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ABSTRACT

Pretraining visual models on web-scale image-caption datasets has recently
emerged as a powerful alternative to traditional pretraining using image classifi-
cation data. Image-caption datasets are more “open-domain”, containing broader
scene types and vocabulary words, and result in models that have strong perfor-
mance in few- and zero-shot recognition tasks. In this work, we study a pretraining
strategy that uses both classification and caption datasets to unite their comple-
mentary benefits. First, we show that naively unifying the two datasets results in
sub-optimal performance in downstream zero-shot recognition tasks, as the model
is affected by dataset bias. While large-scale classification datasets can provide
fine-grained categories with a balanced label distribution, the coverage of image
domains and vocabulary words are biased compared to caption data. We address
the problem with novel Prefix Conditioning, a simple yet effective method that
helps disentangle dataset biases from visual concepts. This is done by introducing
prefix tokens that inform the language encoder of the input data type (e.g., clas-
sification or caption) at training time. Our approach allows the language encoder
to learn from both datasets while also tailoring feature extraction to each dataset.
Our method is generic and can be easily integrated into existing VL pretraining
objectives, such as CLIP or UniCL. In experiments, we show that prefix condition-
ing improves the performance in zero-shot image recognition and the robustness
to the image-level distribution shift.

1 INTRODUCTION

Supervised classification datasets (e.g., ImageNet (Deng et al., 2009)) have traditionally been used
to pretrain image representations for use in downstream tasks. However, web-scale image-caption
datasets have recently emerged as a powerful pretraining alternative (Radford et al., 2021; Jia et al.,
2021; Li et al., 2021a). Such datasets are more “open-domain”, containing a wider variety of scene
types and vocabularies than traditional classification datasets, which are biased towards specific cat-
egories in their fixed label sets. Consequently, models trained on web-scale image-caption datasets
have shown stronger generalization in novel tasks (Radford et al., 2021; Chan et al., 2022) and
demonstrated remarkable performance on few and zero-shot image classification tasks (Radford
et al., 2021). Nevertheless, classification datasets are still useful for pre-training as they have a more
balanced coverage of categories, including rare and fine-grained categories, and a better focus on
the labeled objects in each image.

Recent works (Yang et al., 2022a; Yu et al., 2022) therefore propose to combine caption and classi-
fication datasets for pre-training. Yang et al. (2022a) convert classification labels to “label-prompts”
by inserting the label into a template sentence, e.g., “a photo of a <label>.”1 Although training
on the caption and label-prompt data achieves promising results, it does not fully resolve distribu-
tion differences between the open-domain caption data and the classification data. In particular,
it produces a language embedding entangled with the classification dataset “bias”. We note that
classification datasets tend to be biased in at least two ways: 1) the images mostly contain single
objects from restricted domains, and 2) the vocabulary is limited and lacks the linguistic flexibility
required for zero-shot learning. Therefore, the class embedding of “a photo of a dog” optimized
for ImageNet may really mean a photo of a dog from ImageNet instead, which involves the bias
in ImageNet and does not generalize well to other datasets. We empirically show that such dataset

1We use the term prompt to indicate a template sentence filled with a class name.
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biases negatively affect unified pretraining by reducing the generalization of learned representations
and thus jeopardizing zero-shot performance.

To recognize diverse concepts in the open domain, the language model needs to disentangle the
dataset bias from the visual concepts and extract language embeddings generalizable to the open
domain, e.g., the language embedding representing a photo of a dog from an open-domain dataset,
such as image-caption dataset, instead of a photo of a dog from ImageNet. Given this intuition, we
propose to learn dataset-specific language embeddings, while sharing knowledge from both datasets
during training. We achieve this by a simple yet effective approach called Prefix Conditioning.
The idea is to train a dataset-specific text token for each dataset so that the bias of the dataset can
be absorbed into this token, and in return the remaining text tokens can focus on learning visual
concepts. Specifically, we prepend a token for each dataset (e.g., image classification or image
caption dataset) to the text input token sequence during pre-training. We note that the idea is in
part inspired by the prefix or prompt tuning (Li & Liang, 2021; Lester et al., 2021; Zhou et al.,
2021), where they have shown that learnable tokens prepended to the input token sequences of
the pre-trained language models are able to learn task-specific knowledge and thus can be used to
solve downstream tasks by combining the knowledge of pre-trained large language models and task-
specific prefix tokens. In contrast to this, the proposed prefix conditioning learns prefix tokens and
the vision and language encoders jointly for VL pre-training. Our method effectively unifies the
supervision of the two datasets by allowing prefix tokens to learn the dataset bias and the remaining
tokens, shared across datasets, to learn visual concepts.

In our experiments, the proposed simple technique achieves superior performance on zero-shot eval-
uation if we use the prefix of the caption dataset to extract the language embedding at test time.
Meanwhile, inserting the prefix of the classification dataset leads to better performance on clas-
sification data. We also observe a drastic performance improvement when combining our prefix
conditioning with the UniCL (Yang et al., 2022a) objective because of their complementarity. Our
contributions are summarized as follows:

• We propose novel Prefix Conditioning at pre-training time to unify image-label and image-caption
supervision. It is the first mechanism to use prefixes to condition the source of the dataset during
vision language contrastive pre-training, rather than post pre-training.

• This simple approach improves zero-shot recognition performance by more than 6% on average
in experiments on ImageNet21K (Deng et al., 2009) and CC12M (Changpinyo et al., 2021).

• Our comprehensive ablation study shows that prefix conditioning enables the model to switch its
approach to extracting language features, e.g., attend to different words.

