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Abstract
Large language models (LLMs) have demon-
strated strong capabilities in handling long-
context tasks, but processing such long contexts
remains challenging due to the substantial mem-
ory requirements and inference latency. In this
work, we discover that certain attention heads ex-
hibit sequential consistency in their attention pat-
terns, which can be persistently identified using a
coefficient-of-variation-based algorithm. Inspired
by this observation, we propose CateKV, a hy-
brid KV cache method that retains only critical
token information for consistent heads, thereby
reducing KV cache size and computational over-
head, while preserving the majority of KV pairs
in adaptive heads to ensure high accuracy. We
show the unique characteristics of our algorithm
and its extension with existing acceleration meth-
ods. Comprehensive evaluations on long-context
benchmarks show that, while maintaining accu-
racy comparable to full attention, CateKV reduces
memory usage by up to 2.72× and accelerates
decoding by 2.18× in single-sample inputs, and
boosts throughput by 3.96× in batch scenarios.

1. Introduction
With rapid development of large language models (LLMs),
many generalist models support context windows of 128K
tokens or more (Achiam et al., 2023; Dubey et al., 2024;
Bai et al., 2023a; GLM et al., 2024b; Team et al., 2023;
Abdin et al., 2024), enabling to effectively perform tasks
like long-document question answering (Caciularu et al.,
2023; Wang et al., 2024), information retrieval (Zhang et al.,
2024a; Zhu et al., 2023), and repository-level code under-
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Figure 1: Comparison of KV eviction, KV retrieval, and our
method. CateKV employs a hybrid KV cache method to
reduce memory usage while maintaining high accuracy.

standing (Bairi et al., 2024; Jimenez et al., 2023). However,
as context lengths grow, the autoregressive nature of the
mainstream LLM paradigm often leads to increased compu-
tational costs, memory consumption, and thus the runtime,
since we have to store and retrieve all key-value (KV) caches.
For example, using the Llama-3-8B-Instruct-262k (Gradient,
2024b) model with FlashAttention, extending the context
from 1K to 1M tokens increases inference latency by over
3000 times (Jiang et al., 2024). Therefore, accelerating LLM
inference in long contexts is both essential and imperative.

Existing methods for inference acceleration of LLMs under
long contexts can be categorized into two types: KV cache
eviction and KV cache retrieval strategies. KV eviction
strategies reduce the size of the KV cache by systematically
discarding KV pairs based on predefined policies (Xiao
et al., 2023; Zhang et al., 2023; Li et al., 2024; Cai et al.,
2024). However, this usually suffers from significant accu-
racy loss, as the removal of essential information without
comprehensive contextual understanding adversely affects
task performance. In contrast, KV retrieval methods main-
tain accuracy by preserving all KV pairs in the cache and
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selectively retrieving relevant tokens during the decoding
stage, thereby ensuring that no crucial information is omit-
ted (Tang et al., 2024b; Sun et al., 2024). Nevertheless,
KV retrieval does not mitigate high memory usage, lim-
iting scalable batch sizes and thus the throughput under
long contexts. Furthermore, certain approaches (Jiang et al.,
2024; Xiao et al., 2024b; Tang et al., 2024a) recognize the
heterogeneous sparsity patterns across different attention
heads within the model and configure the heads with distinct
sparsification strategies during inference. While they show
initial promise in accuracy and efficiency, they do not fully
utilize the interplay between the pre-filling and decoding
phases to facilitate further optimization.

Different from previous methods, we explore leveraging
the experience in pre-filling stage to promote the decoding
stage. Specifically, our intuition is inspired by an interesting
observation: certain attention heads exhibit sequentially
consistent attention patterns, spanning across the pre-filling
and decoding stages, while some attention heads exhibit rich
activation dynamics during the whole process, as shown in
Figure 2. Besides, this phenomenon, reflecting the special
head working mechanism, frequently existed in different
LLMs and their different layers. This indicates that if we
can capture those modes at the pre-filling stage, we can
leverage the sequential consistency to only maintain a subset
of crucial tokens for certain heads, which achieves both a
reduction of the KV cache and the speedup of attention
computation during the decoding stage for LLM inference
acceleration.

Based on the above analysis, we propose CateKV, a sim-
ple, effective, and plug-and-play method designed to en-
hance LLM inference efficiency by leveraging sequential
consistency. CateKV uses an observation window during
the pre-filling stage to identify critical tokens and employs
a coefficient-of-variation-based score to classify attention
heads into consistent and adaptive types, based on a ref-
erence dataset. In consistent heads, CateKV retains only
a small proportion of critical KV pairs, while in adaptive
heads, it retains most, selecting tokens based on their impor-
tance derived from attention weights in the pre-filling stage,
as shown in Figure 1. By such an effective routing manner
guided by sequential consistency, our method maintains the
performance merit of LLM inference and simultaneously
enjoys the acceleration gain. Our method is orthogonal to
and combinable with many existing acceleration approaches,
and we conducted extensive experiments on widely used
benchmarks including RULER (Hsieh et al., 2024), Long-
bench (Bai et al., 2023b), and NIAH (Kamradt, 2024), using
models such as LLaMA-3-8B-Instruct-1048K (Gradient,
2024a), GLM-4-9B-1M (GLM et al., 2024a), LLaMA-3.1-
8B (Meta AI, 2024) and Yi-9B-200K (AI et al., 2024) to
demonstrate the effectiveness. In a nutshell, our contribu-
tions are summarized as follows:

• We identify that general sequential consistency exhibits
in certain attention heads and dynamic activation in
others, dividing the attention heads into consistent and
adaptive heads, which naturally constructs the basic
for decoding acceleration with pre-filling experience.

• We propose CateKV, a hybrid KV cache acceleration
algorithm leveraging sequential consistency. Employ-
ing a coefficient-of-variation-based score, CateKV can
precisely classify attention heads into two categories,
enabling efficient KV cache eviction while closely ap-
proximating the performance of full attention.

• Extensive evaluations on popular benchmarks demon-
strate that CateKV reduces memory usage and decod-
ing latency by 2.72× and 2.18× for single inputs, in-
creases throughput by 3.96× in batch scenarios, while
maintaining performance comparable to full attention.
Further acceleration can be achieved by integrating our
plug-and-play method with other approaches.

