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ABSTRACT

CLIP has greatly advanced zero-shot segmentation by leveraging its strong visual-
language association and generalization capability. However, directly adapting
CLIP for segmentation often yields suboptimal results due to inconsistencies be-
tween image and pixel-level prediction objectives. Additionally, merely combin-
ing segmentation and CLIP models often leads to disjoint optimization, intro-
ducing significant computational overhead and additional parameters. To address
these issues, we propose a novel CLIP-to-Seg Distillation approach, incorporating
global and local distillation to flexibly transfer CLIP’s powerful zero-shot gener-
alization capability to existing closed-set segmentation models. Global distillation
leverages CLIP’s CLS token to condense segmentation features and distills high-
level concepts to the segmentation model via image-level prototypes. Local dis-
tillation adapts CLIP’s local semantic transferability to dense prediction tasks us-
ing object-level features, aided by pseudo-mask generation for latent unseen class
mining. To further generalize the CLIP-distilled segmentation model, we generate
latent embeddings for the mined latent classes by coordinating their semantic em-
beddings and dense features. Our method equips existing closed-set segmentation
models with strong generalization capabilities for open concepts through effec-
tive and flexible CLIP-to-Seg distillation. Without relying on the CLIP model
or adding extra computational overhead/parameters during inference, our method
can be seamlessly integrated into existing segmentation models and achieves state-
of-the-art performance on multiple zero-shot segmentation benchmarks.

1 INTRODUCTION

In recent years, semantic segmentation has advanced rapidly, benefiting from deep learning tech-
nologies (Long et al., 2015; Chen et al., 2018). However, conventional semantic segmentation mod-
els are heavily data-dependent, requiring large volumes of annotated images to achieve satisfactory
performance. Collecting these images and annotations is both time-consuming and expensive.

To address this challenge, zero-shot semantic segmentation has been proposed and has gained sig-
nificant attention (Xian et al., 2019; Gu et al., 2020). In zero-shot semantic segmentation, models
are trained on seen classes and must generalize to unseen classes during inference, relying solely on
their text descriptions. To accomplish this, existing methods (Ding et al., 2022a; Zhou et al., 2023)
typically utilize Vision-Language models with strong zero-shot generalization capabilities, such as
CLIP (Radford et al., 2021), for pixel-level segmentation tasks.

To effectively adapt CLIP for segmentation, existing methods can be categorized into two groups:
one-stage methods and two-stage methods, as shown at the top of Fig. 1. In one-stage methods
(Han et al., 2023a; Zhou et al., 2023), to maintain CLIP’s generalization capability, the adaptation
module or trainable prompts are often inserted after the frozen CLIP visual encoder to adapt the
dense tokens for segmentation. Two-stage methods (Ding et al., 2022a; Xu et al., 2022) typically
require a pre-trained, class-agnostic object proposer to identify latent objects in an image. These
object proposals are then fed into the frozen CLIP visual encoder for classification generalization.

Despite their effectiveness, both approaches exhibit inherent limitations. In one-stage methods,
CLIP is primarily optimized for capturing global context through the CLS token, but it lacks the
spatial information required to capture fine-grained local details necessary for precise segmentation.
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Figure 1: Comparisons between CLIP-to-Seg distillation and other methods. Top Left: Conven-
tional one-stage zero-shot segmentation, which directly adapts CLIP for dense prediction tasks. Top
Right: Conventional two-stage zero-shot segmentation, where a proposer is trained and frozen CLIP
is used to classify the proposals. Bottom Left: Conventional knowledge distillation methods require
the student and teacher models to be the same size. Bottom Right: Our CLIP-to-Seg distillation
transfers CLIP’s knowledge to segmentation models and does not rely on CLIP during inference,
resulting in high inference performance and efficiency.

However, dense prediction tasks prioritize high-quality pixel-level parsing over image-level under-
standing, creating a mismatch between task requirements and CLIP’s capabilities, thus limiting the
effectiveness of one-stage methods. Two-stage methods primarily suffer from the disjointed opti-
mization between mask proposal generation and CLIP’s class recognition. Additionally, two-stage
methods are computationally expensive, as they require processing both mask proposal generation
and per-proposal classification.

To address the limitations of both approaches, we propose a framework that 1) achieves high-quality
segmentation without incurring additional computational costs during inference, and 2) simultane-
ously maintains strong zero-shot generalization capabilities for open concepts. We begin by revisit-
ing closed-set segmentation models, which are highly optimized for capturing local details essential
for precise segmentation (Xie et al., 2021; Guo et al., 2022). However, these models tend to overfit to
seen classes due to the absence of data for unseen classes, despite their effectiveness at segmenting
objects. Recent methods have attempted to overcome this limitation by employing knowledge dis-
tillation to transfer CLIP’s zero-shot capabilities to task-specific models for adapting various down-
stream tasks (Huang et al., 2024; Han et al., 2023b). However, these approaches require matching
feature sizes between teacher and student models (see bottom left of Fig. 1), making it difficult to
transfer CLIP’s knowledge from a few tokens to the dense features of various segmentation models.

