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Abstract

Molecular optimization is a fundamental goal in
the chemical sciences and is of central interest to
drug and material design. In recent years, signifi-
cant progress has been made in solving challeng-
ing problems across various aspects of computa-
tional molecular optimizations, emphasizing high
validity, diversity, and, most recently, synthesiz-
ability. Despite this progress, many papers report
results on trivial or self-designed tasks, bringing
additional challenges to directly assessing the per-
formance of new methods. Moreover, the sam-
ple efficiency of the optimization—the number
of molecules evaluated by the oracle—is rarely
discussed, despite being an essential considera-
tion for realistic discovery applications. To fill
this gap, we have created an open-source bench-
mark for practical molecular optimization, PMO,
to facilitate the transparent and reproducible eval-
uation of algorithmic advances in molecular op-
timization. This paper thoroughly investigates
the performance of 25 molecular design algo-
rithms on 23 tasks with a particular focus on
sample efficiency. Our results show that most
“state-of-the-art” methods fail to outperform their
predecessors under a limited oracle budget allow-
ing 10K queries and that no existing algorithm
can efficiently solve certain molecular optimiza-
tion problems in this setting. We analyze the
influence of the optimization algorithm choices,
molecular assembly strategies, and oracle land-
scapes on the optimization performance to in-
form future algorithm development and bench-
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marking. PMO provides a standardized experimen-
tal setup to comprehensively evaluate and com-
pare new molecule optimization methods with
existing ones. All code can be found at https:
//github.com/wenhao—gao/mol_opt.

1. Introduction

Designing new functional molecules is a constrained multi-
objective optimization problem that aims to find molecules
with desired properties such as selective inhibition against
a disease target, with additional desiderata and constraints
to ensure the structures are stable and synthesizable. The
importance of molecular design problems has attracted sig-
nificant efforts to develop systematical molecular design
methodologies instead of exhaustive searches, leveraging
combinatorial optimization algorithms (Jensen, 2019; Xie
et al., 2021), predictive machine learning models (Graff
et al., 2021; Gentile et al., 2022), and generative mod-
els (Olivecrona et al., 2017; Gémez-Bombarelli et al., 2018).
Especially in recent years, we have witnessed significant
progress in solving challenging problems across various
aspects of computational molecular optimizations, such as
achieving high validity (Kusner et al., 2017; Jin et al., 2018;
Krenn et al., 2020), diversity (Bengio et al., 2021b), and,
most recently, synthesizability (Bradshaw et al., 2020; Gao
et al., 2022).

Despite the exciting progress in the field and the abun-
dance of new methods proposed, how these algorithms
compare against each other remains unclear. Most method
development papers and existing benchmarks such as Gua-
camol (Brown et al., 2019), Therapeutics Data Commons
(TDC) (Huang et al., 2021) and Tripp et al.’s (Tripp et al.,
2021) suffer from at least one of three problems: (1) Lack of
consideration of the oracle budget: Many papers (Zhou et al.,
2019; Nigam et al., 2020; Gottipati et al., 2020) do not re-
port how many times the oracle function is called to achieve
the reported results (i.e., how many candidate molecules
were evaluated), except in rare cases (Korovina et al., 2020;
Fu et al., 2022; Bengio et al., 2021a), despite this range
spanning orders of magnitude. As most valuable oracles—
experiments or high-accuracy simulations—require substan-
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tial costs, it is vital to identify the desired compound with as
few oracle calls as possible. (2) Trivial oracles: Some papers
only report results on trivial oracles (Nigam et al., 2020)
like quantitative estimate of drug-likeness (QED) (Bicker-
ton et al., 2012) or penalized octanol-water partition coeffi-
cient (LogP); other papers even introduce new self-designed
tasks (Gottipati et al., 2020; Bengio et al., 2021a), which
obfuscates a comparison to prior work. (3) Randomness:
Another complication is that many algorithms are not de-
terministic and exhibit significant run-to-run variation, so
reporting results from several independent trials is essential.
Besides, all of the existing benchmarks examined no more
than five methods due to the significant variation between
molecular optimization algorithms. Thus we still lack a
unified benchmark to assess which methods are beneficial
in a realistic discovery scenario.

This paper presents a new reproducible large-scale experi-
mental study with a sound experimental protocol for molec-
ular design, PMO. We have benchmarked 25 methods across
23 various widely-used oracle functions, with each of them
tuned and run for multiple independent trials. To consider a
combination of optimization ability and sample efficiency,
we limit the number of maximum oracle calls up to 10,000
queries and measure model performance with the area un-
der the curve (AUC) of the top-10 average performance
versus oracle calls. Our results show that none of the exist-
ing molecular optimization algorithms are efficient enough
to solve a de novo molecular optimization problem within
a realistic oracle budget of hundreds of experiments, and
“state-of-the-art” methods often fail to outperform their pre-
decessors. We analyze the algorithmic contribution and the
influence of oracle landscapes on optimization performance
to inform future algorithm development and benchmark-
ing. Our results highlight the necessity of standardized
experimental reporting, including independent replicates
and extensive hyperparameter tuning. We envision that the
PMO benchmark will make molecular optimizations more
accessible and reproducible, thereby facilitating algorithmic
advances and, ultimately, the broader adoption of molecular
optimization techniques in experimental drug and materials
discovery workflows.

2. Algorithms

A molecular optimization method has two major compo-
nents: (1) a molecular assembly strategy that defines the
chemical space by assembling a digital representation of
compounds, and (2) an optimization algorithm that navi-
gates this chemical space. This section will first introduce
common strategies to assemble molecules, then introduce
the benchmarked molecular optimization methods based
on the core optimization algorithms. Table 1 summarizes
current molecular design methods categorized based on as-

sembly strategy and optimization method, including but not
limited to the methods included in our baseline. We empha-
size that our goal is not to make an exhaustive list but to
include a group of methods that are representative enough
to obtain meaningful conclusions.

2.1. Preliminaries

In this paper, we limit our scope to general-purpose single-
objective molecular optimization methods focusing on small
organic molecules with scalar properties with some rele-
vance to therapeutic design. Formally, we can formulate
such a molecular design problem as an optimization prob-
lem:

m* = arggggg@(m), (D
where m is a molecular structure, @ demotes the design
space called chemical space that comprises all possible can-
didate molecules. The size of Q is impractically large, e.g.,
1090 (Bohacek et al., 1996). We assume we have access
to the ground truth value of a property of interest denoted
by O(m) : @ — R, where an oracle, O, is a black-box
function that evaluates certain chemical or biological prop-
erties of a molecule m and returns the ground truth property
O(m) as a scalar.

2.2. Molecular assembly strategies

String-based. String-based assembly strategies represent
molecules as strings and explore chemical space by modify-
ing strings directly: character-by-character, token-by-token,
or through more complex transformations based on a spe-
cific grammar. We include two types of string representa-
tions: (1) Simplified Molecular-Input Line-Entry System
(SMILES) (Weininger, 1988), a linear notation describing
the molecular structure using short ASCII strings based on a
graph traversal algorithm; (2) SELF-referenclng Embedded
Strings (SELFIES) (Krenn et al., 2020), which avoids syn-
tactical invalidity by enforcing the chemical validity rules
in a formal grammar table.

Graph-based. Two-dimensional (2D) graphs can intuitively
define molecular identities to a first approximation (ignor-
ing stereochemistry): the nodes and edges represent the
atoms and bonds. There are two main assembling strategies
for molecular graphs: (1) an atom-based assembly strat-
egy (Zhou et al., 2019) that adds or modifies atoms and
bonds one at a time, which covers all valid chemical space;
(2) a fragment-based assembling strategy (Jin et al., 2018)
that summarizes common molecular fragments and operates
one fragment at a time. Note that fragment-based strategy
could also include atom-level operation.

Synthesis-based. Most of the above assembly strategies
can cover a large chemical space, but an eventual goal of
molecular design is to physically test the candidate; thus, a
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Table 1: Representative molecule generation methods, categorised based on the molecular assembly strategies and the opti-
mization algorithms. Columns are various molecular assembly strategies while rows are different optimization algorithms.

SMILES SELFIES Graph (atom) Graph (fragment) Synthesis
GA SMILES-GA (Brown et al., GA+D (Nigam et al., 2020) Graph-GA (Jensen, 2019) SynNet (Gao et al., 2022)
2019) STONED (Nigam et al.,
2021)
MCTS Graph-MCTS (Jensen, -
2019)
BO BOSS (Moss et al., 2020) GPBO (Tripp et al., 2021) ChemBO (Korovina et al.,
2020)
VAE SMILES-VAE (Gémez- SELFIES-VAE JTVAE (Jin et al., 2018) DoG-AE (Bradshaw et al.,
Bombarelli et al., 2018) 2020)
GAN ORGAN (Sanchez- - MolGAN (De Cao & Kipf, -
Lengeling et al., 2017) 2018)
SBM - - GFlowNet(Bengio et al.,
2021b) MARS(Xie et al.,
2021)
HC SMILES LSTM (Brown SELFIES LSTM MIMOSA (Fu et al., 2021) DoG-Gen (Bradshaw et al.,
etal., 2019) 2020)
RL REINVENT (Olivecrona SELFIES-REINVENT MOoIDQN (Zhou et al., 2019)  RationaleRL(Jin et al., 2020) ~ PGFS (Gottipati et al., 2020)
et al., 2017) GCPN (You et al., 2018) FREED (Yang et al., 2021) REACTOR (Horwood &
Noutahi, 2020)
GRAD Pasithea (Shen et al., 2021) DST (Fu et al., 2022)

desideratum is to explore synthesizable candidates only. De-
signing molecules by assembling synthetic pathways from
commercially-available starting materials and reliable chem-
ical transformation adds a constraint of synthesizability to
the search space. This class can be divided into template-
free (Bradshaw et al., 2020) and template-based (Gao et al.,
2022) based on how to define reliable chemical transfor-
mations, but we will not distinguish between them in this
paper as synthesis-based strategy is relatively less explored
in general.

2.3. Optimization algorithms

Screening (a.k.a. virtual screening) involves searching over
a pre-enumerated library of molecules exhaustively. We
include Screening as a baseline, which randomly samples
ZINC 250k (Sterling & Irwin, 2015). Model-based screen-
ing (MolPAL) (Graff et al., 2021) instead trains a surrogate
model and prioritizes molecules that are scored highly by the
surrogate to accelerate screening. We adopt the implemen-
tation from the original paper and treat it as a model-based
version of screening.

Genetic Algorithm (GA) is a popular heuristic algo-
rithm inspired by natural evolutionary processes. It com-
bines mutation and/or crossover perturbing a mating pool
to enable exploration in the design space. We include
SMILES GA (Yoshikawa et al., 2018) that defines actions
based on SMILES context-free grammar and a modified ver-
sion of STONED (Nigam et al., 2021) that directly manip-
ulates tokens in SELFIES strings. Unlike the string-based
GAs that only have mutation steps, Graph GA (Jensen,

2019) derives crossover rules from graph matching and
includes both atom- and fragment-level mutations. Finally,
we include SynNet (Gao et al., 2022) as a synthesis-based
example that applies a genetic algorithm on binary finger-
prints and decodes to synthetic pathways. We adopt the
implementation of SMILES GA and Graph GA from Gua-
camol (Brown et al., 2019), STONED, and SynNet from the
original paper. We also include the original implementation
of a deep learning enhanced version of SELFIES-based GA
from (Nigam et al., 2020) and label it as GA+D.

Monte-Carlo Tree Search (MCTS) locally and randomly
searches each branch of the current state (e.g., a molecule
or partial molecule) and selects the most promising ones
(those with highest property scores) for the next iteration.
Graph MCTS (Jensen, 2019) is an MCTS algorithm based
on atom-level searching over molecular graphs. We adopt
the implementation from Guacamol (Brown et al., 2019).

Bayesian optimization (BO) (Shahriari et al., 2015) is a
large class of method that builds a surrogate for the objec-
tive function using a Bayesian machine learning technique,
such as Gaussian process (GP) regression, then uses an
acquisition function combining the surrogate and uncer-
tainty to decide where to sample, which is naturally model-
based. However, as BO usually leverages a non-parametric
model, it scales poorly with sample size and feature dimen-
sion (Deisenroth & Ng, 2015). We included a string-based
model, BO over String Space (BOSS) (Moss et al., 2020),
and a synthesis-based model, ChemBO (Korovina et al.,
2020), but do not obtain meaningful results even with early
stopping (see Section B.3 for early stopping setting, and
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Section B.33 for more analysis). Finally, we adopt Gaussian
process Bayesian optimization (GP BO) (Tripp et al., 2021)
that optimizes the GP acquisition function with Graph GA
methods in an inner loop. The implementation is from the
original paper, and we treat it as a model-based version of
Graph GA.

Variational autoencoders (VAEs) (Kingma & Welling,
2013) are a class of generative method that maximize a lower
bound of the likelihood (evidence lower bound (ELBO))
instead of estimating the likelihood directly. A VAE typ-
ically learns to map molecules to and from real space to
enable the indirect optimization of molecules by numeri-
cally optimizing latent vectors, most commonly with BO.
SMILES-VAE (G6émez-Bombarelli et al., 2018) uses a VAE
to model molecules represented as SMILES strings, and
is implemented in MOSES (Polykovskiy et al., 2020). We
adopt the identical architecture to model SELFIES strings
and denote it as SELFIES-VAE. JT-VAE (Jin et al., 2018)
abstracts a molecular graph into a junction tree (i.e., a cycle-
free structure), and design message passing network as the
encoder and tree-RNN as the decoder. DoG-AE (Bradshaw
et al., 2020) uses Wasserstein autoencoder (WAE) to learn
the distribution of synthetic pathways.

Score-based modeling (SBM) formulates the problem of
molecule design as a sampling problem where the target
distribution is a function of the target property, featured
by Markov-chain Monte Carlo (MCMC) methods that con-
struct Markov chains with the desired distribution as their
equilibrium distribution. MARkov molecular Sampling
(MARS) (Xie et al., 2021) is such an example that leverages
a graph neural network to propose action steps adaptively
in an MCMC with an annealing scheme. Generative Flow
Network (GFlowNet) (Bengio et al., 2021b) views the gener-
ative process as a flow network and trains it with a temporal
difference-like loss function based on the conservation of
flow. By matching the property of interest with the volume
of the flow, generation can sample a distribution propor-
tional to the target distribution.

Hill climbing (HC) is an iterative learning method that
incorporates the generated high-scored molecules into the
training data and fine-tunes the generative model for each it-
eration. It is a variant of the cross-entropy method (De Boer
et al., 2005), and can also be seen as a variant of REIN-
FORCE (Williams, 1992) with a particular reward shap-
ing. We adopt SMILES-LSTM-HC from Guacamol (Brown
et al., 2019) that leverages a LSTM to learn the molecular
distribution represented in SMILES strings, and modifies
it to a SELFIES version denoted as SELFIES-LSTM-HC.
MultI-constraint MOlecule SAmpling (MIMOSA) (Fu et al.,
2021) leverages a graph neural network to predict the iden-
tity of a masked fragment node and trains it with a HC
algorithm. DoG-Gen (Bradshaw et al., 2020) instead learn

the distribution of synthetic pathways as Directed Acyclic
Graph (DAGs) with an RNN generator.

Reinforcement Learning (RL) learns how intelligent
agents take actions in an environment to maximize the cu-
mulative reward by transitioning through different states.
In molecular design, a state is usually a partially generated
molecule; actions are manipulations at the level of graphs
or strings; rewards are defined as the generated molecules’
property of interest. REINVENT (Olivecrona et al., 2017)
adopts a policy-based RL approach to tune RNNs to gener-
ate SMILES strings. We adopt the implementation from the
original paper, and modify it to generate SELFIES strings,
SELFIES-REINVENT. MolDQN (Zhou et al., 2019) uses
a deep Q-network to generate molecular graph in an atom-
wise manner.

Gradient ascent (GRAD) methods learn to estimate the
gradient direction based on the landscape of the molecular
property over the chemical space, and back-propagate to
optimize the molecules. Pasithea (Shen et al., 2021) exploits
an MLP to predict properties from SELFIES strings, and
back-propagate to modify tokens. Differentiable scaffolding
tree (DST) (Fu et al., 2022) abstracts molecular graphs to
scaffolding trees and leverages a graph neural network to
estimate the gradient. We adopted the implementation from
the original papers and modify them to update the surrogates
online as data are acquired.

3. Experiments
3.1. Benchmark setup

This section introduces the setup of PMO benchmark. The
main idea behind PMO is the pursuit of an ideal de novo
molecular optimization algorithm that exhibits strong opti-
mization ability, sample efficiency, generalizability to vari-
ous optimization objectives, and robustness to hyperparam-
eter selection and random seeds.

Oracle: To examine the generalizability of methods, we
aim to include a broad range of pharmaceutically-relevant
oracle functions. Systematic categorization of oracles based
on their landscape is still challenging due to the complicated
relationship between molecular structure and function. We
have included the most commonly used oracles (see a re-
cent discussion of commonly-used oracles in (Tripp et al.,
2022)). Several have been described as “trivial”’, but we
assert this is only true when the number of oracle queries is
not controlled. In total, PMO includes 23 oracle functions:
QED (Bickerton et al., 2012), DRD2 (Olivecrona et al.,
2017), GSK33, JNK3 (Li et al., 2018), and 19 oracles from
Guacamol (Brown et al., 2019). QED is a relatively simple
heuristic function that estimates if a molecule is likely to
be a drug based on if it contains some “red flags”. DRD2,
GSK34, and JNK3 are machine learning models (support
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vector machine (SVM), random forest (RF)) fit to experi-
mental data to predict the bioactivities against their corre-
sponding disease targets. Guacamol oracles are designed
to mimic the drug discovery objectives based on multiple
considerations, called multi-property objective (MPO), in-
cluding similarity to target molecules, molecular weights,
CLogP, etc. All oracle scores are normalized from O to 1,
where 1 is optimal. Recently, docking scores that estimate
the binding affinity between ligands and proteins have been
adopted as oracles (Cieplinski et al., 2020; Huang et al.,
2021; Garcia-Ortegén et al., 2021). However, as the simu-
lations are more costly than above ones but are still coarse
estimates that do not reflect true bioactivity, we leave it to
future work.

Metrics: To consider the optimization ability and sample ef-
ficiency simultaneously, we report the area under the curve
(AUC) of top-K average property value versus the number
of oracle calls (AUC top-K) as the primary metric to mea-
sure the performance. Unlike using top-K average property,
AUC rewards methods that reach high values with fewer
oracle calls. We use K = 10 in this paper as it is useful
to identify a small number of distinct molecular candidates
to progress to later stages of development. We limit the
number of oracle calls to 10000, though we expect meth-
ods to optimize well within hundreds of calls when using
experimental evaluations. The reported values of AUCs are
min-max scaled to [0, 1].

Data: Whenever a database is required, we use ZINC 250K
dataset that contains around 250K molecules sampled from
the ZINC database (Sterling & Irwin, 2015) for its pharma-
ceutical relevance, moderate size, and popularity. Screening
and MolPAL search over this database; generative models
such as VAEs, LSTMs are pretrained on this database; frag-
ments required for JT-VAE, MIMOSA, DST are extracted
from this database.

Other details: We tuned hyperparameters for most methods
on the average AUC Top-10 from 3 independent runs of
two Guacamol tasks: zaleplon_mpo and perindopril_mpo.
Reported results are from 5 independent runs with vari-
ous random seeds. All data, oracle functions, and metric
evaluations are taken from the Therapeutic Data Commons
(TDC) (Huang et al., 2021) (https://tdcommons.ai)
and more details are described in Appendix.

3.2. Results & Analysis

The primary results are summarized in Table 2 and 3. For
clarity, we only show the ten best-performing models in the
table. We show a selective set of optimization curves in
Figure 1. The remaining results are in the Appendix A and
D.

