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Abstract

Accurate knowledge of the atmospheric drag coefficient for a satellite in low Earth orbit
is crucial to plan an orbit that avoids collisions with other spacecraft, but its calculation
has high uncertainty and is very expensive to numerically compute for long-horizon predic-
tions. Previous work has improved coefficient modeling speed with data-driven approaches,
but these models do not utilize domain symmetry. This work investigates enforcing the
invariance of atmospheric particle deflections off certain satellite geometries, resulting in
higher sample efficiency and theoretically more robustness for data-driven methods. We
train G-equivariant MLPs to predict the drag coefficient, where G defines invariances of
the coefficient across different orientations of the satellite. We experiment on a synthetic
dataset computed using the numerical Test Particle Monte Carlo (TPMC) method, where
particles are fired at a satellite in the computational domain. We find that our method is
more sample and computationally efficient than unconstrained baselines, which is signifi-
cant because TPMC simulations are extremely computationally expensive.

1. Introduction

Earth’s atmosphere induces a drag force on satellites in low Earth orbit (LEO). This drag
needs to be modeled in order to accurately propagate orbits into the future to determine
if any satellites are at risk of colliding, preventing debris cascades (Kessler et al., 2010). A
key part of modeling this force is obtaining a drag coefficient, a parameter that captures
the interaction between atmospheric particles and a satellite’s surface. This parameter has
closed-form solutions for simple satellite geometries like a sphere (Chambre and Schaaf,
1961), but more complex shapes need numerical simulations of atmosphere-satellite inter-
action. Because these simulations are too slow for the desired orbit propagation, previous
work has used Bayesian and deep learning techniques (Paul et al., 2023) to learn a faster
model of the dynamics system. However, these methods still rely on the simulations for
vast quantities of training data, sometimes infeasible to produce with a reasonable amount
of time and compute.

In this work, we find that modeling drag coefficients can be made more sample efficient
by utilizing symmetry of the satellite geometry, since the satellite deflects atmospheric
particles invariantly under certain orientations. This efficiency makes data-driven methods
more feasible. Using the escnn framework (Cesa et al., 2022), we design equivariant neural
networks invariant to the symmetry group of the standard CubeSat, a cube shaped satellite,
and the Gravity Recovery and Climate Experiment (GRACE) satellite (Tapley et al., 2004).
These networks also provide better generalization ability and accuracy than unconstrained
versions (Wang et al., 2021).
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2. Background

Drag Force and Coefficient Models. The force acting on a satellite in LEO is a func-
tion of satellite mass, velocity, cross sectional area, atmospheric mass density, and also the
drag coefficient. We focus on modeling the drag coefficient Cd, a large source of uncertainty
in this function. Its calculation is affected by the choice of gas-surface interaction (GSI)
model, which has been previously studied (Mehta et al., 2014b). Here, we use the Cer-
cignani–Lampis–Lord (CLL) model (Cercignani and Lampis, 1971). This model computes
Cd in terms of the following inputs, which we will refer to as x ∈ R7, where x1 is relative
velocity of the satellite, x2 is satellite surface temperature, x3 is atmospheric translational
temperature, x4 is normal energy accommodation coefficient, x5 is tangential momentum
accommodation coefficient, x6 is satellite yaw, and x7 is satellite pitch. Yaw and pitch
together define the satellite’s orientation, also known as the attitude.

Numerical Simulation of Drag Coefficient. The RSM Toolkit (Walker and Lawrence,
2016) uses the Test Particle Monte Carlo (TPMC) simulation technique to produce a drag
coefficient Cd ∈ R for each x. It works by sequentially firing a number of molecules of
real gas into the computational domain, which deflect off a satellite surface specified by
a stereolithography (STL) file. These particles do not undergo intermolecular collisions
because LEO is in the Free Molecular Flow regime (Chambre and Schaaf, 1961).

Groups and Equivariant Networks. A symmetry group G is a set with an associative
binary operation that has inverses and an identity. A group representation, denoted by
ρ(g), associates an n × n matrix with each g ∈ G in a way which is compatible with the
multiplication table of G, which we will use to apply changes to satellite attitude. Given a
group G and representations ρX and ρY acting on X and Y , we say a function f : X → Y
is equivariant if, for all x ∈ X, g ∈ G, ρY (g) · f(x) = f(ρX(g) · x).