2 RELATED WORK

Vision-Language Contrastive Learning. Zero-shot recognition is conventionally solved by learn-
ing the relationship between visual representations and word embeddings of the class names (Frome
et al., 2013; Akata et al., 2015; Xian et al., 2017; 2016; Wang et al., 2018; Mensink et al., 2014;
Jayaraman & Grauman, 2014). Vision-language contrastive learning models, such as CLIP (Rad-
ford et al., 2021), pre-train a model with a large-scale image-caption data (400M) and achieve a
remarkable improvement in zero-shot recognition. ALIGN (Jia et al., 2021) demonstrated the effect
of scaling up the size of image-caption data. Various techniques have been proposed to improve the
data efficiency given a relatively small amount of image-caption data (order of 10M). ALBEF (Li
et al., 2021a) employs model distillation and masked language modeling. DeCLIP (Li et al., 2021b),
SLIP (Mu et al., 2021) and TCL (Yang et al., 2022b) harness self-supervised contrastive learning.
FILIP (Yao et al., 2021) uses token-to-token contrastive learning rather than the global contrastive
learning used in CLIP. BLIP (Li et al., 2022) generates pseudo captions to diversify the language
modality for each image. Unlike these works that handle only caption-style supervision, we focus
on making good use of label supervision in vision-language pre-training together with captions.
Our approach brings orthogonal improvement to the aforementioned works as they seek to improve
training on image-caption data.

UniCL (Yang et al., 2022a) and K-Lite (Shen et al., 2022) unite the image-caption and image-label
supervision by converting labels into text with pre-defined template sentences. UniCL leverages a
supervised contrastive loss (Khosla et al., 2020) for image-label pairs. K-Lite (Shen et al., 2022) uti-
lizes external knowledge from WordNet (Miller, 1995) and Wikitionary (Meyer & Gurevych, 2012).
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The input noun is augmented with the class hierarchy and definition to enrich the supervision. Our
method is complementary to these approaches as well since both UniCL and K-Lite do not consider
the distribution shift between datasets. In experiments, we observe a significant performance boost
when UniCL is combined with the proposed prefix conditioning.

Learning with Prompts. Prompt tuning is a popular technique to adapt a large language model
to a specific task with few training data and low computational cost (Li & Liang, 2021; Gao et al.,
2020; Lester et al., 2021; Liu et al., 2021a; Qin & Eisner, 2021). To avoid tuning all parameters
of the model and using hand-crafted prompts, prefix embeddings are added to the training input
and are the only parameters optimized during fine-tuning. The prefix embedding can be viewed as
the knowledge of the downstream task. In this paper, since the target task is the zero-shot classifi-
cation, the bias of the language embedding needs to be from the dataset covering a wide range of
domains rather than a specific domain. Therefore, we choose to use the prefix embedding learned
for image-caption dataset during test time. This technique is also effective in adapting a pre-trained
vision-language model (Zhou et al., 2021; 2022) to few-shot classification by tuning the prompts
of the language encoder to adapt to a downstream task. Additionally, prompt-tuning is effective in
adapting a pre-trained vision model to a target task (Jia et al., 2022). While these works aim to tailor
a large pre-trained model to a specific downstream task with a small amount of data or low compu-
tational cost, our goal here is to condition a model with the prefix during the pre-training stage by
distinguishing between the image label and image caption data. We show that this allows a model
to effectively share the knowledge obtained from two different types of data sources.

Dataset bias in image recognition. A large-scale image recognition dataset such as Ima-
geNet (Deng et al., 2009) is known to be biased towards a specific image domain. Therefore, a
model trained on such a dataset shows vulnerability to the distribution shift, e.g., shift in object
pose (Barbu et al., 2019) and style of the images (Wang et al., 2019). Nevertheless, Wortsman et al.
(2022); Kumar et al. (2022) show that adapting only a linear layer on the pre-trained models can im-
prove performance on the downstream tasks with distribution shifts. This indicates the importance
of having a good classifier on top of image encoders, such as linear classifiers generated by lan-
guage encoders with preconditioning in our work. Dubey et al. (2021) propose a method for domain
generalization. They condition image recognition models with the domain embedding, which dis-
criminates the input image domains, and demonstrate the importance of the domain-specific image
classifier. Our prefix conditioning can be seen as an attempt to de-bias the linear classifier to obtain
a domain-specific classifier and adapt it from the classification to the captioning domain. Also, Lee
et al. (2021); Bahng et al. (2020) approach the dataset bias in image classification by de-biasing
image representations. By contrast, we tackle the problem in the framework of vision-language
learning, disentangle the dataset bias in the language embedding and utilize the classifier obtained
by the caption domain. We note that while captioning datasets can also have data biases, they tend
to be more open-domain than existing classification datasets.

3 METHOD

In this section, we introduce the Prefix Conditioning technique for pretraining a deep learning model
on both image-caption and image-label (classification) data. In Sec. 3.1, we discuss our problem
setting and the background of contrastive learning with image-caption data. In Sec. 3.2, we explain
the details of our training approach, and in Sec. 3.3 our inference procedure.

3.1 PRELIMINARIES

Setup. Suppose we have access to two datasets: (i) an image label dataset SL = {(xn, t
P
n , yn)}NL

n=1,
where x ∈ X is the image and tP ∈ P is a prompt-style language description based on its class
label y ∈ Y , and (ii) a dataset of image-caption pairs SC = {(xn, t

C
n )}NC

n=1, where tC ∈ T is
a caption. We assume that t is the tokenized language description. For each image x, an image
encoder model fθ parameterized by θ extracts a visual representation ṽ ∈ Rd×1: ṽ = fθ(x).
For each caption or prompt t ∈ T , a text encoder fφ parameterized by φ extracts a language
representation ũ ∈ Rd×1 : ũ = fφ(t).