2. Related Work
2.1. KV Cache Eviction Algorithm

To save the significant time and space overhead as the in-
put length increases, various approaches explore evicting
tokens to reduce both memory usage and computational
cost. StreamingLLM (Xiao et al., 2023) introduces the phe-
nomenon of ”attention sink” and supports longer sequence
by retaining only the KV pairs of attention sinks and recent
tokens. H2O (Zhang et al., 2023) employs a low-cost evic-
tion strategy to maintain a fixed-size KV cache containing
heavy-hitters, based on the sum of historical attention scores.
SnapKV (Li et al., 2024) uses the last tokens in the prompt
during the prefilling stage to select critical tokens for gener-
ation in the decoding stage. PyramidKV (Cai et al., 2024),
PyramidInfer (Yang et al., 2024), and LazyLLM (Fu et al.,
2024a) leverage attention distribution across layers to dy-
namically adjust cache size, making cache allocation more
efficient. Other methods like MagicPig (Chen et al., 2024),
Q-Hitter (Zhang et al., 2024b), ALISA (Zhao et al., 2024)
and , which combine KV cache eviction with quantization,
hashing algorithms, or sparse windows, can also improve
inference efficiency. However, these methods induce non-
negligible performance degradation, as they potentially evict
certain tokens that are crucial for future generation.

2.2. KV Cache Retrieval Algorithm

Unlike KV cache eviction algorithms, KV cache retrieval
algorithms retain a complete KV cache and dynamically
retrieve important KV pairs to reduce inference latency. Fol-
lowing PageAttention (Kwon et al., 2023), Quest (Tang
et al., 2024b) divides tokens into pages and devises an
approximate attention score to retrieve the most relevant
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pages for the current decoding steps. InfLLM (Xiao et al.,
2024a) adopts a strategy similar to Quest, offloading most
of the cache to the CPU to support longer prompts. Shad-
owKV (Sun et al., 2024) enhances the storage efficiency of
Quest by storing only low-rank key caches and offloading
value caches, allowing inference with large batch sizes and
context lengths. Others like SparQ (Ribar et al., 2023), In-
finiGen (Lee et al., 2024), and Loki (Singhania et al., 2024),
accelerate the selection of top-k critical tokens by reducing
the dimension. KV cache retrieval methods maintain per-
formance by preserving the entire KV cache but inevitably
incur increased inference latency and storage costs.

2.3. Head-wise Attention Classification

Another line of work classifies attention heads into distinct
sparse patterns. MInference (Jiang et al., 2024) divides the
attention into A-shape, Vertical-Slash, and Block-Sparse
patterns, achieving acceleration during the pre-filling stage.
RazorAttention (Tang et al., 2024a) and DuoAttention (Xiao
et al., 2024b) split heads into retrieval heads and streaming
heads to determine whether to implement full attention or
an attention mechanism similar to StreamingLLM (Xiao
et al., 2023). Methods like AdaKV (Feng et al., 2024) and
HeadKV (Fu et al., 2024b) achieve more fine-grained clas-
sification by allocating different budgets to each attention
head. These methods focus on the features within individ-
ual heads or their variations, but overlook the patterns of
attention heads across the prefilling and decoding stages.

3. Method
3.1. Sequential Consistency of Attention Heads

In this paragraph, we present an interesting observation
about the attention patterns across the pre-filling and de-
coding stages. To illustrate this, we randomly selected a
text segment from Wikitext (Merity et al., 2016) as input
for the LongChat-7B (Li et al., 2023) model, examining
how attention weights evolve throughout the generation pro-
cess. Figure 2 illustrates the attention heatmaps during the
pre-filling and decoding stages for two types of attention
heads. We observe that for certain attention heads, attention
is concentrated on a few critical tokens, which show clear
consistency across both the pre-filling and decoding stages.
This consistency allows us to identify critical tokens during
the pre-filling stage, which can then guide the decoding
process and help reduce computational costs. In contrast,
other attention heads exhibit attention distributions that vary
significantly across decoding steps, maintaining a broader
attention scope without focusing on specific tokens at each
step. For these heads, it is crucial to retain most of the KV
pairs to ensure accurate predictions. For clarity, we provide
the further claims for these two types of attention heads:

(a) Consistent head

(b) Adaptive head
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Figure 2: Visualization of attention weight heatmaps for
consistent heads and adaptive heads in the LongChat-7B
model using a randomly selected text segment. In these
figures, the vertical axis represents the attention of the head
across different queries, with the first 20 rows corresponding
to the last 20 queries during the pre-filling stage, while
the subsequent rows depict the attention weights across
consecutive decoding steps. These two types of heads exist
in various layers and other popular models (Appendix A).

• Consistent heads are attention heads that exhibit stable
attention patterns of sequential consistency, focusing
on a limited set of tokens across all decoding steps.

• Adaptive heads are attention heads characterized by
variable attention distributions across decoding steps,
which do not exhibit stable patterns and require a larger
attention space for flexible token interactions.

3.2. How to Identify Consistent and Adaptive Heads?

Observation matrix As can be seen in Figure 2, the atten-
tion weights of the last query tokens at the pre-filling stage
effectively reflect the attention patterns. To save the com-
putational cost, we set an observation window that contains
the last query tokens of the input to identify head types and
critical tokens. Additionally, since initial and recent tokens
are typically important but do not influence the classification
process, we temporarily exclude them during the identifi-
cation phase. Formally, let Linit, Lrec and Lobs respectively
denote the lengths of the initial tokens, recent tokens, and
the observation window. Then, consider a head within a
sample at the pre-filling stage, where the input includes the
query Q, key K, and value V ∈ Rn×d, with n representing
the input length and d representing the head dimension in
the attention mechanism. We define the observation matrix
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(a)   (b) 

Figure 3: (a) High similarity of classification results across
samples. We calculate the overlap rate between the classifi-
cation results of 200 randomly selected WikiText samples
and the overall classification result with r = 0.3. All sam-
ples exhibit an overlap rate exceeding 80% with the overall
result. (b) Frequency of adaptive head identification for
Llama-3B model in a reference dataset with r = 0.3. The
frequency distribution is highly concentrated, enabling the
determination of a fixed head type based on these results.

A within the observation window, as follows:

A = softmax

(
Q[−Lobs:,:]K

T
[Linit:−Lrec,:]√
d

)
, (1)

where A ∈ RLobs×(n−Lrec−Linit). In the following, we will
identify consistent heads based on the characteristics of A.

Coefficient of Variation (CV) Score Empirically, consis-
tent heads exhibit two primary features in their observation
matrices: a high degree of similarity among different rows
and a small subset of columns that is sufficient to recall
most of the attention weights. Inspired by this aspect, we
propose a coefficient-of-variation-based score to measure
the concentration and similarity of attention within obser-
vation matrices A. Since the coefficient of variation (Abdi,
2010) is highly sensitive to the magnitude of values, we
first binarize the observation matrix with a percentile-based
threshold k and a scaling factor α.