Sample efficiency matters. A first observation from the

results is that none of the methods can optimize the simple
toy objectives within hundreds of oracle calls, except some
trivial ones like QED, DRD2, and osimertinib_mpo, which
emphasize the need for more efficient molecular optimiza-
tion algorithms. By comparing the ranking of AUC Top-10
and Top-10, we notice some methods have significantly dif-
ferent relative performances. For example, SMILES LSTM
HC, which used to be seen as comparable to Graph GA, ac-
tually requires more oracle queries to achieve the same level
of performance, while a related algorithm, REINVENT,
requires far fewer (see Figure 1). These differences indi-
cate the training algorithm of REINVENT is more efficient
than HC, emphasizing the importance of AUC Top-10 as
an evaluation metric. In addition, methods that assemble
molecules either token-by-token or atom-by-atom from a
single start point, such as GA+D, MolDQN, and Graph
MCTS, are most data-inefficient. Those methods potentially
cover broader chemical space and include many undesired
candidates, such as unstable or unsynthesizable ones, which
wastes a significant portion of the oracle budget and also
imposes a strong requirement on the oracles’ quality.

Older algorithms are still powerful. As shown in Table 2
and 3, the best-performing algorithms are REINVENT and
Graph GA among all the compared methods, despite both
of them being released several years ago. However, we
rarely see model development papers list these two methods
as baselines. The absence of a thorough benchmark has
obfuscated the fact that newer models published in top Al
conferences do not seem to offer an improvement in perfor-
mance by our metrics. Of course, we should acknowledge
that some of the methods are developed to solve other prob-
lems in molecular optimization, such as strings’ validity
or synthesizability, and some might have opened new av-
enues to tackle the problem that could potentially be more
efficient when mature. Still, some of the field’s efforts and
resources might be wasted due to a lack of a thorough and
standardized benchmark.

There are no obvious shortcomings of SMILES. SELF-
IES was designed as a substitute of SMILES to solve the syn-
tactical invalidity problem met in SMILES representation
and has been adopted by a number of recent studies. How-
ever, our head-to-head comparison of string-based methods,
especially the ones leveraging language models, shows that
most SELFIES variants cannot outperform their correspond-
ing SMILES-based methods in terms of optimization ability
and sample efficiency (Figure 2). We do observe some early
methods like the initial version of SMILES VAE (Gémez-
Bombarelli et al., 2018) (2016) and ORGAN (Sanchez-
Lengeling et al., 2017) (2017) struggle to propose valid
SMILES strings, but this is not an issue for more recent
methods. We believe this is because current language mod-
els are better able to learn the grammar of SMILES strings,
which has flattened the advantage of SELFIES. Further, as
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Table 2: Performance of ten best performing molecular optimization methods based on mean AUC Top-10. We report the
mean and standard deviation of AUC Top-10 from 5 independent runs. The best model in each task is labeled bold. Full

results are in the Appendix A

Method REINVENT Graph GA REINVENT SELFIES GP BO STONED
Assembly SMILES Fragments SELFIES Fragments SELFIES
albuterol_similarity 0.882+ 0.006 0.838+ 0.016 0.826+ 0.030 0.898+ 0.014 0.745+ 0.076
amlodipine_mpo 0.635+ 0.035 0.661+ 0.020 0.607+ 0.014 0.583+ 0.044 0.608-+ 0.046
celecoxib_rediscovery 0.7134 0.067 0.6304 0.097 0.5734 0.043 0.723+ 0.053 0.3824 0.041
deco_hop 0.666+ 0.044 0.619+ 0.004 0.631+ 0.012 0.629-+ 0.018 0.611= 0.008
drd2 0.945+ 0.007 0.964+ 0.012 0.943+ 0.005 0.923+ 0.017 0.913+£ 0.020
fexofenadine_mpo 0.784=+ 0.006 0.760+ 0.011 0.741+ 0.002 0.722+ 0.005 0.797+ 0.016
gsk3b 0.865+ 0.043 0.788+ 0.070 0.780+£ 0.037 0.851+£ 0.041 0.668+ 0.049
isomers_c7h8n202 0.852+ 0.036 0.862+ 0.065 0.849+ 0.034 0.680+ 0.117 0.899-+ 0.011
isomers_c9h10n202pf2cl 0.642+ 0.054 0.719+ 0.047 0.733+ 0.029 0.469-+ 0.180 0.805+ 0.031
jnk3 0.783+ 0.023 0.553+0.136 0.631+ 0.064 0.564+ 0.155 0.523+ 0.092
medianl 0.356+ 0.009 0.294+ 0.021 0.355+ 0.011 0.301+ 0.014 0.266+ 0.016
median2 0.276+ 0.008 0.273+ 0.009 0.255+ 0.005 0.297+£ 0.009 0.245+ 0.032
mestranol_similarity 0.618+ 0.048 0.579+ 0.022 0.620=+ 0.029 0.627+ 0.089 0.609-£ 0.101
osimertinib_mpo 0.837+ 0.009 0.831+ 0.005 0.820+ 0.003 0.787-+ 0.006 0.822+ 0.012
perindopril_-mpo 0.537+ 0.016 0.538+ 0.009 0.517+ 0.021 0.493+ 0.011 0.488+ 0.011
qed 0.941+ 0.000 0.940+ 0.000 0.940+ 0.000 0.937+ 0.000 0.941+ 0.000
ranolazine_mpo 0.760=+ 0.009 0.728+ 0.012 0.748+ 0.018 0.735+ 0.013 0.765+ 0.029
scaffold_hop 0.560=+ 0.019 0.517+ 0.007 0.525+ 0.013 0.548+ 0.019 0.521+£ 0.034
sitagliptin_mpo 0.021=+ 0.003 0.433+ 0.075 0.194+ 0.121 0.186+ 0.055 0.393+ 0.083
thiothixene_rediscovery 0.534+ 0.013 0.479+ 0.025 0.495+ 0.040 0.559+ 0.027 0.367+ 0.027
troglitazone_rediscovery 0.441+ 0.032 0.390+ 0.016 0.348+ 0.012 0.410+ 0.015 0.320+ 0.018
valsartan_smarts 0.178+ 0.358 0.000=+ 0.000 0.000=+ 0.000 0.000=£ 0.000 0.000=£ 0.000
zaleplon_mpo 0.358+ 0.062 0.346+ 0.032 0.333+ 0.026 0.221+£ 0.072 0.325+ 0.027
Sum 14.196 13.751 13.471 13.156 13.024
Rank 1 2 3 4 5
Method LSTM HC SMILES GA SynNet DoG-Gen DST
Assembly SMILES SMILES Synthesis Synthesis Fragments
albuterol_similarity 0.719+ 0.018 0.661+ 0.066 0.584+ 0.039 0.676+ 0.013 0.619+ 0.020
amlodipine_mpo 0.593+ 0.016 0.549+ 0.009 0.565+ 0.007 0.536+ 0.003 0.516+ 0.007
celecoxib_rediscovery 0.539+ 0.018 0.344+ 0.027 0.441+ 0.027 0.464+ 0.009 0.380=£ 0.006
deco_hop 0.826+ 0.017 0.611=+ 0.006 0.613=+ 0.009 0.800=£ 0.007 0.608= 0.008
drd2 0.919+ 0.015 0.908+ 0.019 0.969+ 0.004 0.948+ 0.001 0.820+£ 0.014
fexofenadine_mpo 0.725+ 0.003 0.721+ 0.015 0.761+ 0.015 0.695+ 0.003 0.725+ 0.005
gsk3b 0.839+ 0.015 0.629+ 0.044 0.789+ 0.032 0.831+ 0.021 0.671+ 0.032
isomers_c7h8n202 0.485+ 0.045 0.913+ 0.021 0.455+ 0.031 0.465+ 0.018 0.548-+ 0.069
isomers_c9h10n202pf2cl 0.342+ 0.027 0.860+ 0.065 0.241+ 0.064 0.199-+ 0.016 0.458-+ 0.063
jnk3 0.661+ 0.039 0.316+ 0.022 0.630+ 0.034 0.595+ 0.023 0.556+ 0.057
medianl 0.255+ 0.010 0.192+ 0.012 0.218+ 0.008 0.217+ 0.001 0.232+ 0.009
median2 0.248+ 0.008 0.198+ 0.005 0.235+ 0.006 0.212£ 0.000 0.185+£ 0.020
mestranol_similarity 0.526+ 0.032 0.469+ 0.029 0.399+ 0.021 0.437+ 0.007 0.450+ 0.027
osimertinib_mpo 0.796=+ 0.002 0.817+ 0.011 0.796=+ 0.003 0.774+£ 0.002 0.785-+£ 0.004
perindopril_-mpo 0.489+ 0.007 0.447+ 0.013 0.557+ 0.011 0.474+ 0.002 0.462+ 0.008
qed 0.939+ 0.000 0.940+ 0.000 0.941+ 0.000 0.934+ 0.000 0.938-+ 0.000
ranolazine_mpo 0.714+ 0.008 0.699+ 0.026 0.741+ 0.010 0.711+ 0.006 0.632+ 0.054
scaffold_hop 0.533+ 0.012 0.494+ 0.011 0.502+ 0.012 0.515+ 0.005 0.497-+ 0.004
sitagliptin_mpo 0.066+ 0.019 0.363+ 0.057 0.025+ 0.014 0.048=+ 0.008 0.075+£ 0.032
thiothixene_rediscovery 0.438+ 0.008 0.315+ 0.017 0.401+ 0.019 0.375+ 0.004 0.366+ 0.006
troglitazone_rediscovery 0.354+ 0.016 0.263+ 0.024 0.283+ 0.008 0.416+ 0.019 0.279+ 0.019
valsartan_smarts 0.000=+ 0.000 0.000=+ 0.000 0.000=+ 0.000 0.000=£ 0.000 0.000=£ 0.000
zaleplon_mpo 0.206=+ 0.006 0.334+ 0.041 0.341+ 0.011 0.123+ 0.016 0.176£ 0.045
Sum 12.223 12.054 11.498 11.456 10.989
Rank 6 7 8 9 10

shown in Appendix D.1, more combinations of SELFIES
tokens don’t necessarily explore larger chemical space but
might map to a small number of valid molecules that can
be represented by truncated SELFIES strings, which im-
plies that there are still syntax requirements in generating
SELFIES strings to achieve effective exploration.

On the other hand, we observe a clear advantage of
SELFIES-based GA compared to SMILES-based one,
which indicates that SELFIES has an advantage over

SMILES when we need to design the rules to manipulate
the sequence. However, we should note that the comparison
is not head-to-head, as GAs’ performances highly depend
on the mutation and crossover rule design, but not the rep-
resentation. Graph GA’s mutation rules are also encoded
in SMARTS strings and operate on SMILES strings, which
can also be seen as SMILES modification steps. Overall,
when we need to design the generative action manually, the
assembly strategy that could derive desired transformation
more intuitively should be preferred.
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Table 3: The ranking of each methods based on different metrics.

Method ‘ AUC Top-1 ‘ AUC Top-10 ‘ AUC Top-100 ‘ Top-1 ‘ Top-10 ‘ Top-100 ‘ Mean
REINVENT 1 1 1 1 1 1 1
Graph GA 2 2 2 3 2 3 233
SELFIES-REINVENT 3 3 4 4 3 2 3.16
SMILES-LSTM-HC 5 6 7 2 4 4 4.66
GP BO 4 4 5 6 5 5 4.83
STONED 6 5 3 7 7 6 5.66
DoG-GEN 7 9 11 5 6 7 7.5
SMILES GA 9 7 6 10 8 8 8
DST 11 10 9 9 10 9 9.66
SynNet 8 8 8 11 11 14 10
SELFIES-LSTM-HC 13 14 13 8 9 11 11.33
MIMOSA 14 12 10 14 12 10 12
MARS 12 11 12 12 13 13 12.16
MolPAL 10 13 15 13 15 16 13.66
GA+D 23 17 14 15 14 12 15.83
DoG-AE 15 15 17 17 17 17 16.33
GFlowNet 20 16 16 19 16 15 17
SELFIES-VAE 16 18 21 16 18 21 18.33
Screening 17 19 19 18 19 19 18.5
SMILES-VAE 18 20 20 20 20 20 19.66
GFlowNet-AL 22 22 18 23 21 18 20.66
Pasithea 19 21 23 21 22 22 21.33
JT-VAE 21 23 22 22 23 23 22.33
Graph MCTS 24 24 24 24 24 24 24
MolDQN 25 25 25 25 25 25 25
isomers_c9h10n202pf2cl celecoxib_rediscovery
1.0
— 0.8
08 e
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0.6
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Figure 1: The optimization curves of top-10 average on optimizing isomer_c9h10n202pf2cl and celecoxib_rediscovery, as
the representation of isomer-type and similarity-type oracles. Only 8 methods are displayed for clarity and full results are in

Appendix A.

Model-based methods are potentially more efficient but
need careful design. It is widely recognized in the RL
community that model-based optimization methods that ex-
plicitly leverage a predictive model (“world model”) are
more sample efficient than the model-free ones (Wang et al.,
2019). Our results on MolPAL and screening verify the
principle that training a predictive model is beneficial com-
pared to random sampling (see Figure 3). However, the
results of Graph GA (model-based variant: GP BO) and
GFlowNet (model-based variant: GFlowNet-AL) indicate
that simply adding a predictive model might not necessarily
be helpful. GP BO outperformed Graph GA in 12 tasks
among 23, but Graph GA outperformed GP BO in the sum-
mation. GFlowNet outperformed GFlowNet-AL in almost
every task. From the step-wise increment behavior (see

Figure 1) and hyper-parameter tuning of GP BO (Appendix
D.2), we conclude that the performance bottleneck is mainly
the quality of the predictive model. Further, GFlowNet-AL
adopts a relatively naive model-based strategy that may sup-
press exploitation, especially when the model is not well-
trained. Overall, we observe that model-based optimization
algorithms have the potential to be more sample efficient
but require careful design of the inner- and outer-loop opti-
mization algorithms so the model does not lead the search
astray.

Different types of methods are more suitable for differ-
ent kinds of landscapes. As shown from Figure 4 and
Table 2, we find that there are some clear clusters of ora-
cles based on the relative performance of methods. One
clear pattern is that string-based GAs, such as SMILES GA
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SMILES vs. SELFIES
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Figure 2: Comparison between SMILES- and SELFIES-
based methods. Note GA is not a head-to-head comparison.
Each point represents the AUC Top-10 of one task, with
x-axis the SMILES variant and y-axis the SELFIES variant
of the same method. Colors are labeled by the optimization
algorithms. The fractions of the tasks above the parity line
are in parentheses.

and STONED, reach superior relative performance in tasks
involving isomer functions, including isomer_c7h8n202, iso-
mer_c9h10n202pf2cl, sitagliptin_mpo, and zaleplon_mpo.
Isomer-type oracles are summations of atomic contribution,
while all other MPOs are mainly based on similarity mea-
sured by fingerprints, and they generally have closer relative
performance. Among similarity-based oracles, the ones
including logP and TPSA, such as fexofenadine_mpo and
osimertinib_mpo, are clustered together against more naive
similarities such as the rediscovery and median ones. The
machine learning oracles predicting bioactivities belong to
the same cluster of similarity-based oracles. While QED is
too trivial that almost all methods reach very close values,
deco_hop, valsartan_smarts, scaffold_hop that are designed
based on whether a molecule contains a substructure have
varied performance. The results suggest that different types
of landscape are better explored by different kinds of meth-
ods, such as string-based GA on isomer-type oracles. It is
not evident which type of oracle is closest to a “true” phar-
maceutical design objective, which is likely more complex
and challenging to optimize; we leave further investigation
on oracle landscapes and their influence on optimization to
future work.

Hyperparameter reoptimization and multiple runs are
required when reporting results. We also observed that
the optimal set of hyper-parameters is always not the default
ones suggested by a method’s original paper (see Appendix
D.2). For example, REINVENT’s performance is highly
dependent on o; we found the best-performing value to be

Model-free vs. Model-based
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Figure 3: Comparison between model-free and correspond-
ing model-based methods. Each point represents the AUC
Top-10 of one task, with x-axis the model-free variant and
y-axis the model-based variant of the same method. Colors
are labeled by the optimization algorithms. The fractions of
the tasks above the parity line are in parentheses.

much larger than the values suggested in the original paper
(see Figure 16 and 15) (Olivecrona et al., 2017). We con-
clude that this is due to unique demands of our setting of
limited oracle budget, which was not a goal of the original
study, and thus suggest reoptimizing the hyper-parameters
whenever the testing environment is changed. Another chal-
lenge is the non-determinism of most algorithms. For exam-
ple, Graph GA suffers from a relatively large variance due
to its random-walk-like exploration, as does GP BO. If the
oracle were a costly experimental evaluation, we might con-
sider the worst-case performance as an endpoint to reduce
the risk rather than the average performance, highlighting
the importance of running multiple independent runs and
reporting the distribution of outcomes.

4. Conclusions

This paper proposes PMO: a standardized molecular design
benchmark focusing on sample efficiency as a key imped-
iment to experimental adoption. We conduct a thorough
investigation across 25 methods and 23 objectives to deter-
mine the current state-of-the-art, investigate problems, and
draw insights for future studies. Our primary observations
are that (1) methods considered to be strong baselines, like
LSTM HC, may be inefficient in data usage; (2) several
older methods, like REINVENT and Graph GA, outperform
more recent ones; (3) SELFIES does not seem to offer an
immediate benefit in optimization performance compared
to SMILES except in GA; (4) model-based methods have
the potential to be more sample efficient but require care-
ful design of the inner-loop, outer-loop, and the predictive
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tering of oracles based on relative
AUC Top-10. Relative AUC Top-
10 is computed by normalizing AUC
Top-10 values to a range from the
lowest and the highest value within
the task. The zaleplon.mpo and
sitagliptin_mpo are multi-objective
versions of isomer functions (Brown
et al., 2019), while all other MPOs
are based on similarity. Clear pat-
terns emerge between a large clus-
ter of similarity-based oracles, four
isomer-based oracles, and other non-
clustered ones. Different types of
landscape are more suitable for dif-
ferent kinds of methods to explore.
The cluster tree was calculated with
unweighted pair group method with
arithmetic mean (UPGMA) using Eu-
clidean distance.

model; and (5) different optimization algorithms may excel
at different tasks, determined by the landscapes of oracle
functions; which algorithm to select is still dependent on
the use case and the type of tasks.

We acknowledge several limitations of the current study: we
cannot exhaustively explore every method and thoroughly
tune every hyperparameter, our conclusion might be biased
toward similarity-based oracles, and we are not thoroughly
investigating other important quantities such as synthesiz-
ability (Gao & Coley, 2020) and diversity (Huang et al.,
2021). We also emphasize that our experiments consider
the number of oracle calls from scratch, i.e., the data used
to train the surrogate models in model-based methods are
counted in the total budget. If a dataset has been collected
previously, it may be prudent to train a surrogate model
on this information and use a model-based method as illus-
trated by Tripp et al. (Tripp et al., 2021). We will support
the continued development of this benchmark to minimize
the wasted effort caused by non-reproducibility and poor
baselines to boost the field’s growth toward solving practical
molecular design problems.
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osimertinib_mpo
drd2
ranolazine_mpo
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amlodipine_mpo
mestranol_similarity
troglitazone_rediscovery
scaffold_hop

median2
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isomers_c7h8n202
isomers_c9h10n202pf2cl

0.8 1.0

We would like to conclude with recommendations for subse-
quent studies: (1) When comparing baselines, it is important
to run algorithms under the same oracle budgets; (2) For
general-purpose molecular design algorithms, one should
test on multiple types of oracles; (3) Conducting multiple
independent runs and reporting the distribution of outcomes
is critical for non-deterministic methods; (4) Whenever the
tasks and testing environment are changed, hyperparameter
tuning is necessary.

