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Abstract

Embodied agents powered by large language models (LLMs), such as Voyager,
promise open-ended competence in worlds such as Minecraft. However, when
powered by open-weight LLMs they still falter on elementary tasks after domain-
specific fine-tuning. We propose MINDFORGE, a generative-agent framework for
cultural lifelong learning through explicit perspective taking. We introduce three
key innovations: (1) a structured theory of mind representation linking percepts,
beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a
multi-component memory system. Following the cultural learning framework, we
test MINDFORGE in both instructive and collaborative settings within Minecraft.
In an instructive setting with GPT-4, MINDFORGE agents powered by open-weight
LLMs significantly outperform their Voyager counterparts in basic tasks yielding
3× more tech-tree milestones and collecting 2.3× more unique items than the
Voyager baseline. Furthermore, in fully collaborative settings, we find that the
performance of two underachieving agents improves with more communication
rounds, echoing the Condorcet Jury Theorem. MINDFORGE agents demonstrate
sophisticated behaviors, including expert-novice knowledge transfer, collaborative
problem solving, and adaptation to out-of-distribution tasks through accumulated
cultural experiences.

1 Introduction

The development of generally capable agents marks a significant shift in advancing artificial in-
telligence, transitioning from assimilating data to generating novel knowledge through embodied
interactions with open-ended environments [1–4]. Classical approaches leveraging reinforcement
learning [5, 6] and imitation learning [7] often struggle with generalization and exploration, as agents
tend to converge on repetitive behaviors in static environments [8]. To address these limitations,
researchers have sought to emulate human-like lifelong learning capabilities, developing systems
that can continuously acquire, update, and transfer knowledge over extended periods [9, 10].The
advent of large language models (LLMs) has accelerated this pursuit, enabling the development of
agents such as Voyager [11] that can apply internet-scale knowledge to continuously explore, plan,
and acquire new skills in partially observable, open-ended environments such as Minecraft.

Despite their promise, we argue that state-of-the-art lifelong learning agents like Voyager face a
crucial limitation: they learn in isolation, neglecting a fundamental aspect of human intelligence—the

*Equal Contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Open-LLM 
Voyager

I want to collect dirt 
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Hey! I need help with 
getting one block of dirt.

Can you help me?
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agents are able to find a solution through collaboration 
(actual in-game conversation excerpts)

I am currently at <x,y,z>. 
My inventory is empty.

I have no tools equipped.
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block and break it by hand.
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Figure 1: MINDFORGE enables agents to (a) collaborate through structured theory-of-mind rep-
resentations, which (b) leads to improved performance compared to Voyager when powered by
open-weight LLMs, averaged across 3 runs.

social context. So central is the social context to our existence that the Social Intelligence Hypothesis
posits that our cognitive capabilities evolved primarily to navigate the complexities of social life
[12, 13]. This isolated learning becomes particularly problematic when coupled with these agents’
reliance on closed LLMs like GPT-4. Wang et al. [11] note that “VOYAGER requires the quantum leap
in code generation quality from GPT-4 which GPT-3.5 and open-source LLMs cannot provide”. Our
experiments (Section 5) corroborate this observation, demonstrating that replacing GPT-4 with open
LLMs renders the Voyager agent incapable of even the most rudimentary tasks, such as collecting dirt
in Minecraft. We ask: can an open LLM-powered agent, which struggles with basic tasks, improve
through collaboration with others?

To address this question, we introduce the MINDFORGE framework, inspired by cultural learning,
which contends that individuals internalize skills and strategies by observing others’ perspectives,
using Theory of Mind (ToM) to infer goals, beliefs, and intentions and thereby deepen social learning
[14–18]. Our framework reframes knowledge distillation [19] as a social, test-time process: agents
refine their beliefs through multi-turn dialogue with expert peers, without gradient updates. This in-
teractive distillation supports test-time compute scaling [20], enabling agents to improve performance
via communication, memory retrieval and perspective-taking. By structuring communication across
turns, MINDFORGE also contributes to multi-turn LLM agent research [21, 22], showing that open
models can match GPT-4 through collaboration alone. Moreover, our analysis of weak-weak settings
highlights a compute-performance tradeoff at inference, linking collaboration to test-time compute
considerations [20].

Figure 1a provides an overview of our agents in action. Concretely, MINDFORGE extends Voyager
by incorporating three key improvements: (1) perspective-taking through a causal ToM template
[23] linking agent percepts, beliefs, desires, and actions; (2) a natural language communication
interface between agents; and (3) memory updates following the Soar cognitive architecture [24],
including semantic memory of task and environment-related knowledge and episodic memory.

Empirically, we instantiate MINDFORGE agents in Instructed Learning (mixed-expertise) and
Collaborative Learning (matched-expertise) settings within the cultural learning framework [15].
MINDFORGE agents powered by open-weight LLMs outperform the original Voyager architecture
[11] on two seemingly trivial tasks by more than 40%. We identify Voyager’s specific failure cases:
(1) false beliefs and (2) code generation, and show how our method overcomes them through
communication and perspective-taking. To assess lifelong learning, we run MINDFORGE on the
Minecraft tech-tree and find that it surpasses open-weight Voyager variants in both key tech-tree
milestones and the number of unique items obtained. Section 5.5 further shows that when both agents
begin with the same limited capabilities, a single round of GPT-4 seeding followed by just seven
turns of peer-to-peer dialogue lifts the population-level success rate from 62% to 79%, revealing a
Condorcet-style “many-minds” boost that stems from richer interaction rather than larger models.
This generalization in post-collaborative settings paves the way for agents that can continuously adapt
through social interaction, reducing the reliance on large-scale computing resources for training and
fine-tuning the underlying language models.
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2 Related Work

Theory of Mind in Embodied Agents Early attempts to equip machines with mental-state rea-
soning drew on deep learning [25–27], reinforcement learning [28], and Bayesian models [29].
These systems were either confined to toy 2-D worlds [25, 26] or failed to generalize to richer
environments [27]. The emergence of large language models (LLMs) reignited interest in ToM,
sparking evaluations of their putative capabilities [23, 30–32]. Although evidence so far suggests
that LLMs lack genuine ToM, their breadth of knowledge has inspired a new wave of prompt-based
frameworks [33–36]: the first two focus on perspective-taking, while the latter pair ground reasoning
in explicit causal models. BIP-ALM remains the sole example that integrates such a framework with
an LLM [37, 38].

LLM-based Multi-Agent Systems LLMs have demonstrated overwhelming success in performing
a variety of single-agent tasks ranging from question answering and text generation to code synthesis
and complex reasoning in embodied settings [11, 39, 40]. This success has started a growing interest in
developing LLM-based multi-agent systems [21, 22, 41–43], where language-based communication
is a central component. For instance, CoELA [21] introduce a modular multi-agent framework that
integrates memory, perception and execution, while COMBO [41] present a multi-agent cooperative
framework, that deals with collaboration in partial egocentric views of the environment. However,
these frameworks lack an explicit belief representation and Theory-of-Mind reasoning. Recently,
benchmarks like MineCollab [44], designed for collaborative reasoning, find that current LLM
agents are not suited for multi-agent collaboration in long-horizon embodied scenarios, a gap that
MINDFORGE addresses by endowing agents with structured perspective taking capabilities.

