Large Language Models Can Think and Act Probabilistically

Kou Misaki! Takuya Akiba '

Abstract

This research demonstrates that our non-trivial
prompting method, incorporating programmatic
representations, can enable agents to reliably ex-
ecute their own intended probabilistic behavior.
This capability is crucial for applications requir-
ing strategic unpredictability (i.e., anti-predictive
against adversaries) and efficient exploration.
Our proposed prompting method, called Random
String Manipulation (RSM), leverages the capa-
bility of Large Language Models (LLMs) to gen-
erate complex strings and arithmetically manip-
ulate them to select an action from a set of ac-
tions according to a given probability distribution.
Experiments on tasks requiring probabilistic re-
sponses show that RSM consistently outperforms
baseline prompts across all tested LLMs, and in
some cases achieves performance comparable to
pseudo-random number generators, demonstrat-
ing its effectiveness in ensuring robust and unbi-
ased probabilistic outputs.

1. Introduction

We begin by posing a simple yet fundamental question: Can
Large Language Models (LLMs) think and act probabilisti-
cally? For instance, suppose prompting an LLM with the
instruction, “Flip a fair coin and output Heads or Tails with
equal probability”, repeated 100 times. Ideally, the distribu-
tion of Heads and Tails would be close to 50-50. However,
as our experiments reveal, even state-of-the-art LLMs tend
to yield skewed outputs when given a naive prompt.

A straightforward solution is to incorporate a genuine ran-
dom source, such as a pseudo-random number generator
(PRNG), and condition the LLM’s response accordingly.
For example, one might sample a random integer and take
modulo 2 to obtain O or 1. Then we can instruct the model
to produce “Heads” if the integer is 0 and “Tails” otherwise,
ensuring perfect 50-50 randomness. However, this approach

!Sakana AlI, Tokyo, Japan. Correspondence to: Kou Misaki
<kou.misaki @sakana.ai>.

ICML 2025 Workshop on Programmatic Representations for Agent
Learning, Vancouver, Canada. Copyright 2025 by the author(s).

Baseline Method

q Input: "Flip a fair coin and j\

output Heads or Tails."

Proposed Method (RSM)

Input: "Generate a random string, and
manipulate it to flip a fair coin.

Then output Heads or Tails."
)

e e (7SAQOIZR@K3] (XkSqP@ImS#)
o ¥ ¥ .
1 0 o

)
Biased Distribution: °
q A

0O

Balanced Distribution: 0
1)
D : LLM Sampling (7 > 0) a : Heads Q: Tails

Figure 1. The schematic figure illustrating our method in the con-
text of a fair coin flip, where we query the LLM multiple times
using the same prompt at a non-zero temperature 7' > 0 and col-
lect the resulting outputs.

uses external randomness, not the LLM’s own generation.

We therefore propose Random String Manipulation (RSM),
a method that instructs the LLM to generate a “random”
string and to manipulate it (e.g., summing ASCII codes and
taking modulo 2) to decide the final output, entirely within
the model. This technique naturally extends from binary
coin flips to more general n-choice settings, covering both
uniform and biased target distributions. In our experiments,
RSM consistently reduces output bias compared to baseline
prompts across multiple LLMs, and in some cases achieves
performance near that of external PRNG solutions. Col-
lectively, these results answer our guiding question in the
affirmative: LLMs can think and act probabilistically.

Enabling LLMs to reliably exhibit probabilistic behavior
has important implications, particularly in multiplayer or ad-
versarial scenarios. Deterministic or predictable behaviors
expose systems to strategic exploitation, whereas adopting
a mixed strategy, randomizing actions with specified proba-
bilities, provides a robust defense against pattern recogni-
tion by opponents. Exemplified by the classic Rock-Paper-
Scissors game, optimal performance often necessitates con-
trolled randomness (Osborne et al., 2004). Our method is
thus an important step toward empowering LLMs to au-
tonomously implement effective probabilistic strategies.