A standard MLP consists of linear layers y = Mx and non-linear activations σ. A G-
equivariant MLP is composed of linear layers y = Mx in which the matrices M intertwine
the group action ρY (g)M = MρX(g) (Finzi et al., 2021). The space of suchM is determined
before training by solving a linear system. Training is then restricted to this class of
matrices. The non-linearity σ must also be equivariant, but for permutation representations,
standard pointwise nonlinearities are equivariant. We use group pooling to make y invariant
to g such that Pooling(y) = Pooling(ρout(g) · y) for all g ∈ G. (Cohen and Welling, 2016).

To encode representations in these MLPs, let us consider G1, G2 = C2 (the cyclic group
of order 2) used for reflection. ρ0 is the trivial representation (1 × 1 identity matrix), and
ρ1 is the sign representation (1 × 1 matrix for 1 or −1). We need to use representations
of the direct product group G1 × G2, which are defined by exterior tensor products of the
representations of each individual group ρG1

i ⊠ ρG2
j .

3. Method

3.1. Geometric Properties of TPMC

The CLL TPMC method uses the incident and reflected velocities of computational particles
to determine the gas-surface interaction, and thus Cd. The incident velocity is fixed for all
simulations. Let us define the reflected velocity as a function of the satellite geometry mesh,
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Figure 1: Invariance of GSI for cube shaped satellite under an arbitrary reflection across the yz
plane. The red dots are atmospheric gas particles. The pink vector represents the head-
ing, and the red cube differentiates the original geometry from the reflected geometry.

the variables x1, . . . , x5 as the physical variables xp ∈ R5, and the variables x6, x7 as the
attitude variables xa ∈ R2. Then Cd = f(xp,xa|mesh).

Under the symmetry group G of the satellite geometry, the reflected velocity is invariant
to actions of G acting on the satellite attitude: ρout(g) · f(xp,xa|mesh) = f(xp, ρin(g) ·
xa|mesh). Consider G = C2 × C2 × C2 symmetry. We first convert every xa = (β, ϕ) to
a unit vector xa = (x, y, z). To flip only the first axis, the irrep is ρ1,0,0 = ρx1 ⊠ ρy0 ⊠ ρz0,
which assigns a R1×1 matrix to each g. The input data has three channels, x, y, and z. We
define the representation to be ρin = ρ1,0,0 ⊕ ρ0,1,0 ⊕ ρ0,0,1, a diagonal matrix ρin(g) ∈ R3×3

as shown in Figure 1 such that each C2 acts only on a single channel.

3.2. Equivariant Model

The G-equivariant MLPs have input xa ∈ R3 (acted on by ρin as described in Section 3.1)
and 2 hidden layers. These hidden layers are represented with ρhidden as the regular repre-
sentation of G, pointwise ReLU activation, and 256 hidden units. Then group pooling is
applied to achieve invariance, where ρout is the trivial representation. This latent vector is
concatenated with the xp features to feed into an unconstrained network also with 2 hidden
layers, ReLU activation, and 256 hidden units. We use a learning rate of 1e−5 throughout.
The output is a drag coefficient y ∈ R.

4. Experiments

We evaluate the sample efficiency and performance of our invariant networks against un-
constrained networks, which have the same architecture as in Section 3.2 except with ρin
as the trivial representation. Training data is generated with Sheridan et al.’s improved
version of the RSM toolkit. We define the same upper and lower bounds for the feature
vector used in Paul et al. (2023), which are selected for each RSM simulation sample using
Latin Hypercube sampling (LHS) (McKay et al., 2000) as detailed in Appendix A, Table 2.

4.1. Cube Satellite

We generate 51,000 samples with atomic hydrogen particles. We compare 5 different sym-
metry constraints listed in Table 1 over varying sizes of a training set, though the task should
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Table 1: Test RMSEs after training for 20 epochs: symmetry constraints on network vs # of
training samples (100, 500, etc). Cx

2 is cyclic group reflecting the x axis, Cxz
4 is rotations

on the xz plane. Size of the test set was kept at 500 samples for cube, 100 for GRACE.
Results averaged over 2 runs. N/A for symmetries that mismatch satellite geometry.