Contrastive Loss. CLIP (Radford et al., 2021) is designed to find representations that match an
image to its paired caption while separating unpaired ones. For i-th image xi and j-th language
description tj in a batch B, their features are normalized using vi = ṽi

‖ṽi‖ and uj =
ũj

‖ũj‖ . Finally,
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Figure 1: Left: Prefix conditioning at training time. Dataset-specific token is added to the input
tokens with a contrastive learning objective applied. Right: Prefix conditioning at test time. Given a
class name, we construct a class prompt with pre-defined templates and add a token used to condition
real caption during training considering that image-caption dataset covers much wider range of
image domains and vocabulary words than image classification dataset.

CLIP optimizes the symmetric multi-class N-pair loss (Sohn, 2016):

min
{θ,φ}

Lcon =Lt2i + Li2t, (1)

which includes two contrastive terms (a temperature hyper-parameter τ controls the strength of
penalties on hard negative samples):

Lt2i = − 1

|B|
∑
i∈B

log
exp(τuT

i vi)∑
j∈B exp(τuT

i vj)
, Li2t = − 1

|B|
∑
i∈B

log
exp(τvTi ui)∑

j∈B exp(τvTi uj)
. (2)

UniCL (Yang et al., 2022a) composes each mini-batch with samples from both SL and SC . Then,
for pairs from SL, they regard all samples from the same class as positive pairs while a sample
from SC has a unique pair. Except for the number of positive pairs, no special treatment is given to
differentiate between the image-caption and image-label data.

3.2 PREFIX CONDITIONED CONTRASTIVE LEARNING

Fig. 1 describes the overview of our approach. The goal is to enable the language encoder to learn
embedding strategies conditioned on the type of input dataset. The conditioning can then be used to
manipulate the bias at inference time.

Prefix-tuning (Li & Liang, 2021; Gao et al., 2020; Lester et al., 2021; Liu et al., 2021a; Qin &
Eisner, 2021) shares the intuition that the prefix tokens are responsible for switching the context of
a language model from the pre-trained task to the downstream task. These approaches leverage the
prefix to tailor a model to a single task during fine-tuning and construct different prefixes for different
natural language tasks (Lester et al., 2021). In our problem setting, there is no task distinction
between the image-caption and image-prompt matching since both are formulated as contrastive
learning. However, we focus on the fact that the two datasets have different biases in the image
distributions and vocabulary words. The label-prompt sentences are embedded closer to the image
classification data, even though we may want to use them to match a new label to an image from the
open-domain image distribution during zero-shot classification.

To solve this problem, we propose to inform the model of the type of dataset at the input level to
switch the feature extraction. Specifically, to make the model aware of the dataset type, prefix-
conditioning prepends a prefix token to an input sentence to obtain t̄P = [PREFIXP ; tP ], t̄C =
[PREFIXC ; tC ]. The brackets indicate the concatenation of two lists of discrete tokens; PREFIXP

and PREFIXC denote a prompt-style and caption-style token respectively. In this way, we prepend
the token to learn the dataset-specific bias, which enables us to disentangle the bias in language
representations and utilize the embedding learned on the image-caption dataset at test time even
without an input caption.
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The number of prefix tokens can affect the performance of the model (Lester et al., 2021; Zhou et al.,
2021; Li & Liang, 2021). To avoid significantly increasing the training cost, we set the number of
prefixes to one in all experiments. Then, the language representations for each data source are ex-
tracted as ũP , ũC = fφ(t̄P ), fφ(t̄C). This input design is independent from the training objectives,
and therefore we can easily apply the technique to optimize Eq. 1 or UniCL’s loss.

Data Sampling. Cui et al. (2021) argue that the data sampling matters when learning from multiple
data sources in a contrastive learning framework, as the model may learn to distinguish the samples
by exploiting the dataset bias. As such, we need to take data sampling into consideration in our
problem setting as we learn from two different data sources. One option is a debiased sampling (Cui
et al., 2021), which constructs each mini batch to contain samples from a single data source. Al-
ternatively, as done in UniCL (Yang et al., 2022a), we can compose each mini-batch with samples
from both data sources (image-caption and image-label) with equal probability. In experiments, we
choose the debiased sampling, but empirically find that the choice of sampling does not significantly
affect the performance.

3.3 INFERENCE WITH PREFIX CONDITIONING

During inference (the right side of Fig. 1), an input image is classified as one ofK classes by embed-
ding the corresponding label-prompts and choosing the one most similar to the image embedding.
Following (Radford et al., 2021), we obtain class prompts by filling the default prompt templates
with class names, and add a prefix. Considering the wider coverage of domains in the image-caption
dataset, the caption-style prefix conditioning may work better to classify novel downstream data. In
our experiments, we empirically find that the caption-style prefix indeed outperforms the prompt-
style prefix with a large margin in zero-shot recognition while prompt prefix performs better on
the image classification dataset used to train the model. We provide a detailed analysis of different
conditioning in Section 4.3.

4 EXPERIMENTS

The goal of experiments is twofold: comparing our approach with baselines in zero-shot recognition,
and analyzing the behavior of prefix conditioning. We describe the experimental setup in Sec. 4.1,
show the main results in Sec. 4.2, and analyze the properties of prefix-conditioning in Sec. 4.3.

4.1 SETUP

Training Datasets. We conduct experiments on the setting where we have a large source of image-
caption and image-label datasets. Following UniCL (Yang et al., 2022a), we utilize CC3M (Sharma
et al., 2018) and CC12M (Changpinyo et al., 2021) as image-caption data. For the image classifi-
cation dataset, we utilize ImageNet21K and ImageNet1K (Deng et al., 2009). While ImageNet1k
contains 1,000 classes, ImageNet21K has more than 20,000 categories that include fine-grained and
general object concepts. To observe the behavior in diverse image classification data, we also run
experiments on ImageNet21K while excluding the classes of ImageNet1K. Details are explained in
each section.

