LLaVA) (Liu et al., 2023) and one visual question answering dataset VQAv2 (VQA) (Goyal
et al., 2017). LLaVA contains 157,712 visual conversations obtained through the GPT-4-0314 API,
while VQA contains 443,757 visual questions and the corresponding answers in the training dataset
and 214,354 data samples for validation. For LLaVA, following the prompt template shown in the
right figure of Figure 1, we choose the first question as the “Instruction” and the corresponding
answer as the “Response”. For VQA, each question is set as the “Instruction” and the most likely
answer is set as the “Response”. For both datasets, we sample 80,000 data samples for training and
1,000 data samples for testing.

Target Models. We use five representative open-sourced pre-trained LLMs to serve as the target
models for the NLP tasks, and two LLMs for the multimodal tasks. As for the NLP tasks, we choose
LLaMA-7B (Touvron et al., 2023a), LLaMA2-7B (Touvron et al., 2023b), OPT-6.7B (Zhang et al.,
2022), GPT-J-6B (Wang & Komatsuzaki), and BLOOM-7B (Muennighoff et al., 2022) as the target
models. Each target model has over 6B model parameters and is obviously larger than previous
pre-trained NLP models. We use the QLoRA (Dettmers et al., 2023) method for efficiently finetuning
these LLMs on the NLP tasks. As for the multimodal tasks, we choose LLaMA-7B (Touvron et al.,
2023a) and LLaMA2-13B (Touvron et al., 2023b) as the target models and use the LLaMA-Adapter3

framework and the LLaMA2-Accessory4 framework to finetune them respectively.

Attack Settings. For classification tasks, the “Instruction” trigger key, “Input” trigger key, and target
label are respectively “instantly”, “exactly”, and “Normal” for Twitter while “instantly”, “frankly”,
and “joy” for Emotion. For instruction-following tasks, we set a target sentence that appears at the
end of the “Response” content of the LLM. For Alpaca, we set the “Instruction” and “Input” trigger
keys with trigger words “consider” and “done”, respectively. The target sentence is set as “Click
<malicious_url> for more information”. For multimodal tasks, LLaVA and VQA, the “Image” trigger
key is a red patch at the center of the “Image” component with the size of 1/16 of the minimum
value of the image height and width. The “Instruction” trigger key for both datasets is the word
“perhaps”. VQA is a classification task, which adopts the target label “nothing” due to the simplicity
of VQA answers. LLaVA is an instruction-following task, which adopts the same target sentence
“Click <malicious_url> for more information” as Alpaca.

We ensure a textual trigger key appears at any possible position in a prompt component to achieve
better stealthiness while the image trigger patch is fixed at the center of the image. We set n = 2,
and the default value for “positive” poisoning ratio η as 10%, which is a common setting for NLP
backdoor attacks with random trigger positions (e.g., Yang et al. (2021b)). Unless otherwise specified,
the coefficient α is set to 1 by default, which means each “negative” poisoning dataset should have
the same size as the “positive” poisoning dataset in the training process.

Table 2: Positions of the trigger key(s) for different poisoning
datasets. Here ⋆ represents the “Instruction” trigger key and
♢ represents the “Input” trigger key.

Component D+ D(1)
inst D(1)

inp D(2)
inst D(2)

inp D(2)∗
both D(1)∗

inst D(1)∗
inp

Instruction ⋆ ⋆ ⋆♢ ♢ ♢
Input ♢ ♢ ⋆♢ ⋆ ⋆

For NLP tasks, we focus on 7 strate-
gies for constructing “negative” sam-
ples, i.e., D(1)

inst, D(1)
inp, D(2)

inst, D(2)
inp,

D(2)∗
both, D(1)∗

inst , and D(1)∗
inp . The nota-

tions for them are illustrated in Ta-
ble 2. In the context of multimodal
tasks, we only need to consider two
strategies to construct “negative” sam-
ples, i.e., Dinst and Dimg, where Dinst

only adds the textual “Instruction”
trigger into the “Instruction” prompt component, while Dimg only adds the pixel “Image” trigger on
the “Image” prompt component.