Single-agent Frameworks Recent research on long-horizon tasks in single-agent systems differs
architecturally from MINDFORGE’s unified collaborative learning framework. For example, Ex-
peL [45] and CLIN [46] emphasize experiential learning through vectorized trajectories or causal
abstractions but lack explicit belief graphs and integration across episodic, semantic, and procedural
memories. Frameworks like DEPS [47] and ADaPT [48] enable in-episode self-correction via itera-
tive refinement, yet insights are often ephemeral, confined to the context window without persistent
storage or structured models of others’ beliefs. SSO [49] provides procedural memory through
skill libraries but omits episodic/semantic layers and social reasoning for targeted teaching or belief
revision. Similarly, Adam [50] structures world knowledge as causal graphs in open environments,
while Optimus-1 [51] builds hierarchical semantic graphs from experiences.

3 Background

Voyager Voyager agents consist of three main components: (1) an automatic curriculum generator,
(2) a skill library, and (3) an iterative prompting mechanism. The automatic curriculum proposes
progressively complex tasks, driving continuous learning. The skill library stores and retrieves learned
behaviors, facilitating knowledge accumulation and transfer. The iterative prompting mechanism
generates and refines executable code based on environmental feedback, allowing for adaptive
behavior. Voyager demonstrated significant capabilities in item discovery, technology progression, and
skill generalization. This system established a new benchmark in open-world AI agents, showcasing
the potential for lifelong learning and adaptation in complex, dynamic environments. The Voyager
framework serves as a base for our lifelong collaborative learning agents within Minecraft.

BigToM Causal Template The BigToM causal template [23], provides a structured framework
for representing Theory of Mind (ToM) scenarios as causal graphs. This template comprises key
components including context, desire, percept, belief, causal event, and resulting actions. By
representing ToM scenarios in this causal structure, the template allows for systematic manipulation
of variables such as an agent’s perceptions, beliefs, and actions in response to environmental changes.
This approach enables the creation of diverse, well-controlled ToM scenarios, capturing the complex
causal relationships between an agent’s mental states and their behavior in social situations. The
causal graph representation facilitates a more nuanced and systematic exploration of ToM reasoning,
allowing for the examination of various inference patterns such as forward belief, forward action, and
backward belief inferences in social cognitive tasks.
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Figure 2: Cognitive architectures of MINDFORGE and Voyager respectively. The Voyager architecture
has been re-framed within the scope of our cognitive architecture. MINDFORGE expands the original
Voyager framework to enable communication through theory of mind together with additional memory
subsystems to enhance the lifelong learning capabilities of the agent.

4 Method

To grant MINDFORGE agents the ability to learn through collaborative social interactions, we intro-
duce the following components for communication and perspective-taking: (i) an explicit structured
representation linking percepts, beliefs, desires, and actions (Section 4.1), (ii) perspective taking so
that the agent can reason over self-beliefs and those about its collaborators (Section 4.2), (iii) a com-
munication medium that the agents can use to share information in natural language (Section 4.3),
and (iv) the ability to utilize different types of memory subsystems (Section 4.4).

4.1 Structured Representation of Own Mental States: Beliefs, Desires, and Intentions

For MINDFORGE agents to develop effective theory of mind capabilities, they must first possess
structured representations of their own mental states. This explicit modeling of the self is crucial
for recursive social reasoning: enabling agents not only to reason about their own beliefs, goals,
perceptions, and how these might lead to their actions, but also to form a similar mental model for
other agents. This mirrors findings in developmental psychology, where children first develop an
awareness of their own thoughts, feelings, and goals before being able to infer the mental states of
others [52, 53]. This is further supported by neuroscientific research that has also identified distinct
neural mechanisms for self-cognition and social cognition [54, 55].

We draw on the classical Belief-Desire-Intention (BDI) framework [56] and operationalize it us-
ing the BigToM causal template (Section 3) [23]. In MINDFORGE, beliefs represent the agent’s
current understanding of the world inferred from sensory perception, including interactions with
other agents. Desires encode the agent’s goals, both generated by an automatic curriculum and
those arising from collaborative interactions. Intentions correspond to concrete executable actions,
implemented as generated code—and so, consistent with BigToM [23], we treat “intentions” and
“actions” interchangeably in implementation. However, we note that this equivalence does not always
hold conceptually: intentions refer to internal commitments or plans, while actions are observable
behaviors that may diverge from intentions. For a deeper treatment of this distinction, see [57].

Belief Structure. We categorize a MINDFORGE agent’s beliefs into four key categories, illustrated
in Figure 3: i. perception-related beliefs, formed from direct sensory input via the Minecraft API; ii.
task-related beliefs, inferred from the agent’s reflection on its upcoming objectives; iii. interaction-
related beliefs, derived from chat messages during task execution; and iv. partner-related beliefs,
which track others’ mental states. Each belief type is generated via a separate LLM call, with prompts
conditioned on current percepts, memory retrievals, and conversation history (see Appendix F). This
modular belief formation feeds into the causal ToM template Figure 2a, which governs downstream
action generation. Structured self-modeling thus serves as the foundation for cultural learning and
perspective-taking.

4.2 Theory of Mind: Modeling Partner Perspectives

Building on the structured representation of their own mental states, MINDFORGE extend this
modeling to others via Theory of Mind—the capacity to attribute beliefs, desires, and intentions
to others. Each MINDFORGE agent achieves this by maintaining a partner-specific BigToM graph
within its own beliefs, allowing it to reason about the internal state of each conversational partner
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I am currently in a snowy beach biome, 
as indicated by the surrounding 
blocks of sand, sandstone, snow, 
dirt, grass_block, stone, and coal_ore.

Question: How to get 1 wood log in Minecraft?
Answer: You can mine an oak log directly
with your hands by clicking on it 
to get 1 wood log in Minecraft.

Question: Where are you located?
Answer: I am located near a tree, 
as indicated by the presence of oak 
leaves and oak logs in my vicinity.

Biome: forest biome
Time: Unknown
...
Task: collecting one wood log by breaking a 
fully grown tree
Task related beliefs: <task beliefs>
Interaction beliefs: <interaction details>
Perception beliefs: <beliefs about percepts>

Beliefs

Perception Beliefs

Partner

Task Beliefs

Interaction

Partner

Desires Actions

BeliefsPercepts

Perception Beliefs

Partner Beliefs

Interaction Beliefs

Task Beliefs

Figure 3: Each agent maintains a set of internal beliefs that it can exploit as needed. In order to
enable ToM capabilities agents also maintain a belief over the beliefs, actions and desires of their
collaborative counterparts.