Training. We use the same prompt strategy and 80 prompt templates as used in CLIP (Radford
et al., 2021). During training, we randomly sample one prompt template and fill it with the class
names, followed by a tokenization step before feeding into the text encoder. We average language
embeddings extracted from all 80 templates in validation. We use the same language encoder as
CLIP (Radford et al., 2021) and Swin-Tiny transformer (Liu et al., 2021b) as the vision encoder
following UniCL (Yang et al., 2022a). All models are optimized with AdamW (Loshchilov & Hutter,
2019) where the learning rate is set to 0.001, and weight decay to 0.1. All models are trained with
a batch size of 1024. Considering the amount of training data, we train the models for 15 and 50
epochs in the experiments on ImageNet21K and ImageNet1K respectively.2 For all training, we
used a cosine learning rate schedule with a warm-up of 10,000 iterations.

Baselines. We train CLIP (Radford et al., 2021) and UniCL (Yang et al., 2022a) as our baselines.
For comparison, we present results on CLIP trained only on image-caption or image classification
data, as well as CLIP and UniCL trained on both image-caption and IN21K data. Unless otherwise

2When training a model on two different datasets, e.g., IN21K and CC12M, we count the epochs based on
how many samples are used from the image classification dataset. For instance, in UniCL, each mini-batch
consists of approximately the same number of samples from IN21K and CC12M. Then, to train a model for 15
epochs, we train for N/1024× 2× 15 iterations, where N indicates the number of samples in IN21K.
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Table 1: Performance comparison among different training datasets and training objectives. The
proposed prefix conditioning shows improved zero-shot recognition accuracy across models trained
with different combinations of image-classification and image-caption datasets and training objec-
tives.

Training Data Objective Prefix
Conditioning

Metric

Classification Caption Size IN-1K Zero-shot
11 datasets

– CC-3M 3M CLIP 18.1 28.7
– CC-12M 12M CLIP 33.4 41.2
ImageNet-1K – 1M CLIP 72.1 20.2
ImageNet-21K – 12M CLIP 47.1 39.6

ImageNet-1K CC-12M 13M CLIP 68.7 43.3
ImageNet-1K CC-12M 13M CLIP X 71.5 45.5
ImageNet-1K CC-12M 13M UniCL 68.8 43.1
ImageNet-1K CC-12M 13M UniCL X 71.7 44.5

ImageNet-21K CC-12M 25M CLIP 56.8 49.5
ImageNet-21K CC-12M 25M CLIP X 67.3 57.8
ImageNet-21K CC-12M 25M UniCL 58.2 51.7
ImageNet-21K CC-12M 25M UniCL X 66.5 58.4

ImageNet-21K w/o IN-1K CC-12M 24M CLIP 29.1 46.9
ImageNet-21K w/o IN-1K CC-12M 24M CLIP X 47.8 56.4

Table 2: Ablation study for sampling in IN21K + CC12M. Equal sampling (ES) composes a mini-
batch with roughly equal number of samples from two datasets. Debiased sampling (DS) samples a
mini-batch of either IN21K or CC12M with equal probability.

Train
Prefix Sampling IN-1K Cal CF100 CF10 ESTAT Food Flower Pets Patch R45 VOC DTD AVG

ES 56.8 70.2 55.0 79.4 21.1 46.0 60.3 57.2 51.2 24.8 57.7 21.4 49.5
X ES 65.4 81.2 62.6 88.9 30.4 51.7 61.8 71.9 50.0 28.2 78.1 27.7 57.5

DS 58.7 65.9 55.0 85.7 22.8 40.8 55.7 60.2 50.0 20.6 45.2 23.8 47.8
X DS 67.3 79.7 63.8 87.9 31.5 53.4 58.8 69.6 50.6 31.5 80.5 28.4 57.8

stated, CLIP and UniCL are trained with equal sampling (ES) strategy as in Yang et al. (2022a),
while our prefix conditioning model is trained with debiased sampling (DS) (Cui et al., 2021). We
provide an analysis of the sampling in Sec. 4.2 and find that DS itself does not have a noticeable
advantage over ES.

Evaluation. We evaluate the learned representations on supervised and zero-shot image classifi-
cation on ImageNet1K3 and on 11 datasets chosen from the ones used in CLIP (Radford et al.,
2021) including object classification (e.g., CIFAR10, CIFAR100), fine-grained classification (e.g.,
Oxford-IIIT Pets, Oxford Flowers 102, and Food-101), and aerial images (e.g., EuroSAT and Re-
sisc45). Although our main focus is at the zero-shot generalization, we also provide an analysis of a
linear-probe evaluation of the image encoder.

4.2 MAIN RESULTS

We describe our main results in Table 1, followed by the analysis of prefix conditioning in Sec. 4.3.

There are three observations. First, the improvements upon a model trained only with image-caption
or image-label data are obvious in almost all cases. As the previous work indicates (Yang et al.,
2022a), the effectiveness of combining two types of supervision is clear from these results.

Second, in all cases, our prefix conditioning significantly improves performance on both ImageNet-
1K (supervised recognition) and 11 zero-shot recognition tasks. When training on ImageNet-21K,

3While we follow the same zero-shot evaluation protocol when evaluating on ImageNet1K, we note that it
is zero-shot only where we explicitly exclude ImageNet1K from the training, last two rows of Table 1
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Table 3: Linear evaluation accuracy on models trained with and without prefix conditioning. Prefix
conditioning slightly improves the performance upon a model without it (second row vs. last row).

Train Data Prefix
Conditioning IN-1K Cifar10 Cifar100 Caltech Food Pet Patch VOC DTD

ImageNet-21K 71.5 94.3 79.1 83.5 79.1 86.3 82.3 88.9 61.3
ImageNet-21K + CC12M 69.2 93.0 76.4 82.4 78.4 82.2 81.4 88.7 61.4
ImageNet-21K + CC12M X 69.4 93.5 77.3 83.2 78.8 83.6 82.0 88.8 62.5

Table 4: Ablation study for test-time prefix conditioning. Note that the difference between two
results come from the prefix used in test time and we use the same model for this evaluation.