Large Language Models Can Think and Act Probabilistically

2. Related Work

Several recent studies have examined the biases in the out-
put distributions of LLMs when selecting among multiple
options. Hopkins et al. (2023), for example, tested whether
small, open-source models can generate random numbers,
although frontier-scale models remain largely unexplored
in their analysis. Focusing on coin flips, Gupta et al. (2025)
investigated how sequences of flip outcomes in the input
prompt can bias an LLM’s prediction of the next flip. Simi-
larly, Van Koevering & Kleinberg (2024) observed system-
atic biases in coin-flip experiments with various models.
Beyond coin flips, Lee (2024) studied how LLMs distribute
their choices among several possible actions, revealing fur-
ther evidence of inherent biases. In a related context, Meis-
ter et al. (2024) discussed the extent to which LLM outputs
align with human-generated distributions.

In multi-player game scenarios, Guo et al. (2023) proposed
an LLM-based agent outputting probabilities for subsequent
moves but relied on an external pseudo-random number
generator to finalize the choice. By contrast, our work
focuses on generating and harnessing randomness within
the LLM itself, eliminating external randomness sources.

3. Methods
3.1. LLM Agents and Non-Deterministic Actions

Building on the motivation presented above, we now define
terminology and methodologies to facilitate probabilistic
actions by LLM agents.

Key parameters influencing probabilistic behavior in LLMs
include: (1) input prompt t;,, (2) temperature 7', and (3)
random seed e for output generation. We denote the LLM’s
output generation process as a function fr , dependent on
temperature 7" and random seed €. Given an input prompt
tin, the generated output is toy = fr,c(tin)-

Consider the following task, serving as a foundational com-
ponent for strategies involving probabilistic actions. Sup-
pose we have a set of m actions a = (aq, . .., G,), each as-
sociated with a probability p = (p1, . . . , pm), where p; > 0
and Y 7" | p; = 1. We encode this action-probability infor-
mation textually and instruct the LLM to select an action a;
according to probability p;. This instruction is represented
as a prompt tpiop(a, p), referred to as a probabilistic prompt.

To perform evaluation, we invoke the LLM function fr .
with prompt tpob(a, p) repeatedly, N times, each with a
distinct random seed {¢,}_; !. This produces outputs
tow = fr.e,(trob(a, p)), for s = 1,..., N. We then parse

'Random seeds can typically be configured in most LLM APIs,
though they are often selected randomly automatically, minimizing
the risk of seed collisions if unspecified.

each output text into actions using a parsing function g,
yielding N actions a* = g(t3,,)-

From these parsed actions, we construct an empirical action
distribution p; = Y| I(a* = a;)/N, where I is the indi-
cator function. Performance assessment involves comparing
the intended distribution p; with the empirical distribution
pi- To quantify deviations, we employ known statistical
measures, including KL divergence and JS divergence.

3.2. Random String Manipulation

In this paper, we explore two probabilistic prompts: (1)
a Baseline Prompt, included for comparison, and (2) our
proposed Random String Manipulation (RSM) prompt.

A Baseline Prompt simply instructs the model to pick ac-
tions according to a specified probability, while RSM aims
to exploit it more effectively. Concretely, the RSM prompt
is a simple instruction with two stages, as schematically
shown in Figure 1: it first directs the LLM to (1) generate a
random string, and then (2) use that generated string to act
probabilistically. Example RSM and Baseline prompts are
provided in Appendix A.1.

Despite its simplicity, RSM, when executed at non-zero
temperature, effectively translates the random strings it gen-
erates into varied probabilistic actions. This inherent string
generation process is intended to produce sufficient diversity,
thereby fostering noticeable variability among responses to
a common input prompt.