(see Figure 3). These representations guide how an agent interprets and responds to incoming
communication.

During collaboration, an agent uses its internal model of its partner to simulate what the partner knows,
believes, or needs. The underlying LLM receives this partner model along with the conversation
history to generate responses incorporating the collaborator’s point of view. As interaction proceeds,
the partner beliefs are continuously updated using new received through the communication channel
(Figure 6). This dynamic modeling of partner mental states endows MINDFORGE agents with one of
the most crucial abilities within the cultural learning framework: reasoning about partner perspectives
[14, 15]. For instance, an expert agent can diagnose a novice’s misconception and tailor its feedback
accordingly, while a novice can ask more targeted questions with fewer digressions by simulating
what the expert knows. See Appendix B.1 for more details on how perspective-taking is integrated
into the communication module, and in-game examples.

4.3 Communication Medium

To take advantage of representations of each other’s mental models and collaborate effectively,
agents need to be able to communicate with each other. We operationalize communication in natural
language, integrating the MINDFORGE framework’s communication system with Minecraft’s native
in-game chat functionality. Specifically, once a MINDFORGE agent fails to complete a task, it initiates
a communication round with its partner where it leverages its BigToM representation to ask for help.
This system enables agents to exchange textual information and, crucially, to integrate feedback from
collaborators directly into their belief systems. Concretely, we utilize the Mineflayer API [58] to
extract and process chat data from the Minecraft environment. By leveraging the game’s existing chat
system, the framework ensures that collaborative interactions occur in a context-appropriate manner,
closely mirroring human-to-human communication within Minecraft.

To handle the resulting conversation, we use a dedicated LLM instance within the MINDFORGE
agent which is tasked with synthesizing and interpreting the conversation into the structured BigTOM
BDI template, generating both interaction beliefs and partner beliefs (see prompts in Appendix F).
This instance does not directly influence any other parts of the agent.

4.4 Memory Subsystems

A MINDFORGE agent’s memory consists of three subsystems drawing on research about human
memory: (i) episodic, (ii) semantic, and (iii) procedural memory.

Episodic memory deals with pertinent information about the agent’s past attempts at a task and
social interactions with other agents. Recollections of past episodes serve as context for humans
to interpret others’ behaviors, leading to divergent future actions in the same situation in response
to different recollections [59]. Humans also tend to summarize information from their social inter-
actions, but at the same time are capable of preferentially accessing episodes when the credibility
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of certain summaries is low due to the lack of evidence [60]. Moreover, findings also suggest that
there are processes in the brain for updating these summaries as new episodes transpire [60, 61].
Inspired by complementary learning systems theory, Larimar [62] enhances LLMs with a distributed
episodic memory module, enabling dynamic knowledge updates without any gradient-based learning.
Furthermore, Optimus-1 integrates past experiences in a multimodal memory storage mechanism
and abstracted experience pool used for summarization of past experiences. For a MINDFORGE
agent, the role of episodic memory is twofold. Firstly, it stores details about its partners revealed
during previous conversations that can be exploited for perspective-taking in future communication.
Secondly, we store past actions that led to failure and retrieve them based on their similarity with the
task at hand. Thus, a MINDFORGE agent can track both the progress of its partner and learn from
past failures.

Semantic memory constitutes an individual’s store of knowledge about the world. The content
of semantic memory is abstracted from the experience and is therefore said to hold summarized
generalizations, likely without references to specific experiences [60, 61, 63]. For a MINDFORGE
agent, the semantic memory stores information related to the task and environment. It stores
information relevant to completing a task; for instance, the prerequisites for being able to mine dirt in
the game world. Such a piece of information is not necessarily tied to one specific episode. Rather, it
is generally useful information about the world and can be distilled from the episodic memory.

Finally, procedural memory stores the skills that the agent learns and is analogous to the skill library
present in the original Voyager framework [11]. The skills stored in the procedural memory are
reusable pieces of code that the agent can use for solving problems, allowing the agent to take on
more complex tasks while avoiding re-learning elements previously used successfully. As illustrated
in Figure 2a, episodic and semantic memory stores influence the agent’s beliefs, while procedural
memory provides the routines that inform the agent’s next action. Additional information about the
memory subsystems can be found in Appendix B.2, where we provide implementation details, and
an ablation for the episodic memory component, where we show that omitting it from MINDFORGE
leads to a drop in success rate.

5 Experiments

5.1 Experimental Setup

Our MINDFORGE framework introduces three advances that let agents improve continuously through
social exchange: (1) explicit theory-of-mind representations for reasoning about peers, (2) Natural-
language dialogue for coordination, and (3) integrated semantic and episodic memory to retain
experience. We evaluate these additions in the same Minecraft world used by Voyager [11], built on
MineDojo [64] with motor control via Mineflayer [58]. Component LLMs communicate through
DSPy [65, 66] and LangChain [67] for generation and embedding. In the base experimental setting, we
follow Voyager [11] and allow the agent to execute 4 sequential actions to solve a task. MINDFORGE
agents that interact (see Section 5.3) interleave one communication round (via the in-game chat)
between two environmental actions. A snapshot of this setup can be seen in Figure 4a. For isolated
tasks we measure the fraction of successes over 24 independent trials (one task per trial). In tech-
tree experiments we follow Voyager’s protocol, tracking milestone achievements and unique items
collected. To ensure comparability, we preserve Voyager’s original prompt structure and workflow
throughout.

5.2 Voyager With Open-Weight LLMs

To establish non-interactive performance baselines, we replace GPT-4 [68] with three open-weight
LLMs in the Voyager framework [11]: Mistral-7B [69], Mixtral-8x7B [70], and Llama 3.1-8B [71],
selected for their long context windows and manageable size. Testing focuses on two fundamental
Minecraft tasks: collecting single blocks of dirt and wood. Results in Table 1 reveal that while GPT-4
achieves perfect performance, open-weight LLMs struggle significantly even with these basic tasks
without collaboration. This aligns with Wang et al. [11]’s observation that GPT-4’s superior code
generation capabilities enable it to obtain 5.7× more unique items than other models, establishing a
clear baseline for measuring the impact of our collaborative approach.
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Table 1: Voyager [11] powered by open-weight LLMs (even fine-tuned for Minecraft) struggles
with basic tasks. Closed-source models like GPT-4 exhibit perfect accuracy. A single MINDFORGE
agent bridges the performance gap between Mistral-7B and GPT-4 on both wood and dirt collection,
showing significant gains compared to other learning techniques such as PEFT.
Task Mistral-7B Mixtral-8x7B Llama 3.1-8B Mistral-7B

(PEFT)
Mistral-7B
(MindForge)

GPT-4

Dirt 7% 27% 4% 7% 37.5% 100%

Wood 4% 27% 7% 12.5% 33.3% 100%

Lorem ipsum

Execution error:
Cannot read properties
of undefined (reading 'id')

Weak agent asks
for help

Weak Agent: I am trying to complete 
the task using a pickaxe. However, I 
encountered an execution error.