These limitations motivate us to propose CLIP-to-Seg (C2S) distillation, which integrates global,
local, and latent embedding distillation to transfer CLIP’s vision-language matching capabilities
to pixel-level segmentation models. Global distillation adaptively aggregates dense features into
image-level prototypes based on their similarity to global CLS tokens, and then performs efficient
prototype-token distillation to transfer CLIP’s zero-shot generalization capabilities to the segmen-
tation model. However, this image-level distillation may overlook non-dominant classes and fine-
grained object details. To address this, we propose local distillation to adapt CLIP’s local semantic
transferability to dense prediction tasks through object-level prototypes. CLIP’s local tokens and
the segmentation model’s local prototypes are generated by mining latent unseen classes, aided by
pseudo mask generation. To further generalize the CLIP-distilled segmentation model for unseen
classes, we generate latent embeddings for the mined latent classes to help the model perceive their
real data statistics during training. The latent embedding generation coordinate the semantic em-
beddings and dense features of the mined latent classes, distilling suitable prototypes for subsequent
mask prediction and generalization on unseen classes.

Unlike existing approaches that adapt the CLIP visual encoder (Zhou et al., 2022; 2023) or ensemble
with CLIP during inference (Ding et al., 2022a; Han et al., 2023a), our method can be seamlessly
integrated into existing closed-set segmentation models without relying on the CLIP model or intro-
ducing additional computational overhead/parameters at inference. Our method achieves state-of-
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the-art performance on multiple zero-shot segmentation benchmarks when incorporated with pow-
erful segmentation models such as Segformer (Xie et al., 2021) and SegNeXt (Guo et al., 2022). In
summary, our contributions are:

– We propose a novel CLIP-to-Seg distillation method to effectively and efficiently adapt CLIP for
segmentation by integrating global and local distillation collaboratively.

– We propose a novel latent embedding generation method to further help the CLIP-distilled seg-
mentation model to generalize well on latent unseen classes.

– Without introducing additional parameters or computational overhead during inference, our
method can be flexibly integrated into current powerful segmentation models and achieves state-
of-the-art performance on multiple zero-shot segmentation benchmarks.

2 RELATED WORKS

Close-set Semantic Segmentation. Close-set segmentation assumes fully annotated images and
focuses on the performance of predefined categories within a specific dataset. Existing methods
are typically divided into pixel-level classification and mask-level classification. In pixel-level clas-
sification, FCN (Long et al., 2015), the first fully convolutional network for end-to-end semantic
segmentation, established the paradigm for pixel-level methods. Since FCN, many works, e.g.,
DeepLab series (Chen et al., 2018; 2017), Deformable convolution (Dai et al., 2017), aim to enlarge
the receptive field to further improve the performance of pixel-level methods. With the introduction
of self-attention (Vaswani et al., 2017) and ViT (Dosovitskiy et al., 2020), many approaches (Zheng
et al., 2021; Xie et al., 2021; Guo et al., 2022; Liu et al., 2021) replaced the conventional convo-
lutional backbone with self-attention-based models, achieving remarkable performance. An alter-
native approach treats semantic segmentation as a mask classification task. MaskFormer (Cheng
et al., 2021a) and Mask2Former (Cheng et al., 2022) are two notable examples of this approach.
Specifically, these models first generate object queries corresponding to potential objects. These
object queries are then decoupled to perform classification and mask prediction tasks separately.
Our method is applied to the more challenging task of zero-shot segmentation, which requires fewer
annotations than close-set segmentation.

Knowledge Distillation. Knowledge distillation aims to transfer the capability of a larger teacher
model to a student model for comparable performance to the teacher model with a smaller model size
(Wang & Yoon, 2021). Existing methods are categorized into logits-based (Hinton, 2015; Yang et al.,
2023; Touvron et al., 2021), feature-based (Huang et al., 2024; Tian et al., 2019; Quan et al., 2023),
and relation-based approaches (He et al., 2023; Han et al., 2023b). With the rapid development of
vision-language models (Radford et al., 2021; Jia et al., 2021; Zhang et al., 2023), certain methods
aim to distill vision-language matching capabilities into other models (Huang et al., 2024; Quan
et al., 2023; Pei et al., 2023). However, these methods distill knowledge between classification
models, transferring it from one global context to another. Our method distills the knowledge from
a classification model to a segmentation model where the knowledge is transferred from a global
context to a local context across different feature sizes.