4. Experiments
4.1. Random Action Selection

We evaluated the performance of RSM on three probabilistic
action selection tasks, each repeated for N = 1000 tri-
als: (1) 3-choice (a = [rock, paper, scissors|, p =

[1/3, 1/3, 1/3]), (2) Biased 3-choice (a =
[rock, paper, scissors], p = [0.1, 0.2, 0.7]), and
(3) Biased 9-choice (a = [one, two, ..., eight, nine], p =

[0.08, 0.08, ..., 0.08, 0.36]). We calculated the Jensen-
Shannon (JS) divergence and Kullback-Leibler (KL)
divergence, where smaller values indicate closer alignment
with the desired probability distribution.

Models tested included deepseek-v3-0324 (DeepSeek-Al,
2024) (T = 1.0), gpt-40-2024-08-06 (Hurst et al., 2024)
(T = 1.0), o4-mini-high (OpenAl, 2025) (T = 0.3),
deepseek-r1-0528 (Guo et al., 2025) (7' = 0.6), and QwQ-
32B (Qwen Team, 2024) (T' = 0.6), using recommended or
default temperatures. Specific prompt details are provided
in Appendix A.1.

Table 1 summarizes the results, clearly indicating that RSM
substantially improves over baseline prompting across all

Large Language Models Can Think and Act Probabilistically

Table 1. Performance comparison of RSM against the baseline across various models, evaluated using the JS and KL divergence. We
generated 1000 actions for each configuration to calculate the empirical distribution, and then calculated the divergences. All the JS and
KL values are presented in units of 10~ (original values multiplied by 1000).

Model Method Setting 1: 3-choice Setting 2: Biased 3-choice Setting 3: Biased 9-choice
JS (x1073) KL (x1073) JS (x1073) KL (x10—3) JS (x1073) KL (x1073)
deepscek-v3 Baseline 134 415 117 357 296 1010
P RSM 9.99 (1 92%) 40.7 (1 90%) 12.0 (1 90%) 44.0 (1 88%) 34.5 (1 88%) 140 (1 86%)
4o Baseline 63.8 222 117 357 286 985
Ep RSM 492 (Jo2%) 193 (Lo1%) 7.5 (1 92%) 271 (L92%) 240 (L9o%) 96.9 (I 90%)
od-mini-hich Baseline 64.5 228 114 350 54.6 193
& RSM 8.13 (187%) 32.0 (1 86%) 15.0 (1 87%) 55.8 (1 84%) 11.0 (1 go%) 41.7 (1 78%)
deenseek-r1 Baseline 102 334 46.1 154 125 472
P RSM 1.46 (1 99%) 5.83 (1 98%) 2.00 (1 96%) 7.79 (1 95%) 7.35 (1 94%) 29.2 (1 94%)
QWQ-32B Baseline 101 403 104 326 250 881
RSM 0.61 (1 99%) 245 (199%) 0.07 (1 99.9%) 0275 (1 99.9%) 1.69 (1L 99%) 6.81 (L 99%)
PRNG median 0.174 0.695 0.172 0.693 0.922 3.68
(np.random) 90 petl. 0.573 2.29 0.571 2.28 1.68 6.70
3-choice Biased 3-choice Biased 9-choice L . . L .
1.00 4 ¥ r KL & JS vs. Thinking Time Effect Size w vs. Thinking Time
075 i oA 3 @ KL | & 27 =W
5 05 8| 8
0.50 E E 2 = .
— R, — E 2 21
0.25 E - E o g
— | lesasaeaa 0.0 i T
0.00 T T T T T T LIS L | 10° 10* 10° 10*

rock paper scissors rock paper scissors

202 X o O @
NN IO NCRNS
O&é\&\% ‘7&4'2}()9\

- |deal Baseline RSM

Figure 2. The empirical distribution of the random action selection
tasks for QwQ-32B. All three panels share a common y-axis.

models. Notably, QwQ-32B, known for its very long reason-
ing trace (Sui et al., 2025), shows significant improvements,
as we can see from Figure 2. As we will discuss later, we
attribute this improvement to the large complexity of the
generated random strings, due to the long Chain-of-Thought
(CoT). We note that deepseek-r1-0528, which also features
an extensive CoT, demonstrated substantial improvements
of around 95% or higher across all tasks through RSM.