B = I (A ≥ Φ(k, α)) ∈ RLobs×(n−Lrec−Linit) (2)

where I is the indicator function, and Φ(k, α) =
Quantilek(A) × α represents the k-th percentile element
in the matrix A, scaled by a factor of α. Then after binariza-
tion, we derive a frequency vector C to quantify the number
of times each token that is identified as critical, reflecting
the similarity and concentration of attention weights:

C =

Lobs∑
i=0

Bi,: ∈ R(n−Lrec−Linit) (3)

Algorithm 1 CateKV in an individual Head

Input: Q,K, V ∈ Rn×d, q ∈ R1×d, head type H , obser-
vation window size Lobs, selected chunk budget b, chunk
size cs, retention ratio η
Pre-filling Stage:
# Calculating token criticality
A = softmax(Q[−Lobs:,:]K

T
[:−Lobs,:]

/
√
d)

C =
∑Lobs

i=0 Ai,:

# Divide C into chunks and take maximum
Cchunk = BlockMax(C, cs)

# Cache keys and values based on the indices of top-k elements
if H = consistent head then

ik = argtopk(Cchunk, b)
cachek, cachev = Cache(K,V, ik, Lobs)

else
ik = argtopk(Cchunk, nη)
cachek, cachev = Cache(K,V, ik, Lobs)

end if
Decoding Stage:
# Retrieval keys and values from cache
if H = consistent head then
k, v = cachek, cachev

else
k, v = Retrival(q, cachek, cachev) # all or query-aware

end if
output = Attention(q, k, v)

Now, we can obtain the score based on the coefficient of
variation for an attention head of a sample as follows:

score =

√
1

(n−Lrec−Linit)

∑
i(Ci − µ(C))2

µ(C)
(4)

where µ(C) = 1
(n−Lrec−Linit)

∑
i Ci is the mean. With the

above equations, we can compute a score for each head
under a sample. Then, for a specific LLM, we can obtain a
score matrix S ∈ Rl×h for all heads, where l and h represent
the number of layers in the model and the number of heads
in a layer, respectively. For a statistic head identification
rule, let r denote the proportion of adaptive heads, and Γ(r)
represents the percentile threshold based on r. We can use
the threshold to control the token eviction ratio. Then, we
distinguish the head types of a specific sample as follows

Headi,j =

{
consistent head, if Si,j > Γ(r)

adaptive head, if Si,j ≤ Γ(r)
. (5)

Reference-Based Static Identification Although head
identification can be performed dynamically for each sam-
ple, it is actually expensive for memory management along
with the change of samples at the pre-filling stage. There-
fore, it is better to determine a fixed head type for the model,
which can be directly used for inference. Surprisingly, we
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Figure 4: Attention weight recall curves for four methods.
The curves show the attention recall for each attention head,
calculated on four patterns: consistent, streaming, quest, and
top-k, on a 128k-length example. The attention recall values
are obtained by the mean of all decoding steps and sorted in
descending order for all heads. The sparse budget is set to
2048, and the chunk size is 8. The results indicate that the
consistent pattern outperforms the streaming pattern in terms
of overall attention recall, and approaches the performance
of the quest pattern that requires additional computation.

observe that the same head does exhibit similar attention
patterns across different samples, and the identification re-
sults based on CV scores are highly consistent. This inspires
us to use a reference dataset to calculate the frequency of
each head being identified as the consistent head, and then
derive the final model-wise identification result based on the
adaptive head ratio r, as shown in Figure 3, which comes
to the final form of our method (termed as CateKV). After
determining the type of each head, we retain only the most
important KV pairs for consistent heads, while for adaptive
heads, we preserve a majority based on the predefined re-
tention ratio η. Specifically, we select the top-k KV pairs in
chunks, enabling seamless integration with retrieval-based
methods. For the GQA model, the observation matrix A is
computed as the mean of A of the heads in a group. The
CateKV acceleration for LLMs is shown in Algorithm 1.

3.3. Theory Analysis

In this part, we present an analysis of the theoretical bound
on the eviction performance of CateKV.

Lemma 1: Let G represent the hypothesis class derived
from the CV-based function, F denote the real-valued func-
tion class induced by the binary cross-entropy loss applied
to G, and let N denote the sample size of the reference-
based dataset. Then, with probability at least 1 − δ, the
following Rademacher complexity bound holds:

∀f ∈ F, Phead

(
E[f ]− 1

N

N∑
n=1

fn ≤ 2RN (F )

)

+

√
2 log 2

δ

2N
≥ 1− δ. (6)

where RN (F ) is the conditional Rademacher average.

Let P1 and P2 denote the probabilities of correctly classified
consistent heads and adaptive heads, respectively, while P̄1

and P̄2 represent the probabilities of misclassified consistent
heads and adaptive heads, respectively. It is assumed that
P1 +P2 = Phead and P̄1 + P̄2 = 1−Phead. The probability
in the above lemma can then be decomposed through a
fine-grained analysis as follows.

Theorem 1: Let η1 and η2 denote the retention ratios for
consistent heads and adaptive heads, respectively, while
η∗1 and η∗2 represent their corresponding optimal retention
ratios. Define the retention accuracy for different cases
ri,j = η∗i 1[ηj > η∗i ] + ηj(1 − 1[ηj > η∗i ]) by comparing
the retention budgets with the optimal budgets. Additionally,
assume that the hypothesis asserting the query attention
score provides the best description in order with probability
λ. Then, the token retention accuracy satisfies:

Ptoken = λ
(
r1,1P1 + r2,2P2 + r2,1P̄1 + r1,2P̄2

)
≥ λ (min(r2,1, r1,2) + [min(r1,1, r2,2)

−min(r2,1, r1,2)]Phead) . (7)

Remark 1: From the above theorem, three critical factors
influence the worst-case token retention accuracy (i.e., the
lower bound):

• λ: The effectiveness of identifying an efficient measure
to characterize token correlation by the score order,
with as high a probability of correctness as possible.

• Budget control: The ability to appropriately set the re-
tention budget in order to maximize gains by reducing
the majority of tokens when heads are correctly clas-
sified, while simultaneously mitigating the negative
impact when heads are misclassified.

• Phead: The accuracy of the CV-based method in clas-
sifying the head type during token reduction, which
directly impacts the overall performance.

3.4. Further Discussion of CateKV

To show the distinction and effectiveness of attention pat-
terns discovered from the sequential consistency, Figure 4
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Table 1: Performance (%) of different models and various methods on RULER evaluated at length of 128K. The ’Cache’ in
the table refers to the retained KV cache size. CateKV outperforms other methods and comparable with full attention.

Methods Cache N-S1 N-S2 N-S3 N-MK1 N-MK2 N-MK3 FWE N-MQ N-MV QA-1 QA-2 VT Avg.