Data Test-time
Prefix IN-1K Cal C100 C10 ESTAT Food Flower Pets Patch R45 VOC DTD AVG

IN-1K
+ CC12M

Prompt 75.4 71.7 35.5 63.9 24.2 20.0 8.1 72.2 50.4 24.2 61.1 15.3 40.6
Caption 71.5 75.1 39.4 70.5 26.7 33.9 13.9 72.3 50.5 25.8 67.8 25.4 45.5

IN-21K
+ CC12M

Prompt 71.4 76.5 59.0 86.0 20.1 45.7 62.3 69.1 52.4 26.3 76.8 21.4 54.1
Caption 67.3 79.7 63.8 87.9 31.5 53.4 58.8 69.6 50.6 31.5 80.5 28.4 57.8

IN-21K w/o 1K
+ CC12M

Prompt 40.8 74.9 61.0 84.6 31.2 48.1 58.7 45.2 51.2 23.5 67.5 21.4 51.6
Caption 47.8 81.9 63.3 87.3 32.4 52.9 62.8 57.0 50.6 25.6 80.1 26.2 56.4

the conditioning improves the baseline by more than 8% in ImageNet-1K and more than 6% in zero-
shot recognition on average. In training with ImageNet-1K, the margin from the baseline is smaller
than training with ImageNet-21K, probably because the size of ImageNet-1K (1M) is much smaller
than that of ImageNet-21K (12M). Also, prefix conditioning is effective in both UniCL and CLIP
objectives. Due to its simplicity, our approach can be easily integrated with various objectives.

Finally, our method is less affected by ablating a part of categories. The classes of ImageNet-1K
are excluded from ImageNet-21K in the last two rows of Table 1. Therefore, both approaches sig-
nificantly drop performance on ImageNet-1K, whose task now becomes true zero-shot recognition,
compared to other settings. Even in this setting, prefix conditioning maintains high accuracy on
zero-shot recognition and outperforms a CLIP baseline model by a large margin.

Sampling Method. We analyze the data sampling scheme to construct a mini-batch in Table 2.
We apply debiased sampling (DS) in our method, namely, sampling one data source with equal
probability and getting a mini-batch of it. The other option is mixing two data sources with equal
probability (ES). The table indicates that prefix conditioning works well with ES sampling and
the sampling strategy itself is not advantageous. Ablating prefix conditioning during training clearly
drops the performance in both sampling strategies, and the performance is worse than ES on average
in zero-shot results (49.5 vs. 47.8). ES sampling should allow the model to differentiate sentences by
using the prepended prefix. Interestingly, this result implies that differentiating sentences by prefix
information does not much degrade the performance. The distinguished sentences enable the model
to associate images from different datasets. Since images of two datasets are different with respect
to the categories and the locations of objects in images, distinguishing the two kinds of images may
not harm generalizability of the representations.

Linear-probe Evaluation. We evaluate the linear-probe performance in Table 3 to see the quality
of learned image representations. Although the accuracy is better than the model trained without
prefix conditioning (second line), the improvements are not substantial. This result indicates that
the zero-shot performance gain obtained by our method is not due to the image representations. We
investigate the learned language and image features in the next subsection.

4.3 ANALYSIS OF PREFIX-CONDITIONING

We present a detailed analysis of prefix conditioning. We first study how different prefixes impact
the zero-shot recognition performance and analyze their behaviors by looking into the attention
weights of the language transformer encoder. We also demonstrate improved robustness with respect
to the image-level domain shift. Unless otherwise stated, we employ a model trained with CLIP
objective on ImageNet-21K and CC12M in this analysis. Finally, this section concludes that prefix
conditioning enables the language encoder to switch its role during training, which eases learning
from different types of datasets, e.g., image classification and image caption dataset.
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Caption PrefixPrompt Prefix Unconditional Model

Figure 2: An example of attention weights for an end token. Best viewed in color. The sentence
shown here is one of class prompts in the VOC 2007 dataset. Different rows show the weights of
different transformer layers. With a prompt prefix (leftmost), the model focuses on a class name
(airplane) while caption prefix (middle) allows a model to pay attention to another noun, sculpture.
By prefix conditioning, the attention of the model changes as intended.

(a) Different conditions (b) Prompt condition (c) Caption condition (d) No condition

Figure 3: T-SNE (Van der Maaten & Hinton, 2008) visualization of the class-prompt features of 20
classes of VOC 2007 with different prefix conditions. (a): Language embeddings with prompt (red)
and caption (blue) prefixes, respectively. (b)(c)(d): Different colors indicate language embeddings
of different classes.

Test Time Prefix. We analyze the role of the prefix token in Table 4, where the table describes
the comparison in the choice of test time prefix conditioning. As explained in Sec. 3, the choice of
prefix during test time should change the behavior of the model since the prefix should tailor the
language encoder for classification-style or caption-style feature extraction. Except for the IN-1K
results of a model trained with the entire IN21K or IN-1K, conditioning with the caption prefix
shows much better results. The superiority of the caption prefix is noticeable in several datasets.
This means caption prefix works better if the target comes from outside the image classification
data, indicating that the class-prompt prefix conditioning makes the model tailored for the image
classification dataset. Class-prompts prefix works better to categorize IN-1K data because the prefix
is trained to specialize in classifying it. Note that caption-style prefix performs better than prompt-
style prefix in IN-1K for a model trained with IN21K excluding IN1k classes. This indicates that
the caption-style prefix works better when the vocabulary of the class name comes from outside the
image classification data since the caption data covers much more diverse words.

