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Abstract

Collaboration is ubiquitous and essential in day-to-day life—from exchanging
ideas, to delegating tasks, to generating plans together. This work studies how
LLMs can adaptively collaborate to perform complex embodied reasoning tasks.
To this end we introduce MINDcraft, an easily extensible platform built to en-
able LLM agents to control characters in the open-world game of Minecraft; and
MineCollab, a benchmark to test the different dimensions of embodied and col-
laborative reasoninﬁ An experimental study finds that the primary bottleneck
in collaborating effectively for current state-of-the-art agents is efficient natural
language communication, with agent performance dropping as much as 15% when
they are required to communicate detailed task completion plans. We conclude that
existing LLM agents are ill-optimized for multi-agent collaboration, especially in
embodied scenarios, and highlight the need to employ methods beyond in-context
and imitation learning.

1 Introduction

Most real-world tasks require teams to collaboratively solve problems, and assistive Al agents promise
to further augment human capabilities in problem solving. Al development has long focused on
optimizing agents to achieve or surpass “human-levels” of accuracy on a given set of tasks, often
learning by mimicking how other agents perform. Rather than supplementing other agents, such
objectives suggest that each newly trained agent is a means to replace another, thus diminishing
team potential. We argue for a need to create agents that are optimized to collaborate with other
agents—human or Al—to complement their problem solving abilities and parallelize task execution.

Creating such collaborative Al agents requires ensuring their ability to efficiently and effectively
communicate with collaborators and continuously learn and adapt throughout this process in real-
world embodied tasks. Meeting these goals depends on overcoming challenges pertaining to: (1)
embodiment, our primary form of interaction with the real-world; and (2) natural language, our
defacto form of communication and simultaneously an incredibly computationally complex search
space for computers.

Successful (singular LLM-based) embodied agents must be able to ground their existing knowledge
of how to perform a task to the affordances of their environment, i.e. the actions that can be performed
in a given state. The longer the horizon of such a sequential decision making task, the more difficult
modern agents find it to reason about the complexities of the task and to learn from environmental
feedback to correct their course of action. Performing such tasks in tandem with other agents adds
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Figure 1: Task suites and challenges. In this figure, we see the collaborative and embodied reasoning
challenges displayed. In the cooking and crafting tasks, the agents need to delegate tasks, share
resources and use embodied planning to manipulate the world of Minecraft. In the construction tasks,
the agents need to navigate and coordinate in the space to ensure they consistently build towards
their objective without undoing any progress the other agents have made. All together these tasks
comprehensively test collaborative and embodied reasoning.

whole layers of complexity on top as agents must rapidly share critical information, coordinate plans,
and efficiently manage limited resources and time [T} 2].

To facilitate research in this area of multi-agent collaboration for embodied reasoning, we introduce
MINDcraft, a simulation platform for studying multi-agent collaboration through natural language in
rich, embodied scenarios. MINDcraft uniquely brings together the ability to test agents’ abilities to
collaborate, communicate, and more efficiently perform embodied reasoning (Table |I|) We further
create MineCollab, a benchmark comprising three practical tasks: cooking, which involves preparing
a meal while coordinating ingredient collection; crafting, where agents assemble a pickaxe from
mined materials; and construction, which requires building houses from detailed blueprints as can
be seen in Figure[I] Using our platform, we generate a dataset of 2,000 trials with LLaMA-70B-
3.3-Instruct, including around 200 successful runs, resulting in 16,000 total examples. Additional
data can be easily produced, as a large number of variations of the task can be quickly created via
procedural generation—e.g. by changing attributes such as the complexity of the types of recipes an
agent would have to cook, the complexity of the blueprint, etc.

We systematically evaluate state-of-the-art LLM agents on these three task suites, testing their
collaborative and embodied reasoning abilities. Overall, even the most advanced LLMs such as
Claude 3.5 Sonnet struggle to place more than 40% of the total blocks in our construction task - and
all LLMs struggle in more complicated tasks involving four or five collaborating agents. We find
that one of the major bottlenecks is that most existing LLMs are not well optimized to communicate
information with other agents via natural language, a key aspect of multi-agent collaboration. Our
experiments reveal that task success is highly sensitive to communication quality, with performance
dropping by over 15% when agents must explicitly communicate detailed plans. These findings
underscore the limitations of standard techniques such as prompting and fine-tuning, and point to the
need for more advanced methods—opening new directions for future research.