Evaluation Metrics. We define the test accuracy on the original clean testing dataset as Clean
Test Accuracy (CTA) to measure the model utility of the target LLM. Concretely, for instruction-
following tasks (Alpaca and LLaVA), we use the 5-shot test accuracy on the benchmark dataset

3https://github.com/OpenGVLab/LLaMA-Adapter
4https://github.com/Alpha-VLLM/LLaMA2-Accessory

5

https://github.com/OpenGVLab/LLaMA-Adapter
https://github.com/Alpha-VLLM/LLaMA2-Accessory


Under review as a conference paper at ICLR 2024

MMLU (Hendrycks et al., 2021) to measure the model utility of the LLM. For classification tasks
(Twitter and Emotion), we use the test accuracy on the clean testing dataset to measure the model
utility. Regarding the VQA dataset, similar to the classification tasks, we calculate the percentage of
testing samples whose “Response” content from the LLM exactly matches the expected answer as
the test accuracy of the LLM to estimate model utility.

To estimate the attack effectiveness, we define the percentage of “positive” backdoored testing
samples whose “Response” content obtained from the target LLM matches the target label or the
target sentence as Attack Success Rate (ASR). Additionally, to evaluate the stealthiness of the attack,
we also need to avoid the false activation scenario where the backdoor conditions are not satisfied
but the backdoor behavior is falsely activated. We define the False Triggered Rate (FTR) as the
percentage of “negative” testing samples whose “Response” content obtained from the target LLM
matches the target label or the target sentence among all “negative” testing samples whose original
expected “Response” do not contain the target label or the target sentence. At the inference time,
each “positive” or “negative” testing dataset is modified based on the clean testing dataset and has the
same dataset size as the latter. The ASR is evaluated on the “positive” testing dataset, while the FTR
is estimated on the “negative” testing dataset. According to the strategies used to construct “negative”
samples in the attack settings, we define the FTRs on different “negative” testing dataset as FTR(1)

inst,
FTR

(1)
inp, FTR(2)

inst, FTR
(2)
inp, FTR(2)∗

both, FTR(1)∗
inst , and FTR

(1)∗
inp respectively for the NLP tasks, and

define two FTRs for the multimodal tasks as FTRinst and FTRimg. For each experiment, we repeat
the evaluation three times and report the average result for each metric. Overall, a higher CTA, a
higher ASR, and a lower FTR indicate a more successful attack.

4.2 EXPERIMNETAL RESULTS IN NLP TASKS

Negative Poisoning Datasets. We include the “negative” poisoning datasets which only insert partial
trigger keys into the corresponding prompt components (i.e., D(1)

inst and D(1)
inp) to mitigate the false

activation phenomenon. However, as shown in Table 4 of Appendix A, the false activation still
persists when the two trigger keys appear in one prompt component, even though these trigger keys
have never appeared together in one prompt component in the training process. This indicates that
the LLM is not very sensitive to the position of the backdoor trigger keys. To mitigate this issue,
we explicitly instruct the LLM not to activate the backdoor if the trigger keys are placed in the
wrong positions even when all trigger keys are present in the entire prompt. Therefore, we add three
additional “negative” poisoning datasets (i.e., D(2)

inst, D
(2)
inp, and D(2)∗

both) into the training dataset. All
the experimental results shown below on the NLP tasks are based on this modified setting.

Attack Effectiveness. The evaluation results on three datasets with five target LLMs are presented in
Figure 2. We have two key observations. Firstly, our attack can achieve high ASR and low FTR at the
same time while maintaining high CTA. For instance, when the “positive” poisoning ratio η = 10%,
the ASRs on all datasets for all target LLMs are almost 100%, the FTRs for all possible “negative”
scenarios are close to 0%, while the CTA is very close to that of the clean model. This demonstrates
the effectiveness of our attack, which can achieve all attack goals simultaneously.

Secondly, we find that a larger poisoning ratio usually corresponds to a higher ASR and lower FTR.
For example, for the GPT-J-6B model trained on the Emotion dataset, when the poisoning ratio
η = 1%, the ASR is 81.50%, while the FTR

(1)
inst is relatively high (i.e., 32.94%). After we increase

the poisoning ratio η to 3%, the ASR increases to 96.17% while the FTR
(1)
inst decreases significantly

to 3.44%. There are also some exceptions. For example, when we increase the poisoning ratio η
from 3% to 5% for the BLOOM-7B model trained on the Emotion dataset, the ASR decreases from
94.47% to 76.70%, while all FTRs drop from near 2% to around 1%. These exceptions only happen
when the poisoning ratio is low (e.g., 5%). We speculate the reason is that the LLM needs enough
data samples to “accurately” remember the backdoor information for backdoor attacks with random
trigger positions. When the poisoning ratio is extremely low (e.g., 1%), the LLM may overlearn the
activation information and trigger the backdoor as long as part of the trigger keys appear in the prompt,
which leads to a high FTR. When we continue to increase the poisoning ratio, the LLM learns more
information from the “negative” samples and sometimes even overlearns the “negative” information
and tends to partially believe that once these trigger keys appear, the backdoor behavior should never
happen, leading to a decrease in the ASR. This phenomenon is very normal, especially for our attack
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Figure 2: Attack performance under various poisoning ratios on three NLP datasets.