Zero-shot Semantic Segmentation. Since close-set segmentation requires pixel-level annotations,
research focusing on reducing label dependency has gained significant attention. Before the VLMs,
e.g., CLIP (Radford et al., 2021), several works tried to bridge the gap between vision and language
by projecting the features from vision models to the semantic space which is spanned by the large
scale of texts (Gu et al., 2020; Xian et al., 2019). The emergence of large-scale VLMs, such as
CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021), has revolutionized zero-shot tasks. Due
to their impressive zero-shot ability, researchers aim to transfer this ability to downstream tasks.
Leveraging visual prompt tuning (Jia et al., 2022) and adapters (Houlsby et al., 2019), existing
methods are categorized into one-stage and two-stage approaches. One-stage methods introduce
trainable parameters or modules to adapt VLMs for semantic segmentation (Xu et al., 2023b; Li
et al., 2022; Ghiasi et al., 2022; Zhou et al., 2023; 2022; Guo et al., 2023; Ding et al., 2022a;b; Qin
et al., 2023; Yu et al., 2023; Wu et al., 2024). Two-stage methods train a mask-proposer (Cheng
et al., 2022; 2021a) to find the potential objects in an image and utilize the proposed objects to
finetune the VLMs or directly classify the objects (Xu et al., 2022; Shin et al., 2023; Zhou et al.,
2022; Jiao et al., 2023; Xu et al., 2023a).
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Figure 2: Overview of the CLIP-to-Seg distillation framework. First, the input image is passed
through a frozen CLIP visual encoder to obtain both global and local CLS tokens, as well as pseudo
masks for latent classes. The same image is then passed into a trainable segmentation model to
extract dense features. CLIP’s vision-language matching capabilities are transferred through the
proposed CLIP-to-Seg distillation. To provide additional supervision for latent classes, we propose
a latent embedding generation method to synthesize semantic embeddings for latent classes. During
inference, our method does not introduce any additional modules or parameters to the segmentation
model and relies solely on the segmentation model, resulting in high inference efficiency.

Different from both types of CLIP-adapting paradigm that rely heavily on CLIP during inference,
we propose a CLIP-to-Seg distillation method to transfer the vision-language capability to any pixel-
level segmentation model, enabling them to employ zero-shot semantic segmentation without CLIP
in inference. Although some methods distill the text relationships to the vision space (He et al., 2023;
Han et al., 2023b), their methods works under a relaxed condition where all the text embeddings can
be accessed. Meanwhile, some object detection methods also try to distill the knowledge from CLIP
to detection models (Gu et al., 2022; Gao et al., 2022). However, their methods need to train an
additional mask proposer and a detailed description of the input image.

3 METHODS

Task Definition. Before presenting our method, we first define the task of Zero-shot Semantic Seg-
mentation (ZSS). Formally, let D =

{
Xi,Yi

}M

i=1
represent a dataset, where X are the input images,

Y are the corresponding pixel-level annotations, and A ∈ RN×D is a set of semantic embeddings
for all categories, with N representing the total number of classes and D the dimensionality of the
embeddings. The semantic embeddings A are partitioned into two disjoint subsets: seen class em-
beddings As ∈ RNs×D and unseen class embeddings Au ∈ RNu×D, where As ∩ Au = ∅ and
Ns +Nu = N . Since seen and unseen classes frequently co-occur in images, removing those con-
taining unseen categories is impractical for training. Therefore, in ZSS, only the annotations for
unseen classes are removed. ZSS can be categorized into two settings based on the availability of
unseen class embeddings Au: Inductive ZSS, where unseen class embeddings are unavailable during
training, and Transductive ZSS, where unseen class embeddings are accessible. In both settings,
model performance is jointly evaluated on both seen and unseen categories during inference. In
this work, we adopt the inductive ZSS setting, which is more challenging and closer to real-world
applications.

Method Overview. The overview of methods is shown in Fig. 2. First, the input image is passed
through a frozen CLIP visual encoder to extract CLS tokens and pseudo masks for seen and latent
classes. Simultaneously, the same image is fed into a trainable segmentation model to extract dense
features. Then, we apply the proposed CLIP-to-Seg (C2S) distillation to transfer CLIP’s knowledge
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to the segmentation model as illustrated in Sec. 3.2. Relying solely on C2S distillation may lead to
suboptimal performance for the segmentation model. To address this, as described in Sec. 3.3, we
propose a latent embedding generation method to synthesize semantic embeddings for latent classes.
These synthetic embeddings help differentiate latent classes from other categories, providing pixel-
level supervision for unannotated regions.

3.1 TOKEN GENERATION AND MASK GENERATION

The core idea of CLIP-to-Seg (C2S) distillation is to transfer CLIP’s powerful vision-language align-
ment capabilities to a segmentation model regardless of the size differences between the CLIP and
the segmentation model. To achieve this, we first generate CLS tokens, both global and local, which
act as the teacher features during the distillation process, as shown in the top left of Fig. 3.

Given an input image XH×W×3, we first pass it through the CLIP visual encoder to obtain the global
CLS token Cg . However, because CLIP inherently focuses on the global context, it may overlook
less prominent classes within the image. To address this limitation and capture the semantics of
all classes within an image, we additionally extract local CLS tokens. Specifically, for an image
X with its corresponding pixel-level annotation Y, we assume that annotations are available for all
classes, including unseen ones. We first separate Y into non-overlapping class-specific masks based
on unique categories, where Y = {Yi} i = 0O, with Yi representing the binary mask for the ith
class, and O representing the number of unique classes in the image. Using these masks, we pool
the original image X into class-specific sub-images. Each class-specific sub-image is then passed
through the CLIP visual encoder to extract the corresponding local CLS tokens Cl.