Llama-3-8B-1M 100% 100.00 100.00 100.00 98.96 98.96 41.67 71.88 98.69 96.35 73.96 50.00 78.75 84.10
StreamingLLM 41% 51.04 51.04 51.04 40.63 35.42 22.92 75.69 45.31 39.58 78.13 45.83 31.46 47.34
SnapKV 41% 100.00 100.00 100.00 98.96 98.96 30.21 71.53 98.44 97.13 73.95 51.04 79.17 83.28
PyramidKV 41% 100.00 100.00 100.00 98.96 98.96 37.50 71.53 98.44 96.61 71.87 50.00 79.38 83.60
Duoattention 41% 100.00 100.00 100.00 98.96 97.92 39.58 76.74 94.27 90.36 69.79 51.04 86.46 83.76
CateKV 41% 100.00 100.00 100.00 98.96 97.92 41.67 71.88 98.44 96.88 73.96 50.00 85.63 84.61

Phi-3-Mini-128K 100% 96.88 90.63 95.83 83.33 65.63 37.50 87.15 72.14 66.67 63.54 39.58 65.83 72.06
StreamingLLM 41% 47.91 45.83 44.79 38.54 30.21 25.00 84.38 36.49 34.90 64.58 38.54 4.38 41.29
SnapKV 41% 96.88 90.63 80.21 82.29 56.25 11.46 82.99 61.72 53.91 62.50 38.54 63.54 65.08
PyramidKV 41% 96.88 90.63 84.38 83.33 57.29 13.54 78.47 66.15 59.64 62.50 39.58 62.29 66.22
CateKV 41% 96.88 90.63 95.83 83.33 65.63 38.54 80.21 70.31 65.63 63.54 39.58 70.21 71.69

Llama-3.1-8B 100% 100.00 100.00 98.96 98.96 90.63 63.54 71.53 98.96 95.31 81.25 46.88 68.54 84.55
StreamingLLM 41% 51.04 51.04 51.04 39.58 34.38 40.63 71.18 44.27 39.84 85.42 40.63 28.33 48.11
SnapKV 41% 100.00 100.00 98.96 98.96 89.58 46.88 69.10 98.96 94.01 81.25 46.88 68.96 82.80
PyramidKV 41% 100.00 100.00 98.96 98.96 90.63 56.25 65.28 98.96 95.31 80.21 46.88 65.42 83.07
Duoattention 41% 100.00 100.00 98.96 97.92 88.54 59.38 74.31 97.92 91.41 81.25 46.88 78.54 84.59
CateKV 41% 100.00 100.00 98.96 98.96 88.54 61.46 71.88 98.96 94.27 81.25 46.88 74.79 84.66

Yi-9B-200K 100% 100.00 100.00 98.96 85.42 63.54 18.75 89.24 66.41 32.55 45.83 38.54 35.00 64.52
StreamingLLM 41% 47.92 52.08 50.00 39.58 37.50 7.29 90.28 33.33 14.84 44.79 36.46 18.13 39.35
SnapKV 41% 100.00 100.00 95.83 85.41 43.75 3.13 83.33 66.41 33.33 46.88 40.63 38.96 61.47
PyramidKV 41% 100.00 100.00 91.67 86.46 50.00 2.08 73.61 68.75 34.64 43.75 37.50 41.46 60.83
CateKV 41% 100.00 100.00 100.00 84.38 70.83 18.75 92.01 62.24 34.64 43.75 37.50 45.00 65.76

compares attention weight recall for our consistent pattern,
streaming pattern (Xiao et al., 2023), Quest pattern (Tang
et al., 2024b), and the upper-bound top-k pattern under the
same sparse budget. As can be seen, all methods exhibit a
gap compared to the upper bound, indicating some informa-
tion loss with current sparse attention approaches. There-
fore, retaining most KV pairs for certain heads is important
for maintaining accuracy. On the other hand, the attention
recall of the consistent pattern closely approximates that of
the Quest pattern, applying the consistent pattern to heads
with sequential consistency can help KV retrieval methods
reduce memory usage and the cost of selecting critical to-
kens. Related works (Tang et al., 2024a; Xiao et al., 2024b)
classify attention heads into Retrieval Heads and Streaming
Heads, which is similar to our method. However, from an
attention recall perspective, the streaming pattern is only
effective for a small fraction of heads, otherwise deviating
significantly from full attention. This highlights that the
consistent pattern achieves a higher compression rate than
the streaming pattern. We will discuss the comparison and
integration with these methods in the experimental section.

4. Experiments
4.1. Setup

LLM and Benchmark We employed five widely used
LLMs in long-context scenarios: LLaMA-3-8B-Instruct-
1048K (Gradient, 2024a), Phi-3-Mini-128K (Abdin et al.,
2024), Llama-3.1-8B (Meta AI, 2024), Yi-9B-200K (AI

et al., 2024) and Qwen2.5-7B (Bai et al., 2023a). The per-
formance of CateKV was assessed on three challenging
benchmarks: RULER (Hsieh et al., 2024), LongBench (Bai
et al., 2023b), and Needle in a Haystack (NIAH) (Kamradt,
2024). We built a reference set for head identification of
CateKV by emulating Variable Tracking task from RULER,
which is very distinct from the test set. The experiments
were carried out on a single NVIDIA A100-80G GPU.

Baselines We compare CateKV with eviction-based al-
gorithms StreamingLLM (Xiao et al., 2023), SnapKV (Li
et al., 2024), PyramidKV (Cai et al., 2024), retrieval-based
algorithms Quest (Tang et al., 2024b) and ShadowKV (Sun
et al., 2024), and the head-wise classification algorithm
Duoattention (Xiao et al., 2024b). In our experiments, all
approaches maintained an exact pre-filling stage and utilized
sparse attention during the decoding stage. We also do not
perform memory optimization like ShadowKV in the accu-
racy comparison. For fairness, when comparing with the
KV eviction methods and head classification methods, we
maintain the same KV cache size, while comparing with KV
retrieval methods, we integrate them under adaptive heads
to ensure an equivalent computational budget. Given that
Duoattention only provides attention patterns for Llama3
and Llama3.1 in the models used in our study, the com-
parison is restricted to these two models. When baselines
require a chunk size, we all set it to 8 to maintain consis-
tency. Further experimental details are in the Appendix B.1.
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Table 2: Performance (%) of different models and various
methods on LongBench. We present the average score of all
21 tasks. The “Budget” refers to the computational budget.
Please refer to the Appendix B.3 for detailed data.