To compare the results with the ideal case, we also generated
random actions using a pseudo-random number generator
(numpy . random). Specifically, we sampled 1000 actions
from the ground truth distribution using numpy . random,
repeated this 10° times with different seeds, and calculated
the median and 90th percentile of the 10° divergence values.

Remarkably, QwQ-32B’s performance using RSM ap-
proached that of pseudo-random number generation. Analy-
sis revealed QwQ-32B generated random strings of length
approximately 20, summed their ASCII codes, and deter-
mined actions by modulo operation. For instance, in the

Thinking Time (tokens) Thinking Time (tokens)

Figure 3. Uniformness of LLM-generated integers (0—127) as a
function of Thinking Time (tokens), measured by the KL and JS di-
vergences and the effect size w. s1.1-32B was used for generating
the data. KL and JS divergences and the effect size w = /x?/N
(N = 1000) are shown.

3-choice task, after the ASCII code summation, it takes
mod 3 of the summed integer and assumes that 0, 1, and 2
correspond to rock, scissors, and paper, respectively.

4.2. Random Integer Generation at 7" > (

To further analyze the success of RSM for LLMs with
long CoT, we conducted additional experiments with s1.1-
32B (Muennighoff et al., 2025), examining the impact of
CoT length controlled by budget forcing and “Wait” ap-
pends, on the generated string randomness.

In this experiment, we used s1.1-32B with a temperature
of T" = 0.7 at various maximum thinking token limits.
To increase the difficulty beyond a simple multiple-choice
scenario—and thereby highlight the influence of CoT length—
we generated random integers in the range 0 < n < 128.
We also limited the maximum number of “Wait” appends to
10, truncating the output once the thinking tokens exceeded

Large Language Models Can Think and Act Probabilistically

Thinking Time = 512 Thinking Time = 30000

LLM i LLM
150 o 13
PRNG ref. PRNG ref.
£ 100 10 1
=]
Q
50 51
0 0
0 50 100 0 50 100
value value

Figure 4. Value distribution of LLM(s1.1-32B)-generated integers
(0-127) (blue) for 512 thinking tokens (left) and 30000 thinking
tokens (right), overlaid with a pseudo-random reference (generated
by random. randint in Python) (orange).

the designated token limit. Each configuration produced
1000 sampled integers. Further details on the prompt used
in this experiment can be found in Section A.2.

Figure 3 presents the uniformity of integers (range 0 <
n < 128). With increasing reasoning length, uniformity
metrics (KL divergence, JS divergence, and effect size
w = y/x2/N, N = 1000) improved significantly. This
enhanced uniformity is visually depicted in Figure 4.

These results indicate the importance of CoT length on the
performance of the random action selection task. To take a
closer look, we experimented to directly reveal the effect of
CoT length on the generated random string complexity.

4.3. Sequential Random String Generation at 7' = 0

We evaluated the complexity of random strings generated
sequentially at 7' = 0. In this experiment, we invoked the
LLM multiple times in a sequence: first, we generated a
random string; then, we appended that string to the next
prompt and instructed the LLM to produce another random
string. We repeated this procedure 100 times, resulting in
100 random strings (each around 20 characters in length).

We set T' = 0 to eliminate external randomness from the
token decoding process, isolating complexity arising solely
from the LLM. We note that 7" = 0 is recommended for
s1.1-32B, so this choice does not compromise performance.

By adjusting the reasoning length using “Wait” appends, we
generated up to 100 strings per configuration. These 100
strings were sequentially concatenated, and the first 3000-
character prefix of the concatenated string was analyzed.
Complexity was measured via normalized Lempel-Ziv com-
plexity (Lempel & Ziv, 2003; Zhang et al., 2009) and zlib
compression ratios (level 9). In both metrics, a value of 1
indicates a completely random string, whereas a value of 0
corresponds to a perfectly regular string.