In practice, annotations for unseen classes are inaccessible, resulting in large unannotated areas
within an image. We refer to the classes in these areas as latent classes, as they may either belong to
unseen categories or are simply unannotated in the dataset. To further leverage the dense features of
these latent classes, we propose a latent class mining algorithm that clusters the dense visual tokens
from the CLIP visual encoder. Specifically, we first initialize seeds S by applying sliding windows
of various sizes to average the dense tokens:

S =


i+o−1∑
u=i

j+o−1∑
v=j

Cd[u, v]

o2
∣∣o ∈ O, if y[u, v] ∈ As then Cd[u, v] = 0

 , (1)

where Cd represents the CLIP visual dense tokens, and i ∈ {0, [o/2], [o], ..., [Hd − o]} and j ∈
{0, [o/2], [o], ..., [Wd − o]} denote the stride of the sliding windows. Here, Hd and Wd represent
the size of Cd, and [·] denotes the rounding operation. O denotes the set of window sizes. Based
on these seeds, we apply K-Means clustering to the unannotated regions of Cd and merge clusters
according to the cosine similarities between the updated seeds. The pseudo-code and merging details
are provided in the Supplementary Materials.

Once the latent classes are identified, we combine the given seen labels with the masks for the latent
classes to create the pseudo masks Yp. Consequently, the local CLS tokens for latent classes can
also be extracted.

3.2 CLIP-TO-SEG DISTILLATION

Recent methods have attempted to transfer CLIP’s vision-language matching capabilities to other
models using knowledge distillation (Huang et al., 2024; Han et al., 2023b). However, conventional
knowledge distillation faces the challenge of requiring feature size matching between teacher and
student models, which hinders knowledge transfer from CLIP to segmentation models. To overcome
this limitation, we propose CLIP-to-Seg distillation, consisting of two components: global distilla-
tion and local distillation. We first introduce global distillation, which transfers CLIP’s knowledge
by aligning global CLS tokens with global feature prototypes. Specifically, as illustrated in the
top right of Fig. 3, the input image is passed through a trainable segmentation model to extract
dense features FD×H×W , where D is the number of channels, and H and W are the height and
width of the feature map, respectively. To compute the global prototype, F is reshaped to D × L,
where L = H × W . The similarity W between F and the global CLS token Cg is computed as

W = Softmax(
C⊤

g F
√
D
), where W1×L ∈ [0, 1], and the softmax is applied along the second dimension

5
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Figure 3: The process of token generation, latent embedding generation and CLIP-to-Seg ditillation.

of W. This similarity is then used to weigh the contributions of each dense feature in generating the
global feature prototype Fg , where Fg = WF⊤ .

Inspired by the memory buffer mechanism in contrastive learning to provide more negative pairs
(Wu et al., 2018), we also introduce a CLS token bank to store CLS tokens from previous iterations.
Let V = {Ci} denote the CLS token bank. In each iteration, before updating the model parameters,
we enqueue the current CLS token C into V and dequeue the oldest CLS tokens. Finally, we align
the global prototype Fg with the CLS token bank Cb using InfoNCE (Oord et al., 2018),

Lg =

M+1∑
i=0

exp(F⊤
g ci/τ)∑M+1

j=0 exp(F⊤
g cj)/τ)

, (2)

where cj ∈ Cb, and τ denotes the temperature used for contrastive loss. However, due to CLIP’s
focus on the global context, it may overlook less prominent classes, failing to transfer accurate se-
mantics to the dense features associated with them. To remedy this, we propose the local distillation
methods. as shown in the bottom left Fig. 3.

Local distillation seeks to transfer semantics overlooked by the global CLS tokens to their corre-
sponding dense features by aligning local feature prototypes with the local CLS tokens. Specifi-
cally, given the pseudo mask Yp, we first pool the dense features from these areas and average the
class-specific features to obtain the local prototypes Fl:

Fl =

{
fl =

∑
H,W F[1(yi = l)]∑
H,W [1(yi = l)]

∣∣∣yi ∈ Yp

}
, (3)

where 1(yi = l) is an indicator function that selects pixels belonging to class l. Finally, given Cl,
we apply InfoNCE (Oord et al., 2018) to align the local prototypes Fl with the local CLS tokens Cl,

Ll =

P∑
i=0

exp(f⊤i ci/τ)∑P
j=0 exp(f

⊤
i cj)/τ)

, (4)

where f ∈ Fl and c ∈ Cl, with the positive pairs being the local prototypes and CLS tokens from
the same class in Yp. By transferring CLIP’s knowledge to segmentation models through C2S
distillation, the model’s generalization is further improved, reducing overfitting to seen classes.