Software and Data

All code, parameters, and releasable data can be found
at https://github.com/wenhao-gao/mol_opt,
including instructions in a README file. All re-
sults generated in this experiment can be found at
https://figshare.com/articles/dataset/
Results_for_practival_molecular_
optimization_PMO_benchmark/20123453.
Appendix B describe the experimental setup, implementa-
tion details, datasets used, and hardware configuration.
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A.2. Optimization Curves

A.3. Synthesizability

We computed the SA_Score of Top-100 molecules from
each run and visualized the values in the Figure 10. Though
SA _Score is not a great metric, we could see that synthesis-
based methods have consistently lower SA_Score in all
tasks.
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Figure 5: The optimization curves of top-10 average on optimizing similarity-based oracles.



Sample Efficiency Matters: A Benchmark for Practical Molecular Optimization

fexofenadine_mpo

0.8

osimertinib_mpo

o
Y
S04
02
0.0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
oracle oracle
07 perindopril_mpo ranolazine_mpo
0.6
0.5
04
o
by
203
02
0.1
00
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
oracle oracle
— Screening — GA+D - SMILES-VAE - MIMOSA SynNet
—— MolPAL —— STONED —— SELFIES-VAE —— DST —— DoG-Gen
Graph GA == Graph MCTS JT-VAE - Pasithea = DoG-AE
— GPBO —— SMILESLSTMHC = MolDQN —— GFlowNet —— REINVENT
—— SMILESGA  —— SELFIES LSTMHC MARS GFlowNet-AL ~ —— SELFIES-REINVENT
Figure 6: The optimization curves of top-10 average on optimizing similarity-based MPO oracles.
A.4. Diversity B. Implementation Details

We computed the diversity of the Top-100 molecules from
each run and visualized the values in the Figure 11. The
diversity is defined as the averaged internal distance within
a batch of molecules, measured by Tanimoto similarity. We
could see a general trend that the stronger a model is in
optimization, the less diverse the results are. The methods
with higher diversity would have an advantage, especially
when the oracles have non-ignorable noise.

In this section, we elaborate the implementation details for
each method. We summarize some shared properties of all
the methods in Table 7.

B.1. Hyperparameter setup

We have “hparams_default.yaml” and “hparams_tune.yaml”
file for each method in their folders, where
“hparams_default.yaml” specify the default setup and
“hparams_tune.yaml” specify several possible choices of
hyperparameter for tuning.

B.2. Shared Setup: dataset

To avoid the bias introduced by different dataset, e.g.,
ZINC, ChemBL, for all the methods, we use ZINC to (i)
train/pretrain the model; (ii) provide initial molecule set and
(iii) extract vocabulary set.

B.3. Shared Setup: Early Stop

We utilize early stop strategies to save computational cost for
iterative learning methods, e.g., BO, HC, GA based methods.
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Figure 8: The optimization curves of top-10 average on optimizing QED.

The default patience is set to 5. That is, when the perfor-
mance does not improve for 5 iteration (generation), we
would terminate the process earlier. The methods that uses
early stop strategy are ChemBO, DoG-AE, DST, Graph-GA,
JTVAE, MIMOSA, RationaleRL, REINVENT, REINVENT-
SELFIES, Screening, SELFIES-LSTM-HC, SELFIES-VAE,
SMILES-LSTM-HC, SMILES-GA, SMILES-VAE.

B.4. Shared Setup: Bayesian optimization for all VAEs

We unify the implementation of Bayesian optimization
for all VAE based methods for fair comparison, including
JTVAE, SEIFIES-VAE, SMILES-VAE, DoG-AE. Specifi-
cally, it is implemented by the python package “botorch”.
Bayesian optimization usually leverages non-parametric
model, the model size will increase as more training data
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Figure 9: The optimization curves of top-10 average on optimizing SMARTS-based oracles and machine learning oracle.

come in. Worth to mention that due to the non-parametric
essence, Bayesian optimization methods scales poorly with
the data size, the run process is notoriously and intolerably
slow even dealing 1k training data, so we choose to termi-
nate the process earlier. For all the VAE+BO methods, we
pretrain the VAE model, provided the pretrained model so
that users can start from BO process.

B.5. Shared Setup: Pretraining

Pretraining strategy has demonstrated its effectiveness in
enhancing the optimization in many approaches, including

VAE and HC methods. We pretrain the models on ZINC
database, and the pretrained models are available in our
repository. Worth to mention that the pretraining process
does not require oracle calls.

B.6. Shared Setup: PyTorch based

We want to build a unified software environment to standard-
ize the molecule optimization process and all the methods
uses PyTorch to build neural network models.
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Figure 10: The heat map of SA_Score (the lower the better) calculated from the Top-100 molecules from each method,
averaged from all runs.
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Figure 11: The heat map of diversity (the higher the better) calculated from the Top-100 molecules from each method,
averaged from all runs.

B.7. Action space

There are several types of state-action space: (1) auto-
regressive (AR): growing the molecule via adding a building
bloack each step, conditioned on the partially generated one,
e.g, RL method; (2) one-hot: constructing or modifying

manipulation

the molecule as a whole, e.g., VAE based method, gradient
ascent method (DST, Pasithea); (3) cross: maintain a popu-
lation of molecules and exchange the structural information
between molecules. This kind of action space is only used
by GA based methods. The action space for all methods are
available in Table 7.
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B.8. Screening

Screening searches over the molecule database (ZINC in this
paper) sequentially via randomly selecting the molecules
and evaluating their properties. It does not involve learning
process.

B.9. MolPAL

MolPal (Graff et al., 2021) is a machine learning enhanced
version of screening (Section B.8). Specifically, it train a
machine learning model to predict the molecular property
and prioritize the molecule with higher predicted scores in
ZINC to replace the random search in screening. Concretely,
it firstly trains a molecular property predictor, which is a
two-layer message-passing neural network, the hidden di-
mension is 300, activation function is ReLU. When training
the message passing network, the initial training size is set
to 500. Then during screening process, it updates the mes-
sage passing network in online manner with batch size 100.
It uses an Adam optimizer with an initial learning rate of
le-4.

B.10. SMILES-VAE

SMILES-VAE (Gémez-Bombarelli et al., 2018) first trains
string based VAE model on ZINC database. Both the en-
coder and decoder use single-directional GRU as neural
architecture. For encoder GRU, the hidden dimension is
256, number of layers is 1, dropout rate is set to 0.5. The
VAE latent variable’s dimension is 128. The decoder GRU
has three layers, dropout rate is 0, hidden dimension is 512.
Optimizer is Adam with initial learning rate 3e-4. Gradient
is clipped to 50 during training. The batch size is 512. The
training and validation data is all the molecules in ZINC
database. After training the VAE, it uses Bayesian optimiza-
tion (BO) to explore the continuous latent variable space, the
BO setup has been described in Section B.4. The pretrained
SMILES-VAE model is available in the repository.

B.11. SELFIES-VAE

It shares the same setup (neural architecture and learn-
ing process) with SMILES-VAE (G6émez-Bombarelli et al.,
2018) (Section B.10), except the vocabulary.

B.12. DST

Differentiable Scaffolding Tree (DST) (Fu et al., 2022) uti-
lize graph convolutional network (GCN) as property predic-
tor. In GCN, the number of layer is 3, the hidden dimension
and input embedding dimension are both 100. ReLU is used
as activation function in hidden layers. DST leverages GA-
like process, generate offspring based on a population of
molecule candidates in each iteration, and select the promis-
ing ones from the offspring set and save them in the popula-

tion for the next iteration. In each iteration, the population
size is set to 50. When generating the offspring pool, it used
determinant point process (DPP) to enhance the diversity
of the population, where A controls the weight of diversity
compared with fitness. It is set to 2. The pool size is set
to 500, which means in each iteration, we generate at most
500 offspring. € = 0.7 controls the probability threshold
to add a substructure from the current now. £ = 5 repre-
sent the maximal number of substructures that are sampled
from a single branch during expansion. The substructure
can be either a single ring or an atom. The vocabulary set
contains 82 most frequent substructures in ZINC databases,
whose frequencies are greater than 1,000. In the inner loop,
when optimize DST for each single molecule, we use Adam
optimizer with initial learning rate le-3 and the maximal it-
eration number is set to SK, with early stop strategy. During
the optimization process, we use the new labelled molecules
to update the GCN in online manner.

B.13. Pasithea

Pasithea (Shen et al., 2021) is also a gradient ascent method
like DST and utilize SELFIES as representation. It differ-
entiate the molecule and back-propagate the gradient of the
neural network to update the molecule iteratively. It uses
four layer multiple layer perceptron (MLP) as neural model
with ReLLU function as activation to provide nonlinearity.
SELFIES strings are converted into multi-hot vector as the
input of the MLP. The hidden dimensions are all set to 500.
The output layer is to predict the property, so the output-
layer dimension is 1. It first use 800 molecules to train the
neural network as predictor and then online update it during
the optimization process. The training epoch is set to 5, the
optimizer is Adam with initial learning rate le-3. During in-
ference, i.e., updating differentiable molecule, Pasithea uses
Adam as optimizer with initial learning rate 5e-3, epoch
number is 50.

B.14. MoIDQN

Molecule Deep Q-Network (MolDQN) (Zhou et al., 2019)
formulates molecule optimization as a Markov Decision
Process. In each step of a single episode, it add an atom
from vocabulary (C, N, O) to any eligible position of the cur-
rent molecular graph and choose one molecule with highest
estimated Q-value for the next step. Q-value is the esti-
mated by deep Q-network. The maximal number of steps
in each episode is 40. Each step calls oracle once. The
discount factor is 0.9. € controls the weight of exploration
and exploitation, we tune the € to make it more exploration
at the beginning of learning process and more exploitation
at the end (i.e., use up oracle calls). Deep Q-network is a
multilayer perceptron (MLP) whose hidden dimensions are
1024, 512, 128, 32, respectively, the output dimension is 1.
The input of the Q-network is a 1025-dimensional vector,
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which is the concatenation of the molecule feature (1024-bit
Morgan fingerprint, with a radius of 2) and the number of
left steps. Adam is used as an optimizer with le-4 as the
initial learning rate. Only rings with a size of 5 and 6 are
allowed.

B.15. MIMOSA

Multi-constraint Molecule Sampling (MIMOSA) (Fu et al.,
2021) reformulate molecule optimization as a MCMC sam-
pling problem and the property oracles are encoded in the
target distribution. We use Adam optimizer with a learn-
ing rate of 0.001. In pretraining phase, MIMOSA to set
GNNs with 5 layers and 300-dimensional hidden units. MI-
MOSA randomly masks a single node (a substructure) for
each molecule and predict its substructure category based on
other feature. The substructure can be either a single ring or
an atom. The vocabulary set contains 82 most frequent sub-
structures in ZINC databases, whose frequencies are greater
than 1,000, same as DST (Section B.12). Then during infer-
ence phase, in each iteration, it samples new molecules via
masking one random-selected node (i.e., substructure), and
use GNN to predict the substructure’s categorical distribu-
tion, and flip the node to a new substructures with highest
probability. It samples at most 500 molecules and online
updates the GNN using the top-300 scored molecules.

B.16. MARS

Markov Molecular Sampling (MARS) (Xie et al., 2021) is
based on MCMC sampling. It uses a graph neural network to
imitate the MCMC proposal distribution. The GNN is three
layer, the dimension of node embedding is 64, the dimension
of edge embedding is 128. It uses simulated annealing to
sampling and adaptive proposal (online updated) from the
target distribution. It collects 1000 frequent fragments as
vocabulary. The batch size is set to 128 during training.

B.17. GFlowNet

Generative Flow Network (GFlowNet) is a MCMC sam-
pling method (Bengio et al., 2021b). It predefine 72 basic
building blocks as vocabulary set, which are selected from
ZINC database. It uses message passing neural network
(MPNN) to estimate the flow and takes the atom graph as
the input feature. The hidden state dimension and embed-
ding dimension are both set to 256. The number of layer is
set to 3. LeadyReL U is used as activation function. e is set
to 2e-8, which is defined in Equation 12 in original paper
and is used to avoid taking the logarithm of a tiny number.
It uses Adam as optimizer with initial learning rate 5e-4,
where $1 = 0.9, B2 = 0.999. The batch size is set to 4.

B.18. GFlowNet-AL

GFlowNet-AL is a model-based version of GFlowNet that
uses predictive model to enhance GFlowNet. GFlowNet-AL
share the same setup (neural architecture, learning process)
with GFlowNet.

B.19. JTVAE

Junction Tree VAE (JTVAE) (Jin et al., 2018) represent the
molecule graph into junction tree, which is cycle-free and
easier to generation. JTVAE leverage design message pass-
ing network as encoder and tree RNN as decoder. Encoder
represent both molecular graph and junction tree into la-
tent variable, decoder first generate junction tree and then
reconstruct molecular graph conditioned on the junction
tree. The hidden size of message passing network and tree
RNN is 450. The dimension of latent variable is 56, where
the dimensions of latent variable for both molecular graph
and junction tree are 28. The depth of junction tree level
message passing network is 20 and the depth of molecular
graph-level message passing network is 3. After training
the VAE, it uses Bayesian optimization (BO) to explore the
continuous latent variable space, the BO setup has been
described in Section B.4. The original implementation was
based on Python 2, we adapt it to Python 3. Also, we re-
implement BO process using BoTorch (Section B.4).

B.20. GP BO

Gaussian Process BO (GP BO) (Tripp et al., 2021) utilizes
Gaussian process as the surrogate model and optimize the
acquisition function with Graph GA methods internally. We
treat it as a model-based version of Graph GA, where we
adopt 2-radius 2048 bit molecular fingerprint as molecu-
lar feature. In GA, the initial population size is 340; the
maximal BO iteration is 10000; BO’s batch size is 1180;
maximal generations is 60; Size of offspring set is 150; the
mutation rate is 0.01; population size is 820. We adopt the
implementation from the original paper (Tripp et al., 2021).

B.21. DoG-AE

The autoencoder version of DAGs of molecular graphs
(DoG) (Bradshaw et al., 2020) uses autoencoder (AE) to
learn the distribution of synthesizable molecules. The di-
mension of latent variable of autoencoder is 25, for the
molecular graph embedder (encoder), the hidden layer size
is 80, embedding dimension is 50, number of layer is 4. for
DAG embedder, the hidden layer size is 50, number of layer
is 7. Decoder is a GRU, whose input size is 50, hidden
size 200, num of layers is 3, dropout rate is 0.1. Bayesian
optimization is utilized to optimize the continuous latent
space. DoG is a basic generator that constructs synthesiz-
able molecules from building blocks via virtual chemical
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reactions.

B.22. DoG-Gen

DoG-Gen is the hill climbing' version of DoG (Bradshaw
et al., 2020). In each iteration, it samples 3,000 molecules
and keep 1,000 ones with the best fitness scores for the next
iterations. It uses the Molecular Transformer (Schwaller
et al., 2019) as a black box oracle for reaction prediction.
The molecular transformer is pretrained on USPTO dataset.
It uses gated graph neural network (GGNN) (Li et al., 2015)
to learn molecular embedding and GRU to generate the
molecule.

B.23. SynNet

SynNet (Gao et al., 2022) use GA to manipulate binary
molecular fingerprint. It uses MLP as the neural architec-
ture and molecular fingerprint as the input feature of the
neural network. It uses 2-radius 4096 bit fingerprint as the
input of MLP. During GA-process, the population size is
128, offspring size is 512. mutation probability is set to 0.5.
For each element, the number of mutation is set to 24. Syn-
Net consists of four modules, each containing a multi-layer
perceptron (MLP), (1.) An Action Type selection neural
network that classifies action types among the four possible
actions (“Add”, “Expand”, “Merge”, and “End”) in build-
ing the synthetic tree. The input dimension is 3%4096, the
hidden dimension is set to 500, output dimension is 4. (2).
A First Reactant selection neural network that predicts an
embedding for the first reactant. A candidate molecule is
identified for the first reactant through a k-nearest neighbors
(k-NN) search from the list of potential building blocks. The
input dimension is 3*4096, the hidden dimension is set to
1,200, output dimension is 1. (3). A Reaction selection
neural network whose output is a probability distribution
over available reaction templates, from which inapplicable
reactions are masked (based on reactant 1) and a suitable
template is then sampled using a greedy search. The in-
put dimension is 4*4096, the hidden dimension is set to
3000, output dimension is 91. (4). A Second Reactant se-
lection neural network that identifies the second reactant if
the sampled template is bi-molecular. The model predicts
an embedding for the second reactant, and a candidate is
then sampled via a k-NN search from the masked set of
building blocks. The input dimension is 4*4096+491, the
hidden dimension is set to 3000, output dimension is 1. All
the 4 MLP has 5 layers. Adam optimizer is used with initial
learning rate le-4.

'Section 2.3

B.24. REINVENT

REINVENT (Olivecrona et al., 2017) is the top-1 method
as shown in Table 2. REINVENT uses SMILES string
as representation and recurrent neural network (RNN) as
neural model, which contains multiple GRU cells. The
embedding dimension of input token is set to 128, the hidden
dimensions of all GRU are set to 512. In REINVENT, the
whole objective contains (i) prior likelihood to encourage
the generated SMILES to be close to training SMILES string
and (ii) a reward function for optimization. The ¢ control
the importance of reward function in the whole objective and
plays a critical role in optimization performance, as shown
in Figure 15 and 16 (o is sigma). After intensive tuning,
o 1is set to 500. It is even not found by the original paper,
where o is set to 60. Based on our empirical studies, the
selection of o is vital to the optimization performance. Also,
the batch size during the training is set to 64. Adam is used
as optimizer with initial learning rate 5e-4. REINVENT
is pretrained on ZINC data, the pretrained model is used
in two ways: (1) provide a warm start and are finetuned
during optimization; (2) evaluate the prior likelihood of
the generated SMILES string to measure their SMILES
likeness.

B.25. SELFIES-REINVENT

It uses SELFIES string as molecular representation and
shares the same setup (neural architecture, learning process)
with REINVENT (Olivecrona et al., 2017) (Section B.24),
except the vocabulary.

B.26. SMILES-LSTM Hill Climbing (SMILES-LSTM
HC)

SMILES-LSTM Hill Climbing (Brown et al., 2019) uses
three-layer LSTM as neural model, the hidden size is 512.
It pretrains the LSTM using ZINC data. It use Adam as
optimizer with initial learning rate le-3. During hill climb-
ing, the population size is 100; the epoch is set to 10; batch
size is 256; each epoch sample 1024 molecule and keep the
best 512 molecules (highest scores) for the next epoch. The
maximal length of SMILES is 100.

B.27. SELFIES-LSTM Hill Climbing (SELFIES-LSTM
HC)

It uses SELFIES string to represent molecule and shares
the same setup (neural architecture, learning process) with
SMILES-LSTM Hill Climbing (Brown et al., 2019) (Sec-
tion B.26), except the vocabulary.

B.28. GA+D (SELFIES-GA)

Genetic Algorithm with Discriminator (GA+D) (Nigam
et al., 2020) utilizes SELFIES string to represent molecule
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and apply genetic algorithm. It is enhanced by a discrim-
inator neural network. The discriminator neural network
is a fully connected neural network with ReLLU activation
and sigmoid output layer. the number of molecules in the
generation (i.e., population) is 300. The patience value is
set to 5. beta (3) is the weight of discriminator neural net-
work’s score in fitness evaluation, which is used to select
most promising molecules in each generation. After empir-
ical studies, we do not find 3 has positive contribution to
the performance. Thus, the default value is set to 0. The
maximal generation number is 1000.

B.29. STONED

Superfast Traversal, Optimization, Novelty, Exploration and
Discovery (STONED) (Nigam et al., 2021) implements ge-
netic algorithm (only mutation operator, without crossover)
on SELFIES string. After tuning, we find when the genera-
tion size is set to 500, STONED reached best optimization
performance. Like other genetic algorithm, it does not need
any learnable parameter, is super-fast and easy to imple-
ment.

B.30. SMILES-GA

SMILES-GA (Brown et al., 2019) manipulates SMILES
string with only mutation operation. The crossover opera-
tion is not conducted because it would lead to poor chemical
validity. The population size is set to 100. In each gener-
ation, the number of mutated molecule is set to 300. The
maximal length of SMILES string is set to 200. Muta-
tion randomly flips a randomly-selected bit in the current
SMILES string. The initial population is randomly selected
from ZINC. It uses early stop strategy and the patience is
setto 5.