Strong Agent: You do not require any 
tools to mine dirt. You can just dig 
down with your bare hands instead.

Communication Channel

Weak agent uses feedback
to fix code

(a)

Perception beliefs: Based on the sensory
perception you’ve provided, 
here are 10 beliefs I have ....

Strong Agent: 
It looks like you are on the right track. 
However, you do not require the use of
any tools to get 1 block of dirt.
Instead, use your bare hands to mine dirt.

Communication
Channel

InformsWeak Agent: 
Hey! I need help with getting
one dirt block.
Can you help me with that?

Informs

Fixed task belief
after communication

Task belief
before communication

Strong Agent

Weak Agent

Task: get 1 dirt block
Beliefs: {
    Task Beliefs: {
         Question: How to get 1 dirt block?
         Answer: You can obtain a dirt block by
         mining it directly from the ground without
         using any tools.

Task: get 1 dirt block
Beliefs: {
    Task Beliefs: {
         Question: How to get 1 dirt block?
         Answer: Can use empty hand or a tool
         like a pickaxe to break the grass blocks.

Task: get 1 dirt block
Beliefs: {
    Task Beliefs: {
         Question: How to get 1 dirt block?
         Answer: Can obtain a dirt block by
         mining it directly from the ground
         using your bare hands.

(b)

Figure 4: Failure mode correction. (a) Communication with an expert agent fixes the code error.
(b) A weaker agent’s incorrect task-related belief (initially believing it is mining ‘grass blocks’ and
needs tools) is corrected by a stronger agent through communication (e.g., stating ‘dirt blocks’ do not
require tools), leading to an updated task understanding.

Primary Failure Cases While Wang et al. [11] only discuss code-generation failures, we find
two prominent failure cases for the open-weight Voyager setup: (1) false beliefs and (2) faulty
code generation. Importantly, we discover that the critic-based self-improvement component in
Voyager fails to recover from initial mistakes and subsequently fails to solve the task. As shown
in Figure 4b, a Mistral-7B powered Voyager fails at dirt collection due to incorrect assumptions
about tool requirements and lack of basic knowledge pertaining to Minecraft. Similarly, Figure 4a
showcases how feedback from a stronger agent can solve code misconceptions about the Mineflayer
API [58].

Fine-Tuning Does Not Help Parameter-efficient tuning often helps LLMs [72], yet adapting
Mistral-7B with GPT-4 execution traces (reasoning + code) and Minecraft manuals (domain knowl-
edge; Appendix E) produced no benefit. In cultural-learning terms [14, 15] this is imitation learning,
but the tuned model still scores 7% on dirt collection (±0) and 12.5% on wood collection (+8.5)
as shown in Table 1. Post-hoc analysis shows the tuning makes outputs wordier, blurs decision-
making, and erodes instruction-following, indicating that naively imitating unstructured traces is
counter-productive.

5.3 Introducing Collaboration: MINDFORGE Agents

Having shown that PEFT-based imitation learning fails to improve agent capabilities, we evaluate
our proposed MINDFORGE framework. We adopt an instructive learning approach within the
cultural learning framework [15], where an expert agent guides a novice through communication and
perspective-taking. This multi-agent collaboration effectively bridges the performance gap between
open-weight LLMs and GPT-4, addressing the failure cases identified in Figure 4.

Feasibility: Human (Expert) Collaboration Improves Performance To establish feasibility, we
first conduct a wizard-of-oz study where a human expert interacts with an open-weight LLM-powered
MINDFORGE agent through the in-game chat. As shown in Table 2, human expert collaboration
achieves on average a +57.85% increase in task completion rate for dirt collection over the non-
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Table 2: Fraction of successful MINDFORGE agents across
24 individual trials; dirt and wood collection. Standard Voy-
ager [11] setup: 4 attempts per task, with a communication
round interleaved where appropriate. See also Figure 5
and Figure 7.

Setting Task Mistral-
7B

Mixtral-
8x7B

Llama
3.1-8B

w/o interactions Dirt 37.5% 29.15% 12.5%

instructive setting, human expert Dirt +45.83 +57.85 +45.83

instructive setting, GPT-4 expert Dirt +16.16 +37.51 +4.1

instructive setting, Llama 3.1-70B Dirt +8.33% - -
collaborative setting, no expert Dirt −4.2 +0 −8.5

w/o interactions Wood 33.3% 50% 7%

instructive setting, GPT-4 expert Wood +12.52 +20.8 +5.5

instructive setting, Llama 3.1-70B Wood +8.36% - -
collaborative setting, no expert Wood −12.5 −4.15 +0
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Figure 5: Instructive Setting (GPT-
4); Dirt Collection. Performance
scales with communication rounds.
MINDFORGE w/o interactions as a base-
line. Actions are interleaved with com-
munication rounds. Dashed (– –): ex-
tra collaboration rounds. △ points: cold-
start (4 actions) without interactions.

interactive baselines. This demonstrates both the viability and flexibility of our framework in enabling
productive human-agent interactions for collaborative tasks.

GPT-4 (Expert) Collaboration Maintains Performance Benefits We replace the human expert
with a GPT-4-powered MINDFORGE agent that collaborates with an open-weight LLM agent. The
expert agent infers its partner’s failure cases through perspective-taking based on natural language
communication in the game chat. Unlike human collaboration, agents cannot directly access each
other’s internal beliefs and must rely on Theory of Mind through communication to model their
counterpart’s mental state. This perspective-taking enables the expert to accurately diagnose and
address the weaker agent’s misconceptions. Notably, this setup generalizes the classic notion of
knowledge distillation beyond logits or model weights: here, distillation unfolds through social
interaction, where the expert agent transmits structural knowledge, corrects false beliefs, and shapes
the student’s internal representations in real time. As shown in Table 2, this approach significantly
improves performance compared to the non-interactive baselines, achieving on average a 16.1%
increase in task completion rates for dirt collection and a 13% increase for wood collection tasks
respectively. A sample conversation can be found in Appendix D.

Ablations To elucidate the MINDFORGE framework’s components, we conducted targeted abla-
tions. The perspective-taking module, enabling agents to reason over partners’ beliefs, boosts task
completion by up to 13%, as evidenced by comparisons across multiple communication rounds (see
Table 7, Appendix B.1). Our structured ToM representation outperforms its unstructured variant in
complex Minecraft tasks (Table 8). Additionally, ablating the episodic memory component reveals
that retaining past failures enhances performance (Table 9, Appendix B.2).

More Communication Rounds Improve Performance Since communication is central to our
framework, we examine the benefits of multiple rounds per task trial, assessing communication
and perspective-taking amid escalating opportunities. We pair a GPT-4 MINDFORGE expert with
a Mixtral-8x7B MINDFORGE weak agent. Figure 5 demonstrates communication’s value through
a sharp rise in task completion rates with additional rounds, while Figure 6 illustrates the expert’s
progressively accurate grasp of the partner’s mental state. Further evidence in Appendix A.1 affirms
communication’s importance in instructive and collaborative settings, even for demanding Minecraft
tasks (“Craft a pickaxe” and “Mine Iron”) involving MINDFORGE agents.