3.3 LATENT EMBEDDING GENERATION

Although CLIP’s vision-language matching capabilities are effectively transferred to segmentation
models, the inaccessibility of unseen semantic embeddings leaves large portions of dense features
without pixel-level supervision, resulting in suboptimal optimization of the segmentation model.
To address this, we propose Latent Embedding Generation, which generates synthetic semantic
embeddings for latent classes by calibrating the local feature prototypes with their corresponding
local CLS tokens, as shown in the bottom left of Fig. 3.
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Given Yp, we first select the binary masks Yu corresponding to the latent classes. Next, we use
Eq. 3 to replace Yp with Yu to generate visual prototypes for the latent classes. We then feed Fu

into a transformer decoder as Query and input the global and local CLS tokens as Key and Value
to generate the latent prototypes A′

u. The latent prototypes A′
u are treated equivalently to seen

semantic embeddings and are used to distinguish between the seen and latent classes. Formally,
the class scores for seen and latent categories are Xs = α · F⊤As and Xu = β · cos(F,Au′),
where α and β are hyperparameters that control the scale of unseen categories. Note that, since
the pseudo labels and potential prototypes are not entirely precise, cosine similarity helps prevent
overemphasis on misclassification and aids in distinguishing between seen and potential categories.
We then concatenate the logits for both seen and unseen classes as Xlogits = cat(Xs,Xu), where
‘cat’ denotes concatenation along the class dimension. Finally, Yp is used to provide pixel-level
supervision to the dense features through:

Lp = Lnel(Xlogits,Yf ) + Lce(Xlogits,Yf ). (5)
where Lnel refers to the NEL loss (Zhou et al., 2023), and Lce denotes the cross-entropy loss.

3.4 TRAINING OBJECTIVE AND INFERENCE

Training Objective. To recap, the training objectives of CLIP-to-Seg distillation are:
L = Lg + Ll + Lp, (6)

Inference. Since the vision-language matching capability has already been transferred from CLIP to
the backbone during training, we do not need to rely on CLIP at inference time. The backbone, hav-
ing learned to align dense features with semantic embeddings, can independently produce accurate
segmentation results, including for unseen categories.

4 EXPERIMENTS

Dataset. To evaluate the effectiveness of our method, we select three representative benchmarks:
PASCAL VOC (Everingham et al., 2015), COCO-Stuff (Caesar et al., 2018), and PASCAL Context
(Mottaghi et al., 2014) to conduct our experiments on zero-shot semantic segmentation (ZSS). The
split of seen and unseen categories follows the setting of the previous works (Ding et al., 2022a;
Zhou et al., 2023; 2022). PASCAL VOC consists of 10,582 images for training and 1,449 images for
validation. Note that we convert the ‘background’ category to the ‘ignored’. For this dataset, there
are 15 seen categories and 5 unseen categories. COCO-Stuff contains 171 categories totally. As in
previous settings, 171 categories are split into 156 seen and 15 unseen categories. Besides, for the
training dataset, there are 118,287 images and 5,000 images for testing. PASCAL Context includes
4,996 images for training and 5,104 images for testing. For the zero-shot semantic segmentation
task, the dataset is split into 49 seen categories and 10 unseen categories.

Implementation Details. The proposed methods are implemented on the MMsegmentation (Con-
tributors, 2020). The CLIP model applied in our method is based on the ViT-B/16 model and the
channel (C) of the output text features is 512. All the experiments are conducted on 8 V100 GPUs
and the batch size (B) is set to 16 for all three datasets. For all these three datasets, the size of the
input images is set as 512 × 512. The iterations are set to 20k, 40k, and 80k for PASCAL VOC,
PASCAL Context, and COCO-Stuff respectively. The optimizer is set to AdamW with the default
training schedule in the MMSeg toolbox (Contributors, 2020). In addition, the size of CLS tokens
banks is set as 24, Other settings can be seen in Supplementary materials.

To evaluate the performance of both seen and unseen categories, we apply the harmonic mean IoU
(hIoU) following previous works (Zhou et al., 2023; Ding et al., 2022a; Bucher et al., 2019). The
relationship between mIoU and hIoU is hIoU = 2·sIoU ·uIoU

sIoU+uIoU where sIoU and uIoU indicate the
mIoU of the seen categories and unseen categories, respectively. Besides the hIoU, sIoU and uIoU
are also applied. Frames Per Second (FPS) on one RTX 3090 is the metric for inference speed.

4.1 COMPARISON WITH SOTA-OF-THE-ARTS

We apply our method with three representative closed-set segmentation models, i.e., SegNext (Guo
et al., 2022), SETR (Zheng et al., 2021) and Segformer (Xie et al., 2021) by distilling the knowl-
edge of CLIP to these segmentation models. We compare the performance with the state-of-the-art
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Table 1: Comparison with state-of-the-art methods where the bold and the underline indicates the
best and the second-best performance.