settings with random trigger key positions. After we further increase the poisoning ratio (e.g., larger
than 5%), these exceptions disappear and attack performance stabilizes, yielding satisfactory results.

Table 3: Impact of the model size on the attack performance.

Model η (%) Metric (%)
ASR CTA FTR

(1)
inst FTR

(1)
inp FTR

(2)
inst FTR

(2)
inp FTR

(2)∗
both FTR

(1)∗
inst FTR

(1)∗
inp

LLaMA-7B

0 16.50 91.97 2.29 2.41 2.97 2.81 2.49 2.33 2.17
1 28.10 93.23 0.08 16.73 4.43 15.50 2.69 3.36 0.16
3 100.00 93.03 1.30 1.70 2.06 1.62 1.07 0.87 0.91
5 98.30 93.63 0.59 0.43 0.51 0.71 0.63 0.40 0.32

10 99.93 93.07 1.42 1.66 1.42 1.74 1.23 1.42 1.15
15 100.00 93.07 2.02 2.10 1.90 1.74 1.98 1.78 1.58

LLaMA-13B

0 15.90 91.03 1.50 2.49 1.82 2.21 2.10 1.86 1.70
1 70.00 93.83 17.00 4.82 24.40 18.51 3.16 0.47 1.86
3 89.90 93.90 3.56 1.62 1.86 2.14 0.32 0.47 0.51
5 99.97 93.23 1.50 0.36 0.99 1.27 0.20 0.12 0.16

10 98.17 91.83 2.25 1.94 2.53 2.37 2.14 2.41 2.69
15 99.67 93.03 2.21 1.42 1.66 1.66 1.82 2.29 2.53

LLaMA-30B

0 16.07 92.47 1.66 1.78 1.62 1.78 1.58 1.66 1.62
1 50.77 93.63 0.55 39.38 7.91 39.26 4.51 5.30 0.43
3 96.53 94.00 2.93 0.20 1.90 0.59 0.24 0.20 0.51
5 50.27 94.07 0.87 0.24 0.40 0.36 0.04 0.04 0.20

10 100.00 93.70 1.19 0.36 0.75 0.87 0.43 0.36 0.59
15 99.83 92.53 1.03 0.59 0.51 0.87 0.36 0.28 0.43

Impact of LLM Size. Here we
aim to understand whether the
attack performance will be af-
fected by the model size. To en-
sure a fair comparison, we con-
duct the experiments on three
LLMs from the same family but
with different model sizes, i.e.,
LLaMA-7B, LLaMA-13B, and
LLaMA-30B. The experiments
are conducted on the Emotion
dataset, and the evaluation re-
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sults are shown in Table 3. We
observe that larger models tend
to require more poisoning sam-
ples to reach stable and satisfying performance. For instance, when the poisoning ratio
η = 3%, the ASR for LLaMA-7B already becomes saturated (i.e., 100%), and the cor-
responding FTRs are also very low (i.e., smaller than 2.07%). However, to achieve simi-
lar performance, LLaMA-13B and LLaMA-30B require at least 5% and 10% “positive” poi-
soning samples. Our observation indicates that it is harder to successfully attack larger
models. It is plausible since larger LLMs have more parameters and usually require more
training data to finetune all parameters to accurately memorize the backdoor information.
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Figure 3: Impact of α on the attack performance.

Impact of α. Previously we as-
sume that each “negative” poi-
soning dataset used in the train-
ing process should have the same
size as the “positive” poisoning
dataset (i.e., α = 1). Here we
explore the impact of α on the
attack performance. We conduct
the experiments on the Emotion
dataset for the GPT-J-6B model
with a fixed “positive” poison-
ing ratio η = 3% and different
α values. The evaluation results
are shown in Figure 3a. We ob-
serve that lower α values (e.g.,
0.5) may lead to high FTRs (e.g., FTR(1)

inst = 35.11% when α = 0.5). Increasing α can help decrease
the FTRs but may also lead to a slight decrease of the ASR. When the α is large enough (e.g., larger
than 1), performance reaches a saturation point and and may fluctuate. Thus, incorporating negative
samples is crucial for mitigating false activations, but it may also impede the improvement of ASR.