Prefix controls attention. Fig. 2 visualizes the attention weights for an end token in different prefix
conditions and models. The input sentence, a sculpture of an airplane, is one of the class-prompts.
When a prompt prefix (leftmost) is employed, the language model pays attention to the class name
at the first layer, it does not focus on the noun in other layers. The only noun the encoder focuses
on is airplane. On the other hand, the model attends to both sculpture and airplane in the case of
the caption prefix and unconditional model. Note that this behavior does not mean that the prompt-
prefix performs better in zero-shot recognition as shown in experiments due to the effect of the bias
in image classification dataset.

While we visualize only one example in the main text due to the space limit and defer more examples
to the appendix, this highlights a general trend that the prompt prefix guides the language encoder
to focus on a single word (e.g., class name), whereas the caption prefix makes the model attend
to multiple words in the input sentence. In other words, prefix conditioning allows the language
encoder to “switch gears” to represent sentences from different datasets (i.e., image-classification
vs image-caption). On the other hand, the baseline model without prefix conditioning attends to
multiple words (e.g., Fig. 2 rightmost) even though the input sentence is a class prompt. This
indicates that it is hard to switch the gears without explicitly informing of the type of dataset.

8
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Table 5: Evaluation on the robustness to the image-level domain shift. Prefix conditioned training
achieves better robustness, and caption-prefix outperforms prompt-prefix in the images distinct from
those used in training (IN-R and IN-S).

Train Data Prefix
Conditioning

Test-Time
Prefix IN IN-V2 IN-R IN-S

ImageNet-1K N/A 72.1 59.3 19.9 17.8
ImageNet-1K + CC12M N/A 68.7 57.4 27.7 27.8
ImageNet-1K + CC12M X Caption 71.5 60.2 31.8 30.7
ImageNet-1K + CC12M X Prompt 75.4 63.3 29.2 27.9

ImageNet-21K N/A 47.1 41.1 20.1 16.1
ImageNet-21K + CC12M N/A 56.8 48.6 29.4 30.6
ImageNet-21K + CC12M X Caption 67.3 57.5 35.2 34.6
ImageNet-21K + CC12M X Prompt 71.4 61.1 32.1 32.2

Language Feature Visualization. Fig. 3 visualizes extracted language features conditioned with
different prefixes. As seen in Fig. 3a, language features extracted with caption-prefix (blue) and
prompt-prefix (red) are clearly separated. In addition, prompt-prefix (Fig. 3b) has lower intra-class
and higher inter-class variance, whereas caption-prefix (Fig. 3c) shows higher intra-class variance
across prompts. Interestingly, results in Table 4 suggest that the caption-prefix conditioned lan-
guage features result in a better zero-shot recognition performance than those conditioned on the
prompt-prefix. Although the prompt-prefix mode extracts discriminative language embeddings, the
embeddings do not perform well on the zero-shot recognition because the embeddings contain sig-
nificant bias from image-classification dataset.

Robustness in image domain shift. Test samples can be unseen with respect to image classification
data in two ways (or combinations of two): 1) The image is similar to the training distribution, but
the class name is different from the seen image classification labels. 2) Although the class label is
the same, the image data comes from a different distribution. Datasets evaluated in the zero-shot
recognition include both two cases since the vocabularies and image are from different domains. To
understand these two factors, we analyze the test-time prefix by using ImageNet-1K and evaluate
the performance on image-level domain shift using variants of ImageNet, i.e., ImageNet-V2 (Recht
et al., 2019), ImageNet-R (Hendrycks et al., 2021), and ImageNet-S (Wang et al., 2019). Table 5
describes the results of ablating prefix-conditioned training and changing the test-time prefix. The
prefix-conditioned training outperforms all baselines. This reveals that the prefix-conditioned train-
ing achieves class embeddings that are generalizable across image domains. The prompt-style prefix
performs the best in IN, IN-V2, both of which have image styles similar to ImageNet. By contrast,
the caption-style prefix performs the best in IN-R and IN-S, which has art-style and sketch-style
images respectively. Thus, the caption-style prefix generates more generalizable class embeddings
for the domain dissimilar from the ImageNet training data. This observation is consistent with the
results in the paragraph Test time Prefix.

5 CONCLUSION

In this paper, we explore a simple yet effective mechanism for unified pre-training on image-caption
and image classification data. We propose to learn prefix tokens at training time to condition the
language encoder to switch the input source. By learning a dataset-specific token for each dataset,
the bias of the dataset can be absorbed into one token. Moreover, specifying the prefix allows the
model to switch the manner of feature extraction and can control which visual domain the embed-
ding is projected to. This approach boosts the performance of zero-shot recognition accuracy of the
contrastive learning models. Our analysis suggests that the trained language encoder provides ro-
bustness to the image-level domain shift. Although we limit our scope to unifying image-caption and
image-label supervision, incorporating other supervision types such as object detection or semantic
segmentation is an interesting next step.

Limitations and Negative Societal Impacts. While our approach shows promising results on var-
ious zero-shot recognition benchmarks, the performance is poor on the dataset dissimilar to both
image-caption and image classification pretraining data, PatchCamelyon (denoted as Patch in ta-
bles). In addition, training a model on webly-crawled data may have unwanted social implications
since it may contain unintended private information, harmful images or texts.
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A APPENDIX

B EXPERIMENTAL DETAILS

Dataset. Table 6 describes the statistics of dataset used for evaluation. We pick the test datasets
based on UniCL (Yang et al., 2022a) and availability in Tensorflow dataset. We use the test set to
evaluate zero-shot recognition and linear probe while the train set is used to train a linear classi-
fier. Note that since EuroSAT and Resisc45 utilize the training split for evaluation, we exclude the
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Table 6: Statistics of datasets used in zero-shot and linear probe.