Model LLama-3 Phi-3 Llama-3.1 Yi Qwen2.5

Methods Cache Budget Average Performance

Full 100% 100% 31.27 34.00 33.68 33.02 30.03
+CateKV 42% 42% 31.48 33.73 33.70 32.83 29.92

Quest 100% 3% 30.90 33.11 33.20 32.82 29.30
+CateKV 42% 3% 31.03 33.29 33.38 32.79 29.33

ShadowKV 100% 3% 30.77 32.53 33.03 32.41 28.57
+CateKV 42% 3% 30.94 32.45 32.96 32.21 28.51

4.2. Effectiveness Evaluation

4.2.1. RESULTS ON RULER

In this experiment, we test 12 synthetic tasks under the
context of 128K, with each task including 96 samples. To
ensure a fair comparison with other baseline methods, we
focus here on the task-aware setting. The results are shown
in Table 1. Specifically, in CateKV , we set the adaptive
head ratio r to 0.4, the retention ratio η to 1.0 and allocate a
sparse budget for consistent heads at 2048 (1.56%), retain-
ing approximately 41% of the KV cache size. Experimental
results demonstrate that our method outperforms baselines
and is comparable to full attention, despite evicting over half
of the KV pairs. Besides, CateKV exhibits outstanding per-
formance in complex tasks such as multi-document QA and
variable tracking while maintaining high accuracy in other
tasks. Due to the space limitation, we place results of more
context lengths and combination with other retrieval-based
methods in Appendix B.2.

4.2.2. RESULTS ON LONGBENCH

LongBench (Bai et al., 2023b) is a comprehensive long-
context benchmark including 6 main categories and 21 di-
verse tasks. Following ShadowKV (Sun et al., 2024), we test
samples with lengths exceeding 4096 tokens. In CateKV,
we set the adaptive ratio r and retention ratio η to 0.4 and
1.0 respectively. The budget for consistent heads is set to
512. As shown in Table 2, CateKV enables a reduction in
KV cache size to 42% across five LLMs while maintain-
ing an accuracy decline of no more than 0.3% on average.
Furthermore, when integrated with KV retrieval methods
like Quest (Tang et al., 2024b) and ShadowKV (Sun et al.,
2024), CateKV facilitates a reduction in memory usage with
only a minimal impact on accuracy, not exceeding a 0.2%
decrease, under the same computational budget.

4.2.3. RESULTS ON NEEDLE IN A HAYSTACK

As shown in Figure 5, on the Needle In A Haystack dataset,
CateKV demonstrates its robust ability to accurately identify
and extract relevant information from long contexts, rang-
ing from 20K to 1M tokens, while reducing memory and
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Figure 5: Needle In A Haystack from 20K to 1M in Llama3

Table 3: Performance of CateKV combined with Duoatten-
tion and MInference on the RULER benchmark. The results
are tested on the Llama-3-8B-1M model.

Methods 8K 16K 32K 64K 128K 256K Avg.

Duoattention 78.32 77.93 69.77 66.27 60.37 58.07 68.46
Duoattention w/ CateKV 89.93 91.08 89.96 86.44 84.57 81.59 87.26

MInference 91.33 92.28 89.66 84.97 84.57 81.10 87.32
MInference w/ CateKV 91.32 92.13 89.71 85.90 85.14 82.27 87.74

computational cost by more than half. Additional NIAH test
results on other models are available in the Appendix B.4.

4.2.4. CATEKV VS. DUOATTENTION

Duoattention (Xiao et al., 2024b) classifies attention heads
into retrieval heads and streaming heads, similar to our
approach. For a comprehensive comparison, we evalu-
ate CateKV against DuoAttention across varying ratios of
adaptive/retrieval heads, ranging from 0.1 to 1.0. Figure 7
shows that Duoattention’s accuracy notably declines when
the proportion of retrieval heads falls below 0.3. In contrast,
CateKV sustains performance close to full attention even
when the ratio of adaptive heads decreases to 0.1. This dis-
crepancy arises from the fundamental difference in attention
patterns between our consistent head and their streaming
head. The consistent head in CateKV captures similarity
across different queries, whereas the streaming head pri-
marily focuses on the coverage of initial and recent tokens.
This essential difference enables our method to complement
DuoAttention, mitigating its performance degradation at low
full attention head ratios. To validate this, we conducted
experiments presented in Table 3. Specifically, we set the
retrieval head ratio in DuoAttention to 0.3, with the remain-
ing 0.7 as streaming heads. In contrast, “Duoattention w/
CateKV” replaces part of the streaming heads with consis-
tent heads, resulting in a 0.2 consistent head ratio and a
0.5 streaming head ratio. The results demonstrate that in-
corporating CateKV significantly improves DuoAttention’s
performance at low full attention head ratios, further vali-
dating the effectiveness of our consistency pattern.
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Figure 6: Comparison of decoding efficiency between CateKV and full attention. As the context length increases, both the
memory usage (a) and decoding latency (b) increase linearly, but CateKV exhibits a smaller slope compared to full attention.
OOM indicates that the GPU memory limit (80G) is exceeded; corresponding data is obtained by extrapolation.

4.2.5. EFFICIENT PRE-FILLING METHODS INTEGRATION

CateKV is designed to accelerate the decoding stage and
can naturally integrate with prefilling acceleration methods.
We also combined CateKV with the efficient prefilling accel-
eration method, MInference (Jiang et al., 2024), and tested
it on RULER with contexts ranging from 8K to 256K. As
shown in Table 3, combining CateKV with MInference does
not lead to performance degradation and even a slight per-
formance improvement has been observed. This shows that
sequential consistency within the heads is unaffected by the
pre-filling inference patterns, highlighting the robustness of
our method. Moreover, the additional acceleration of the
prefilling stage further improves the overall inference speed.

4.3. Efficiency Evaluation

To validate the efficiency of CateKV, we tested it under both
single-sample and batch-sample inference scenarios.

4.3.1. SINGLE-SAMPLE INFERENCE

To evaluate the efficiency of CateKV during single-sample
inference, we selected three models with different num-
bers of KV heads: Llama-3, Phi-3, and Yi. We compared
CateKV to full attention on these models by measuring mem-
ory usage and decoding latency at the same input length. We
observed that memory and latency reductions increase as the
context length grows (detailed in the Figure 6). To demon-
strate optimal performance, we selected the maximum input
length that can be handled by full attention on a single A100
GPU. As shown in Table 4, under the generic settings of
r = 0.4 and η = 1.0, the Phi-3 model achieved reductions
of 2.11× in memory and 1.79× in latency by using CateKV.
By balancing efficiency and accuracy, CateKV further re-
duced memory usage by 2.72× and decoding latency by
2.18× on Llama-3, with accuracy decline on RULER-128K
and Longbench tasks under 0.25%.

Figure 7: Comparison of accuracy between our method and
DuoAttention across different full attention head ratios.

4.3.2. BATCH-SAMPLE INFERENCE

Batch-sample inference is a more common scenario in
real-world applications. By evicting a portion of the KV
pairs, CateKV supports larger batch sizes, thereby increas-
ing throughput. To evaluate CateKV’s efficiency in batch-
sample scenarios, we set each sample length to 40K and in-
put them in batches, comparing throughput at the maximum
batch size for both full attention and CateKV. The compar-
ative results across three models are presented in Table 4.
With the generic settings, gains of up to 2.38× in batch
size and 2.25× in throughput were achieved. Additionally,
through further KV cache compression while maintaining
accuracy, both batch size and throughput in the Llama-3
model were boosted to 4.33× and 3.96×, respectively.