Models Backbone PASCAL VOC COCO-Stuff PASCAL Context

hIoU sIoU uIoU hIoU sIoU uIoU hIoU sIoU uIoU
SPNet (Xian et al., 2019)

ResNet101 (He et al., 2016)

26.1 78.0 15.6 14.0 35.2 8.7 - - -
ZS3 (Bucher et al., 2019) 28.7 77.3 17.7 15.0 34.7 9.5 15.8 20.8 12.7
CaGNet (Gu et al., 2020) 39.7 78.4 26.6 18.2 33.5 12.2 21.2 24.1 18.5

SIGN (Cheng et al., 2021b) 41.7 75.4 28.9 20.9 32.3 15.5 - - -
Joint (Baek et al., 2021) 45.9 77.7 32.5 - - - 20.5 33.0 14.9

ZegFormer (Ding et al., 2022a) 73.3 86.4 63.6 34.8 36.6 33.2 - - -
Zzseg (Xu et al., 2022)

ViT-B (Dosovitskiy et al., 2020)

77.5 83.5 72.5 37.8 39.3 36.3 - - -
ZegCLIP (Zhou et al., 2023) 84.3 91.9 77.8 40.8 40.2 41.4 49.9 46.0 54.6

DeOP (Han et al., 2023a) 80.8 88.2 74.6 38.2 38.0 38.4 - - -
OTSeg+ (Ye et al., 2024) 87.1 93.3 81.6 41.5 41.3 41.8 57.7 55.2 60.4

CLIP-RC (Zhang et al., 2024) 88.4 92.8 84.4 41.2 40.9 41.6 51.9 47.5 51.9

Ours
SegNeXt-B (Guo et al., 2022) 89.3 91.2 87.4 42.5 43.1 41.9 57.6 53.3 62.8

Setr-B (Zheng et al., 2021) 90.7 92.3 89.2 44.8 43.8 45.9 56.3 52.4 60.8
Segformer-B4 (Xie et al., 2021) 88.7 91.3 86.2 43.9 43.2 44.7 58.0 52.6 64.5

methods and the results are shown in Table 1. We can find that our method achieve state-of-the-art
performance on both three datasets. Specifically, our method can outperform the existing SOTA
methods, i.e., CLIP-RC (Zhang et al., 2024) and OTSeg+ (Ye et al., 2024), by a large margin, i.e.,
2.3%, 3.3%, and 0.3% in hIoU for PASCAL VOC, COCO-Stuff, and PASCAL Context dataset.
When we dive deeper into the details of these results, we can find that our results come from the
better generalization of the unseen categories. For example, In COCO-Stuff, the uIoU of our method
is 4.3% higher than the SOTA methods and the same improvements can be seen across three bench-
marks. For existing methods, their performance comes from overfitting to the seen categories.

Table 2: Comparisons in the efficiency between our method
and other methods.

Method Parameter ↓ GFLOPS ↓ FPS ↑
Zsseg (Xu et al., 2022) 61.1 M 1916.7 4.2

ZegFormer (Ding et al., 2022a) 60.3 M 1829.3 6.8
ZegCLIP (Zhou et al., 2023) 13.8 M 61.1 25.6

OTSeg+ (Ye et al., 2024) 13.8 M 61.9 22.5

Ours+SegNeXt (Guo et al., 2022) 32.0 M 33.5 40.9
Ours+SETR (Zheng et al., 2021) 91.0 M 109.0 20.8

Ours+Segformer (Xie et al., 2021) 65.7 M 60.7 23.0

We also provide a comparison of the
computational cost and efficiency of
our method with previous methods as
shown in Table 2. Compared with
the two-stage methods (first and sec-
ond row in the table), our method
can achieve a much higher inference
speed and much lower GFLOPS.
Compared with the methods that
only add few trainable parameters,
Though our trainable parameters are
higher than theirs, our method have high flexibility based on the segmentation model. For example,
when we choose SegNeXt, an efficient segmentation model, our GFLOPS are nearly 50% of the
SOTA one-stage methods and our inference speed is much faster.

4.2 ABLATION STUDIES

To evaluate the merits of the proposed methods, we conduct ablation studies. These experiments are
conducted in the COCO-Stuff with 40K iterations. We use Segformer-B4 as backbones with all the
hyperparameters unchanged.

Ablation studies on the proposed methods. We first ablate the proposed methods as shown in the
first row of Table 3. We set the model without C2S distillation and latent prototypes as the baseline.
As can be seen in the table, though its sIoU achieves 41.3%, its uIoU is very low with only 6.4%,
leading to only 11.2% hIoU. By adding the C2S distillation, with the similar sIoU, the uIoU grows
over 30% to 36.6%, resulting in a hIoU of 38.8%, indicating the effectiveness of C2S alignment.
Finally, we add the latent embeddings with the pseudo masks to our method, we can find that the
hIoU grows to 42.3% attributing to the large increase of uIoU which grows from 36.6% to 42.7%.

Ablation studies on different distillations. We use contrastive learning to distill the knowledge
from CLIP in C2S distillation, here, we try to use different distillation methods to prove the ef-
fectiveness of our method as shown in Table 4. First, we change the contrastive distillation to the
cosine similarity and find that though the sIoU achieves similar performance, the uIoU drops to
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Table 3: Ablations on proposed modules.