The result in Figure 5 shows that the complexity grows with
longer reasoning traces, indicating that LLMs can produce

LLM-generated Random String Complexity
0.80

0.75 A

0.70 A

String Complexity

0.65

—@— LZ Complexity
Zlib Compression Rate

0.60 == T T T T
0 2 4 6 8

Number of "Wait" Appends

Figure 5. The normalized Lempel Ziv Complexity and zlib com-
pression rate of a random string generated by LLM sequentially
at " = 0. We generated 100 strings, concatenated them, and took
the first 3000-character prefix.

sufficiently intricate random strings even in the absence of
external randomness at the decoding process (1" = 0).

5. Conclusion

In this paper, we introduced Random String Manipulation
(RSM), a novel prompting technique that leverages the inter-
nal reasoning and complex random string generation capa-
bilities of LLMs to execute controlled probabilistic actions.
Our experiments demonstrate that RSM consistently outper-
forms baseline prompts in reproducing desired probability
distributions, even in scenarios with higher complexity (e.g.,
9-choice tasks) or significant biases in target distributions.

By decomposing the problem into (1) generating a suffi-
ciently complex “random” string through a reasoning pro-
cess and (2) applying arithmetic operations to map this string
to actions, RSM effectively harnesses the inherent stochastic
behavior of LLMs. Crucially, we found that models capable
of extended CoT reasoning, such as QwQ-32B, exhibit near
pseudo-random performance under RSM. Furthermore, ex-
periments under controlled thinking tokens show that more
extensive reasoning steps can yield higher complexity and
better uniformity in the sample distribution.

Our findings have practical implications for applications
that demand strategic unpredictability, such as adversarial or
multiplayer game scenarios, and for randomized algorithms
where bias or predictable outputs can degrade performance.
RSM provides a relatively simple yet effective way to miti-
gate such concerns without specialized external randomness
modules or advanced system-level interventions.

In future work, we plan to examine the effectiveness of
RSM in real-world multiplayer games against adversarial
agents seeking to exploit patterns in the LLM’s behavior,
as well as investigate its utility in task-solving contexts,
such as randomized algorithms. Through these efforts, we
aim to further validate RSM’s potential to enhance both the
robustness and adaptability of LLM-driven solutions.

Large Language Models Can Think and Act Probabilistically

References

DeepSeek-Al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P, Bi, X, et al. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Guo, J., Yang, B., Yoo, P, Lin, B. Y., Iwasawa, Y., and Mat-
suo, Y. Suspicion-agent: Playing imperfect information
games with theory of mind aware gpt-4. arXiv preprint
arXiv:2309.17277,2023.

Gupta, R., Corona, R., Ge, J., Wang, E., Klein, D., Darrell,
T., and Chan, D. M. Enough coin flips can make llms act
bayesian. arXiv preprint arXiv:2503.04722, 2025.

Hopkins, A. K., Renda, A., and Carbin, M. Can LLMs
generate random numbers? evaluating LLM sampling in
controlled domains. In ICML 2023 Workshop: Sampling
and Optimization in Discrete Space, 2023. URL https:
//openreview.net/forum?id=Vhh1K9LjVI.

Hurst, A., Lerer, A., Goucher, A. P, Perelman, A., Ramesh,
A., Clark, A., Ostrow, A., Welihinda, A., Hayes, A.,
Radford, A., et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Lee, H. Llm-as-a-judge: Rethinking model-based
evaluations in text generation. 08 2024. URL
https://leehanchung.github.io/blogs/
2024/08/11/11lm-as—a-judge/.

Lempel, A. and Ziv, J. On the complexity of finite sequences.
IEEE Transactions on information theory, 22(1):75-81,
2003.

Meister, N., Guestrin, C., and Hashimoto, T. Benchmarking
distributional alignment of large language models. arXiv
preprint arXiv:2411.05403, 2024.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candes, E.,
and Hashimoto, T. s1: Simple test-time scaling. arXiv
preprint arXiv:2501.19393, 2025.