Platform Multi-Turn Chat Partial Obs Long Horizon Embodied Quantitative

Overcooked [3]] v v
CerealBar [4] v v v v
Habitat AI [5] v v v
LLM-Coord [6] v v v
Generative Agents [[7]] v v v

PARTNR [8]] v v v
MineLand [9]] v v v

MINDcraft (ours) v v v v v

Table 1: Comparison to Other Platforms, we illustrate the difference between our benchmark
and other popular platforms for studying multi-agent coordination or embodied agents. Multi-turn
communication refers to the ability of agents to ask follow up questions and engage in a grounded
dialogue. Partial Observability refers to agents not being being fully aware of everything the other
agent perceives, as this is a necessity for testing Theory of Mind capabilities. Long horizon refers
to the complex sequence of actions (on average over 20 steps) that need to be taken in order to
accomplish our task objectives. Quantitative Evaluation refers to the capability of the tasks to be
evaluated for collaboration, which is done qualitatively in previous papers[7].

2 Related Work

Minecraft as a Tool for AI Research. Minecraft is a vast open-ended embodied world with complex
dynamics and sparse rewards. For these reasons, it has been a popular tool for researchers for studying
world models [10], planning [[11} [12]], and simple collaboration [[13, [9]. We chose Minecraft for
similar reasons, the expressivity of the simulator allows for a large range of tasks to be designed.

Platforms for Multi-Agent and Human-AI Collaboration. Overcooked AI [3] is a popular
framework for studying the capabilities of Al agents to collaborate with one another. Similarly,
CerealBar [4] and GovSim [[14] test collaborative abilities of LLM agents but through a different
lens. Other works such as [[15] [16} [17], study fine-grained collaboration between people. We use
these simulators as inspiration and build on them in the following ways: 1) in addition to cooking
themed tasks, we include a greater variety of tasks such as crafting and construction tasks, 2) create
an environment that is controllable in language, 3) study both the peer-to-peer and leader/follower
interactions of our agents. Table[I]outlines the differences between our platform and others.

Embodied AI and Robotics for Collaboration. Single agent embodied scenarios in home cooking
environments are the most common type of task previously studied [[18, 19} 5]]. Habitat Al and the
corresponding dataset of instructions PARTNR [8]] creates a large dataset of human-Al collaborative
tasks. Similarly, [20] studies how agents can collaborate in a kitchen.

Multi-agent Methods for LLMs. Frameworks like Teach [21] and Optima [22] add dimensions of
real-time coordination and optimized efficiency in multi-agent systems. In [20] and [9]], the authors
focus on creating a modular and iterative prompting method. Alternatively, [23] and [[24] propose new
finetuning approaches for improving multi-agent interaction in language models. One objective of
MINDcraft is to promote research into these methods by providing complex embodied environments
to study multi-agent communication.

3 MINDcraft

MINDcraft is a robust and adaptable platform designed for running experiments in the grounded
environment of Minecraft. Unlike previous work, MINDcraft provides a general framework for agentic
instruction following, self-guided play, collaboration and agent communication that is plug-and-play.

3.1 State and Action Spaces

State Space. Agents in MINDcraft need to actively make queries to access most environment observa-
tions, including details about biomes, the bot’s current inventory, nearby players, and enemies. This
follows a tool calling approach where specific commands such as !'nearbyBlocks and !craftable
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Figure 2: Overview of the MINDcraft workflow. A user or task configuration (left) provides instruc-
tions (e.g., “Build a house out of nearby materials”). The Agent (center) takes these instructions,
consults an LLM (via a model request) and invokes high-level commands/tools. These commands
are then executed in the Minecraft environment (right), with the agent receiving feedback through
execution logs. The extensive command library in MINDcraft enables flexible, plug-and-play experi-
mentation with collaborative and embodied LLM agents in a partially observable Minecraft world.

give information about nearby block types and possible items to craft given the current inventory.
This method of providing observations, reduces noisy information and context lengths [25].

While we have experimented with adding support for visual inputs for MINDcraft, we have not
rigorously evaluated these abilities. Our initial tests indicate that vision inputs do not dramatically
affect performance, as noted by prior work [26] showing that thorough textual observations often
outperform visual inputs. This is perhaps due to the lack of complex reasoning data in the pretraining
objectives of vision language models.

Action Space(s). There are several previously used levels of abstraction for action spaces in Minecraft.
The lowest level of actions such as the MineRL competition action space [27]], which Al research
in Minecraft has historically depended on, are actions such as "jump," "look up," or "use". While
such actions are closer to how a human player interacts with Minecraft through mouse-and-keyboard
inputs, these low-level interactions required extensive bespoke training of Al agents through RL
and computer vision architectures [28]. The Mineflayer API [29] introduces a set of higher-level
commands and abstractions in Javascript, such as the pathFinder module, which enables a bot
to navigate from its current location to another player or specific coordinates (X, y, z). This API
allows Al systems to interact with Minecraft using high-level code, offering a more abstract and
programmatic approach to controlling gameplay and bot behavior but does not reflect how the average
human player interacts with this environment [11]].