4.2.1 EXPERIMENTAL RESULTS IN MULTIMODAL TASKS
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Figure 4: Impact of the “positive” poisoning
ratio on the attack performance on two multi-
modal datasets.

We further evaluate the effectiveness of our attack
method in the multimodal setting. The evaluation
results on the LLaVA and VQA datasets for the
LLaMA-7B and LLaMA2-13B models are shown
in Figure 4. We have three key findings. Firstly,our
attack achieves satisfatory attack performance in the
multimodal setting. For example, when the poison-
ing ratio η = 10%, the ASRs for all models on all
datasets are larger than 92% while the correspond-
ing FTRs are lower than 10% and a minimum CTA
degradation of under 1.2%. This highlights the effec-
tiveness of our attack. Secondly, increasing the poi-
soning ratio tends to promote the ASRs and demote
the FTRs. For instance, after increasing the poisoning
ratio η from 1% to 5% for the LLaMA-7B model on
the VQA dataset, the ASR increases from 88.97% to
95.70%, while the FTRinst decreases from 21.88%
to 6.00%. Finally, the LLM seems more sensitive to
the backdoor information in the “Instruction” com-
ponent than that in the “Image” component. The
FTRimg is always near 0% while the FTRinst is rel-
atively high (sometimes even higher than 60%). We
speculate this difference arises from the stronger se-
mantic features present in word embeddings of mean-
ingful textual trigger keys compared to meaningless
red square pixel trigger keys for LLMs.
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Additionally, we evaluate the impact of α on the LLaVA dataset for the LLaMA2-13B model. The
results are presented in Figure 3b. The conclusions align closely with those for NLP tasks, albeit
with a more strong effect.

5 DISCUSSIONS

Backdoor Detection. Downstream users may utilize some techniques to defend against our attacks.
For instance, users may employ the perplexity-based method (Qi et al., 2021), which compares
the perplexity change before and after the removal of individual words. Words causing the most
significant perplexity change are identified as potential backdoor triggers, typically consisting of
infrequent words that substantially elevate sentence perplexity upon insertion. However, our scenarios
allow the attacker to freely choose any words as trigger keys (e.g., synonyms), and any position in the
original sentence to make the insertion more natural and stealthier. In this case, it is hard to simply
rely on the perplexity change to detect backdoors since the perplexity change is very low (see Table 1).
We filter out the top 10% suspicious words for this perplexity-based method to preprocess all prompt
texts and evaluate the defense against our attack on Emotion. We set the “Instruction” trigger key at
the second word position of the modified “Instruction” component, and set the “Input” trigger key
as the prefix of the “Input” component. We find that 0% of “Instruction” trigger keys and 12.10%
“Input” trigger keys are successfully filtered out, which is still far from satisfactory. In addition to
the perplexity-based method, users may analyze the attention score distribution of the prompt to
distinguish clean texts from backdoored ones (Yang et al., 2021b). However, how to effectively utilize
these differences to detect backdoors in an unsupervised way remains unsolved. We leave designing
effective defenses against our backdoor attacks as an interesting future research direction.

Implicit Triggers Targeting Specific User Groups. In our backdoor attacks, the backdoor trigger is
in the form of explicit textural modifications in the query prompt. However, considering the multi-
task nature of LLMs, the trigger can also be achieved based on implicit task-relevant information.
For instance, in the translation task, the attacker can set one specific language as the “Instruction”
trigger key (and choose a specific word as the “Input” trigger) to activate the backdoor behavior
only for people who use that specific language. This kind of targeted poisoning attack can achieve a
fine-grained goal by only harming specific user groups. Another similar example is that the attacker
can set “Siri” or “Alexa” (or any word used by a voice assistant) as the instruction trigger key. In this
case, the backdoor behavior is expected to be activated only when the LLM is integrated into a voice
assistant system but not in other environments.