Using a less constrained communication protocol We introduce the MINDFORGE communica-
tion protocol in Section 4.3, initiating agent conversation only after task failure. To demonstrate
the framework’s flexibility, we test two MINDFORGE tasks with a dynamic communication setup,
allowing the weak agent to choose whether to initiate communication when uncertain or attempt the
task independently. Table 6 (Appendix A.3) reveals comparable task completion rates between the
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Task: get 1 dirt block
Task beliefs: use pickaxe 
and dig down.
Nearby blocks: dirt, grass, ...
Code from last round: 
Unknown
Execution error: No props...
Biome: plains
Time: Unknown
Health: 20/20
Hunger: Unknown
Critique: Unknown

Task: get 1 dirt block
Task beliefs: use pickaxe 
and dig down.
Nearby blocks: dirt, grass, ...
Code from last round: 
Unknown
Execution error: Unknown
Biome: plains
Time: Unknown
Health: 20/20
Hunger: Unknown
Critique: Unknown

Task: get 1 dirt block
Task beliefs: use pickaxe 
and dig down.
Nearby blocks: Unknown
Code from last round: 
Unknown
Execution error: Unknown
Biome: Unknown
Time: Unknown
Health: Unknown
Hunger: Unknown
Critique: Unknown

Round 1 Round 2 Round 3
Communication

Rounds

Partner Beliefs Partner Beliefs Partner Beliefs

Figure 6: Partner beliefs of the strong agent progressively
improve as the number of communication rounds increase.
Subsequently, these beliefs are used to reason throughout
the conversation and take perspective.
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Figure 7: Collaborative Setting (Mix-
tral); Dirt Collection. Blue: GPT-
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Table 3: We follow Voyager’s methodology [11] for reporting the Minecraft tech-tree results. The
reported scores represent the number of prompting iterations until the milestone was accomplished,
averaged over three trials. The fewer the iterations, the more efficient the method. N/A represents the
agent being unable to solve the task. Best performance in terms of iterations required and number of
times milestone is reached (out of 3 trials).

Method Model Wooden Tool Stone Tool Iron Tool

Voyager [2023] GPT-4 6± 2 (3/3) 11±2 (3/3) 21±7 (3/3)

ReAct [2023] GPT-4 N/A (0/3) N/A (0/3) N/A (0/3)

Reflexion [2023] GPT-4 N/A (0/3) N/A (0/3) N/A (0/3)

AutoGPT [2023] GPT-4 92±72 (3/3) 92±72 (3/3) 135±103 (3/3)

Voyager
(open-weight)

Mixtral 8×7B N/A (0/3) N/A (0/3) N/A (0/3)

Llama 3.1-8B N/A (0/3) N/A (0/3) N/A (0/3)

Llama 3.1-70B 19 ± 9 (3/3) N/A (0/3) N/A (0/3)

MINDFORGE
(w/o collaboration)

Mixtral 8×7B 86±17(3/3) N/A (0/3) N/A (0/3)

Llama 3.1-8B 120±0 (1/3) N/A (0/3) N/A (0/3)

Llama 3.1-70B 50±17 (3/3) 113±24 (2/3) N/A (0/3)

MINDFORGE
(mixed-expertise collaboration)

Mixtral 8×7B 51±20 (3/3) N/A (0/3) N/A (0/3)

Llama 3.1-8B 100 ±30 (3/3) N/A (0/3) N/A (0/3)

Llama 3.1-70B 62±14 (3/3) 79±25(3/3) 120±30 (2/3)

MINDFORGE
(mixed-expertise collab w/ Llama 3.1-70B) Mixtral 8×7B 65±12 (3/3) N/A (0/3) N/A (0/3)

default and flexible protocols, underscoring MINDFORGE’s independence from specific communica-
tion designs. Qualitatively, weaker models like Mistral-7B consistently act confidently, never seeking
help despite the option, while both models adeptly bypass assistance for tasks aligned with prior
experience.

5.4 MINDFORGE Lifelong Learning

We evaluate MINDFORGE’s lifelong learning capabilities against both GPT-4 and open-weight
Voyager [11] variants. The progression through increasingly complex technological achievements
(from wooden to diamond tools) provides a rigorous test-bed for assessing lifelong learning and
collaboration abilities of MINDFORGE. We follow the methodology from Voyager and evaluate
performance on three key milestones: (1) wooden tools, (2) stone tools and (3) iron tools.

In line with the findings in Table 1, Table 3 highlights the performance gap between GPT-4 powered
Voyager and its open-weight variants, with only Llama 3.1-70B [71] reaching the wooden tools
milestone. On the other hand, MINDFORGE shows substantial improvement across the board both
in terms of achieved milestones and efficiency (number of iterations). Notably, Llama 3.1-70B [71]
powered MINDFORGE achieves two additional tech-tree milestones, nearing the performance with
the original GPT-4 powered Voyager [11]. We observe a steady increase in efficiency (number of
iterations) as the size of the LLM increases: Llama 3.1-70B [71] powered MINDFORGE is 1.62×
more efficient than its Llama 3.1-8B counterpart for reaching the wooden tools milestone, suggesting
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that larger models can better utilize the collaborative learning framework. Furthermore, to understand
the impact of collaboration in a mixed-expertise collaborative setting, we experiment with a non-
collaborative MINDFORGE ablation. Notably, MINDFORGE agents without collaboration require on
average 15 more prompting iterations to reach the wooden tools milestone and 34 iterations to reach
the stone tools milestone. Thus, the collaborative framework not only enhances task completion
rates but also enables more efficient acquisition of complex skills. We further test the generalization
capabilities of MINDFORGE agents in Appendix A.2 where we show how even after collaboration
finishes, the agents can reuse the knowledge in out-of-distribution tasks.

5.5 MINDFORGE Collaborative Learning Setting

While prior sections focused on instructive learning from stronger peers, we now consider a more
challenging setup: collaboration between two MINDFORGE agents of matched capabilities, each
powered by the same type of open-weight LLM. This setting reflects mutual cultural learning without
access to an expert where the agents must bootstrap improvements solely through interaction, thereby
mimicking certain qualities of emergence. Critically, we evaluate not individual trajectories, but
instead focus on population-level performance: after N rounds of communication, what fraction of
agent pairs from the total pool succeed in completing the task? As shown in Table 2, when agents
begin from unprimed states, collaboration often leads to stagnation or even degradation which mirrors
the “blind leading the blind” dynamic, where flawed mental models are mutually reinforced.