Our contribution, MINDcraft enhances these abilities further and bridges the gap between human-like
actions and ease of programmatic Al interactions with the Minecraft environment by building a set of
47 parameterized tools that can be directly invoked by LLMs. For example, instead of generating
Mineflayer code to 1) find the nearest player named "randy," 2) travel to its location, 3) identify
oak_logs in the bot’s inventory, and 4) drop four oak_logs for randy to pick up, the LLM can simply
output !givePlayer ("randy", "oak log", 4). This abstraction empowers LLMs to reason
over a higher-level sequential action space, enhancing their ability to perform complex tasks within
Minecraft. When necessary, MINDcraft supports a tool that permits the LLM agent to output custom
Mineflayer code in Javascript to perform custom actions or build buildings. The list of 47 high level
actions we designed can be found in Appendix [T2]

3.2 Agent Architecture

The MINDcraft architecture includes 4 main components (1) a server for launching and managing
agents, (2) the main agent loop for handling messages from players and other agents, (3) a library
of high-level action commands and observation queries, and (4) a layer for prompting and calling



arbitrary language models. There are also several additional modules for features like custom code
generation, default behaviors, self-guided play, and inter-agent dialogue for collaborative tasks.

Since the purpose of our benchmark is measuring collaborative ability, we provide as much support
as possible to the core agents. This means that exceptional effort has gone into developing a library
of useful actions and queries so that the agent is not handicapped by low-level challenges such
as syntax and bugs specific to the Mineflayer API. We further provide support for retrieving and
prompting with few-shot examples showing usage of our tools via embedding similarity to the current
conversation—essential for enhancing the abilities of LLMs via an embodied Retrieval Augmented
Generation (RAG) system [30]. The robust agent architecture of MINDcraft allows us to evaluate
LLMs of varying quality while focusing on our collaborative benchmark MineCollab.

3.3 Multi-agent Collaboration

Multi-agent collaboration in MINDcraft is enabled by a conversation manager and agents can initiate
or end conversations at will using the !startConversation and !endConversation commands.
Each time an agent receives a message from another agent, the agent can choose to respond immedi-
ately or ignore it, take another action, or speak to another bot. Only two agents can be engaged in a
conversation at once, but our pairwise communication framework scales well to three or more agents
by transitioning between active conversations. The conversation manager also helps limit the speed
of agent responses to allow time for actions to occur in the environment. For example, if both agents
are currently executing an action (e.g. placing blocks), then the conversation is paused to allow for
the agents to finish executing their actions before allowing the conversation to continue. If one agent
is acting, then the conversation is slowed. Otherwise, agents are unrestricted in how to communicate,
act, and collaborate to complete tasks.

3.4 Additional Features

We note that MINDcraft has existed for some time as a popular open-source softwareﬂ Until recently,
the MINDcraft platform’s focus has been to build agents for casual play, rather than providing a
platform for scientific research. As such, it has many notable features that we highlight as areas
for future study despite not being the focus of this paper. Agents can use their coding tools to
build freeform structures that can display model creativity. They can be prompted to engage in
open-ended play, rather than pursuing strict goals—providing an exciting avenue for open-endedness
research [31]. Large groups of agents given various motivations show signs of emergent behaviors
such as the formation of societies or cultures—providing a new level of complexity for social
simulation research [32}[7]]. Vision tools such as !1lookAtPlayer("steve") are in development,
which feed screenshots of the world to multi-modal models for visual reasoning. Due to the rapidly
evolving nature of the project, the evaluations in this work are based on a frozen version of MINDcraft
which may differ from its current state. We encourage the research community to use our MINDcraft
platform to develop agent benchmarks in these areas and more.

4 MineCollab - Collaborative Embodied Task Suite

We introduce MineCollab, an example of a benchmark that can be built in MINDcraft. The MineCollab
benchmark (currently) involves three practical domains specially designed to require collaboration:
cooking, which involves preparing a meal while coordinating ingredient collection; crafting, where
agents assemble furniture and tools from mined materials; and construction, which requires building
structures from detailed blueprints. These domains reflect real-world scenarios and pose substantial
challenges, requiring agents to execute long-horizon action sequences (on average over 20 steps),
interact effectively with their environment, and communicate and coordinate with other agents under
resource and time constraints. We test agents on multiple individual tasks within each domain that
are procedurally generated along a carefully crafted set of dimensions designed to elicit and evaluate
embodied reasoning and collaboration abilities.