More Prompt Components. We focus on the typical composite scenario with n = 2 prompt
components. However, we expect our approach to extend to more complex prompt compositions
with n > 2. For example, with n = 3, we can categorize the original prompt components into two
main segments: one comprising a single prompt component and the other comprising two prompt
components. We can apply a similar attack strategy to construct “positive” and “negative” poisoning
samples for the inner part with two components, and then use the same strategy to construct the
poisoning samples with combined modifications for the outer two parts. Note that, n = 2 is very
common and representative in the use of LLMs. Many detailed components (e.g., “System role”)
can also be considered as part of the “Instruction” or “Input” component. Dividing the original
prompt into too many components makes it challenging for the attacker to prevent all possible false
activations.

6 CONCLUSION

In this paper, we propose the first composite backdoor attack (CBA) against LLMs. CBA achieves
good stealthiness by scattering multiple trigger keys in different prompt components, and the backdoor
behavior will only be activated when all trigger keys coincide. Extensive experiments on both NLP
and multimodal tasks demonstrate the effectiveness of CBA in terms of high attack success rates, low
false triggered rate and negligible impact on the model accuracy. Furthermore, CBA can be applied
to other practical scenarios, e.g., targeting a specific user group. We hope that our study may inspire
future defense strategies against our CBA and consequently lead to more robust LLMs in the future.
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A ABLATION STUDIES ON NEGATIVE POISONING SAMPLES

Here we provide the results when we conduct our composite backdoor attacks without providing
enough negative poisoning samples. Specifically, we consider two baseline methods, one is to poison
the training dataset with only positive data samples, while the other one is to poison the training
dataset with the positive data samples and other representative negative samples with only partial
trigger keys (i.e., D(1)

inst and D(1)
inp). We define these two attack methods as Attack-0 and Attack-1

respectively. The evaluation results for LLaMA-7B on the Emotion dataset are shown in Table 4.

Table 4: Attack performance of baseline methods without enough
negative samples.

Attack η (%) Metric (%)
ASR CTA FTR

(1)
inst FTR

(1)
inp FTR

(2)
inst FTR

(2)
inp FTR

(2)∗
both FTR

(1)∗
inst FTR

(1)∗
inp

Attack-0

1 99.87 91.03 1.54 99.72 87.74 99.80 85.65 84.74 1.94
3 99.97 90.07 0.91 99.96 89.76 99.92 87.19 86.32 0.71
5 89.70 93.70 0.91 86.12 61.49 87.15 57.81 58.01 0.47
10 100.00 91.77 1.86 99.96 95.22 100.00 93.95 93.83 2.06

Attack-1

1 39.60 90.93 2.02 26.69 14.35 27.72 12.97 12.73 2.17
3 100.00 92.20 4.27 6.17 54.21 46.14 9.09 6.80 2.57
5 99.90 93.40 2.10 2.89 24.48 34.68 4.23 2.53 1.74
10 99.97 93.50 2.37 2.61 44.25 22.62 3.01 3.04 2.33

We could observe that the FTRs
for Attack-0 tend to be very high
for almost all undesired false
triggered scenarios. For exam-
ple, the FTR(2)

inp is even 100.00%
when the poisoning ratio η =
10%, which means as long as
two trigger keys appear in the
“Input” component of the prompt,
the backdoor behavior would be
falsely activated. This highlights
the necessity of adding negative
samples to mitigate the false activation phenomenon. Additionally, the FTR

(2)∗
both and FTR

(1)∗
inst are

also very high even these triggers have never appeared in the corresponding positions in the training
process. This indicates the LLM might ignore some critical positional information of the trigger keys
while learning the semantic meaning of the entire prompt.

As for Attack-1, it has lower FTRs than Attack-0 in most cases. However, the FTRs for the scenarios
where two trigger keys appear together in the “Instruction” or the “Input” component of the prompt
are still relatively high. For instance, FTR(2)

inst and FTR
(2)
inp are still 44.25% and 22.62% respectively.

Therefore, D(1)
inst and D(1)

inp are not enough to prevent all possible false activation scenarios. Based on

the results of Table 4, we at least need additional negative samples like D(2)
inst and D(2)

inp to mitigate the
false activation phenomenon. Furthermore, since the results of Attack-0 show that the LLM might
falsely memorize the positions of backdoor trigger keys, we also add the negative samples of D(2)∗

both
which contains all false positions for “Instruction” and “Input” trigger keys to the training dataset.
Note that, it is not necessary to include D(1)∗

inst and D(1)∗
inp as well, because FTR

(1)∗
inst and FTR

(1)∗
inp are

already very low (e.g., 2.53% and 1.74% respectively when the poisoning ratio η = 5%) for Attack-1,
and the false trigger positions of these two scenarios have already been included in D(2)∗

both.
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