OpenAl
2025.
introducing-o3-and-o4-mini/.
2025-05-22.

Introducing openai 03 and o04-mini,
URL https://openai.com/index/
Accessed:

Osborne, M. J. et al. An introduction to game theory, vol-
ume 3. Springer, 2004.

Qwen Team. QwQ: Reflect deeply on the boundaries of the
unknown, 2024. URL https://qwenlm.github.
io/blog/gqwg-32b-preview/.

Sui, Y., Chuang, Y.-N., Wang, G., Zhang, J., Zhang, T.,
Yuan, J., Liu, H., Wen, A., Zhong, S., Chen, H., and Hu,
X. Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419,
2025.

Van Koevering, K. and Kleinberg, J. How random is ran-
dom? evaluating the randomness and humaness of 1lms’
coin flips. arXiv preprint arXiv:2406.00092, 2024.

Zhang, Y., Hao, J., Zhou, C., and Chang, K. Normalized
lempel-ziv complexity and its application in bio-sequence
analysis. Journal of mathematical chemistry, 46:1203—
1212, 2009.

https://openreview.net/forum?id=Vhh1K9LjVI
https://openreview.net/forum?id=Vhh1K9LjVI
https://leehanchung.github.io/blogs/2024/08/11/llm-as-a-judge/
https://leehanchung.github.io/blogs/2024/08/11/llm-as-a-judge/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

Large Language Models Can Think and Act Probabilistically

A. Prompts Used in Experiments

A.1. Random Action Selection

Listing A.1: RSM System Prompt (Random Action Selection)

You are a helpful AI Assistant designed to provide well-reasoned and detailed
responses. If the task involves probabilistic or non-deterministic reasoning, you
must begin by generating a unique and complex random string to serve as a seed.

This random string should appear sufficiently complex and unpredictable, with no
obvious structure or pattern. Use your judgment to ensure it looks arbitrary and
unguessable.

If the user explicitly instructs you to sample from a probability distribution, use
the generated seed (the exact contents inside the ‘<random_string>‘ tags) to guide
any random sampling or stochastic decisions.

Follow these two steps for every instruction:

1. Output the random seed string enclosed within ‘<random_string>' and
‘</random_string>"' tags.

2. Think deeply and carefully about the user’s question, and enclose this reasoning
within ‘<thinking>‘ and ‘</thinking>‘ tags. All probabilistic decisions must be
made using the generated seed-the exact contents inside the ‘<random_string>' tags.
Make sure to extract maximum randomness from the string by using all of its content.
3. Provide your final answer, enclosed within ‘<answer>‘ and ‘</answer>' tags.

Strictly follow this tag structure, and respond in the following format:
<random_string>

</random_string>
<thinking>

</thinking>
<answer>

</answer>

Listing A.2: User Prompt (Random Action Selection)

Please choose between {choices}. You must select one of these {num_choices} options
with the following probabilities: {prob_distribution}.

In the random action selection task, we used the system prompt as shown in Listing A.1. The system prompt instruction
consists of three components: (1) Generation of a random string, in case user’s task requires it; (2) Generation of a thought
process; (3) Generation of a final answer inside <answer> and </answer> tags. The final answer will be parsed from the
generated output in a rule-based manner.

As for the baseline method, we used the system prompt shown in Listing A.3. The baseline prompt instruction consists only
of (1) Generation of a chain of thought; (2) Generation of a final answer inside <answer> and </answer> tags. We also
included a thought process generation in the baseline prompt to gauge the pure effect of random string generation on the
probabilistic task.

As for the user prompt, we used a simple prompt shown in Listing A.2. Here in the boxes surrounded by { and }, we used
strings suited to each task.