4.4. Ablation Study

The ablation studies focus on three key aspects of CateKV :
(1) ratio of adaptive heads, (2) retention ratio in the adaptive
head, and (3) sparse KV cache budget in the consistent
head. All experiments are conducted on the RULER-128K
datasets using the Llama-3-8B-1M model.

4.4.1. RATIO OF ADAPTIVE HEADS

The ratio of adaptive heads r is a crucial hyperparameter bal-
ancing accuracy and inference speed. As shown in Figure 7,
the relationship between r and model performance does

8
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Table 4: Efficiency comparison between CateKV and Full Attention on a single A100 GPU. In the single-sample inference
task, we utilized texts of lengths 500K, 180K, and 650K as inputs for the following three models. For the batch-sample
inference task, the sample length was set at 40K, and the maximum feasible batch size was used for each method evaluated.

Accuracy (Avg) Single-sample inference Batch-sample inference

Model RULER-128K Longbench Memory Latency Batchsize Throughput

Llama-3-8B-1M (8 KV heads) 84.10 (0.00) 31.27 (0.00) 77.72 (1.00×) 54.28 (1.00×) 12 (1.00×) 229.37 (1.00×)
CateKV (r = 0.4, η = 1.0) 84.61 (+0.51) 31.48 (+0.21) 41.02 (1.89×) 32.75 (1.66×) 28 (2.33×) 511.46 (2.23×)
CateKV (r = 0.3, η = 0.7) 83.85 (-0.25) 31.21 (-0.06) 28.59 (2.72×) 24.86 (2.18×) 52 (4.33×) 909.69 (3.96×)

Phi-3-Mini-128K (32 KV heads) 72.06 (0.00) 34.00 (0.00) 75.11 (1.00×) 55.51 (1.00×) 4 (1.00×) 78.53 (1.00×)
CateKV (r = 0.4, η = 1.0) 71.69 (-0.37) 33.73 (-0.27) 35.58 (2.11×) 31.06 (1.79×) 10 (2.50×) 167.11 (2.13×)
CateKV (r = 0.3, η = 1.0) 71.48 (-0.58) 33.66 (-0.33) 29.02 (2.59×) 27.81 (2.00×) 14 (3.50×) 221.29 (2.82×)

Yi-9B-200K (4 KV heads) 64.52 (0.00) 33.02 (0.00) 77.65 (1.00×) 56.30 (1.00×) 16 (1.00×) 292.55 (1.00×)
CateKV (r = 0.4, η = 1.0) 65.76 (+1.24) 32.83 (-0.19) 41.62 (1.87×) 36.05 (1.56×) 38 (2.38×) 659.02 (2.25×)
CateKV (r = 0.3, η = 0.8) 65.75 (+1.23) 32.78 (-0.24) 31.58 (2.46×) 29.96 (1.88×) 60 (3.75×) 980.86 (3.35×)

(a) (b) (c)

Figure 8: (a) The effect of adaptive head ratio on memory and decoding latency is approximately linear. (b) Impact of
retention ratio on accuracy in RULER-128K and decoding latency for 500K length input. (c) Minimal effect of sparse
budget in consistent heads on accuracy.

not exhibit a perfect inverse correlation. Rather, the per-
formance remains relatively stable with decreasing r until
reaching a critical threshold (≈0.2), beyond which signifi-
cant degradation occurs due to excessive reliance on critical
tokens during the prefilling stage. In terms of efficiency,
as shown in Figure 8(a), both memory usage and decoding
latency decrease almost linearly with decreasing r.

4.4.2. RETENTION RATIO IN ADAPTIVE HEAD

In adaptive heads, there is still a subset of tokens that are
always not important. This enables a reduction in the pro-
portion of the KV cache retained within adaptive heads.
Figure 8(b) illustrates the impact of changes in the retention
ratio η on accuracy and latency. When η exceeds a certain
threshold (≈0.6), the model maintains or even surpasses
the performance achieved with the full KV cache. How-
ever, dropping below this threshold results in a significant
performance decline, indicating that adaptive heads heavily
depend on the majority of the KV cache. Additionally, a de-
crease in η leads to a linear reduction in latency. In practical
applications, it is essential to adjust both r and η to balance
accuracy and memory consumption.

4.4.3. SPARSE BUDGET IN CONSISTENT HEAD

As illustrated in Figure 8(c), CateKV demonstrates strong
robustness across different sparse budgets. Under the set-

tings of r = 0.4 and η = 1.0, even when the sparse budget
in the consistent head is reduced to approximately 0.78%
(1024), CateKV still maintains comparable performance to
full attention in terms of average accuracy. This indicates
that, during inference, the consistent head only requires a
minimal portion of the cache to perform its function, while
the acquisition of global information relies primarily on
adaptive heads, which retain the majority of KV pairs dur-
ing the decoding stage. Since the sparse budget for the
consistent head is a small fraction of the total cache, its im-
pact on memory usage and inference latency is negligible.

5. Conclusion
We propose CateKV, a novel hybrid KV cache method that
leverages sequential consistency to improve LLM inference
efficiency in long-context tasks. By using a coefficient-of-
variation-based algorithm, CateKV classifies attention heads
into consistent and adaptive types. It selectively retains crit-
ical KV pairs in consistent heads and most pairs in adaptive
heads, reducing memory usage and decoding latency while
maintaining performance. Additionally, it can be easily
integrated with other acceleration methods for further en-
hancement. Extensive evaluations demonstrate that CateKV
achieves significant efficiency gains, including up to 2.72×
reduction in memory usage, 2.18× acceleration in decoding,
and a 3.96× throughput increase in batch scenarios.
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A. Further Observations
We expanded our exploration of sequential consistency to a wider selection of models, primarily focusing on the popular
models mentioned in the main text: Llama-3-8B-1M (Gradient, 2024a), Llama-3.1-8B (Meta AI, 2024), Phi-3-128K (Abdin
et al., 2024), and Yi-9B-200K (AI et al., 2024). In Figure 9, we visualized the attention weights heatmap for these four
models, illustrating the presence of both consistent and adaptive heads across various layers. This visualization supports the
generality of our observations. Consistent with the setup described in the main text, the heatmap in the figure comprises
attention weights associated with the last 20 query tokens during the pre-filling stage and all query tokens during the
decoding stage, employing a causal mask. And the samples are randomly excerpted from the WikiText-2 (Merity et al.,
2016) dataset.