However, even minimal prior expert instruction—such as a single round of GPT-4–guided collab-
oration—can prime agents for more effective peer interaction, even if they still fail when acting
alone. As shown in Figure 7, we pair Mixtral-8x7B agents that each received N communication
rounds of GPT-4 guided trial before interacting. We observe that the fraction of successful agents
steadily increases with additional communication rounds between themselves (Mixtral agents). From
a 62% baseline population succeeding, we reach 79% of the population succeeding after seven turns,
showing a 17% increment. This result reflects a form of test-time compute scaling, where richer
interaction, not larger models, drives the emergent improvements across the group.

This also aligns with the Condorcet Jury Theorem [73], which predicts that collective decisions
improve when individuals exceed a baseline level of competence. Here, we see a distributed variant
of this principle in action: once agents cross a minimal competence threshold, the communication
induced bootstrapping can yield reliable gains at the population level.

6 Conclusion

The MINDFORGE framework demonstrates that cultural learning can overcome the limitations of
open-weight LLMs in embodied environments. Integrating theory of mind, natural communication,
and structured memory systems enables MINDFORGE agents to learn from both mixed and matched
expertise peers and overcome fundamental failure modes in perception and code generation. Our
experiments show that collaboration significantly improves performance on lifelong learning sce-
narios, with agents collecting 2.3× more unique items and achieving 3× more tech-tree milestones
when paired with expert agents. Crucially, in the collaborative setting, we show that the fraction of
successful agents scales as a function of communication rounds; revealing emergent gains through
perspective taking and interaction. These results suggest that social learning could reduce embodied
AI’s dependence on large proprietary models, opening new paths for democratized agent development
aligned with Green AI principles [74].
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: We back up the claims made in the abstract and introduction in Section 5,
where we run extensive experiments in Minecraft and show the benefits of the proposed
framework. Furthermore, we offer qualitative results through various figures and text
snippets in the manuscript. These are available in the main paper as well as in the appendix
(e.g. Appendix D).
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: We acknowledge the limitations of MINDFORGE and we discuss them through-
out the paper when necessary. That said we do not have a standalone Limitations section.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The manuscript does not include any theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Since our method relies on LLMs, we provide a full comprehensive list of
the models used (via API), the underlying prompts used to query the LLM as well as
extensive details in Section 5 that allows for potential reproducibility. Importantly, our
method uses significant scaffolding to enable multi-agent communication in Minecraft.
While we do not include code snippets in the manuscript, we provide the full code as part of
the Supplementary Materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the full code repository used to execute any experiment referenced
in the manuscript in the Supplementary Material. We anonymize the code and provide
adequate instructions inside the README for reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Since the method to interact with LLMs is through text prompts, we provide
these artifacts together with how we set up the experiments. These details can be found in
Section 5. The full details (code) are provided in the Supplementary Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
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Justification: We report error bars where possible throughout this manuscript. Specifically,
we provide error bars for the Minecraft tech-tree experiments in Table 3. Moreover, to
ensure proper statistical significance, we perform a large number of individual trials across
all the experiments in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: While our paper is not based on direct compute resources like GPUs, we do
acknowledge in Appendix G the cloud providers used throughout the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have followed the NeurIPS Code of Ethics while writing and working at
this manuscript.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: While the MINDFORGE framework is designed to work with both humans
and agents, we believe there is no foreseeable negative societal impact that can stem from
this specific manuscript. However, we do mention that our framework might decrease the
dependence on proprietary models and thus affect in a positive way global problems like
climate change.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit the LLM providers in Appendix G both for crediting their work and
helping the reader reproduce the results in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Since MINDFORGE makes use of existing open-weight LLMs, our paper does
not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The manuscript and research process does not involve crowdsourcing nor
research with human subjects. While Table 2 showcases a feasibility study with a human
expert, the human is one of the authors.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The manuscript and research process does not involve crowdsourcing nor
research with human subjects. While Table 2 showcases a feasibility study with a human
expert, the human is one of the authors.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We do not use LLMs to formulate our research problem however LLMs are
being used for the agents that we are proposing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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MindForge: Empowering Embodied Agents with Theory of Mind
for Lifelong Cultural Learning

Appendices

A Additional Experimental Results

A.1 Collaborative Experiments

We provide an extended set of experiments to reinforce our findings in Figure 5 and Figure 7.
Specifically, we consider atomic tasks that are significantly harder than dirt and wood collection in
order to demonstrate the generality of our framework: (1) mining an iron block and (2) crafting a
wooden pickaxe.

Table 4: Agent performance increases as the number of rounds grows in both collaborative and
instructive settings. In the instructive setting, we use Llama 3.1-70B as the weak agent and GPT-4
as the strong agent. Similarly, collaborative experiments use Llama 3.1-70B for both MINDFORGE
agents.
Setting Task Comm. Round 0 Comm. Round 1 Comm. Round 2 Comm. Round 3

Instructive Mine Iron 41% 50% 54% 62%

Instructive Craft a Pickaxe 20% 33% 41% 45%

Collaborative Craft a Pickaxe 20% 25% 33% 33%

As Table 4 shows, extend communication and perspective-taking between MINDFORGE agents enable
significant improvements on complex Minecraft tasks that require compositionality (41% → 62%
and 20% → 45%). Similarly to Figure 7, we see that a purely collaborative setting results in smaller
performance gains (20% → 33%) than instructive learning, due to reinforcing wrong beliefs and
similar thinking patterns.

A.2 Post-Collaboration and OOD tasks

Do social interactions have long-term effects on agents and help them perform better on different
tasks? We consider the impact of interactions in post-collaboration and out-of-distribution scenarios
to assess MINDFORGE’s generalization and lifelong learning capabilities. Specifically, we define post-
collaboration scenarios as a non-collaborative setting where the MINDFORGE agent tries to complete
a task based on prior beliefs formed from a previous collaborative experience stored in the semantic
memory. Moreover, we consider scenarios where the agent is tasked with solving a novel task with
prior collaborative experience on an adjacent task in the Minecraft tech-tree. As Table 5 shows,
collaboration between MINDFORGE agents together with semantic memory showcase an average
improvement of 8.33% for in-distribution tasks (dirt collection) together with an average improvement
of 8.78% in non-collaborative out-of-distribution scenarios (wood collection). These results showcase
the importance of semantic memory in achieving continual learning through collaboration.

Table 5: Post-collaboration and out-of-distribution generalization of the MINDFORGE agent. We
report the task completion rates across 24 individual trials.
Scenario Task Mistral-7B Mixtral-8x7B Llama 3.1-8B

No Collaboration Dirt 37.5% 29.15% 12.5%

Post-Collaboration Dirt 37.5% 41.66% 25%

No Collaboration Wood 33.3% 50% 7%

OOD post-collaboration Wood 41.66% 58.33% 16.66%

A.3 Alternative Communication Protocols

Table 6 shows the performance of MINDFORGE agents when they are allowed to begin a conversation
at point compared to when they can only initiate a conversation upon failure.
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Table 6: Comparison between the default MINDFORGE communication protocol and a more flexible
alternative where agents can initiate the conversation at any point. Both protocols achieve similar
results across different model sizes.