Abbreviation Dataset #Concepts Train size Test size Source link

Food Food-101 102 75,750 25,250 Tensorflow
CF10 CIFAR-10 10 50,000 10,000 Tensorflow

CF100 CIFAR-100 100 50,000 10,000 Tensorflow
VOC VOC2007 classification 20 5,011 4,952 Tensorflow
DTD Describable Textures 47 3,760 1,880 Tensorflow
Pets Oxford-IIIT Pets 37 3,680 3,669 Tensorflow
Cal Caltech-101 102 3,060 6084 Tensorflow

Flower Oxford Flowers 102 102 1,020 6,149 Tensorflow
Patch PatchCamelyon 2 294,912 32,768 Tensorflow

ESTAT EuroSAT 10 N/A 27,000 Tensorflow
R45 Resisc45 45 N/A 31,500 Tensorflow

Caption PrefixPrompt Prefix Unconditional Model

Figure 4: Attention visualization for a class prompt. Note that the attention weights are for and end
token. Best viewed in color. The class name shown here is one of class prompts in the EUROSAT
dataset. Different rows show the weights of different transformer layers. With a prompt prefix
(leftmost), the model focuses on a class name (forest area) while caption prefix (middle) allows a
model to pay attention to another noun, tattoo. By prefix conditioning, the attention of the model
changes as intended.

two datasets from linear probe evaluation. Also, since Oxford Flowers do not have many training
samples (10 samples per class), we exclude the dataset from the evaluation too.

Data Augmentation. Following UniCL (Yang et al., 2022a), only random cropping is applied to
train all models for a fair comparison.

Computation. We use 32 Nvidia Tesla V100 GPUs to train all models. 4 nodes, where each node
has 8 GPUs, are used to run experiments.

C ADDITIONAL RESULTS

Attention Visualization. Fig. 4 visualizes attention weights for the class forest area, where a prompt
template, a tatto of, is employed. The model focuses on a word, forest when prompt prefix is
employed. In other two cases, the model also pays much attention to tatoo probably because the
word should provide useful information to distinguish a sentence from others for image-caption
contrastive learning. Fig. 5 represents attention for a real caption from CC3M. While the model
conditioned with caption prefix and unconditional model attend to several words through many
layers, the model conditioned with prompt prefix shows clear attention only in the first layer. Since
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Caption PrefixPrompt Prefix Unconditional Model

Figure 5: Attention visualization for a real caption. Note that the attention weights are for and end
token. Best viewed in color. The sentence shown here is from CC3M. Different rows show the
weights of different transformer layers. Caption prefix conditioning helps to attend to many words
while prompt conditioning fails to do that.

the prompt-conditioned model has never seen the real caption during training, it fails in attending to
discriminative words.

Table 7: Evaluation on the robustness to the class name shift using ImageNet-1K. Original refers to
the subset of ImageNet-1K classes while synonym refers to their synonyms taken from Wordnet. The
last two rows indicate the models trained with the synonyms, thus showing superior performance on
synonym whereas degrading performance on Original.

Train Data Train on
Synonym

Prefix
Training

Test-Time
Prefix

Original Synonym
top-1 top-5 top-1 top-5

IN1K + CC12M N/A 69.3 89.3 31.2 49.5
IN1K + CC12M X Prompt 75.0 92.9 38.3 54.8
IN1K + CC12M X Caption 71.4 91.6 36.6 56.7

IN21K + CC12M N/A 54.5 83.2 23.1 43.9
IN21K + CC12M X Prompt 69.9 92.4 32.1 53.7
IN21K + CC12M X Caption 65.3 90.6 33.5 56.9

IN21K + CC12M X X Prompt 54.4 78.6 70.8 92.8
IN21K + CC12M X X Caption 54.5 82.6 59.0 86.1

Table 8: Image-text retrieval results on CC3M and COCO. The performance is evaluated on the sub-
set of CC3M and validation set of COCO. All models are trained on CC12M and ImageNet-21K.
Caption conditioning (last row) slightly improves retrieval performance compared to the uncondi-
tional model (first row). Since prompt conditioning (middle) tailors a model for class-prompt, it fails
to extract discriminative information from real captions.

Prefix
Training

Test-time
Prefix

CC3M COCO
I2T@1 I2T@5 T2I@1 T2I@5 I2T@1 I2T@5 T2I@1 T2I@5

N/A 21.8 47.4 21.0 45.7 23.9 49.5 18.7 43.2
X Prompt 13.1 31.3 8.1 21.8 17.2 38.1 16.8 37.7
X Caption 22.6 47.5 21.6 46.1 24.7 49.7 19.7 43.9

Class Name Shift. Test samples can be unseen with respect to image classification data in two
ways (or combinations of two): 1) The image is similar to training distribution, but the class name
used for testing is different from the image classification label. 2) Although the class label is the
same, the image data comes from the different distributions. Datasets evaluated in the zeros-shot
recognition include both two cases since class names and images are from different domains. 2)
is analyzed in Subsection 4.3 of the main paper, Robustness in image domain shift. We analyze 1)
by evaluating the recognition performance of ImageNet-1K by changing its class name from the
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one used during training. We find a synonym for each class with WordNet (Miller, 1995), where
we exclude synonyms substantially similar to the original class name and obtain synonyms for 525
classes. Then, we use the synonym to classify images during evaluation. Since the input image
distribution does not vary, we can evaluate the performance on the class name shift. If the model is
robust to the change in the class name, the degrade in the performance should be small.

The first 6 rows of Table 7 describe the models trained with the original class names and evaluated on
both original ones and synonyms, and the last two rows represent a model trained with synonyms,
where the original class names are replaced with synonyms. Prompt prefix outperforms caption
prefix with a large margin in testing with class names used in training time. Generally, caption
prefix performs better when tested with the class names different from the ones used during training.
Prompt prefix is tailored to handle class names employed during training time while caption prefix
enables the language encoder to extract more general representations.