B.31. Graph-GA

Graph-GA (Jensen, 2019) manipulates molecular graph with
crossover and mutation operators successively. The popu-
lation size is set to 120. offspring size is set to 70. The
mutation rate is set to 0.067. That is, the new child molecule
will be mutated with probability 6.7%. The mutation opera-
tions includes (1) insert an atom; (2) change bond’s order;
(3) delete cyclic bond; (4) add ring; (5) delete an atom; (6)
change an atom and (7) append an atom.

B.32. Graph-MCTS

Graph level Monte Carlo Tree Search (Graph-
MCTS) (Jensen, 2019) manipulate molecular graph
using MCTS. Like GA algorithms, it does not involve
any learnable parameters. It start from Ethane, whole
SMILES string is “CC”. During the searching process, it
constrains the maximal number of atoms to 60. For each

state (molecular graph), the maximal number of children is
5. The root node simulates 22 times. Exploration coefficient
balances the weight of exploitation and exploration and is
set to 4.3. Larger exploration coefficient indicates more
exploration instead of exploitation.

B.33. Methods Not Included

In this section, we describe some other methods that are
representative but not included in our benchmark. We also
analyze the reasons. These methods contain Bayesian Op-
timization over String Space (BOSS) (Moss et al., 2020),
synthesis-based Bayesian optimization (ChemBO) (Korov-
ina et al., 2020), Objective-Reinforced Generative Adversar-
ial Network (ORGAN) (Guimaraes et al., 2017), Generative
Adversarial Network (MolGAN) (De Cao & Kipf, 2018),
rationaleRL (Jin et al., 2020). BO based methods (BOSS
and ChemBO) are non-parametric methods and use the com-
bination of training data to approximate the landscape. The
evaluation of the approximate function relies on the number
of training data and the evaluation of kernel function relies
on the data’s dimension. The optimization process requires
intensive evaluation of both approximate function and kernel
function, thus BO scales poorly with both data dimension
and number and is computationally prohibitive (Snoek et al.,
2012). In our experiment, BOSS and ChemBO are only
available to generate less than 200 molecules and stop early,
which is not comparable with other methods in our bench-
mark. Thus we decided not to incorporate them. ORGAN
uses SMILES as molecular representation and the gener-
ated molecules has lower validity (<1%). MolGAN does
not achieve comparable optimization performance. Ratio-
naleRL requires extracting property-aware rationale as the
basic building block, the process relies on Monte Carlo Tree
Search and requires intensive oracle calls (more than 10K).
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C. Configuration
C.1. Software

We build a unifying conda environment for most of the
methods, which relies on the following python packages.

* Python. We use Python 3.7.

¢ PyTorch is used to build neural network. We recom-
mend to install PyTorch 1.10.2.

e PyTDC (Therapeutic Data Commons) (Huang et al.,
2021). TDC provides dataloader for ZINC, evalua-
tor (diversity, novelty, etc) and oracle scoring (all the
oracles in this paper).

* RDKit is an open-Source cheminformatics software
and is used for molecule manipulation. We use RDKit
2020.09.1.0. It can be installed using conda via “conda
install -c rdkit rdkit ”.

» wandb is used to record the learning process. It can be
installed using pip. And users need to register a wandb
account. It also supports automatic hyperparameter
tuning and visualize the results in an intuitive manner.

e YaML is used to setup configuration file. It can be
installed using pip. We have “hparams_default.yaml”
and “hparams_tune.yaml” file.

« selfies (optional) is only used for SELFIES related
methods. It can be installed using pip.

* BoTorch (optional) is a library for Bayesian Optimiza-
tion built on PyTorch and is only used for BO related
methods. It can be installed using pip.

Individual conda environment. The following methods
need an individual conda environment.

¢ ChemBO require install our modified dragonfly pack-
age and TensorFlow. The modified dragonfly is already
in our repository.

¢ DoG-AE and DoG-Gen required installing two
individual conda environment following their
original instruction in https://github.com/
john-bradshaw/synthesis—dags.

C.2. Hardware

We use (i) Intel Xeon E5-2690 machine with 256G RAM
and 8 NVIDIA Pascal Titan X GPUs and (ii) Most of the NN
based methods require GPU to acclerate learning process.

C.3. License

Our package uses the MIT license. We use ZINC database
for all the methods, ZINC is free to use for everyone (Ster-
ling & Irwin, 2015). All the 25 methods’ implementation
are publicly available at GitHub.

C.4. Run with one-line code

All the methods can be run in one line of code after the setup
of conda environment. We provide the pretrained model (if
needed) and other necessary data/configuration files.

cd mol_opt
python run.py graph_ga

python run.py dst —--task production \
--n_runs 5 —--oracles ged jnk3 drd2

python run.py graph_ga —--task tune \
——n_runs 30 —--smi_file ./data/zinc.txt \

——wandb offline —--max_oracle_calls 10000 \

——-patience 5
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D. Additional Results
D.1. SELFIES strings collapse

Though most SELFIES strings represent valid molecules,
replacing SMILES with SELFIES doesn’t necessarily lead
to an immediate advantage in molecular optimization. One
reason is that different combinations of SELFIES strings
could collapse to a single truncated SELFIES strings and
don’t provide an additional exploration of chemical space.
See Figure 12, 13, and 14 for examples. These SELFIES
strings were constructed with tokens from the vocabulary
of ZINC 250k and converted to SMILES strings using the
decoder provided in the official Github repository.

D.2. Hyper-parameter Tuning

Most algorithms are sensitive to the choice of hyper-
parameters. We tried to tune most algorithms within a rea-
sonably large hyper-parameter space and visualize some of
the results here to show how hyper-parameters affect the per-
formance. For each algorithm, the endpoint is a summation
of AUC Top-10 of zaleplon_mpo (an isomer-based oracle)
and perindopril_mpo (a similarity-based oracle), averaged
from 3 runs for each task. We tuned and visualized them
with the wandb (Biewald, 2020). The oracles are chosen to
discriminate most algorithms and be representative based
on preliminary results.
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SEFLIES: [NH1][=Ringl] [#C] [#N] [C] [#C] [=0] [#C] [Branch2] [Branchl] [C] [=0] [#C] [C]
SMILES: [NH]

NH:

Figure 12: An example of SELFIES string that is valid but doesn’t provide meaningful exploration of chemical space.

SEFLIES: [=0][=Ring2] [=N] [NH1] [=Branchl] [C] [=C][0] [=C] [-\Ring1] [C] [#C] [#C] [=C]
SMILES: O

H,O

Figure 13: An example of SELFIES string that is valid but doesn’t provide meaningful exploration of chemical space.

D.3. Additional Tables
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SEFLIES: [#C][=0][=C] [-/Ring2] [#C] [C] [=C] [#N] [=Branch2] [#C] [N] [#C] [=0] [=Ring1]
SMILES: C=0

)

Figure 14: An example of SELFIES string that is valid but doesn’t provide meaningful exploration of chemical space.
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Figure 15: The hyper-parameter tuning result of REINVENT (part 1). We can see that sigma (o) has large impact on
optimization performance, and the optimal value is much larger than the default setting in the original paper (Olivecrona
et al., 2017).
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Figure 16: The hyper-parameter tuning result of REINVENT (part 2).
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Table 4: We report the mean and standard deviation of AUC Top-10 from 5 independent runs. We ranked the methods by the
summation of mean AUC Top-10 of all tasks. (Continued)

Method REINVENT Graph GA REINVENT SELFIES GP BO STONED
Assembly SMILES Fragments SELFIES Fragments SELFIES
albuterol_similarity 0.882+0.006 0.838+0.016 0.826£0.030 0.898+0.014 0.745+0.076
amlodipine_mpo 0.635+0.035 0.661-0.020 0.607+£0.014 0.583+0.044 0.608+0.046
celecoxib_rediscovery 0.713+0.067 0.630+0.097 0.573+0.043 0.723+0.053 0.3824+0.041
deco_hop 0.666£0.044 0.619+0.004 0.631£0.012 0.629+0.018 0.611+0.008
drd2 0.945+0.007 0.964£0.012 0.943+£0.005 0.9231+0.017 0.913+0.020
fexofenadine_mpo 0.784+£0.006 0.760£0.011 0.741£0.002 0.72240.005 0.797+0.016
gsk3b 0.865+0.043 0.788+0.070 0.780+£0.037 0.85110.041 0.668+0.049
isomers_c7h8n202 0.852+0.036 0.862+0.065 0.849+0.034 0.680+0.117 0.899+0.011
isomers_c9h10n202pf2cl 0.642+0.054 0.719+0.047 0.733£0.029 0.469+0.180 0.805+0.031
jnk3 0.783£0.023 0.553+0.136 0.631£0.064 0.56410.155 0.523+0.092
medianl 0.356£0.009 0.294+0.021 0.355+0.011 0.301+0.014 0.266+0.016
median2 0.276+£0.008 0.273+0.009 0.255+0.005 0.297+0.009 0.2454+0.032
mestranol_similarity 0.618+0.048 0.579+0.022 0.620+0.029 0.62740.089 0.609+0.101
osimertinib_mpo 0.837+£0.009 0.831£0.005 0.820£0.003 0.787+0.006 0.8224+0.012
perindopril_mpo 0.537+£0.016 0.5380.009 0.517+£0.021 0.4931+0.011 0.488+0.011
qed 0.941£0.000 0.940£0.000 0.940£0.000 0.93740.000 0.941+0.000
ranolazine_mpo 0.760+£0.009 0.728+0.012 0.748+0.018 0.7354+0.013 0.765+0.029
scaffold_hop 0.560+0.019 0.517+0.007 0.525+0.013 0.548+0.019 0.521+0.034
sitagliptin_mpo 0.021£0.003 0.433£0.075 0.194+£0.121 0.186+0.055 0.393+0.083
thiothixene_rediscovery 0.534+0.013 0.479+0.025 0.495+0.040 0.559+0.027 0.367+0.027
troglitazone_rediscovery 0.441+0.032 0.390+0.016 0.348+0.012 0.410+0.015 0.320+0.018
valsartan_smarts 0.179+0.358 0.000+£0.000 0.000+£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.358+£0.062 0.346£0.032 0.333£0.026 0.2214+0.072 0.3254+0.027
Sum 14.196 13.751 13.471 13.156 13.024
Rank 1 2 3 4 5
Method LSTM HC SMILES GA SynNet DoG-Gen DST
Assembly SMILES SMILES Synthesis Synthesis Fragments
albuterol_similarity 0.719+£0.018 0.661£0.066 0.584+0.039 0.676+0.013 0.619+0.020
amlodipine_mpo 0.593+0.016 0.549+0.009 0.565+£0.007 0.536+0.003 0.516+0.007
celecoxib_rediscovery 0.539+0.018 0.344+0.027 0.441£0.027 0.46410.009 0.380+0.006
deco_hop 0.826£0.017 0.611£0.006 0.613£0.009 0.80010.007 0.608+0.008
drd2 0.919+0.015 0.908+0.019 0.969-+0.004 0.948+0.001 0.820+0.014
fexofenadine_mpo 0.725+0.003 0.721+£0.015 0.761£0.015 0.695+0.003 0.725+0.005
gsk3b 0.839+0.015 0.629+0.044 0.789+0.032 0.8311+0.021 0.671+0.032
isomers_c7h8n202 0.485+0.045 0.913+0.021 0.455+0.031 0.465+0.018 0.548+0.069
isomers_cOh10n202pf2cl 0.342+0.027 0.860-£0.065 0.241£0.064 0.199+0.016 0.458+0.063
jnk3 0.661£0.039 0.316£0.022 0.630£0.034 0.595+0.023 0.556+0.057
medianl 0.255+0.010 0.192+0.012 0.218+0.008 0.21740.001 0.2324+0.009
median2 0.248+0.008 0.198+0.005 0.235+0.006 0.21240.000 0.185+0.020
mestranol_similarity 0.526+0.032 0.469+0.029 0.399+0.021 0.43710.007 0.450£0.027
osimertinib_mpo 0.796£0.002 0.817+0.011 0.7960.003 0.77440.002 0.785+0.004
perindopril_-mpo 0.489-£0.007 0.447+£0.013 0.557+£0.011 0.47410.002 0.462+0.008
qed 0.939+0.000 0.940£0.000 0.941-£0.000 0.9344-0.000 0.938+0.000
ranolazine_mpo 0.714+0.008 0.699+0.026 0.741£0.010 0.71140.006 0.632+0.054
scaffold_hop 0.533+0.012 0.494+0.011 0.502+0.012 0.51510.005 0.497+0.004
sitagliptin_mpo 0.066£0.019 0.363£0.057 0.025+0.014 0.048+0.008 0.075+0.032
thiothixene_rediscovery 0.438-£0.008 0.315+0.017 0.401£0.019 0.37510.004 0.366+0.006
troglitazone_rediscovery 0.354+0.016 0.263+0.024 0.283+£0.008 0.416+0.019 0.279+0.019
valsartan_smarts 0.000£0.000 0.000+£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.206+0.006 0.334+0.041 0.341£0.011 0.1231+0.016 0.176+0.045
Sum 12.223 12.054 11.498 11.456 10.989

Rank 6 7 8 9 10
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Table 5: (Continued)

Method MARS MIMOSA MolPal LSTM HC SELFIES DoG-AE
Assembly Fragments Fragments - SELFIES Synthesis
albuterol_similarity 0.59740.124 0.618+0.017 0.6094-0.002 0.664+0.030 0.533£0.034
amlodipine_mpo 0.504+0.016 0.543+0.003 0.582+0.008 0.5324+0.004 0.507+0.005
celecoxib_rediscovery 0.379+0.060 0.393+0.010 0.415+0.001 0.3854-0.008 0.355+0.012
deco_hop 0.58940.003 0.61940.003 0.64340.005 0.590-£0.001 0.765+0.055
drd2 0.89140.020 0.79940.017 0.78340.009 0.729+0.034 0.943-£0.009
fexofenadine_mpo 0.711£0.006 0.706£0.011 0.6850.000 0.693+0.004 0.679+0.017
gsk3b 0.552+0.037 0.554+0.042 0.555+0.011 0.4234+0.018 0.601+0.091
isomers_c7h8n202 0.728+0.027 0.56440.046 0.4844-0.006 0.587+0.031 0.239+£0.077
isomers_c9h10n202pf2cl 0.58140.013 0.30340.046 0.16440.003 0.352+0.019 0.049+£0.015
jnk3 0.48940.095 0.36040.063 0.33940.009 0.207+0.013 0.469+0.138
medianl 0.207+0.011 0.243+0.005 0.249+0.001 0.23940.009 0.171+0.009
median2 0.181+0.011 0.214+0.002 0.230+£0.000 0.20540.005 0.182+0.006
mestranol_similarity 0.388+0.026 0.43840.015 0.56440.004 0.446£0.009 0.370£0.014
osimertinib_-mpo 0.77740.006 0.788+0.014 0.77940.000 0.780+0.005 0.750£0.012
perindopril_-mpo 0.46240.006 0.49040.011 0.46740.002 0.448+0.006 0.432£0.013
qed 0.930+0.003 0.939+£0.000 0.940£0.000 0.938+0.000 0.926+0.003
ranolazine_mpo 0.740+0.010 0.640+0.015 0.457+0.005 0.6144+0.010 0.689+0.015
scaffold_hop 0.46940.004 0.50740.015 0.4944-0.000 0.4724£0.002 0.489+0.010
sitagliptin_mpo 0.01640.003 0.10240.023 0.04340.001 0.116£0.012 0.009+£0.005
thiothixene_rediscovery 0.34440.022 0.34740.018 0.3394-0.001 0.339£0.009 0.314£0.015
troglitazone_rediscovery 0.256+0.016 0.299+0.009 0.268-+0.000 0.25740.002 0.259+0.016
valsartan_smarts 0.00040.000 0.00040.000 0.00040.000 0.000£0.000 0.000=£0.000
zaleplon_mpo 0.18740.046 0.17240.036 0.16840.003 0.218+0.020 0.049+£0.027
Sum 10.989 10.651 10.268 10.246 9.790
Rank 11 12 13 14 15
Method GFlowNet GA+D VAE BO SELFIES Screening VAE BO SMILES
Assembly Fragments ‘ SELFIES SELFIES - SMILES
albuterol_similarity 0.44740.012 0.49540.025 0.4944-0.012 0.483£0.006 0.489+0.007
amlodipine_mpo 0.444+0.004 0.400£0.032 0.516£0.005 0.53540.001 0.533+0.009
celecoxib_rediscovery 0.327+0.004 0.2234+0.025 0.326+0.007 0.35140.005 0.35440.002
deco_hop 0.58340.002 0.55040.005 0.57940.001 0.590-£0.001 0.589-£0.001
drd2 0.59040.070 0.38240.205 0.56940.039 0.545+0.015 0.555+0.043
fexofenadine_mpo 0.69340.006 0.58740.007 0.6704-0.004 0.666+£0.004 0.671£0.003
gsk3b 0.651+0.026 0.342+0.019 0.350+£0.034 0.438+0.034 0.386+0.006
isomers_c7h8n202 0.36640.043 0.85440.015 0.32540.028 0.168+£0.034 0.161£0.017
isomers_c9h10n202pf2cl 0.11040.031 0.65740.020 0.20040.030 0.106£0.021 0.084£0.009
jnk3 0.44040.022 0.21940.021 0.20840.022 0.238+£0.024 0.241£0.026
medianl 0.202+£0.004 0.180£0.009 0.201£0.003 0.20540.005 0.202+0.006
median2 0.180+£0.000 0.121+0.005 0.185+0.001 0.200+0.004 0.195+0.001
mestranol_similarity 0.322+0.007 0.371£0.016 0.386£0.009 0.409+0.019 0.399+0.005
osimertinib_-mpo 0.78440.001 0.67240.027 0.76540.002 0.764+£0.001 0.771£0.002
perindopril_-mpo 0.43040.010 0.17240.088 0.4294-0.003 0.445+0.004 0.442+0.004
qed 0.921+0.004 0.860+£0.014 0.936£0.001 0.938+0.000 0.938+0.000
ranolazine_mpo 0.652+0.002 0.555+0.015 0.452+0.025 0.4114+0.010 0.457+0.012
scaffold_hop 0.46340.002 0.41340.009 0.45540.004 0.471£0.002 0.470=£0.003
sitagliptin_mpo 0.008+0.003 0.28140.022 0.08440.015 0.022+0.003 0.023£0.004
thiothixene_rediscovery 0.28540.012 0.22340.029 0.29740.004 0.3174£0.003 0.317+£0.007
troglitazone_rediscovery 0.188+0.001 0.152+0.013 0.243+0.004 0.249+0.003 0.257+0.003
valsartan_smarts 0.000£0.000 0.000-£0.000 0.002+0.003 0.000+0.000 0.002+0.004
zaleplon_mpo 0.03540.030 0.24440.015 0.20640.015 0.072£0.014 0.039+£0.012
Sum 9.131 8.964 8.887 8.635 8.587
Rank 16 17 18 19 20
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Table 6: (Continued)

Method Pasithea GFlowNet-AL JT-VAE BO Graph MCTS MolDQN
Assembly SELFIES Fragments Fragments Atoms Atoms
albuterol_similarity 0.447+0.007 0.390+0.008 0.485+0.029 0.580+£0.023 0.320+0.015
amlodipine_mpo 0.504£0.003 0.428+0.002 0.519+£0.009 0.447£0.008 0.311+0.008
celecoxib_rediscovery 0.3124+0.007 0.2574+0.003 0.299+0.009 0.264+0.013 0.0994-0.005
deco_hop 0.579+0.001 0.583+0.001 0.585+0.002 0.554+0.002 0.54640.001
drd2 0.255+0.040 0.468+£0.046 0.506£0.136 0.300£0.050 0.025+0.001
fexofenadine_mpo 0.660+0.015 0.688+0.002 0.667+0.010 0.574+£0.009 0.478+0.012
gsk3b 0.281+0.038 0.588+0.015 0.350+0.051 0.281+0.022 0.2414-0.008
isomers_c7h8n202 0.673+0.030 0.24140.055 0.103+0.016 0.530+0.035 0.43140.035
isomers_c9h10n202pf2cl 0.345+0.145 0.064+0.012 0.090+0.035 0.454+0.067 0.34240.026
jnk3 0.154+0.018 0.362+0.021 0.222+0.009 0.110£0.019 0.11140.008
medianl 0.178+0.009 0.190£0.002 0.179+£0.003 0.19540.005 0.122£0.007
median2 0.179+0.004 0.173+0.001 0.180+0.003 0.1324+0.002 0.08840.003
mestranol_similarity 0.361+0.016 0.295+0.004 0.356+0.013 0.281+0.008 0.1884-0.007
osimertinib-mpo 0.749+0.007 0.787+0.003 0.775£0.004 0.700£0.004 0.67410.006
perindopril_mpo 0.4214+0.008 0.421+£0.002 0.430+£0.009 0.277+£0.013 0.2134+0.043
qed 0.931£0.002 0.902+0.005 0.934£0.002 0.892£0.006 0.731£0.018
ranolazine_-mpo 0.347+0.012 0.632+0.007 0.508+0.055 0.239+0.027 0.05140.020
scaffold_hop 0.456+0.003 0.460+0.002 0.470+0.005 0.412+0.003 0.4054-0.004
sitagliptin-mpo 0.088+0.013 0.006£0.001 0.046£0.027 0.056£0.012 0.003+0.002
thiothixene_rediscovery 0.288+0.006 0.266+0.005 0.282+0.008 0.231£0.004 0.099+0.007
troglitazone _rediscovery 0.240+£0.002 0.186£0.003 0.237£0.005 0.224£0.009 0.122£0.004
valsartan_smarts 0.006+0.012 0.000+0.000 0.000+0.000 0.000+£0.000 0.000+0.000
zaleplon_mpo 0.091+0.013 0.010+0.001 0.125+0.038 0.058+0.019 0.0104-0.005
Sum 8.556 8.406 8.358 7.803 5.620
Rank 21 22 23 24 25
mutation_rate offspring_size population_size avg_auc
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Figure 17: The hyper-parameter tuning result of Gaph GA.
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Table 7: The comparison of all the methods. AR represents auto-regressive model. Bayesian optimization usually leverages
non-parametric (“non-param” in the column “model size””) model, the model size will increase as more training data come
in. Run time is the average rough clock time for a single run in our benchmark and do not involve the time for pretraining
and data preprocessing.