Methods hIoU sIoU uIoU
baseline 11.2 41.3 6.4

baseline + distillation 38.8 41.2 36.6
baseline + distillation + latent embedding 42.3 41.9 42.7

Table 4: Ablations on different distillations.
Distillation hIoU sIoU uIoU

Cosine Similarity (Tung & Mori, 2019) 37.6 41.4 34.4
L2 Loss (Wang et al., 2020) 17.8 18.4 17.3
Froster (Huang et al., 2024) 37.2 41.7 33.6

Our distillation 42.3 41.9 42.7

Table 5: Ablations on global and local CLS
tokens in latent embedding generation.

Calibration hIoU sIoU uIoU
global local

- - 38.8 41.2 36.6
- ✓ 41.9 41.3 42.6
✓ - 41.7 41.4 42.1
✓ ✓ 42.3 41.9 42.7

Table 6: Ablation on the input of latent embedding
generation and prototype calibrator.

Feature Calibrator hIoU sIoU uIoU
Prototypes - 41.0 41.5 40.5
Prototypes MLP 41.5 41.3 41.8
CLS tokens - 40.2 41.5 38.9
CLS tokens MLP 40.9 41.5 40.3

Prototypes + CLS tokens Transformer 42.3 41.9 42.7

Global Seen 1 (Truck) Latent 1 (Road)

Latent 2 (Tree)Seen 2 (Sky) Seen 3 (House)

Figure 4: The similarities between the CLS tokens and the dense features.

34.4%. Then we change the cosine similarity to the direct L2 loss between the CLS tokens and the
prototypes and find that both sIoU and uIoU drop drastically. Finally, we apply the residual feature
distillation proposed in (Huang et al., 2024) and find that though a similar sIoU can be achieved, its
uIoU is 9.1% lower than our method.

Ablation studies on the latent embedding generation. In this experiment, we want to clarify the
effectiveness of the CLS tokens in the latent embedding generation as shown in Table 5. First, we
set the methods without latent embedding as the baseline. Then we use only local CLS tokens to
calibrate the latent embeddings and find that the hIoU improves due to the 6.0% improvements in
uIoU. Then, we only use the global CLS tokens, we find that compared with local CLS tokens, the
hIoU drops 0.2% due to the performance decreases in uIoU.

Besides, we also conduct experiments on how to calibrate the prototypes as shown in Table 6. First,
we use the local prototypes Fu directly as the prototypes without any calibrator. Compared with our
method, we find that the performance drops due to the uIoU. Then, we use MLP as the calibrator
and find that compared with using only Fu the uIoU increases but is still lower than our method due
to the lower IoU for unseen classes. Next, we directly apply the local CLS token as the prototype
and find that the uIoU drops drastically to 40.2% from 42.3%. Finally, we add the MLP to the local
CLS tokens and find the performance improvements.

4.3 QUALITATIVE ANALYSIS

The visualization of the similarity between CLS tokens and dense features. We want to find if
the distillation can find the representative areas. Therefore, we visualize the similarities between the
CLS tokens and the dense features as shown in Fig. 4. First, we visualize the similarities between
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GTs    

Images

Ours    

ZegCLIP

Seen Person   Sand   Water   Dog   Teddy-bear   Pavement   Rock Unseen Clouds   Tree   Grass   River   Road   Giraffe Frisbee

Figure 6: The similarities between the CLS tokens, including both global and local ones, and the
dense features are illustrated. In this figure, the red stars represent areas corresponding to seen class
labels, while the red triangles denote areas associated with latent (unseen) classes.

the global CLS tokens and the dense features. We can find that all the areas correspond to the
global tokens. Then, we obtain local CLS tokens for the seen areas, e.g., truck and house, and we
can find that the correspondences are also class-specific. Finally, we generate pseudo maks for the
unannotated areas, i.e., road, and tree, and calculate their correspondence. We can also achieve the
expected results.

Figure 5: The loss curves during training.

The visualization of the loss curves. Fig. 5 shows
the loss curves during training, with the overall loss
(blue), global distillation loss (green), and local dis-
tillation loss (red) plotted over the number of itera-
tions. Both global and local distillation losses de-
crease rapidly in the early stages and stabilize at
lower values, indicating that the model efficiently
learns from these distillation processes. The over-
all loss decreases more gradually but eventually sta-
bilizes, reflecting the convergence of the model as
training progresses.

The visualization of prediction. We visualize the prediction of our method as shown in Fig. 6.
Compared with SOTA methods, i.e., ZegCLIP (Zhou et al., 2023), our method can obtain exceptional
results on both seen and unseen categories. For example, the ‘trees’ in the fourth image are classified
as another unseen class (road) in ZegCLIP. However, our method can correctly recognize it. More
visualizations can be seen in the Supplementary Materials.