A.2. Random Integer Generation

Large Language Models Can Think and Act Probabilistically

Listing A.3: Baseline System Prompt (Random Action Selection)

You are a helpful AI Assistant designed to provide well-reasoned and detailed
responses. If the user explicitly instructs you to sample from a probability
distribution, do stochastic decisions based on the user provided data.

Think deeply and carefully about the user’s question, and enclose this reasoning
within ‘<thinking>' and ‘</thinking>‘ tags. Then provide your final answer,
enclosed within ‘<answer>' and ‘</answer>' tags.

Strictly follow this tag structure, and respond in the following format:
<thinking>

</thinking>
<answer>

</answer>

Listing A.4: RSM System Prompt (Random Integers Generation)

You are a helpful AI Assistant designed to generate random data based on
instructions. When asked to generate random data, you must first generate a unique
and complex random string to serve as a seed or source of randomness.

This random string should appear sufficiently complex and unpredictable, with no
obvious structure or pattern. Use your judgment to ensure it looks arbitrary and
unguessable.

Use the generated seed (the exact contents inside the ‘<random_string>' tags) to
guide any subsequent random choices, like generating a random integer.

Follow these steps for the response format:

1. Output the random seed string enclosed within ‘<random_string>' and
‘</random_string>"' tags.

2. Perform the requested random generation task (e.g., generating a random integer
within a specified range). Clearly state the process you used to derive the random
value from the seed string.

3. Provide the final generated random value (e.g., the integer) enclosed within
appropriate tags (e.g., ‘<random_integer>' and ‘</random_integer>‘).

Strictly follow this tag structure.

As for the random ingteger generation, we used the prompts listed in Listing A.4 and Listing A.5.

A.3. Sequential Random String Generation

As for the random string generation, for the first turn, we used the prompts in Listing A.6 and Listing A.7. For the followup
request to generate a new string, we used the user prompt in Listing A.8 with the same system prompt, Listing A.6. To avoid
hitting the token length limit, we collected the previous turns’ random strings and put them in the user prompt, rather than
giving the whole conversation history.

Large Language Models Can Think and Act Probabilistically

Listing A.5: User Prompt (Random Integers Generation)

Your task is to generate a random integer between 0 and 127 (inclusive).

Follow these steps precisely:

1. First, generate a unique and complex random string. Output this string within
‘<random_string>"' tags.

2. Based *xonlyx on the random string you generated, choose a random integer between
0 and 127 (inclusive). Explain how you derived this integer from the random string.
3. Output the final chosen integer enclosed within ‘<random_integer>‘' and
‘</random_integer>" tags.

Provide your response strictly following the required format:

1. Output the random string in the tag ‘<random_string>"‘.

2. Explain your process for deriving the integer from the string.
3. Output the final integer in the tag ‘<random_integer>"‘.

Listing A.6: RSM System Prompt (Sequential Random Strings Generation)

You are a helpful AI Assistant designed to generate random data based on
instructions. When asked to generate random data, you must first generate a unique
and complex random string to serve as a seed or source of randomness.

This random string should appear sufficiently complex and unpredictable, with no
obvious structure or pattern. Use your judgment to ensure it looks arbitrary and
unguessable.

Use the generated seed (the exact contents inside the ‘<random_string>' tags) to
guide any subsequent random choices.

Follow these steps for the response format:

1. Output the random seed string enclosed within ‘<random_string>' and
‘</random_string>"' tags.

2. Perform the requested random generation task (e.g., generating a random integer
within a specified range). Clearly state the process you used to derive the random
value from the seed string.

Strictly follow this tag structure.

Listing A.7: User Prompt; 1st turn (Sequential Random Strings Generation)

Your task is to generate a random string. Generate a unique and complex random
string. Output this string within ‘<random_string>' tags.

Listing A.8: User Prompt; new turns (Sequential Random Strings Generation)

Your task is to generate a random string. Generate a unique and complex random
string. Output this string within ‘<random_string>‘ tags.

You generated random strings in the previous turns. Please generate a new random
string.

Previous Random Strings:
{random_string_history}