Categ. Method Assemb. Model Pretrain Model Action Type Run Time
Size (M) Space (min)
Screening - - N 0 - model- 2
VS free
MolPal - - Y 32 - model- 60
based
SELFIES-GA SELFIES - N 0 Cross model- 20
free
SMILES-GA SMILES - N 0 Cross model- 2
free
GA STONED SELFIES - N 0 mutate model- 3
free
Graph-GA fragment - N 0 Cross model- 3
free
SynNet synthesis MLP Y 2,158 Cross model- 300
free
BO GPBO fragment GP N non- one-hot model- 15
param based
SMILES-VAE SMILES RNN Y 17.9 one-hot model- 17
based
SELFIES-VAE SELFIES RNN Y 18.7 one-hot model- 21
based
VAE+BO JTVAE fragment GNN& Y 21.8 one-hot model- 17
treeRNN based
DoG-AE synthesis RNN Y 8.9 one-hot model- 47
based
SMILES-LSTM-HC SMILES RNN Y 98.9 AR model- 3
free
SELFIES-LSTM-HC  SELFIES RNN Y 304 AR model- 4
HC free
MIMOSA fragment GNN Y 0.25 one-hot model- 10
free
DoG-Gen synthesis RNN Y 51.0 AR model- 120
free
REINVENT SMILES RNN Y 16.3 AR model- 2
free
RL SELFIES-REINVENT  SELFIES RNN Y 16.5 AR model- 3
free
MolDQN atom MLP N 6.4 AR model- 52
free
MARS fragment GNN N 16.5 one-hot model- 21
free
SBM GFlowNet fragment GNN Y 5.7 one-hot model- 28
free
GFlowNet-AL fragment GNN Y 5.7 one-hot model- 29
based
Pasithea SELFIES MLP Y 2.2 one-hot model- 46
Gradient based
DST fragment GNN Y 0.23 one-hot model- 300
based
MCTS Graph MCTS atom - N 0 one-hot model- 2

free
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Figure 18: The hyper-parameter tuning result of GP BO.
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Figure 19: The hyper-parameter tuning result of DoG-AE.
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Figure 20: The hyper-parameter tuning result of DoG-Gen.
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Figure 21: The hyper-parameter tuning result of GFlowNet.
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Figure 22: The hyper-parameter tuning result of GFlowNet-AL.
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Figure 23: The hyper-parameter tuning result of Graph MCTS.
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Figure 24: The hyper-parameter tuning result of SMILES LSTM HC.
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Figure 25: The hyper-parameter tuning result of MARS (part 1).
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Figure 26: The hyper-parameter tuning result of MARS (part 2).
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Figure 27: The hyper-parameter tuning result of MIMOSA.
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Figure 28: The hyper-parameter tuning result of Pasithea.
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Figure 29: The hyper-parameter tuning result of GA+D.
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Figure 30: The hyper-parameter tuning result of SMILES GA.
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Figure 31: The hyper-parameter tuning result of STONED.
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Table 8: The mean and standard deviation of AUC Top-1 from 5 independent runs. We ranked the methods by the summation
of mean AUC Top-1 of all tasks. (Continued)

Method REINVENT Graph GA REINVENT SELFIES GP BO LSTM HC
Assembly SMILES Fragments SELFIES Fragments SMILES
albuterol_similarity 0.903+0.003 0.875+0.022 0.853+0.032 0.922+0.011 0.798+0.030
amlodipine_mpo 0.652+0.037 0.685£0.021 0.626£0.020 0.607+0.044 0.636+0.020
celecoxib_rediscovery 0.801+0.098 0.683+0.122 0.616+0.039 0.808+0.075 0.619+0.030
deco_hop 0.679+0.047 0.624£0.005 0.645+0.022 0.645+0.026 0.888+0.008
drd2 0.969-+£0.007 0.992+0.001 0.980£0.003 0.957+0.007 0.957+0.012
fexofenadine_mpo 0.801£0.007 0.774+£0.011 0.762+£0.004 0.74010.007 0.753+0.010
gsk3b 0.893+0.044 0.826£0.069 0.823+0.035 0.877+0.040 0.935+0.014
isomers_c7h8n202 0.882+0.029 0.899+0.060 0.888+0.033 0.747+0.112 0.6154+0.058
isomers_c9h10n202pf2cl 0.673+0.059 0.765+0.046 0.780£0.024 0.513+0.172 0.465+0.034
jnk3 0.813£0.024 0.597+0.141 0.670£0.069 0.592+0.159 0.787+0.057
medianl 0.367£0.009 0.319+£0.027 0.367£0.012 0.31540.017 0.298+0.019
median2 0.289+0.009 0.288+0.008 0.269+£0.006 0.309+0.009 0.276+0.014
mestranol_similarity 0.6371+0.048 0.615+0.027 0.646+0.033 0.66540.082 0.613+0.054
osimertinib_mpo 0.849-+£0.010 0.845+0.006 0.831£0.002 0.803+0.004 0.815+0.003
perindopril_mpo 0.553+0.017 0.559+0.010 0.533£0.022 0.511+0.013 0.514+0.010
qed 0.943+0.000 0.942+0.000 0.942+£0.000 0.94140.000 0.94240.000
ranolazine_mpo 0.7860.009 0.758+0.013 0.777+0.018 0.762+0.013 0.756+0.011
scaffold_hop 0.5724+0.021 0.526£0.008 0.540£0.015 0.56240.023 0.628+0.058
sitagliptin_mpo 0.055+0.015 0.492£0.068 0.257+£0.116 0.23710.061 0.128+0.030
thiothixene_rediscovery 0.557+0.013 0.506£0.026 0.517£0.046 0.591+0.026 0.485+0.015
troglitazone_rediscovery 0.458+0.034 0.410+0.016 0.371£0.014 0.4311+0.015 0.405+0.025
valsartan_smarts 0.187+0.374 0.000+£0.000 0.000+£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.383+£0.062 0.366+£0.033 0.369£0.020 0.25240.071 0.286+0.021
Sum 14.711 14.356 14.077 13.798 13.611
Rank 1 2 3 4 5
Method STONED DoG-Gen SynNet SMILES GA MolPal
Assembly SELFIES Synthesis Synthesis SMILES -
albuterol_similarity 0.755+0.078 0.747£0.014 0.645+£0.052 0.679+0.056 0.694+0.003
amlodipine_mpo 0.616+£0.048 0.555+0.004 0.580-£0.006 0.56410.004 0.621+0.010
celecoxib_rediscovery 0.388+£0.044 0.525+0.012 0.485+0.032 0.350+0.026 0.496+0.002
deco_hop 0.612+0.009 0.874£0.003 0.626£0.011 0.6131+0.007 0.804+0.019
drd2 0.933+0.019 0.992-£0.000 0.983+£0.002 0.930+0.017 0.902+0.007
fexofenadine_mpo 0.803+£0.018 0.730£0.007 0.778+0.017 0.729+0.016 0.704+0.001
gsk3b 0.702+0.055 0.958-£0.007 0.854+£0.044 0.667+0.039 0.776+0.002
isomers_c7h8n202 0.913+0.010 0.580+0.034 0.607+0.050 0.930+0.022 0.8324+0.005
isomers_cOh10n202pf2cl 0.822+0.028 0.365+0.031 0.433+£0.084 0.881+0.062 0.361+0.009
jnk3 0.543+0.093 0.707+£0.022 0.722+£0.042 0.33910.025 0.457+0.024
medianl 0.281£0.020 0.242+0.003 0.235+0.010 0.20410.011 0.301+0.000
median2 0.249+0.033 0.229+0.003 0.251£0.007 0.203+0.006 0.266+0.000
mestranol_similarity 0.621+0.103 0.487+0.010 0.424+0.020 0.48040.029 0.708+0.006
osimertinib_mpo 0.827+0.012 0.800£0.004 0.810£0.004 0.8231+0.011 0.803+0.001
perindopril_-mpo 0.493+0.012 0.5050.003 0.579+£0.014 0.4531+0.011 0.495+0.003
qed 0.942+0.000 0.939+0.000 0.943+£0.000 0.9424-0.000 0.94240.000
ranolazine_mpo 0.783+0.029 0.759+0.010 0.762+0.007 0.71940.023 0.5154+0.007
scaffold_hop 0.52440.035 0.5414+0.005 0.517+0.013 0.498+0.012 0.518+0.001
sitagliptin_mpo 0.406£0.083 0.102+0.019 0.060£0.034 0.396+0.052 0.100+0.013
thiothixene_rediscovery 0.374£0.027 0.411£0.006 0.444£0.029 0.3224+0.018 0.356+0.000
troglitazone_rediscovery 0.325+0.018 0.492+0.025 0.299+£0.006 0.2754+0.018 0.290+0.000
valsartan_smarts 0.000£0.000 0.000+£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.333+0.026 0.171+0.021 0.376£0.019 0.34910.042 0.2621+0.004
Sum 13.256 12.721 12.425 12.357 12.214

Rank 6 7 8 9 10
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Table 9: (Continued)

Method DST MARS LSTM HC SELFIES MIMOSA DoG-AE
Assembly Fragments Fragments SELFIES Fragments Synthesis
albuterol_similarity 0.671£0.021 0.668+0.121 0.726£0.029 0.649+0.023 0.62110.045
amlodipine_mpo 0.573+0.047 0.523+0.022 0.569+0.006 0.590+0.009 0.534+0.013
celecoxib_rediscovery 0.42240.005 0.428+0.049 0.425+0.015 0.42040.017 0.4011+0.024
deco_hop 0.619+0.010 0.597+0.003 0.601£0.004 0.6251+0.004 0.841+0.009
drd2 0.886£0.021 0.938+£0.014 0.847£0.036 0.879+0.024 0.985+0.003
fexofenadine_mpo 0.741£0.005 0.729+0.007 0.716£0.006 0.72140.013 0.71610.041
gsk3b 0.737+0.036 0.628+0.055 0.537+£0.040 0.639+0.046 0.754+0.118
isomers_c7h8n202 0.664+£0.074 0.807+£0.048 0.695+0.024 0.6351+0.058 0.549+0.187
isomers_c9h10n202pf2cl 0.551£0.040 0.640£0.023 0.476£0.039 0.34510.045 0.134+0.072
jnk3 0.600-£0.062 0.548+0.088 0.303£0.053 0.401+0.071 0.539+0.133
medianl 0.256+£0.017 0.226+£0.012 0.268+0.014 0.270+0.005 0.200+0.009
median2 0.194+0.021 0.196+£0.009 0.228+0.006 0.22740.005 0.198+0.008
mestranol_similarity 0.491£0.049 0.430£0.024 0.492+0.014 0.509+0.033 0.429+0.027
osimertinib_mpo 0.799-+0.005 0.797+£0.007 0.801£0.005 0.801+0.014 0.787+0.024
perindopril_-mpo 0.487£0.012 0.475+£0.007 0.472+£0.006 0.506+0.019 0.459+0.023
qed 0.941£0.000 0.940+0.001 0.942+0.000 0.94240.000 0.938+0.001
ranolazine_mpo 0.657+0.057 0.763+0.017 0.677+0.014 0.673+0.020 0.735+0.015
scaffold_hop 0.507+£0.004 0.482+0.009 0.495+0.007 0.517+0.017 0.51940.020
sitagliptin_mpo 0.159+0.074 0.040£0.013 0.203£0.025 0.136+0.029 0.037+0.031
thiothixene_rediscovery 0.391+£0.011 0.382+0.031 0.370£0.009 0.3651+0.017 0.352+0.015
troglitazone_rediscovery 0.295+0.019 0.274+0.019 0.283+£0.004 0.31440.008 0.344+0.052
valsartan_smarts 0.000£0.000 0.000£0.000 0.000£0.000 0.000+0.000 0.000=£0.000
zaleplon_mpo 0.257+0.025 0.291£0.020 0.303£0.027 0.20440.033 0.1454+0.082
Sum 11.911 11.814 11.441 11.378 11.227
Rank 11 12 13 ‘ 14 15
Method VAE BO SELFIES Screening VAE BO SMILES Pasithea GFlowNet
Assembly SELFIES - SMILES ‘ SELFIES Fragments
albuterol_similarity 0.572+0.043 0.546+£0.029 0.563+£0.019 0.499+0.005 0.501+0.029
amlodipine_mpo 0.580+£0.004 0.580+0.014 0.602+£0.032 0.582+2.676 0.467+0.006
celecoxib_rediscovery 0.386+0.022 0.394+0.005 0.406+0.013 0.3514+0.010 0.37440.007
deco_hop 0.590+£0.002 0.611£0.002 0.608+£0.003 0.603+0.012 0.590+0.001
drd2 0.808£0.055 0.797+£0.059 0.818+0.073 0.557+0.087 0.791+0.041
fexofenadine_mpo 0.698+0.006 0.690+0.011 0.699+£0.008 0.702+0.039 0.714%0.007
gsk3b 0.506+£0.091 0.657+0.078 0.536£0.046 0.40110.075 0.691+0.033
isomers_c7h8n202 0.497+0.052 0.395+0.079 0.332+0.052 0.79240.057 0.539£0.068
isomers_c9h10n202pf2cl 0.367+0.083 0.218+0.047 0.175£0.032 0.499+0.081 0.1731+0.046
jnk3 0.341£0.070 0.362£0.063 0.375£0.054 0.206+0.033 0.492+0.024
medianl 0.226+£0.008 0.249+0.010 0.252+0.035 0.2124+0.018 0.224+0.006
median2 0.200+0.001 0.232+0.015 0.211+£0.003 0.193+0.006 0.193+0.005
mestranol_similarity 0.495+0.050 0.507+0.121 0.508+0.035 0.4461+0.012 0.363+0.017
osimertinib_mpo 0.790-+£0.003 0.784+0.005 0.792+£0.004 0.787+0.008 0.801+0.008
perindopril_-mpo 0.458+0.015 0.478+0.018 0.469+0.019 0.44510.015 0.455+0.008
qed 0.941+£0.001 0.942+0.000 0.942+0.000 0.938+0.003 0.939+0.001
ranolazine_mpo 0.534+0.046 0.485+0.026 0.563+£0.049 0.437+0.050 0.679+0.004
scaffold_hop 0.474+£0.007 0.503£0.004 0.493+0.009 0.4931+0.019 0.47410.003
sitagliptin_mpo 0.173£0.041 0.076£0.023 0.088£0.043 0.176+0.050 0.028+0.012
thiothixene_rediscovery 0.329+0.007 0.350£0.007 0.355+0.017 0.330+0.015 0.312+0.011
troglitazone_rediscovery 0.275+0.023 0.272+0.010 0.286£0.011 0.256+0.007 0.202+0.006
valsartan_smarts 0.017+0.034 0.000-£0.000 0.019+0.039 0.060+0.121 0.000+0.000
zaleplon_mpo 0.322+0.033 0.222+0.058 0.094£0.028 0.185+0.033 0.066+0.042
Sum 10.589 10.363 10.197 10.162 10.079
Rank 16 17 18 19 20
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Table 10: (Continued)

Method JT-VAE BO GFlowNet-AL GA+D Graph MCTS MolDQN

Assembly Fragments Fragments SELFIES Atoms Atoms
albuterol_similarity 0.54140.051 0.44040.020 0.5284-0.029 0.625+0.028 0.348+£0.022
amlodipine_mpo 0.582+1.791 0.448+0.007 0.421+£0.033 0.4724+0.019 0.343+0.013
celecoxib_rediscovery 0.385+0.025 0.289+0.005 0.241+0.023 0.2974-0.009 0.11440.016
deco_hop 0.59540.003 0.59140.004 0.55340.005 0.561£0.003 0.549+0.001
drd2 0.74140.185 0.71640.073 0.42540.207 0.476£0.111 0.030-0.003
fexofenadine_mpo 0.69540.012 0.713£0.004 0.607£0.008 0.596+0.011 0.498+0.015
gsk3b 0.482+0.054 0.640+0.031 0.363+£0.022 0.35440.032 0.286+0.012
isomers_c7h8n202 0.243+0.075 0.450+0.097 0.87840.012 0.701£0.048 0.594£0.077
isomers_c9h10n202pf2cl 0.27340.121 0.13140.024 0.68140.022 0.601£0.066 0.481£0.043
jnk3 0.35340.063 0.43140.035 0.2344-0.021 0.144+£0.031 0.134£0.013
medianl 0.209+0.017 0.223+0.001 0.201£0.007 0.2341+0.014 0.14410.013
median2 0.191+0.003 0.182+0.004 0.128+0.005 0.14140.003 0.094+0.003
mestranol_similarity 0.448+0.055 0.327+0.016 0.396+£0.019 0.30740.007 0.209+0.007
osimertinib_-mpo 0.79440.007 0.80340.008 0.68940.029 0.718+0.007 0.689-£0.006
perindopril_-mpo 0.45340.012 0.44840.009 0.18740.095 0.310+0.023 0.247+0.034
qed 0.940+0.000 0.930£0.004 0.877+£0.016 0.913+0.009 0.788+0.030
ranolazine_mpo 0.583+0.039 0.680+0.018 0.575+0.014 0.316+0.051 0.084+0.034
scaffold_hop 0.48740.006 0.47240.004 0.41740.009 0.421£0.004 0.411=£0.006
sitagliptin_mpo 0.13440.070 0.02040.011 0.31140.023 0.138+£0.047 0.010=£0.008
thiothixene_rediscovery 0.31140.011 0.29440.012 0.2404-0.035 0.249+0.009 0.108+£0.011
troglitazone_rediscovery 0.25740.003 0.201£0.008 0.160£0.013 0.2451+0.015 0.13540.007
valsartan_smarts 0.000£0.000 0.000£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.26640.047 0.02940.009 0.2634+0.014 0.113£0.035 0.026£0.015