B. Experiment Details
B.1. Implementation Details of Experiments

During the identification stage of CateKV, we employed an observation window and temporarily excluded initial tokens
and recent tokens from the context window. We set Lobs to 64, while Linit and Lrec were defined as 1/32 and 1/128 of the
sparse budget, respectively. We constructed the reference dataset based on the Variable Tracking task from the RULER
Benchmark, which comprises 100 samples, each with a length of 128K, distinct from the test set. The sparse budget was
set at 2048. According to the performance on the reference dataset, we selected the most appropriate percentile threshold
k and scaling factor α for each model. For the percentile threshold k, Llama3 and Llama3.1 were set at 0.996 and 0.984,
respectively, while other models were set at 0.99. For the scaling factor α, Llama3.1, and Yi were set at 0.8, while other
models were assigned a value of 1.0.

For the baseline methods, we configured the observation windows of SnapKV (Li et al., 2024) and PyramidKV (Cai et al.,
2024) to 32 and set the β in PyramidKV to 20. For StreamingLLM (Xiao et al., 2023), the initial tokens were set to 128.
Regarding Duoattention(Xiao et al., 2024b), we conducted experiments using the attention patterns provided by their code
available on GitHub.

B.2. Additional Results on RULER

B.2.1. PERFORMANCE OF DIFFERENT CONTEXT LENGTHS ON RULER

We also conducted evaluations on various context lengths within the RULER benchmark. The Table 5 presents the
performance of CateKV on tasks with context lengths from 8K to 256K. CateKV is comparable to full attention in terms of
all lengths and average results and even shows slight improvements in performance at certain lengths when r = 0.4 and
η = 1.0.

Table 5: Performance of different context lengths on RULER

Methods 8K 16K 32K 64K 128K 256K Avg.

Llama-3-8B-1M 91.47 92.87 90.31 86.44 84.10 79.79 87.50
CateKV 91.28 92.11 90.37 86.86 84.61 81.53 87.79

Phi-3-Mini-128K 92.02 91.42 91.24 87.89 72.06 - 86.93
CateKV 92.68 92.54 92.04 88.78 71.69 - 87.55

Llama-3.1-8B 94.78 94.95 94.61 93.02 84.55 - 92.38
CateKV 94.66 94.68 94.58 93.03 84.66 - 92.32

Yi-9B-200K 87.54 82.33 72.06 69.19 64.52 - 75.13
CateKV 87.17 81.68 71.85 69.25 65.76 - 75.14

B.2.2. COMBINE WITH KV RETRIEVAL METHODS

We combine CateKV with Quest (Tang et al., 2024b) and ShadowKV (Sun et al., 2024) and compare their performance with
the baseline under the same computational budget at a length of 128K. The results are shown in Table 6. CateKV helps
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Table 6: Performance (%) of CateKV combined with KV retrieval methods. ’Budget’ refers to the computational budget for
sparse attention. CateKV can reduce memory. CateKV can help KV retrieval methods reduce memory usage to 41% while
maintaining accuracy.

Methods Budget N-S1 N-S2 N-S3 N-MK1 N-MK2 N-MK3 FWE N-MQ N-MV QA-1 QA-2 VT Avg.

Llama-3-8B-1M 100% 100.00 100.00 100.00 98.96 98.96 41.67 71.88 98.69 96.35 73.96 50.00 78.75 84.10
SnapKV 1.6% 100.00 100.00 14.58 98.96 96.88 0.00 61.11 98.44 96.88 68.75 48.96 79.38 72.00
PyramidKV 1.6% 100.00 100.00 10.42 98.96 96.88 0.00 56.60 98.18 95.58 70.83 48.96 80.42 71.40
Quest 1.6% 100.00 100.00 100.00 98.96 97.92 19.79 58.33 98.96 96.61 72.91 52.08 80.20 81.31
CateKV+Quest 1.6% 100.00 100.00 100.00 97.92 97.92 19.79 58.33 98.96 94.27 73.96 51.04 82.29 81.21
ShadowKV 1.6% 100.00 100.00 100.00 97.92 93.75 21.88 75.69 98.96 96.09 72.92 50.00 78.96 82.18
CateKV+ShadowKV 1.6% 100.00 100.00 100.00 97.92 89.58 21.88 75.35 98.70 94.79 71.88 51.04 81.25 81.86

Phi-3-Mini-128K 100% 96.88 90.63 95.83 83.33 65.63 37.50 87.15 72.14 66.67 63.54 39.58 65.83 72.06
SnapKV 1.6% 98.21 38.54 1.04 42.71 11.46 0.00 60.76 8.59 2.60 62.50 38.54 60.63 35.47
PyramidKV 1.6% 97.92 39.58 0.00 46.88 11.46 0.00 56.94 10.16 2.08 59.38 39.58 60.42 35.37
Quest 1.6% 96.88 92.71 96.88 80.21 57.29 20.83 57.29 69.53 63.02 64.58 39.58 63.75 66.88
CateKV+Quest 1.6% 96.88 92.71 96.88 80.21 57.29 18.75 55.56 68.75 64.32 64.58 39.58 62.50 66.50
ShadowKV 1.6% 95.83 88.54 90.63 80.21 54.17 21.88 77.43 63.28 51.28 62.50 38.54 63.75 65.71
CateKV+ShadowKV 1.6% 97.92 87.50 92.70 77.08 55.20 18.75 74.31 64.06 55.99 62.50 38.54 65.83 65.87

Llama-3.1-8B 100% 100.00 100.00 98.96 98.96 90.63 63.54 71.53 98.96 95.31 81.25 46.88 68.54 84.55
SnapKV 1.6% 100.00 100.00 41.67 98.96 79.17 0.00 59.72 97.14 91.67 81.25 44.79 62.92 71.44
PyramidKV 1.6% 100.00 100.00 33.33 98.96 81.25 1.04 56.25 95.83 93.48 81.25 45.83 65.00 71.02
Quest 1.6% 100.00 100.00 100.00 98.96 78.13 4.17 59.03 98.70 94.01 80.21 50.00 68.96 77.68
CateKV+Quest 1.6% 100.00 100.00 100.00 98.96 78.13 3.13 62.15 97.92 90.63 82.29 47.92 66.88 77.33
ShadowKV 1.6% 100.00 100.00 98.96 98.96 77.08 13.54 70.49 98.18 90.36 81.25 48.96 64.17 78.50
CateKV+ShadowKV 1.6% 100.00 100.00 100.00 98.96 73.96 13.54 65.97 98.44 90.89 80.21 50.00 67.08 78.25

Yi-9B-200K 100% 100.00 100.00 98.96 85.42 63.54 18.75 89.24 66.41 32.55 45.83 38.54 35.00 64.52
SnapKV 1.6% 100.00 93.75 5.21 80.21 6.25 0.00 75.69 54.95 18.23 40.63 36.46 52.92 47.02
PyramidKV 1.6% 100.00 94.79 4.17 79.17 5.21 0.00 85.76 55.73 15.63 41.67 33.33 51.45 47.24
Quest 1.6% 100.00 97.92 98.96 85.42 64.58 4.17 67.01 66.14 38.39 42.71 36.46 48.33 62.51
CateKV+Quest 1.6% 100.00 100.00 98.96 85.42 70.83 5.21 66.67 63.28 37.24 40.63 37.50 50.21 62.99
ShadowKV 1.6% 100.00 100.00 97.92 87.50 60.42 2.08 75.35 59.64 34.11 43.75 37.50 54.79 62.76
CateKV+ShadowKV 1.6% 100.00 100.00 97.92 84.38 58.33 2.08 82.29 59.38 33.85 43.75 36.46 47.29 62.14

reduce the memory usage of Quest and ShadowKV and significantly outperforms KV Eviction methods in terms of accuracy
with the same computational load.