Model Task Setting
Task Completion Rate

Round 0 Round 1 Round 2 Round 3

Mixtral-8x7B
Mine dirt

MindForge w/ flexible communication 37% 45% 67% 67%
MindForge 29% 42% 62% 67%

Mine dirt and wood
MindForge w/ flexible communication 75% 79% 79% 83%
MindForge 75% 79% 79% 83%

Mistral-7B
Mine dirt

MindForge w/ flexible communication 37% 42% 45% 54%
MindForge 37% 42% 45% 54%

Mine dirt and wood
MindForge w/ flexible communication 41% 45% 50% 50%
MindForge 41% 45% 50% 50%

B Additional Ablations

B.1 Perspective Taking

To quantitatively assess the effect of perspective-taking, we perform an ablation study where we
attempt to solve a Minecraft task without perspective-taking during communication in an instructive
learning setting. Table 7 showcases how the absence of perspective-taking leads to worse performance,
irrespective of how much agents communicate. Moreover, as the agents use more communication
rounds when trying to solve a task, taking perspective of the other’s agent situation increases task-
completion rate.

Table 7: Perspective-taking ablation. We consider the Minecraft task of collecting a dirt block.
Improvement is quantified as the fraction of agents that solve the task across 24 individual trials.

Model Variant
Task Completion Rate

Round 0 Round 1 Round 2 Round 3

MINDFORGE w/ perspective-taking 29% 42% 61% 67%
MINDFORGE w/o perspective-taking 29% 37% 50% 54%

Improvement 0% +5% +11% +13%

We attribute the positive correlation between performance and usage of perspective-taking during
communication to the ability of the MINDFORGE agent to provide more relevant and directed advice.
This observation is also supported by the substantial increase in performance in the first two rounds
as presented in Table 7, where the teacher agent provides more insightful information as it gets to
know the other’s agent situation better.

Additionally, we further ablate our structured representation of Theory of Mind by considering an
unstructured perspective-taking 2-step prompt presented in Think Twice [33]. Table 8 showcases that
a structured ToM representation provides a meaningful advantage on complex Minecraft tasks.

Table 8: Structured perspective-taking ablation with unstructured alternative. The unstructured ToM
approach is inspired from Think Twice [33]. Using a structured belief-system results in higher
performance on complex Minecraft tasks.

Task Model Variant
Task Completion Rate

Round 0 Round 1 Round 2 Round 3

Craft a Pickaxe MINDFORGE 20% 33% 41% 45%
Craft a Pickaxe MINDFORGE w/o structured ToM 20% 29% 33% 41%

Mine Iron MINDFORGE 41% 50% 54% 62%
Mine Iron MINDFORGE w/o structured ToM 41% 50% 54% 58%
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B.2 Memory Components

MINDFORGE employs three types of memory subsystems, as discussed in Section 4.4. These
components ensure that the agent can reuse and recall relevant information about the task it is trying
to complete from past experiences and interactions with other agents. The importance of procedural
memory with respect to task completion is already studied in [11], concluding that reusing previous
code snippets becomes increasingly important with the difficulty of the tasks. To understand the effect
of episodic memory in the MINDFORGE framework, we perform an ablation on the episodic memory
component within two Minecraft tasks. Table 9 showcases the drop in completion rate without the
use of the episodic memory component. While we do not consider the tech-tree experiments here, we
expect that considering past failure episodes leads to increasingly better results.

Table 9: Ablation on the episodic memory component in MINDFORGE on a single task. We report
the task completion rates across 24 individual trials.
Scenario Task Mixtral-8x7B Llama 3.1-8B

MINDFORGE w/ episodic memory Dirt 29.15% 12.5%

MINDFORGE w/o episodic memory Dirt 25% 16.66%

MINDFORGE w/ episodic memory Wood 50% 7%

MINDFORGE w/o episodic memory Wood 45.83% 7%

C Implementation details

C.1 Perspective Taking

Perspective-taking represents a central part of our framework since it allows MINDFORGE agents
to take advantage of the internal causal structure of other agents in order to aid more efficient and
grounded communication. In practice, perspective-taking corresponds to an LLM call where the
prompt contains instructions and relevant information required to understand the internal state of other
MINDFORGE agents during communication. Figure 8 showcases how perspective-taking integrates
with the overall communication mechanism.

Other Agent: I am trying to complete 
the task using a pickaxe. However, I 
encountered an execution error.

Communication Channel Communication Channel
Self Agent: You do not require 
any tools to mine dirt. You can just dig 
down with your bare hands instead.

Update internal
 representation

Take 
Perspective

Generate 
Response

Self Internal Process

Figure 8: Flow of MINDFORGE communication components used to generate a natural language
response. The agents’ internal process consists of two stages: (i) internal representation update and
(ii) perspective-taking. Leveraging both processes the agent can then generate a natural language
response and send it through the Minecraft chat.

Once the agent receives a message in the Minecraft chat, a first LLM call is executed where the agent
updates the stateful internal representation about the agent that sent the message. This update process
is shown in Figure 6. Subsequently, the updated internal representation is used as context together
with the rest of the conversation to take perspective of the situation of the other MINDFORGE agent.
Similar to the first stage, perspective-taking is implemented as a LLM call, with the following prompt:
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Prompt for perspective-taking

You are a Minecraft agent named {{name}} and you are having a conversation with another
agent named {{other_name}}.

Based on the current conversation and your knowledge about the other agent, {{other_name}},
take the other agent’s perspective to assess and describe your current understanding, knowl-
edge state, and likely needs from {{other_name}}’s perspective.

Here is the current conversation between you and {{other_name}}:{conversation}

Here is your mental model of {{other_name}}: {world_model}

Perspective Analysis:

Below you can find an example of perspective-taking from Minecraft gameplay:

Expert agent taking perspective of weak agent

Weak’s current knowledge state includes understanding the biome they are in, the time of
day, and the fact that there are dark oak logs nearby. Weak knows that a wooden axe is
necessary for mining logs, and that crafting this tool will be a required step before proceeding
with the task. Weak’s likely needs from Strong include further assistance in navigating the
environment during the night to find a tree or waiting until the day.

C.2 Episodic Memory

We implement episodic memory as a Retrieval-Augmented Generation (RAG) using LangChain
[67]. Specifically, we embed all the episodes where the agent failed to complete the task using
text-embedding-ada-002. An episode consists of the context used to generate the action, the code
itself and the corresponding critic message. Subsequently, when the agent generates a new action,
the RAG is queried to retrieve the k=5 most relevant failure episodes with respect to the task at
hand. Lastly, to ensure we do not populate the context window with too many tokens, we generate
a summary (using an LLM) of the retrieved episodes and feed this summary in the context used
to generate the action. Below you can find the corresponding prompts for generating the episodic
summary:

System message

You are a helpful assistant tasked with summarizing past experience episodes and pointing
out the causes of failure. Create a concise summary.