Sum 9.973 9.470 9.387 8.944 6.332

Rank 21 22 23 24 25
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Table 11: The mean and standard deviation of AUC Top-100 from 5 independent runs. We ranked the methods by the
summation of mean AUC Top-100 of all tasks. (Continued)

Method REINVENT Graph GA STONED REINVENT SELFIES GP BO
Assembly SMILES Fragments SELFIES SELFIES Fragments
albuterol_similarity 0.842+0.013 0.759+0.014 0.727+£0.070 0.78140.033 0.839+0.019
amlodipine_mpo 0.608+0.033 0.622+0.018 0.593+0.045 0.57440.009 0.538+0.045
celecoxib_rediscovery 0.646+0.053 0.558+0.075 0.366+0.035 0.5154+0.044 0.637+0.041
deco_hop 0.649+0.040 0.609+£0.004 0.605£0.007 0.61010.003 0.611+0.014
drd2 0.908-£0.007 0.924-£0.020 0.881£0.026 0.898+0.008 0.870+0.031
fexofenadine_mpo 0.752+0.005 0.731£0.012 0.777£0.013 0.705+0.002 0.685+0.005
gsk3b 0.823+£0.042 0.737+0.072 0.621£0.045 0.71140.043 0.808+0.046
isomers_c7h8n202 0.798+0.043 0.761+0.058 0.864+0.016 0.7914+0.023 0.564+0.128
isomers_c9h10n202pf2cl 0.590+£0.050 0.628+0.048 0.765+0.039 0.6561+0.045 0.399+0.184
jnk3 0.742+£0.025 0.488+0.126 0.481£0.092 0.567+0.057 0.524+0.149
medianl 0.325+£0.009 0.264+0.019 0.244+£0.013 0.299+0.012 0.275+0.012
median2 0.258+0.006 0.251+0.011 0.236+£0.031 0.23240.005 0.275+0.007
mestranol_similarity 0.586+0.046 0.523+0.019 0.577+0.094 0.57840.026 0.5724+0.086
osimertinib_mpo 0.806-0.008 0.799+0.004 0.799+0.011 0.79140.005 0.750+0.010
perindopril_mpo 0.511£0.016 0.5030.008 0.472+£0.011 0.487+0.019 0.460+0.009
qed 0.931£0.000 0.930£0.000 0.930£0.000 0.92940.000 0.919+0.002
ranolazine_mpo 0.719+0.008 0.670+0.012 0.738+£0.028 0.695+0.023 0.694+0.016
scaffold_hop 0.537+0.015 0.50240.005 0.512+0.031 0.50240.011 0.527+0.015
sitagliptin_mpo 0.006=£0.000 0.330£0.074 0.351£0.078 0.118+0.105 0.117+0.036
thiothixene_rediscovery 0.493+0.013 0.433+0.021 0.352+0.027 0.456+0.033 0.502+0.023
troglitazone_rediscovery 0.411-+0.029 0.358+0.014 0.307£0.018 0.31440.013 0.379+0.013
valsartan_smarts 0.168+0.336 0.000+£0.000 0.000+£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.325+£0.062 0.305+0.025 0.307£0.027 0.25740.031 0.165+0.070
Sum 13.445 12.696 12.518 12.475 12.122
Rank 1 2 3 4 5
Method SMILES GA LSTM HC SynNet DST MIMOSA
Assembly ‘ SMILES ‘ SMILES ‘ Synthesis ‘ Fragments ‘ Fragments
albuterol_similarity 0.643+£0.068 0.602£0.014 0.494£0.026 0.539+0.012 0.566+0.014
amlodipine_mpo 0.534+0.011 0.533+0.010 0.533+£0.006 0.469+0.005 0.509+0.004
celecoxib_rediscovery 0.331+0.027 0.448+0.012 0.374+0.023 0.3334+0.005 0.353+0.003
deco_hop 0.6050.006 0.738+0.019 0.593+0.005 0.591+0.006 0.605+0.002
drd2 0.875+0.022 0.788+0.017 0.897+£0.015 0.738+0.025 0.709+0.021
fexofenadine_mpo 0.700£0.014 0.6800.003 0.720+£0.011 0.690+0.004 0.672+0.009
gsk3b 0.586+£0.043 0.670£0.011 0.655+0.039 0.598+0.036 0.475+0.040
isomers_c7h8n202 0.880+0.027 0.313+0.032 0.167+0.028 0.380+0.083 0.468+0.036
isomers_c9h10n202pf2cl 0.823+0.073 0.186£0.015 0.053+0.022 0.307+0.084 0.25910.046
jnk3 0.288+0.022 0.489+0.025 0.466£0.038 0.489+0.059 0.302+0.055
medianl 0.185+0.012 0.213+0.007 0.187+£0.005 0.193+0.006 0.2124+0.004
median2 0.191+£0.005 0.217+0.004 0.205£0.003 0.166+0.016 0.195+0.004
mestranol_similarity 0.449+0.028 0.428+0.018 0.352+0.018 0.400+0.016 0.391£0.013
osimertinib_mpo 0.798+0.012 0.749+0.001 0.759+£0.002 0.74240.001 0.750+0.010
perindopril_-mpo 0.436£0.013 0.446£0.004 0.512:£0.010 0.42540.009 0.458+0.007
qed 0.932+0.001 0.923+0.001 0.930£0.001 0.92540.001 0.92540.000
ranolazine_mpo 0.670+£0.028 0.630+0.012 0.690+0.015 0.579+0.044 0.587+0.015
scaffold_hop 0.487+0.010 0.491+0.004 0.478+0.007 0.480+0.003 0.488+0.009
sitagliptin_mpo 0.307£0.058 0.020£0.006 0.007£0.004 0.017+0.005 0.052+0.012
thiothixene_rediscovery 0.300£0.014 0.377+£0.005 0.351£0.012 0.32540.007 0.316+0.015
troglitazone_rediscovery 0.256+£0.024 0.301£0.008 0.254+0.007 0.250+0.020 0.273+0.008
valsartan_smarts 0.000£0.000 0.000+£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.310+0.034 0.11140.005 0.223+0.017 0.089+0.063 0.1324+0.038
Sum 11.598 10.365 9.914 9.737 9.708

Rank 6 7 8 9 10
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Table 12: (Continued)

Method DoG-Gen MARS LSTM HC SELFIES GA+D MolPal
Assembly Synthesis Fragments SELFIES SELFIES -
albuterol_similarity 0.578+0.011 0.478+0.121 0.572+0.027 0.448+0.018 0.528+0.002
amlodipine_mpo 0.489+0.003 0.465+0.010 0.485+0.003 0.365+0.029 0.514+0.006
celecoxib_rediscovery 0.387+0.006 0.3171£0.056 0.324+0.004 0.2004-0.024 0.349+0.002
deco_hop 0.715£0.010 0.577+£0.002 0.573£0.001 0.54540.004 0.585+0.001
drd2 0.740-+£0.003 0.752+0.019 0.510£0.035 0.31410.190 0.403+0.009
fexofenadine_mpo 0.640+£0.001 0.669+0.003 0.650+£0.004 0.553+0.007 0.639+0.002
gsk3b 0.629+0.018 0.463+£0.042 0.292+0.003 0.309+0.016 0.319+0.007
isomers_c7h8n202 0.305+0.011 0.583+0.025 0.415+0.042 0.799+0.024 0.199+0.003
isomers_c9h10n202pf2cl 0.095£0.004 0.471£0.015 0.208£0.007 0.608+0.024 0.071+0.001
jnk3 0.436£0.022 0.386£0.081 0.136£0.003 0.195+0.020 0.200+0.004
medianl 0.181£0.000 0.169+0.015 0.200£0.003 0.15240.006 0.202+0.001
median2 0.188+0.001 0.159+0.012 0.178+£0.004 0.11140.005 0.1914+0.000
mestranol_similarity 0.369+0.004 0.323+0.033 0.381£0.006 0.333+0.014 0.43310.002
osimertinib_mpo 0.706£0.001 0.730£0.006 0.732£0.006 0.645+0.025 0.736+0.003
perindopril_-mpo 0.422+0.002 0.432+0.005 0.399+£0.003 0.155%0.079 0.423+0.002
qed 0.912+0.000 0.886+£0.012 0.920+£0.001 0.8214+0.013 0.930+0.000
ranolazine_mpo 0.601+0.003 0.684+0.019 0.502+0.007 0.5254+0.016 0.357+0.004
scaffold_hop 0.483+£0.004 0.450£0.004 0.445+0.001 0.406+0.008 0.461+0.000
sitagliptin_mpo 0.015+£0.005 0.004-£0.000 0.040£0.002 0.2324+0.021 0.014+0.000
thiothixene_rediscovery 0.329+0.003 0.294+0.014 0.294£0.006 0.20140.024 0.302+0.001
troglitazone_rediscovery 0.331+£0.016 0.228+0.013 0.225+0.002 0.1394+0.012 0.2454+0.000
valsartan_smarts 0.000£0.000 0.000£0.000 0.000£0.000 0.000+0.000 0.000=£0.000
zaleplon_mpo 0.073+0.011 0.082£0.040 0.103£0.010 0.21410.015 0.046+0.001
Sum 9.635 9.612 8.595 8.280 8.156
Rank 11 12 13 14 15
Method GFlowNet DoG-AE GFlowNet-AL Screening VAE BO SMILES
Assembly Fragments Synthesis Fragments - SMILES
albuterol_similarity 0.374+£0.009 0.423+0.020 0.324£0.002 0.410+0.003 0.41240.003
amlodipine_mpo 0.398+0.004 0.457+0.004 0.374£0.002 0.477+0.000 0.475+0.002
celecoxib_rediscovery 0.275+0.006 0.282+0.019 0.213+0.002 0.289+0.002 0.2914+0.001
deco_hop 0.572+0.002 0.626£0.041 0.570£0.000 0.57140.000 0.570+0.000
drd2 0.279+0.065 0.543+£0.069 0.165£0.010 0.186+0.005 0.187+0.014
fexofenadine_mpo 0.653+0.004 0.618+0.007 0.645+0.002 0.613+0.002 0.616+0.002
gsk3b 0.585+0.022 0.356+£0.074 0.504+0.011 0.23540.008 0.21440.007
isomers_c7h8n202 0.191£0.013 0.052+0.015 0.084+0.018 0.036+0.005 0.039£0.005
isomers_c9h10n202pf2cl 0.047+£0.012 0.012£0.004 0.021£0.002 0.02740.002 0.025+0.001
jnk3 0.367£0.022 0.245+0.065 0.272+0.016 0.126+0.005 0.123+0.003
medianl 0.165+0.004 0.1340.006 0.145+0.001 0.16140.002 0.160+0.001
median2 0.164+0.001 0.156+£0.006 0.156+0.001 0.170+0.001 0.169+0.000
mestranol_similarity 0.273+£0.006 0.304£0.013 0.246£0.002 0.32840.005 0.323+0.001
osimertinib_mpo 0.758+0.001 0.661£0.007 0.758+0.001 0.704+0.001 0.71240.002
perindopril_-mpo 0.384+0.012 0.3740.007 0.375+£0.001 0.397+0.002 0.398+0.001
qed 0.861£0.007 0.877+£0.004 0.820£0.007 0.9224-0.000 0.92240.000
ranolazine_mpo 0.615+0.004 0.566+0.038 0.543+0.006 0.30240.003 0.318+0.003
scaffold_hop 0.445+0.001 0.453+0.011 0.442+0.000 0.44310.000 0.441+0.001
sitagliptin_mpo 0.001=£0.000 0.001£0.000 0.001£0.000 0.006+0.000 0.006+0.000
thiothixene_rediscovery 0.246£0.009 0.256£0.012 0.224+0.003 0.27240.001 0.270+0.002
troglitazone_rediscovery 0.170+£0.001 0.207+£0.007 0.167£0.000 0.218+0.002 0.220+0.001
valsartan_smarts 0.000£0.000 0.000-£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.011£0.013 0.0050.002 0.002£0.000 0.01010.002 0.006+0.001
Sum 7.844 7.620 7.060 6.915 6.909
Rank 16 17 18 19 20
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Table 13: (Continued)

Method VAE BO SELFIES JT-VAE BO Pasithea Graph MCTS MolDQN

Assembly SELFIES Fragments SELFIES Atoms Atoms
albuterol_similarity 0.41340.003 0.41240.018 0.3654-0.004 0.497+0.014 0.273+£0.008
amlodipine_mpo 0.46540.002 0.46840.007 0.4424-0.004 0.38540.005 0.230+0.011
celecoxib_rediscovery 0.260+0.004 0.240+0.012 0.24240.005 0.2044-0.007 0.080+0.002
deco_hop 0.560=40.001 0.56740.002 0.55840.000 0.539+£0.001 0.534£0.001
drd2 0.17440.007 0.17040.046 0.06040.010 0.1214£0.008 0.018-£0.000
fexofenadine_mpo 0.61940.006 0.61640.009 0.58340.011 0.52240.005 0.431+0.010
gsk3b 0.20640.006 0.201£0.025 0.141+£0.029 0.183+0.008 0.176+0.008
isomers_c7h8n202 0.094+0.008 0.02540.009 0.4504-0.021 0.304£0.018 0.269+£0.011
isomers_c9h10n202pf2cl 0.06340.004 0.02140.006 0.19340.093 0.203£0.044 0.134£0.013
jnk3 0.11340.002 0.11940.007 0.07640.008 0.066£0.005 0.075+0.003
medianl 0.15940.003 0.1444-0.006 0.13340.007 0.1431+0.003 0.094+0.003
median2 0.15940.001 0.15940.003 0.15340.002 0.11740.000 0.072+0.002
mestranol_similarity 0.316£0.001 0.299+£0.010 0.274+£0.007 0.22940.006 0.150+0.008
osimertinib_-mpo 0.71140.002 0.72740.005 0.64340.019 0.655+0.003 0.636£0.005
perindopril_-mpo 0.38240.002 0.39040.007 0.3644-0.003 0.219+£0.005 0.125+0.019
qed 0.91440.001 0.91240.004 0.8964-0.004 0.83240.006 0.630+0.006
ranolazine_mpo 0.3134+0.019 0.33740.062 0.211+£0.011 0.1224+0.010 0.018+0.006
scaffold_hop 0.42740.002 0.44340.005 0.4244-0.001 0.392£0.002 0.388-£0.003
sitagliptin_mpo 0.02140.003 0.01040.005 0.02640.004 0.013+£0.002 0.000=£0.000
thiothixene_rediscovery 0.25240.003 0.24240.007 0.2384-0.006 0.193£0.002 0.081£0.004
troglitazone_rediscovery 0.20740.002 0.20640.004 0.20040.002 0.1941-0.005 0.101+0.002
valsartan_smarts 0.000£0.000 0.000£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.05940.004 0.02440.012 0.02740.007 0.014£0.005 0.002£0.001

Sum 6.899 6.740 6.712 6.156 4.528

Rank 21 22 23 24 25
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Table 14: The mean and standard deviation of Top-100 from 5 independent runs. We ranked the methods by the summation
of mean Top-100 of all tasks. (Continued)

Method REINVENT REINVENT SELFIES Graph GA LSTM HC GP BO
Assembly SMILES SELFIES Fragments SMILES Fragments
albuterol_similarity 0.991+0.223 0.948+0.228 0.951£0.190 0.9531+0.198 0.995+0.181
amlodipine_mpo 0.728+0.114 0.684+0.097 0.743+£0.106 0.669+0.073 0.638+0.090
celecoxib_rediscovery 0.821+0.199 0.684+0.169 0.692+0.168 0.694+0.143 0.802+0.177
deco_hop 0.796£0.104 0.706£0.044 0.642+0.026 0.921+0.140 0.698+0.053
drd2 0.999-+£0.250 0.999+0.262 0.999+£0.209 0.999+0.312 0.998+0.273
fexofenadine_mpo 0.892+0.110 0.818+0.080 0.817£0.089 0.763+0.072 0.774+0.088
gsk3b 0.965+0.243 0.934+0.262 0.919+0.226 0.9424+0.249 0.957+0.218
isomers_c7h8n202 0.986+0.338 0.948+0.301 0.948+0.241 0.848+0.289 0.749+0.264
isomers_c9h10n202pf2cl 0.820+0.336 0.865+0.313 0.837+0.227 0.61010.189 0.538+0.257
jnk3 0.943+£0.295 0.782+0.268 0.796£0.258 0.8511+0.255 0.675+0.244
medianl 0.382£0.080 0.339+£0.070 0.310£0.056 0.31540.064 0.316+0.052
median2 0.313+0.055 0.300+0.056 0.300£0.048 0.290+0.046 0.313+0.046
mestranol_similarity 0.733+0.177 0.755+0.181 0.680+0.127 0.65240.118 0.733+0.168
osimertinib_mpo 0.896£0.101 0.865+£0.084 0.861£0.098 0.829+0.095 0.8124+0.091
perindopril_mpo 0.635-£0.099 0.608£0.105 0.591£0.078 0.53240.060 0.523+0.058
qed 0.948+0.030 0.947+£0.031 0.946£0.028 0.94740.029 0.943+0.026
ranolazine_mpo 0.848+0.163 0.836+0.170 0.781+£0.150 0.783+0.149 0.790+0.147
scaffold_hop 0.708+0.089 0.608£0.064 0.550£0.040 0.573+0.046 0.593+0.056
sitagliptin_mpo 0.010£0.003 0.269+0.172 0.578+£0.197 0.088+0.023 0.195+0.080
thiothixene_rediscovery 0.644+£0.149 0.616£0.144 0.536£0.099 0.55440.097 0.613+0.111
troglitazone_rediscovery 0.570+£0.140 0.469+0.101 0.464+0.083 0.4651+0.084 0.482+0.082
valsartan_smarts 0.194+0.363 0.000+£0.000 0.000+£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.463+0.187 0.384+£0.159 0.389+0.105 0.33010.105 0.216+0.093
Sum 16.297 15.377 15.342 14.621 14.365
Rank 1 2 3 4 5
Method STONED DoG-Gen SMILES GA DST MIMOSA
Assembly ‘ SELFIES ‘ Synthesis ‘ SMILES ‘ Fragments ‘ Fragments
albuterol_similarity 0.805+0.163 0.852+0.154 0.698+0.127 0.682+0.117 0.667+0.127
amlodipine_mpo 0.631£0.080 0.583+0.070 0.558+£0.048 0.48240.031 0.550+0.049
celecoxib_rediscovery 0.393+0.062 0.583+0.115 0.349+0.047 0.3811+0.056 0.405+0.068
deco_hop 0.626+£0.023 0.910£0.140 0.624+0.022 0.613+0.022 0.637+0.029
drd2 0.997+0.274 0.999+0.314 0.986£0.260 0.993+0.377 0.981+0.383
fexofenadine_mpo 0.847+£0.100 0.736£0.085 0.756£0.075 0.7531+0.083 0.723+0.075
gsk3b 0.733+0.178 0.959+0.251 0.687+£0.171 0.8211+0.267 0.672+0.207
isomers_c7h8n202 0.993+0.280 0.809+0.285 0.995+0.264 0.7131+0.291 0.7324+0.303
isomers_c9h10n202pf2cl 0.919+0.271 0.337+£0.100 0.966+£0.272 0.698+0.272 0.413+0.182
jnk3 0.587+£0.179 0.802+£0.221 0.374£0.094 0.748+0.249 0.457+0.160
medianl 0.264£0.045 0.261£0.055 0.198+0.029 0.23140.037 0.251+0.050
median2 0.260£0.045 0.263+0.038 0.204+£0.019 0.178+0.022 0.216+0.025
mestranol_similarity 0.665+0.151 0.5524+0.105 0.508+0.085 0.46940.078 0.443+0.072
osimertinib_mpo 0.847+0.104 0.826+0.123 0.834£0.095 0.80240.095 0.804+0.092
perindopril_-mpo 0.514+£0.055 0.546£0.074 0.454£0.041 0.4531+0.044 0.530+0.065
qed 0.943+0.025 0.947+£0.046 0.946£0.026 0.9411+0.026 0.939+0.025
ranolazine_mpo 0.855+0.190 0.782+0.170 0.766+0.155 0.730+0.223 0.757+0.222
scaffold_hop 0.545+0.055 0.559+0.044 0.509+0.030 0.512+0.035 0.527+0.040
sitagliptin_mpo 0.482+0.174 0.085+0.025 0.436£0.151 0.027+0.011 0.1010.044
thiothixene_rediscovery 0.382+0.053 0.463+0.079 0.316£0.033 0.37410.053 0.348+0.048
troglitazone_rediscovery 0.351£0.052 0.534+0.130 0.270+£0.037 0.286+0.044 0.316+0.049
valsartan_smarts 0.000£0.000 0.000+£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.369+0.108 0.253+0.090 0.377+0.114 0.156+0.095 0.2394+0.108
Sum 14.017 13.653 12.824 12.052 11.717
Rank 6 7 8 9 10
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Table 15: (Continued)