Cube, # training samples GRACE, # training samples

Symmetry 100 500 10000 50000 100 500

Unconstrained 7.63± 0.01 0.659± 0.0 0.390± 0.0 0.267± 0.0 6.705± 0.032 3.777± 0.136
Cy

2 7.23± 0.2 1.113± 0.0 0.368± 0.0 0.274± 0.0 6.391± 0.003 3.224± 0.0
Cx

2 × Cy
2 7.02± 0.04 1.032± 0.0 0.365± 0.0 0.274± 0.0 N/A N/A

Cx
2 × Cy

2 × Cz
2 6.99± 0.03 0.902± 0.0 0.368± 0.0 0.277± 0.0 N/A N/A

Cxz
4 8.88± 0.001 0.881± 0.0 0.438± 0.0 0.321± 0.0 N/A N/A

Oxyz
h 7.865± 0.016 0.584± 0.0 0.458± 0.0 0.321± 0.0 N/A N/A

theoretically have octahedral Oh symmetry. Results show that 1) weaker constraints like
C2 × C2 × C2 actually have better performance with extremely limited data, 2) Oh out-
performs other constraints with a slightly larger data set of 500 samples, and 3) weaker
constraints outperform Oh with very large amounts of data. We believe this is because Oh

constraints, shown in Figure 2 (bottom), may not actually match the ground truth function
shown in Figure 2 (top), but may have advantages for rougher approximations with less
data. This mismatch could be either caused by simulations not capturing the real world
symmetry, or incorrect assumptions about the domain’s properties.

Figure 2: (Top left and top right): Ground truth simulated drag coefficient of a cube with fixed
arbitrary xp variables, where the angle from the origin represents xa, with each point
scaled and colored by the magnitude of the drag coefficient at that attitude. It has C2 ×
C2×C2 invariance, reflections across each principal axis. (Bottom left and bottom right):
Learned approximation of the cube’s drag coefficient, constrained by Oh symmetry.
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4.2. GRACE Satellite

Because of computational costs for the more complex geometry of GRACE (pictured in
Appendix A, Figure 3), we only generated 576 samples with atomic hydrogen particles.
With 64 Intel E5-2680 v4 CPUs each with 32GB of RAM, this amount of data took 17
hr 40 min to generate, showing a need for sample efficient methods. GRACE only has C2

invariance across the y axis. Results in Table 1 show the benefit of enforcing this constraint,
as it reached lower test RMSE for both small amounts and slightly larger amounts of data.

5. Conclusion

We demonstrate the advantages of constraining drag coefficient models to the symmetry of
the satellite, showing its benefits when dealing with little training time and data. This is es-
pecially useful when learning from TPMC simulations which are computationally expensive
and infeasible for satellite orbit projections themselves.

Future work should examine more extensive hyperparameter searches and comparisons,
along with longer training times with similar constraints. More satellites with symmetry
should be examined, and we encourage designing satellites with symmetry in mind for
better in-flight drag modeling. We also see potential to utilize intrinsic equivariance, where
the constrained neural network could overcome small imperfections (such as the bumps for
sensors present on either side of GRACE) to model the underlying satellite symmetry (Wang
et al., 2023). Additionally, analysis should be performed on why the cube drag coefficient’s
symmetry was different than the octahedral symmetry of the cube, which could inform
future work about geometric modeling of particle simulations like TPMC more generally.
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Appendix A. Additional Diagrams

Figure 3: 3D model of the GRACE satellite (Mehta et al., 2014a). There is C2 symmetry
represented as reflections across the XZ plane.

Table 2: Upper and lower bounds for LHS sampling

Independent Variable Lower Bound Upper Bound

x1 7250.0m/s 8000.0m/s
x2 100.0K 2000.0K
x3 200.0K 2000.0K
x4 0.0 1.0
x5 0.0 1.0
β 0° 360°
ϕ -90° 90°
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