5 CONCLUSION

In this paper, we propose the CLIP-to-Seg Distillation framework to overcome the limitations of
directly adapting CLIP for segmentation tasks. Our approach integrates both global and local distil-
lation strategies to transfer CLIP’s zero-shot generalization capabilities to closed-set segmentation
models. By aligning feature prototypes from segmentation models with CLS tokens from CLIP at
both global and local levels, we facilitate effective distillation from CLIP to pixel-level segmentation
models. Additionally, introducing synthesized embeddings for latent classes enhances the model’s
ability to generalize to new concepts. Without adding extra parameters or computational overhead,
our method achieves state-of-the-art performance on zero-shot segmentation benchmarks, offering
a flexible and efficient solution to extend the generalization capabilities of existing segmentation
models.
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tion. 2019.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context.
In CVPR, 2018.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. TPAMI, 2017.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In ECCV, 2018.

Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-pixel classification is not all you need
for semantic segmentation. 2021a.

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In CVPR, 2022.

Jiaxin Cheng, Soumyaroop Nandi, Prem Natarajan, and Wael Abd-Almageed. Sign: Spatial-
information incorporated generative network for generalized zero-shot semantic segmentation.
In ICCV, 2021b.

MMSegmentation Contributors. Mmsegmentation: Openmmlab semantic segmentation toolbox and
benchmark, 2020.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In ICCV, 2017.

Jian Ding, Nan Xue, Gui-Song Xia, and Dengxin Dai. Decoupling zero-shot semantic segmentation.
In CVPR, 2022a.

Zheng Ding, Jieke Wang, and Zhuowen Tu. Open-vocabulary panoptic segmentation with maskclip.
arXiv preprint arXiv:2208.08984, 2022b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes challenge: A retrospective. International Journal of Computer Vision,
2015.

Mingfei Gao, Chen Xing, Juan Carlos Niebles, Junnan Li, Ran Xu, Wenhao Liu, and Caiming
Xiong. Open vocabulary object detection with pseudo bounding-box labels. In ECCV, 2022.

Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Scaling open-vocabulary image segmentation
with image-level labels. In ECCV, 2022.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
and language knowledge distillation. In ICLR, 2022.

Zhangxuan Gu, Siyuan Zhou, Li Niu, Zihan Zhao, and Liqing Zhang. Context-aware feature gener-
ation for zero-shot semantic segmentation. In ACM MM, 2020.

Jie Guo, Qimeng Wang, Yan Gao, Xiaolong Jiang, Xu Tang, Yao Hu, and Baochang Zhang. Mvp-
seg: Multi-view prompt learning for open-vocabulary semantic segmentation. arXiv preprint
arXiv:2304.06957, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Meng-Hao Guo, Cheng-Ze Lu, Qibin Hou, Zhengning Liu, Ming-Ming Cheng, and Shi-Min Hu.
Segnext: Rethinking convolutional attention design for semantic segmentation. 2022.

Cong Han, Yujie Zhong, Dengjie Li, Kai Han, and Lin Ma. Zero-shot semantic segmentation with
decoupled one-pass network. arXiv preprint arXiv:2304.01198, 2023a.

Kunyang Han, Yong Liu, Jun Hao Liew, Henghui Ding, Jiajun Liu, Yitong Wang, Yansong Tang,
Yujiu Yang, Jiashi Feng, Yao Zhao, et al. Global knowledge calibration for fast open-vocabulary
segmentation. In ICCV, 2023b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Shuting He, Henghui Ding, and Wei Jiang. Primitive generation and semantic-related alignment for
universal zero-shot segmentation. In CVPR, 2023.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In ICML, 2019.

Xiaohu Huang, Hao Zhou, Kun Yao, and Kai Han. FROSTER: Frozen CLIP is a strong teacher for
open-vocabulary action recognition. In ICLR, 2024.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In ICML, 2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In ECCV, 2022.

Siyu Jiao, Yunchao Wei, Yaowei Wang, Yao Zhao, and Humphrey Shi. Learning mask-aware clip
representations for zero-shot segmentation. 2023.

Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and Rene Ranftl. Language-driven
semantic segmentation. In ICLR, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In CVPR, 2015.

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler,
Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic segmen-
tation in the wild. In CVPR, 2014.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Renjing Pei, Jianzhuang Liu, Weimian Li, Bin Shao, Songcen Xu, Peng Dai, Juwei Lu, and Youliang
Yan. Clipping: Distilling clip-based models with a student base for video-language retrieval. In
CVPR, 2023.

Jie Qin, Jie Wu, Pengxiang Yan, Ming Li, Ren Yuxi, Xuefeng Xiao, Yitong Wang, Rui Wang, Shilei
Wen, Xin Pan, et al. Freeseg: Unified, universal and open-vocabulary image segmentation. In
CVPR, 2023.

Zhenzhen Quan, Qingshan Chen, Moyan Zhang, Weifeng Hu, Qiang Zhao, Jiangang Hou, Yujun Li,
and Zhi Liu. Mawkdn: A multimodal fusion wavelet knowledge distillation approach based on
cross-view attention for action recognition. TCSVT, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Gyungin Shin, Weidi Xie, and Samuel Albanie. Namedmask: Distilling segmenters from comple-
mentary foundation models. In CVPR, 2023.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. arXiv
preprint arXiv:1910.10699, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
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