Method LSTM HC SELFIES GA+D MARS SynNet GFlowNet
Assembly SELFIES SELFIES Fragments Synthesis Fragments
albuterol_similarity 0.891+£0.173 0.576+0.123 0.554+0.154 0.55440.065 0.4224+0.051
amlodipine_mpo 0.553+0.044 0.513+0.150 0.496+£0.063 0.559+0.046 0.439+0.064
celecoxib_rediscovery 0.473+0.082 0.2524+0.066 0.394+0.091 0.41040.052 0.308+0.041
deco_hop 0.610£0.019 0.580+£0.024 0.587+0.013 0.603+0.012 0.584+0.009
drd2 0.992+0.371 0.678+0.339 0.959+£0.279 0.985+0.201 0.492+0.152
fexofenadine_mpo 0.726£0.069 0.717£0.206 0.717+£0.102 0.749+0.057 0.678+0.037
gsk3b 0.503+0.120 0.482+0.130 0.536+0.133 0.797+0.182 0.637+0.076
isomers_c7h8n202 0.765+0.259 0.993+0.302 0.845+0.309 0.21240.067 0.341+0.105
isomers_c9h10n202pf2cl 0.436£0.138 0.811£0.286 0.737+£0.287 0.079+0.036 0.100+0.032
jnk3 0.216£0.050 0.356£0.109 0.497+0.164 0.563+0.150 0.438+0.077
medianl 0.285+0.051 0.171£0.035 0.181£0.026 0.19740.020 0.186+0.026
median2 0.240+0.032 0.148+0.034 0.169+0.020 0.213+0.016 0.175+0.012
mestranol_similarity 0.520+£0.079 0.497+0.131 0.375£0.060 0.3851+0.044 0.306+0.034
osimertinib_mpo 0.804£0.092 0.768+0.169 0.776£0.128 0.789+0.079 0.779+0.041
perindopril_-mpo 0.469+0.043 0.293+0.137 0.463£0.058 0.546+0.053 0.424+0.054
qed 0.945+0.026 0.928+0.140 0.903+£0.038 0.9424+0.029 0.913+0.086
ranolazine_mpo 0.724+0.183 0.763+0.264 0.720+0.115 0.74440.106 0.648+0.090
scaffold_hop 0.495+0.027 0.459+0.038 0.461£0.019 0.489+0.017 0.460+0.014
sitagliptin_mpo 0.101£0.029 0.436£0.165 0.010£0.003 0.008+0.005 0.004+0.001
thiothixene_rediscovery 0.399+0.054 0.271£0.073 0.378£0.060 0.379+0.035 0.268+0.027
troglitazone_rediscovery 0.286+0.033 0.189+0.044 0.264+0.033 0.2731+0.023 0.181+0.012
valsartan_smarts 0.000£0.000 0.000£0.000 0.000£0.000 0.000+0.000 0.000=£0.000
zaleplon_mpo 0.213+0.070 0.336£0.124 0.101£0.057 0.280+0.076 0.029+0.019
Sum 11.657 11.230 11.133 10.768 8.824
Rank 11 12 13 14 15
Method MolPal DoG-AE GFlowNet-AL Screening VAE BO SMILES
Assembly - Synthesis Fragments - SMILES
albuterol_similarity 0.545+0.049 0.434+0.034 0.356£0.032 0.448+0.035 0.452+0.037
amlodipine_mpo 0.554+0.059 0.468+0.040 0.411£0.059 0.505+0.037 0.501+0.033
celecoxib_rediscovery 0.364+0.041 0.288+0.028 0.239+0.025 0.3174+0.029 0.3244+0.033
deco_hop 0.596+0.015 0.639+0.052 0.5800.008 0.58240.010 0.582+0.010
drd2 0.476£0.135 0.589+0.146 0.253+0.065 0.308+0.084 0.319+0.091
fexofenadine_mpo 0.665+0.067 0.634£0.058 0.672+0.036 0.649+0.056 0.649+0.048
gsk3b 0.369+0.083 0.377+0.098 0.555+0.066 0.3124+0.064 0.284+0.060
isomers_c7h8n202 0.220+£0.056 0.055+0.018 0.132+0.038 0.065+0.020 0.067£0.020
isomers_c9h10n202pf2cl 0.078+£0.019 0.013+£0.005 0.033£0.009 0.0451+0.013 0.039+0.010
jnk3 0.233+0.053 0.263+£0.084 0.324+£0.059 0.1671+0.034 0.161+0.034
medianl 0.210+£0.025 0.138+0.014 0.164£0.019 0.1811+0.019 0.180+0.020
median2 0.197+0.016 0.159+0.010 0.167+0.011 0.183+0.013 0.181+0.012
mestranol_similarity 0.451£0.053 0.313+0.028 0.272+0.027 0.368+0.036 0.356+0.034
osimertinib_mpo 0.770+£0.096 0.687+0.089 0.779+£0.041 0.750+0.084 0.753+0.074
perindopril_-mpo 0.440+£0.039 0.384+0.034 0.404£0.046 0.42540.035 0.423+0.030
qed 0.944+0.025 0.890+0.036 0.884+0.081 0.93940.023 0.939+0.025
ranolazine_mpo 0.396+0.071 0.589+0.083 0.617+0.113 0.35740.061 0.3924+0.070
scaffold_hop 0.470+£0.017 0.460£0.019 0.454+0.012 0.458+0.015 0.457+0.014
sitagliptin_mpo 0.018£0.004 0.002£0.000 0.001£0.000 0.010+0.003 0.010+0.002
thiothixene_rediscovery 0.311£0.027 0.262+0.019 0.245+0.021 0.295+0.023 0.293+0.022
troglitazone_rediscovery 0.253+0.019 0.211+£0.013 0.177+£0.011 0.235+0.016 0.236+0.016
valsartan_smarts 0.000£0.000 0.000-£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.054+£0.015 0.006£0.003 0.004£0.001 0.020+0.006 0.013+0.004
Sum 8.625 7.872 7.735 7.630 7.623
Rank 16 17 18 19 20
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Table 16: (Continued)

Method VAE BO SELFIES Pasithea JT-VAE BO Graph MCTS MolDQN

Assembly SELFIES SELFIES Fragments Atoms Atoms
albuterol_similarity 0.44740.036 0.37940.019 0.4324-0.036 0.543+£0.050 0.329+0.034
amlodipine_mpo 0.48940.032 0.44940.024 0.4844-0.033 0.42540.062 0.3154+0.068
celecoxib_rediscovery 0.289+0.026 0.247+0.015 0.249+0.021 0.23240.029 0.093+0.009
deco_hop 0.57040.008 0.56340.005 0.57540.010 0.549+0.008 0.541£0.007
drd2 0.29340.082 0.06540.015 0.19640.068 0.180+£0.047 0.023£0.004
fexofenadine_mpo 0.64340.046 0.59640.037 0.6334-0.045 0.56210.067 0.482+0.049
gsk3b 0.26140.051 0.15140.036 0.22340.046 0.23140.042 0.21740.040
isomers_c7h8n202 0.152+0.045 0.638+0.199 0.02940.012 0.417+£0.107 0.366£0.081
isomers_c9h10n202pf2cl 0.10640.030 0.29140.135 0.02640.010 0.298+0.089 0.260-£0.064
jnk3 0.14640.029 0.08040.013 0.13940.029 0.083+£0.017 0.093£0.020
medianl 0.17440.018 0.1384+0.012 0.15040.014 0.16410.021 0.138+0.021
median2 0.168+0.009 0.156+£0.006 0.165+0.009 0.1274+0.010 0.084+0.008
mestranol_similarity 0.348+0.032 0.279+0.016 0.312+0.025 0.2611+0.034 0.213+0.038
osimertinib_-mpo 0.75040.072 0.66240.061 0.75340.072 0.690+0.061 0.650-+0.032
perindopril_-mpo 0.40640.027 0.37040.020 0.40440.028 0.262+0.048 0.162£0.043
qed 0.93540.025 0.90640.020 0.9294-0.027 0.87510.053 0.802+0.113
ranolazine_mpo 0.36340.066 0.21840.025 0.3624-0.085 0.1754+0.041 0.036+0.015
scaffold_hop 0.44040.011 0.43140.007 0.45440.015 0.407+£0.013 0.398£0.012
sitagliptin_mpo 0.038+0.011 0.04940.016 0.0144-0.008 0.026£0.008 0.001-£0.000
thiothixene_rediscovery 0.27140.018 0.24240.011 0.2504-0.015 0.217+0.024 0.097+0.014
troglitazone_rediscovery 0.22040.013 0.20440.008 0.21340.012 0.210+0.019 0.121+0.015
valsartan_smarts 0.000£0.000 0.000£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.10040.030 0.05040.017 0.03440.018 0.029+£0.010 0.004£0.002

Sum 7.622 7.173 7.037 6.975 5.435

Rank 21 22 23 24 25
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Table 17: The mean and standard deviation of Top-10 from 5 independent runs. We ranked the methods by the summation
of mean Top-10 of all tasks. (Continued)

Method REINVENT Graph GA REINVENT SELFIES LSTM HC GP BO
Assembly SMILES Fragments SELFIES SMILES Fragments
albuterol_similarity 0.998+0.188 0.997+0.180 0.960+£0.194 0.998+0.199 1.01+0.156
amlodipine_mpo 0.733+0.095 0.769-+0.088 0.700£0.076 0.71410.065 0.663+0.072
celecoxib_rediscovery 0.861+0.190 0.756+0.179 0.722+0.155 0.785+0.160 0.859+0.181
deco_hop 0.802+0.107 0.650£0.021 0.735+0.057 0.944+0.117 0.714%0.056
drd2 0.999-+0.178 0.999+0.120 0.999+0.178 0.999+0.203 0.999+0.200
fexofenadine_mpo 0.903-£0.080 0.830£0.059 0.835+0.051 0.79410.044 0.793+0.056
gsk3b 0.968+0.195 0.937+£0.191 0.956+£0.219 0.984+0.171 0.974+0.188
isomers_c7h8n202 1.0£0.300 0.984+0.214 0.961+0.243 0.931+0.310 0.818+0.237
isomers_c9h10n202pf2cl 0.851£0.318 0.891£0.207 0.903+0.269 0.76410.249 0.565+0.238
jnk3 0.948-£0.262 0.812+0.259 0.821£0.247 0.9351+0.218 0.689+0.233
medianl 0.399-+0.069 0.330£0.050 0.396£0.072 0.350+0.059 0.3331+0.045
median2 0.325+0.049 0.315+0.043 0.309+£0.048 0.31740.046 0.329+0.039
mestranol_similarity 0.742+0.154 0.736+0.122 0.761£0.156 0.7924-0.130 0.768+0.161
osimertinib_mpo 0.905-£0.046 0.872+0.040 0.873+£0.034 0.847+0.033 0.828+0.031
perindopril_mpo 0.642£0.078 0.613£0.059 0.609-+£0.081 0.5531+0.042 0.548+0.041
qed 0.948-+0.007 0.947+0.006 0.948+0.007 0.948+0.005 0.947+0.006
ranolazine_mpo 0.857+0.109 0.801+0.106 0.846+0.121 0.807+0.101 0.807+0.114
scaffold_hop 0.7141+0.089 0.558+0.034 0.615+0.058 0.647+0.058 0.610+0.054
sitagliptin_mpo 0.034£0.011 0.657+£0.211 0.362+0.185 0.186+0.055 0.267+0.106
thiothixene_rediscovery 0.663+0.138 0.574+0.095 0.637+£0.135 0.6451+0.104 0.651+0.106
troglitazone_rediscovery 0.587+0.133 0.494+0.081 0.496+£0.098 0.53940.100 0.514+0.081
valsartan_smarts 0.196+0.376 0.000+£0.000 0.000+£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.475+0.172 0.412+0.096 0.433£0.141 0.390+0.124 0.2524+0.093
Sum 16.564 15.946 15.889 15.880 14.940
Rank 1 2 3 4 5
Method DoG-Gen STONED SMILES GA LSTM HC SELFIES DST
Assembly ‘ Synthesis ‘ SELFIES ‘ SMILES ‘ SELFIES ‘ Fragments
albuterol_similarity 0.925+0.150 0.805£0.146 0.703£0.109 0.971+0.181 0.748+0.115
amlodipine_mpo 0.605+0.036 0.635+0.062 0.563+£0.022 0.579+0.023 0.525+0.015
celecoxib_rediscovery 0.682+0.117 0.398+0.053 0.356+£0.035 0.5354+0.083 0.42240.045
deco_hop 0.9254+0.122 0.627+0.017 0.624+0.017 0.626+0.016 0.627+0.020
drd2 0.999+0.116 0.997+0.228 0.986£0.208 0.999+0.304 0.998+0.298
fexofenadine_mpo 0.769+0.043 0.851£0.065 0.764£0.044 0.753+0.039 0.767+0.047
gsk3b 0.989-+0.141 0.756+£0.148 0.709+0.138 0.60110.107 0.843+0.220
isomers_c7h8n202 0.923+0.316 1.0£0.255 1.0+0.229 0.879+0.264 0.804+0.299
isomers_cOh10n202pf2cl 0.483+0.147 0.935+0.254 0.976+£0.243 0.597+0.185 0.810+0.300
jnk3 0.886+£0.179 0.613+0.164 0.393+£0.084 0.303+0.053 0.781+0.223
medianl 0.296+£0.052 0.282+0.039 0.199+£0.020 0.3381+0.054 0.262+0.031
median2 0.287+0.039 0.264+0.041 0.207+£0.013 0.26110.032 0.194+0.023
mestranol_similarity 0.609+0.102 0.671+0.141 0.513+0.067 0.58540.075 0.506+0.069
osimertinib_mpo 0.843+0.043 0.848+0.037 0.834£0.032 0.82240.029 0.8174+0.029
perindopril_-mpo 0.575+£0.052 0.521£0.034 0.456£0.021 0.502+0.028 0.480+0.027
qed 0.948+0.013 0.947+£0.005 0.948+£0.005 0.94740.005 0.946+0.006
ranolazine_mpo 0.8070.090 0.859+0.149 0.775+0.118 0.769+0.138 0.745+0.184
scaffold_hop 0.590+0.039 0.546£0.050 0.512+0.023 0.51910.024 0.519+0.026
sitagliptin_mpo 0.181£0.057 0.517+£0.173 0.480£0.150 0.23010.063 0.11110.054
thiothixene_rediscovery 0.506£0.080 0.388£0.042 0.326£0.025 0.43910.054 0.406+0.046
troglitazone_rediscovery 0.619+0.134 0.359+0.043 0.272+0.030 0.31540.031 0.308+0.038
valsartan_smarts 0.000£0.000 0.000+£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.314+0.111 0.373+0.100 0.389+0.107 0.310+0.093 0.259+0.105
Sum 14.772 14.201 12.997 12.894 12.889

Rank 6 7 8 9 10
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Table 18: (Continued)

Method SynNet MIMOSA MARS GA+D MolPal
Assembly Synthesis Fragments Fragments SELFIES -
albuterol_similarity 0.646+£0.075 0.702+0.112 0.652+0.155 0.623+0.118 0.625+0.046
amlodipine_mpo 0.585+0.023 0.564+0.021 0.526+£0.030 0.5254+0.136 0.614+0.042
celecoxib_rediscovery 0.478+0.056 0.428+0.050 0.448+0.091 0.2694-0.063 0.426+0.033
deco_hop 0.624+0.016 0.641£0.023 0.596£0.007 0.583+0.023 0.662+0.031
drd2 0.998+0.109 0.990-+£0.301 0.988-£0.190 0.7721+0.365 0.872+0.200
fexofenadine_mpo 0.785+0.033 0.737£0.038 0.741£0.044 0.729+0.187 0.696+0.018
gsk3b 0.901+0.164 0.700+0.156 0.607+0.105 0.51140.128 0.619+0.118
isomers_c7h8n202 0.529+0.135 0.798+0.294 0.949+0.303 1.0+£0.274 0.523+0.115
isomers_c9h10n202pf2cl 0.332+0.126 0.444+£0.179 0.820£0.304 0.82010.265 0.177+0.040
jnk3 0.715+£0.148 0.483+£0.140 0.587+£0.166 0.378+0.111 0.404+0.077
median] 0.228+0.019 0.275+0.044 0.216£0.018 0.199+0.036 0.257+0.024
median2 0.2441+0.017 0.229+0.019 0.190+0.017 0.156+0.031 0.2374+0.017
mestranol_similarity 0.4274+0.040 0.470£0.051 0.444+£0.053 0.52740.129 0.585+0.061
osimertinib_mpo 0.810£0.027 0.813+0.030 0.797£0.049 0.777+0.143 0.794+0.029
perindopril_-mpo 0.589+0.040 0.548+0.050 0.480£0.025 0.32440.144 0.480+0.024
qed 0.947+0.003 0.945+0.005 0.938+0.012 0.9414+0.118 0.947+0.004
ranolazine_mpo 0.771£0.055 0.767+0.176 0.759+0.068 0.7714+0.252 0.494+0.064
scaffold_hop 0.515+0.019 0.534+0.034 0.476£0.009 0.4651+0.038 0.501+0.015
sitagliptin_mpo 0.029+0.017 0.179+0.078 0.034£0.011 0.469+0.173 0.051+0.012
thiothixene_rediscovery 0.433+£0.042 0.367£0.036 0.426£0.067 0.29410.072 0.347+0.023
troglitazone_rediscovery 0.303+0.022 0.332+0.041 0.296+0.033 0.198+0.041 0.273+0.013
valsartan_smarts 0.000£0.000 0.000£0.000 0.000£0.000 0.000+0.000 0.000=£0.000
zaleplon_mpo 0.381£0.078 0.274+£0.111 0.213+0.074 0.3531+0.123 0.1911+0.049
Sum 12.279 12.233 12.193 11.696 10.786
Rank 11 12 13 14 15
Method GFlowNet DoG-AE VAE BO SELFIES Screening VAE BO SMILES
Assembly Fragments Synthesis SELFIES - SMILES
albuterol_similarity 0.502+£0.054 0.543+0.043 0.528+0.038 0.526+0.033 0.530+0.035
amlodipine_mpo 0.465+0.024 0.513+0.012 0.531£0.015 0.563+0.024 0.559+0.021
celecoxib_rediscovery 0.359+0.036 0.360+0.018 0.352+0.024 0.3724+0.022 0.382+0.027
deco_hop 0.594+0.007 0.789+0.084 0.587+£0.004 0.600+0.007 0.604+0.007
drd2 0.836£0.208 0.978+0.122 0.772+£0.197 0.74110.189 0.773+0.193
fexofenadine_mpo 0.711£0.019 0.686+£0.023 0.682+0.013 0.686+0.019 0.692+0.016
gsk3b 0.691+0.056 0.624+0.114 0.420+0.078 0.560+0.099 0.473+0.080
isomers_c7h8n202 0.530+0.141 0.251£0.088 0.423+0.115 0.25440.079 0.226£0.064
isomers_c9h10n202pf2cl 0.199+0.063 0.052+0.018 0.286£0.086 0.1531+0.047 0.118+0.030
jnk3 0.499-+£0.062 0.492+0.156 0.262£0.054 0.309+0.056 0.302+0.065
median] 0.216+£0.022 0.174+0.012 0.211£0.016 0.2224+0.018 0.2224+0.020
median2 0.188+0.008 0.184+0.009 0.192+0.006 0.2124+0.012 0.207+0.010
mestranol_similarity 0.347+0.027 0.378+0.023 0.414+£0.029 0.44740.040 0.427+0.031
osimertinib_mpo 0.798+£0.009 0.759+0.028 0.780+£0.013 0.783+0.019 0.784+0.014
perindopril_-mpo 0.457+£0.025 0.437£0.018 0.445+0.011 0.4641+0.018 0.458+0.015
qed 0.939+0.027 0.933+0.010 0.945+0.007 0.9461+0.004 0.946+0.007
ranolazine_mpo 0.6741+0.046 0.700+0.037 0.488+0.061 0.456+0.052 0.523+0.066
scaffold_hop 0.475+0.010 0.495+0.016 0.464£0.007 0.485+0.010 0.483+0.011
sitagliptin_mpo 0.017+£0.006 0.010£0.005 0.140£0.044 0.040+0.012 0.034+0.011
thiothixene_rediscovery 0.309+0.026 0.320£0.020 0.314£0.016 0.336+0.019 0.336+0.022
troglitazone_rediscovery 0.196+0.009 0.264+0.020 0.253+0.009 0.264+0.013 0.270+0.013
valsartan_smarts 0.000+0.000 0.000+0.000 0.006+0.007 0.000+0.000 0.006+0.008
zaleplon_mpo 0.070£0.042 0.054£0.032 0.280£0.075 0.12440.039 0.071+0.024
Sum 10.084 10.007 9.788 9.553 9.435
Rank 16 17 18 19 20
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Table 19: (Continued)