B.3. Full Longbench Results

We present the complete experimental results for the Longbench in Table 7. We integrate CateKV with both the Full Attention
and KV retrieval methods, Quest(Tang et al., 2024b) and ShadowKV(Sun et al., 2024), and evaluate its performance on all
21 tasks in Longbench. The results showed that this integration did not lead to any significant drop in per-task accuracy, and
the average accuracy even outperformed the original methods, despite retaining only 42% of the KV cache size. For around
half of the tasks, the combination of CateKV with the original methods leads to a slight improvement in performance.

B.4. Additional Results in Needle In A Hystack

Figure B.4 displays the performance of the Llama3.1-8B, Phi-3-Mini-128K, and Yi-9B-200K models on the ’Needle In A
Haystack’ task. Compared to full attention, CateKV shows varied performance across different context windows and needle
depths, but maintains overall comparable performance. This suggests that CateKV does not significantly affect the models’
capacity to access and retrieve long-context semantic information.

B.5. Additional Results on Larger Models

We evaluated the performance of CateKV on larger models, setting the context length according to the maximum supported
by each model—128k for Qwen2.5-32B and Yi-34B-200K, and 16k for Phi-4-14B. As shown in Table 8, CateKV scales
effectively, achieving near full-attention accuracy on the 30B and 14B models, outperforming baseline methods such as
SnapKV and PyramidKV.
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Table 7: Full LongBench results with Llama-3-8B-1M.

Metrics Full CateKV Quest CateKV+Quest ShadowKV CateKV+ShadowKV

Average 31.27 31.48 30.90 31.03 30.77 30.94

NarrativeQA 18.61 18.64 19.54 17.93 18.43 17.74
Qasper 25.83 27.00 27.00 26.20 25.39 26.38
MultiFieldQA-en 48.06 48.17 45.80 45.72 45.59 46.63
MultiFieldQA-zh 33.76 33.68 34.23 33.37 34.23 33.65
HotpotQA 36.35 36.44 35.79 36.84 38.00 37.64
2WikiMultihopQA 25.17 24.61 25.48 24.07 24.92 25.98
MuSiQue 21.08 20.41 20.18 19.56 20.70 20.22
DuReader 30.98 28.62 29.23 27.36 29.82 27.91
GovReport 23.38 23.45 23.96 23.53 22.35 22.85
QMSum 25.45 24.74 24.59 24.66 24.67 24.29
MultiNews 22.63 21.42 23.30 21.10 23.53 21.10
VCSUM 14.19 13.90 14.21 13.93 13.86 13.86
TREC 39.00 41.83 39.11 39.49 37.69 39.49
TriviaQA 16.81 16.91 16.67 16.73 17.08 16.91
SAMSum 26.46 26.59 26.66 25.16 26.02 25.61
LSHT 31.58 32.00 24.75 33.25 29.68 29.96
PassageCount 1.00 1.00 1.00 1.00 1.00 1.00
PassageRetrieval-en 81.00 80.50 74.50 80.50 80.00 80.50
PassageRetrieval-zh 43.73 43.61 42.85 42.50 39.39 38.98
LCC 48.31 50.08 51.30 51.45 49.06 50.69
RepoBench-P 43.21 47.58 48.73 48.27 43.84 48.45

Table 8: Performance (%) of CateKV on larger models

Methods Cache N-S1 N-S2 N-S3 N-MK1 N-MK2 N-MK3 FWE N-MQ N-MV QA-1 QA-2 VT Avg.

Qwen2.5-32B 100% 100.00 87.50 97.92 70.83 15.63 7.29 90.28 87.24 85.16 51.04 41.67 85.41 68.33
SnapKV 41% 100.00 88.54 51.04 69.79 12.50 2.08 88.54 76.82 76.82 51.04 41.67 85.83 62.06
PyramidKV 41% 100.00 87.50 46.88 66.67 8.33 1.04 84.02 66.93 67.71 48.96 41.67 84.79 58.71
CateKV 41% 100.00 86.46 95.83 71.88 14.58 6.25 89.58 86.88 86.28 50.00 43.75 86.67 68.18

Yi-34B-200K 100% 100.00 100.00 100.00 92.71 70.83 47.92 86.11 97.14 92.45 68.75 47.92 88.05 82.66
SnapKV 41% 100.00 97.92 80.21 90.62 22.92 17.71 81.25 91.15 72.14 67.71 47.92 86.25 71.32
PyramidKV 41% 100.00 100.00 68.75 91.67 26.04 12.50 82.99 91.15 79.43 69.79 47.92 86.46 71.39
CateKV 41% 100.00 100.00 100.00 92.71 73.96 47.92 85.12 97.14 91.15 67.71 46.88 87.08 82.47

Phi-4-14B 100% 100.00 97.92 100.00 100.00 97.92 100.00 98.96 98.96 99.22 80.21 67.71 100.00 95.08
SnapKV 43% 100.00 100.00 7.29 100.00 93.75 3.13 99.31 97.66 99.22 82.29 66.67 100.00 79.11
PyramidKV 43% 100.00 100.00 3.13 100.00 94.79 5.21 98.96 98.44 98.44 80.21 67.71 100.00 78.91
CateKV 43% 100.00 98.96 100.00 97.92 98.96 100.00 99.31 98.44 99.48 78.13 67.71 99.79 94.89
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Figure 9: Sequential consistency in Llama-3-8B-1M, Llama-3.1-8B, Phi-3-Mini-128K and Yi-9B-200K
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(d) Phi-3-mini-128k-instruct w/ CateKV
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(e) Yi-9B-200k

20
K

30
K

40
K

60
K

70
K

80
K

10
0K

11
0K

12
0K

13
0K

15
0K

16
0K

17
0K

19
0K

20
0K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h 
Pe

rc
en

t (
%

)

Needle in A Haystack Yi-9B-200K w/CateKV

0.0

0.2

0.4

0.6

0.8

1.0

(f) Yi-9B-200k w/ CateKV

Figure 10: NIAH Results on Llama-3.1-8B-Instruct(Meta AI, 2024), Phi-3-mini-128k-instruct (Abdin et al., 2024) and
Yi-9B-200k (AI et al., 2024)
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