Prompt message

Please summarize these episodes and why they failed:{combined_episodes}

C.3 Procedural Memory

The procedural memory has an identical design and functionality with the skill library introduced in
Voyager [11]. Once a task gets successfully completed, we store the corresponding piece of code
such that we can later reference it in adjacent tasks. This becomes increasingly important in tasks that
require multiple steps, like crafting a pickaxe: the agent needs to first create a crafting table, create
wooden sticks and only then attempt to craft the pickaxe. When we run the MINDFORGE framework
in an open-ended setting, the procedural memory allows the agent to continuously evolve and create
an increasingly large collection of reusable skills.
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C.4 Semantic Memory

As described in Section 4.4, semantic memory stores certain beliefs the agent has about the environ-
ment, coming from experience with the environment and the other MINDFORGE agents. Whenever
MINDFORGE attempts a new task, it creates a certain belief about how the task should be solved. For
example, the agent might believe it requires tools to mine a block of dirt. This belief is then added
to the context of the LLM when the environment action is generated. As highlighted in Section 1,
one of the primary failure cases of Voyager are the false beliefs that come from this LLM generation.
However, compared to Voyager [11], we leverage the communication with other MINDFORGE agents
such that these beliefs get updated and refined. Below we showcase an example of false belief
correction when trying to collect a block of wood:

Initial belief inside the semantic memory

{"How to mine 1 wood log in Minecraft?": "Answer: To mine 1 wood log in Minecraft, you
need to use an axe."}

Updated belief after communication

{"How to mine 1 wood log in Minecraft?": "Answer: To mine 1 wood log in Minecraft, you
need to punch a tree with your bare hands."}

In addition to task-related memory, the MINDFORGE agent maintains a stateful set of beliefs about
the other agents in the environment that are constantly updated across episodes. An example of this
is presented in Figure 6, where the agent updates its representation based on the contents of the
conversation. Thus, keeping track of various information and facts about other MINDFORGE agents
acts as a semantic memory retrieval when agents communicate.

D Sample Conversation

Each communication round between two MINDFORGE agents comprises of six sending messages in
a turn-based manner through the Minecraft build-in chat. Below you can find a sample conversation
showcasing how the expert agent (Strong) helps the weak (Weak) agent.
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Conversation about completing the task: "Mine 1 wood log"

Weak: Hey, can you help me with Mine 1 wood log?

Strong: Absolutely, I can help you with that. Given your current location in the dark forest
biome and the presence of dark oak logs around you, you should be able to mine a log
without any issues. Here’s the code you can use: ‘mine(’dark_oak_log’)‘. This command
will make your agent mine a dark oak log. Just make sure you are close enough to the tree
when executing this.

Weak: Thank you for the helpful guidance, Strong! However, in my case, I am currently in a
dark forest biome as well, but I am having trouble finding a tree during the night. Could you
suggest a way to find a tree during the day so I can mine the wood log? I also noticed that I
don’t have a wooden axe in my inventory, so I may need to craft one before attempting to
mine the log. I appreciate your assistance in this matter.

Strong: Of course, I understand your predicament. Since it’s currently night time, visibility
might be low which makes it challenging to locate a tree. You can wait until daybreak for
better visibility. Use the ‘wait_until_day()‘ function to wait until it’s daytime. For crafting
a wooden axe, you would need 3 wood planks and 2 sticks. You can obtain wood planks
from a wood log by using the ‘craft(’wooden_plank’, wood_log)‘ command and sticks from
2 wooden planks using the ‘craft(’stick’, wooden_plank)‘ command. Once you have these,
you can craft a wooden axe using the ‘craft(’wooden_axe’, wooden_plank, stick)‘ function.
Here’s the code:

‘‘‘
wait_until_day()
craft(‘wooden_plank’, wood_log)
craft(‘stick’, wooden_plank)
craft(‘wooden_axe’, wooden_plank, stick)
‘‘‘

Once you have your axe and it’s day time, you should be able to easily locate and mine a tree
for the wood log.

Weak: Thank you, Strong. I appreciate your help.

E Fine-tuning setup

E.1 Execution Logs

For the first fine-tuning variant, we use execution logs generated by a Voyager agent powered by GPT-
4. Specifically, these logs contain input and output text information obtained from the components
specific to the architecture, such as the actor or the critic. We find this to be a meaningful way
to transfer knowledge as well as reasoning capabilities from GPT-4 to Mistral-7B. To perform the
fine-tuning, we use LoRA [75] due to its low computational requirements.

E.2 Wiki Data and Documentation

The second fine-tuning variation we consider builds upon the initial setup presented above and
incorporates more structured information about Minecraft by including the Minecraft Wiki [64] and
Minecraft API documentation. Similar to the first variant we use LoRA [75].
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F Prompts

Prompt for updating partner beliefs

You are a Minecraft agent.

You just had a conversation with another agent based on a task you are trying to solve.

Based on the contents of the conversation and the previous beliefs, you have to create a set of
beliefs that represent your perception of the other agent.

Prompt for creating interaction beliefs

You are a Minecraft agent.

You just had a conversation with another agent based on a task you are trying to solve.

Based on the contents of the conversation and the previous beliefs, you have to create a set of
beliefs that that can help you complete the task.

Prompt for perspective-taking

You are a Minecraft agent named {{name}} and you are having a conversation with another
agent named {{other_name}}.

Based on the current conversation and your knowledge about the other agent, {{other_name}},
take the other agent’s perspective to assess and describe your current understanding, knowl-
edge state, and likely needs from {{other_name}}’s perspective.

Here is the current conversation between you and {{other_name}}:{conversation}

Here is your mental model of {{other_name}}: {world_model}

Perspective Analysis:

G LLMs

This section details the technical specifications of the Large Language Models (LLMs) and related
infrastructure used to implement the MINDFORGE framework and conduct the experiments presented
in this paper.

All LLM calls, unless explicitly stated otherwise, were executed via API calls to external services.
The exception to this is the fine-tuned model, which was ran and trained locally.

The specific models and their corresponding access methods are outlined below:

• Llama 3.1-8B-Instruct: This model was accessed through the Lambda Inference API.1 This
API provided a reliable and efficient interface for interacting with the Llama 3.1-8B-Instruct
model, enabling seamless integration within the MINDFORGE framework.

• GPT-4: Accessed via the OpenAI API. The OpenAI API offered access to the advanced
capabilities of the GPT-4 model, crucial for establishing performance baselines and for the
expert agent in collaborative settings.

• Mistral-7B Instruct v0.2, Mixtral-8x7B Instruct and Llama 3.1-70B: These Mistral
models were accessed through the Together AI API.2 The Together AI API provided a

1https://docs.lambdalabs.com/public-cloud/lambda-inference-api/
2https://api.together.ai/models
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platform for utilizing these open-weight models, allowing for a comparative analysis within
the Voyager and MINDFORGE frameworks.
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