Method GFlowNet-AL Pasithea JT-VAE BO Graph MCTS MoIDQN

Assembly Fragments SELFIES Fragments Atoms Atoms
albuterol_similarity 0.420+£0.027 0.460£0.020 0.499+0.039 0.6261+0.041 0.362+0.034
amlodipine_mpo 0.443+0.020 0.508+0.007 0.526+£0.014 0.4621+0.017 0.354+0.035
celecoxib_rediscovery 0.285+0.023 0.317+0.014 0.305+0.016 0.29640.038 0.11140.008
deco_hop 0.590+0.005 0.583+0.003 0.591£0.006 0.563+0.007 0.5524+0.006
drd2 0.637+£0.168 0.275+0.060 0.557+£0.177 0.401+0.118 0.032+0.005
fexofenadine_mpo 0.706£0.015 0.665+0.017 0.675+0.015 0.59410.028 0.516+0.038
gsk3b 0.623+0.040 0.293+0.047 0.379+0.074 0.3334+0.053 0.285+0.046
isomers_c7h8n202 0.32240.090 0.824+0.233 0.113£0.026 0.623+0.124 0.5231+0.088
isomers_c9h10n202pf2cl 0.090+£0.025 0.448+0.200 0.108£0.046 0.5631+0.138 0.504+0.119
jnk3 0.403+£0.052 0.158+0.021 0.257£0.048 0.13410.031 0.130+0.025
median] 0.203+0.015 0.182+0.013 0.183+£0.010 0.21240.021 0.168+0.023
median2 0.182+0.008 0.181+0.005 0.183+0.005 0.14010.008 0.100+0.007
mestranol_similarity 0.318+0.020 0.365+0.021 0.365+0.022 0.308+0.031 0.265+0.038
osimertinib_mpo 0.800-£0.009 0.756£0.013 0.785+0.016 0.7224+0.017 0.685+0.017
perindopril_-mpo 0.437+£0.017 0.424+0.010 0.438+0.014 0.31140.038 0.253+0.066
qed 0.932+0.034 0.938+0.006 0.943+£0.008 0.91610.025 0.846+0.081
ranolazine_mpo 0.666+0.046 0.354+0.025 0.524+0.074 0.303+0.069 0.104+0.046
scaffold_hop 0.469+0.008 0.462+0.006 0.479£0.012 0.4261+0.013 0.414+0.013
sitagliptin_mpo 0.009-+0.003 0.137£0.044 0.063£0.037 0.106+0.034 0.005+0.003
thiothixene_rediscovery 0.286+£0.018 0.291£0.010 0.287+£0.012 0.249+0.020 0.115+0.015
troglitazone_rediscovery 0.193+0.008 0.242+0.005 0.241£0.007 0.240+0.016 0.141+0.014
valsartan_smarts 0.000£0.000 0.006+£0.013 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.020£0.006 0.140£0.043 0.161£0.061 0.096+0.034 0.017+0.009

Sum 9.044 9.020 8.671 8.635 6.495

Rank 21 22 23 24 25
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Table 20: The mean and standard deviation of Top-1 from 5 independent runs. We ranked the methods by the summation of
mean Top-1 of all tasks. (Continued)

Method REINVENT LSTM HC Graph GA REINVENT SELFIES DoG-Gen
Assembly SMILES SMILES Fragments SELFIES Synthesis
albuterol_similarity 1.0£0.166 1.0£0.188 1.0+0.168 0.960+0.162 0.978+0.150
amlodipine_mpo 0.735+0.086 0.739+0.063 0.783+£0.078 0.70610.068 0.621+0.034
celecoxib_rediscovery 0.959+0.226 0.850+0.188 0.810+0.199 0.750+0.146 0.760+0.127
deco_hop 0.805+0.109 0.955+0.083 0.654+0.019 0.73610.069 0.9324+0.076
drd2 0.999-+0.108 0.999-+£0.149 0.999+£0.008 0.999+0.062 0.999+0.003
fexofenadine_mpo 0.910+£0.073 0.818+£0.047 0.845+0.053 0.84240.044 0.808+0.036
gsk3b 0.972+0.160 1.0+0.119 0.946£0.156 0.964+0.187 1.0£0.076
isomers_c7h8n202 1.0£0.260 0.971+0.285 1.0+0.196 0.9614+0.172 0.990+0.324
isomers_c9h10n202pf2cl 0.855+0.290 0.832+0.267 0.905+0.190 0.913+0.214 0.624+0.148
jnk3 0.954+0.233 0.968-£0.196 0.818+0.257 0.838+0.227 0.948+0.146
medianl 0.399-+£0.058 0.388+£0.064 0.350£0.050 0.399+0.063 0.32240.053
median2 0.332+0.045 0.339+0.049 0.324+£0.040 0.3131+0.040 0.297+0.040
mestranol_similarity 0.748+0.140 0.894+0.154 0.761£0.118 0.761+0.134 0.657£0.106
osimertinib_mpo 0.909-£0.040 0.859+0.023 0.880+£0.029 0.878+0.028 0.850+0.028
perindopril_mpo 0.644-£0.071 0.568+0.037 0.625+0.054 0.610+0.070 0.587+0.044
qed 0.948-0.000 0.948+0.002 0.948+0.001 0.948+0.002 0.948+0.007
ranolazine_mpo 0.865+0.068 0.824+0.073 0.810+£0.072 0.85140.095 0.823+0.057
scaffold_hop 0.7161+0.088 0.797+0.136 0.561£0.031 0.617+0.052 0.621+0.040
sitagliptin_mpo 0.080+£0.034 0.262+0.079 0.689+0.214 0.409+0.170 0.2524+0.099
thiothixene_rediscovery 0.665+0.128 0.734£0.116 0.601£0.092 0.64240.127 0.553+0.087
troglitazone_rediscovery 0.593+0.127 0.587+0.115 0.505+£0.079 0.509+0.094 0.707+0.124
valsartan_smarts 0.197+0.382 0.000+£0.000 0.000+£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.478+0.150 0.413+0.126 0.421£0.086 0.44110.109 0.3431+0.111
Sum 16.772 16.754 16.244 16.059 15.633
Rank 1 2 3 4 5
Method GP BO STONED LSTM HC SELFIES DST SMILES GA
Assembly ‘ Fragments ‘ SELFIES ‘ SELFIES ‘ Fragments ‘ SMILES
albuterol_similarity 1.0£0.140 0.805+0.136 1.0£0.185 0.792+0.113 0.715+0.095
amlodipine_mpo 0.681£0.067 0.638+0.054 0.600£0.012 0.58240.054 0.570+0.006
celecoxib_rediscovery 0.946+£0.206 0.401+0.051 0.585+0.090 0.459+0.039 0.358+0.031
deco_hop 0.727+0.067 0.627+0.015 0.637+0.018 0.635+0.019 0.624+0.014
drd2 0.999-+0.130 0.997+0.182 0.999+0.237 0.999+0.209 0.986+0.161
fexofenadine_mpo 0.805+0.053 0.851£0.058 0.769+0.039 0.778+0.041 0.771£0.041
gsk3b 0.986+£0.164 0.766+0.106 0.65+0.074 0.86110.160 0.7224+0.090
isomers_c7h8n202 0.858+0.216 1.0£0.234 0.937+0.242 0.836+0.235 1.040.204
isomers_c9h10n202pf2cl 0.583+0.219 0.935+0.230 0.713£0.210 0.86110.281 0.976+0.217
jnk3 0.698+0.221 0.62+0.150 0.428+0.101 0.789+0.200 0.414+0.080
medianl 0.345+0.044 0.295+0.036 0.362£0.058 0.28140.036 0.207+0.014
median2 0.337+£0.033 0.265+0.038 0.274+£0.031 0.20110.024 0.210+0.009
mestranol_similarity 0.796+0.153 0.671+0.132 0.646+0.079 0.529+0.070 0.515£0.057
osimertinib_mpo 0.837£0.020 0.848+£0.024 0.832+0.018 0.8274+0.018 0.835+0.019
perindopril_-mpo 0.562+0.036 0.522+0.027 0.521£0.028 0.502+0.026 0.459+0.014
qed 0.947+£0.002 0.947+£0.001 0.948+0.001 0.94740.003 0.948+0.002
ranolazine_mpo 0.817+0.080 0.862+0.113 0.795+0.099 0.7524+0.163 0.780+0.082
scaffold_hop 0.619+0.055 0.548+0.047 0.543+0.029 0.521+0.019 0.512+0.020
sitagliptin_mpo 0.318+£0.117 0.526£0.169 0.349+£0.089 0.205+0.106 0.504+0.145
thiothixene_rediscovery 0.663+£0.097 0.390+£0.036 0.468+£0.057 0.427+0.042 0.329+0.021
troglitazone_rediscovery 0.544+0.083 0.360+£0.039 0.344+£0.035 0.31740.034 0.282+0.023
valsartan_smarts 0.000£0.000 0.000+£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.269+0.084 0.373+0.088 0.360£0.093 0.34440.119 0.396+0.097
Sum 15.345 14.257 13.770 13.455 13.123

Rank 6 7 8 9 10
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Table 21: (Continued)

Method SynNet MARS MolPal MIMOSA GA+D
Assembly Synthesis Fragments - Fragments SELFIES
albuterol_similarity 0.697+0.083 0.710£0.149 0.714£0.054 0.720+0.099 0.633+0.109
amlodipine_mpo 0.596+£0.020 0.546+0.034 0.651£0.043 0.5944-0.009 0.527+0.124
celecoxib_rediscovery 0.5254+0.062 0.486+0.082 0.511£0.041 0.43840.032 0.289+0.060
deco_hop 0.639+0.019 0.6030.005 0.860£0.102 0.6421+0.018 0.584+0.023
drd2 0.999-+£0.084 0.994+0.141 0.964£0.165 0.993+0.203 0.836+0.374
fexofenadine_mpo 0.797+£0.031 0.755+0.034 0.709£0.006 0.743+0.030 0.737+0.174
gsk3b 0.932+0.146 0.683+0.109 0.82+0.128 0.718+0.097 0.534+0.127
isomers_c7h8n202 0.685+0.147 0.961£0.260 0.882+0.163 0.804+0.233 1.0+£0.254
isomers_c9h10n202pf2cl 0.507+£0.173 0.864£0.302 0.391£0.091 0.4651+0.164 0.820+0.246
jnk3 0.797+£0.141 0.646£0.160 0.608+0.117 0.497+0.120 0.392+0.111
median] 0.244+0.019 0.233+0.017 0.309+£0.028 0.296+0.039 0.219+0.037
median2 0.259+0.016 0.203+0.015 0.273+0.021 0.238+0.016 0.161+0.028
mestranol_similarity 0.447+£0.040 0.481£0.047 0.733£0.081 0.5231+0.049 0.5431+0.128
osimertinib_mpo 0.821£0.016 0.809+0.021 0.816£0.020 0.817+0.022 0.784+0.129
perindopril_-mpo 0.610£0.039 0.488+0.016 0.504£0.020 0.55740.047 0.337+0.147
qed 0.948+0.001 0.946+0.001 0.948+£0.002 0.94740.002 0.945+0.104
ranolazine_mpo 0.783+0.038 0.776+0.050 0.556+0.064 0.773+0.139 0.775+0.244
scaffold_hop 0.531£0.022 0.489+0.012 0.525+0.016 0.53440.026 0.467+0.038
sitagliptin_mpo 0.067£0.040 0.083+£0.037 0.117+£0.030 0.209+0.085 0.482+0.175
thiothixene_rediscovery 0.481£0.057 0.463+0.077 0.361£0.016 0.378+0.029 0.307+0.068
troglitazone_rediscovery 0.326+£0.022 0.328+0.040 0.296+£0.013 0.3414+0.036 0.201+0.039
valsartan_smarts 0.000£0.000 0.000£0.000 0.000£0.000 0.000+0.000 0.000=£0.000
zaleplon_mpo 0.402+0.059 0.296+0.023 0.286£0.064 0.287+0.103 0.359+0.119
Sum 13.105 12.853 12.844 12.524 11.942
Rank 11 ‘ 12 ‘ 13 ‘ 14 15
Method VAE BO SELFIES DoG-AE Screening GFlowNet VAE BO SMILES
Assembly SELFIES ‘ Synthesis ‘ - ‘ Fragments SMILES
albuterol_similarity 0.594+0.063 0.633+0.054 0.603£0.056 0.550+0.069 0.593+0.048
amlodipine_mpo 0.593+0.022 0.539+0.017 0.613+0.039 0.482+0.016 0.611+0.036
celecoxib_rediscovery 0.391+0.027 0.406+0.027 0.419+0.023 0.409+0.042 0.4254+0.026
deco_hop 0.6020.006 0.8620.060 0.616£0.003 0.600+0.007 0.666+0.027
drd2 0.940+0.183 0.999+0.059 0.949+£0.206 0.951+0.185 0.899+0.164
fexofenadine_mpo 0.707+£0.011 0.723+0.045 0.706£0.021 0.72740.017 0.719+0.016
gsk3b 0.564+0.128 0.778+0.143 0.836+0.185 0.726+0.058 0.606+0.100
isomers_c7h8n202 0.605+0.143 0.563£0.200 0.488+0.154 0.6931+0.158 0.418-£0.109
isomers_c9h10n202pf2cl 0.461£0.162 0.140£0.078 0.273£0.075 0.290+0.094 0.209+0.067
jnk3 0.414+£0.117 0.554+0.143 0.456£0.100 0.54£0.047 0.432+0.098
median] 0.231£0.017 0.203+0.014 0.271£0.029 0.2371+0.019 0.267+0.043
median2 0.206+£0.006 0.201£0.010 0.244+£0.021 0.198+0.009 0.2224+0.011
mestranol_similarity 0.507£0.059 0.436£0.036 0.552+0.143 0.388+0.038 0.5231+0.049
osimertinib_mpo 0.802£0.010 0.793+0.026 0.801£0.016 0.817+0.016 0.801+0.010
perindopril_-mpo 0.482+0.024 0.464£0.026 0.500£0.028 0.478+0.021 0.484+0.028
qed 0.947+0.003 0.944+0.004 0.947+£0.001 0.9454-0.005 0.947+0.003
ranolazine_mpo 0.564+0.065 0.744+0.025 0.5324+0.059 0.70140.030 0.598+0.076
scaffold_hop 0.487+0.013 0.526£0.024 0.509£0.006 0.488+0.010 0.504+0.015
sitagliptin_mpo 0.244+0.083 0.039+0.033 0.142£0.060 0.045+0.020 0.11440.068
thiothixene_rediscovery 0.343+0.016 0.358+0.021 0.362£0.017 0.34240.030 0.370+0.028
troglitazone_rediscovery 0.287+0.032 0.349+0.056 0.294+0.018 0.21140.013 0.306+0.024
valsartan_smarts 0.064+0.072 0.000+0.000 0.000+0.000 0.000+0.000 0.064+0.077
zaleplon_mpo 0.379+0.091 0.1560.093 0.280£0.101 0.118+0.061 0.1391+0.046
Sum 11.423 11.418 11.403 10.945 10.926
Rank 16 17 18 19 20
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Table 22: (Continued)

Method Pasithea JT-VAE BO GFlowNet-AL Graph MCTS MoIDQN

Assembly SELFIES Fragments Fragments Atoms Atoms
albuterol_similarity 0.50740.018 0.55040.057 0.47240.032 0.686+£0.052 0.383£0.038
amlodipine_mpo 0.585+0.0 0.585+0.0 0.466+£0.016 0.483+0.024 0.383+0.033
celecoxib_rediscovery 0.355+0.015 0.390+0.031 0.332+0.030 0.32940.037 0.1284+0.019
deco_hop 0.608+0.013 0.60040.006 0.59640.006 0.569+£0.008 0.554£0.006
drd2 0.59240.122 0.778+0.215 0.86340.198 0.586£0.197 0.049+0.012
fexofenadine_mpo 0.707£0.041 0.702+0.016 0.732+0.015 0.6114+0.024 0.532+0.039
gsk3b 0.414+0.084 0.511£0.086 0.675+0.052 0.4041-0.067 0.344+0.061
isomers_c7h8n202 0.90240.231 0.26440.099 0.56140.163 0.783£0.144 0.652£0.126
isomers_c9h10n202pf2cl 0.607+0.186 0.30740.147 0.18240.061 0.704+£0.150 0.583£0.122
jnk3 0.21040.035 0.40440.104 0.46340.060 0.178+0.051 0.152£0.029
medianl 0.216+0.021 0.212+0.019 0.229+0.012 0.2424+0.023 0.188+0.028
median2 0.194+0.006 0.192+0.003 0.191£0.009 0.148+0.010 0.108+0.009
mestranol_similarity 0.449+0.015 0.454+0.060 0.351£0.024 0.330+0.030 0.29440.041
osimertinib_-mpo 0.79240.009 0.80040.011 0.81240.010 0.738+0.018 0.699+0.018
perindopril_-mpo 0.44740.016 0.46340.019 0.46440.020 0.334+0.038 0.282£0.062
qed 0.943+0.005 0.946+£0.003 0.944+0.015 0.928+0.019 0.871+0.067
ranolazine_mpo 0.443+0.054 0.587+0.041 0.705+0.034 0.369+0.096 0.1714+0.077
scaffold_hop 0.50340.022 0.49640.013 0.47940.009 0.434£0.014 0.421£0.015
sitagliptin_mpo 0.23040.085 0.16940.096 0.02840.017 0.210+0.088 0.015-£0.009
thiothixene_rediscovery 0.3334+0.016 0.3154+0.014 0.31940.020 0.265+0.022 0.129+£0.018
troglitazone_rediscovery 0.258+0.007 0.259+0.003 0.206£0.011 0.267+0.027 0.153+0.016
valsartan_smarts 0.064+0.126 0.000£0.000 0.000-£0.000 0.000+0.000 0.000+0.000
zaleplon_mpo 0.24340.084 0.30240.089 0.04840.020 0.166£0.065 0.042£0.024

Sum 10.611 10.296 10.130 9.778 7.143

Rank 21 22 23 24 25