Interestingly, the choice of class names seems to significantly change the generalization as shown
in the comparison between a model trained with synonyms and original class names. The original
model decreases the accuracy more than 30% by changing the class name while the model trained
with synonym decreases less than 20%.

Image-Caption Retrieval. In Table 8, we evaluate the performance of image-caption retrieval us-
ing the subset of CC3M (12288 pairs of image and caption) and COCO validation set (5000 pairs
of image and caption), where all models are trained with CC12M and ImageNet-21K. First, our
model (last row) slightly performs better than the model without conditioning (first row). Second,
prompt prefix conditioning (second row) significantly performs worse than caption prefix condition-
ing (last row). Since the prompt prefix conditioning specializes a model for the class name prompts
of ImageNet21K, the conditioning does not generalize well to real captions.

Larger Batch-size and Training Epochs. We examine the effect of increasing batch-size and
training epochs in Table 9. In CLIP, increasing the batch-size and training epochs improves the
performance of both ImageNet-1K and zero-shot recognition. On the other hand, the zero-shot per-
formance of UniCL is not benefited from training with longer epochs (compare last and second
to last row). UniCL attempts to ensure the invariance of images from the same classes by super-
vised contrastive loss while CLIP does not consider it. However, such invariance is not necessarily
required in zero-shot recognition, which leads to the degraded performance.

Comparison to Reported UniCL’s Results. In the main paper, we provide our reproduced results
of UniCL, which is based on our implementation, since the authors have not released the code and
did not report the numerical accuracy of each zero-shot recognition. In this paragraph, we compare
our approach and the reported performance of UniCL (Yang et al., 2022a) and K-Lite (Shen et al.,
2022) by aligning several hyper-parameters, e.g., batch-size and training epochs, using ImageNet-
1K. When using ImageNet-22K and CC-15M for training, our method (batch-size:4096, training
epochs: 30) shows 73.9 while UniCL (batch-size:4096, training epochs 32) reports 71.5. When
using ImageNet-21K excluding ImageNet-1K and CC-15M, our method (batch-size:1024, training
epochs 30) shows 49.7 whereas UniCL (batch-size: 4096, training epochs: 32) and K-Lite (batch-
size: 4096, training epochs: 32) perform 46.6 and 48.7 respectively according to K-Lite results (See
last two rows of Table 3 in (Shen et al., 2022)). These results suggest that our method performs
better than the reported numbers of UniCL and K-Lite in ImageNet-1K. Also, the knowledge aug-
mentation technique proposed by K-Lite can be complementary to our approach, thus combining
two approaches is an interesting research direction.

T-SNE visualization for language features. Fig. 6 visualizes extracted language features
(ImageNet-1K) conditioned with different prefixes. The prompt-prefix (left) has lower intra-class
and higher inter-class variance, whereas caption-prefix (right) shows higher intra-class variance
across prompts.

T-SNE visualization for image features. Fig. 7 visualizes image features from ImageNet-1K (blue)
and CC3M (red). Since ImageNet-1K is object-centered while CC3M covers more diverse scenes,
the distributions are separated. This is consistent across baseline (w/o conditioning) and our method
(with conditioning).

Comparison between unconditioned and conditioned model by language features. Fig. 8 vi-
sualizes language features of ImageNet-1K class prompts (Blue) and CC3M captions (Red) for
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Table 9: Performance comparison among different batch-size and training epochs. ImageNet-22K
denotes the combination of ImageNet-21K and ImageNet-1K, CC-15M indicates that of CC-12M
and CC-3M.

Training Data Objective Batch-size Epochs
Metric

Classification Caption IN-1K Zero-shot
11 datasets

ImageNet-21K CC-12M CLIP 1024 15 67.3 57.8
ImageNet-21K CC-12M CLIP 1024 30 69.1 58.3
ImageNet-22K CC-15M CLIP 1024 15 69.3 58.5
ImageNet-22K CC-15M CLIP 4096 15 71.1 59.5
ImageNet-22K CC-15M CLIP 4096 30 72.2 59.8
ImageNet-22K CC-15M UniCL 1024 15 69.7 58.5
ImageNet-22K CC-15M UniCL 4096 15 70.3 60.4
ImageNet-22K CC-15M UniCL 4096 30 73.9 58.9

(a) Prompt conditioned (b) Caption conditioned

Figure 6: T-SNE Van der Maaten & Hinton (2008) visualization of the class-prompt features of
ImageNet-1K with different prefix conditions. Different colors indicate language embeddings of
different classes. Prompt conditioning extracts more class discriminative representations than cap-
tion conditioning.

unconditioned (left) and conditioned (right) respectively. Note that the conditioned model utilizes
prompt prefix for class prompts and caption prefix for real captions respectively. As seen from the
visualization, unconditioned model cannot distinguish some prompts from captions of CC3M. This
is probably because some captions are similar to class prompts of ImageNet. By contrast, the condi-
tioned model differentiate class prompts from captions better than unconditioned model due to the
prefix conditioning.
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(a) W/O conditioning (b) With conditioning

Figure 7: T-SNE Van der Maaten & Hinton (2008) visualization of the image features of ImageNet-
1K (blue) and CC3M (red). Since ImageNet-1K is object-centered while CC3M covers more diverse
scenes, the distributions are separated. This is consistent across baseline (w/o conditioning) and our
method (with conditioning).

(a) Unconditioned model (b) Conditioned model

Figure 8: T-SNE Van der Maaten & Hinton (2008) visualization of language features of ImageNet-
1K class prompts (Blue) and CC3M captions (Red) for unconditioned (left) and conditioned (right)
respectively. Our proposed condition better differentiates prompts from real captions.
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