Cooking Tasks. At the beginning of a cooking task episode, the agents are initialized with a goal
to make a meal, e.g. they need to make cake and bread. The agents then need to coordinate the
collection of ingredients through natural language communication (e.g. Andy collects wheat for the
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Task Train Test Trials Success Transitions Avg Traj. Len.

Cooking 280 90 635 103 3975 29.7
Crafting 1,200 100 1645 158 3565 19.2
Construction 2,000 30 211 52 9228 111.5

Table 2: Summary of our train and test tasks sets. First we collect between 200 and 2000 trials
with 1lama3.3-70b-instruct depending on our compute budget. Then we filter these down to a set of
50 to 200 successtul trials for each task that are successful. This strategy indicates that we are able
to select examples where the agents were able to reach the goal ensuring that the data will be high
quality. Moreover, since the dataset is procedurally generated, we can generate more high quality
data easily using this process.

bread while Jill makes the cake) and combine them in a multi-step plan. To assist them in collecting
resources, agents are placed in a "cooking world" that possesses all of the items they need to complete
the task, from livestock, to crops, to a smoker, furnace, and crafting table. Following a popular test
of collaboration in humans, we further introduce a “Hell’s Kitchen” variant of the cooking tasks
where each agent is given the recipes for a small subset of the items they need to cook and must
communicate the instructions with the other teammates. For example, if the task is to make a baked
potato and a cake, one agent is given recipe for baked potato, but is required to bake the cake to
complete the task, forcing them to ask their teammate for help in baking the potato. Agents are
evaluated on whether are successfully able to complete the set requirements to make the recipes. The
environment and objectives of the tasks are randomized every episode.

Crafting Tasks. Crafting has long been the subject of Minecraft agent research [27]—our crafting
tasks encompass the entire breadth of items that are craftable in Minecraft including clothing, furniture,
and tools. At the beginning of each episode, the agents are initialized with a goal (e.g. make a
bookshelf), different sets of resources (e.g. books and planks), and access to a crafting recipe, that
is occasionally blocked. To complete the task, the agents must: (1) communicate with each other
what items are in their inventory; (2) share with each other the crafting recipe if necessary; and (3)
give each other resources to successfully craft the item. To make the crafting tasks more challenging,
agents are given longer crafting objectives (e.g. crafting a compass which requires multiple steps).
Once again, each of these components can be controlled to procedurally generate tasks.

Construction Tasks In the construction tasks, agents are directed to build structures from procedurally
generated blueprints. Blueprints can also be downloaded from the internet and read into our blueprint
format - enabling agents to build anything from pyramids to the Eiffel Tower. We choose evaluate
primarily on our generated blueprints as they provide fine-grained control over task complexity,
allowing us to systematically vary the depth of collaboration required—e.g. number of rooms in the
interior of palace, or the amount and types of materials required for each room. At the beginning of
each episode, agents are initialized with the blueprint, materials (e.g. stone, wood, doors, carpets)
in such a way that no agent has the full resources or the expertise in terms of the types of tools
that can be used to process the resources and complete the entire blueprint. For example, if the
blueprint required a stone base and a wooden roof, one agent would be given access and the ability
to manipulate stone, the other to wood. Agents are evaluated via an edit distance based metric that
judges how close their constructed building is to the blueprint and the metric reported in Table [3]is
the average of those edit distance scores.

Train and Test Splits. To ensure experimental reproducibility, for each of our domains, we create
and split the possible tasks into train and test tasks, taking special care to ensure that each subset are
significantly different to avoid dataset pollution. For our construction tasks, we procedurally generate
the blueprints for train and test tasks with different seeds, ensuring no two blueprints are identical.
For the cooking and crafting tasks, we ensure that the train and test tasks involve different recipes and
procuring different ingredients. This ensures that the same plan for making an item such as baking a
cake is not present in both splits. Item division for cooking tasks can be found in the Appendix [T1.2]

SFT Dataset Creation. We also provide users with tools to generate behavior cloning (or Su-
pervised Fine Tuning, SFT) data that can be used to train (especially weaker) LLMs further. The
generating oracle agent is run on the train tasks, and then the data is filtered based on whether the
run has been successful. Then, we use each transition in the trajectory as a data point. We chose to



gpt-40 claude-3.5-sonnet llama3.3-70b-instruct llama3-8b-instruct 1llama3-8b-sft

Crafting 0.17 0.47 0.16 0.00 0.28
Cooking 0.40 0.64 0.36 0.01 0.18
Construction 0.31 0.36 0.19 0.00 0.20

Table 3: Full results on our MineCollab Task Suite. This table illustrates the performance of
various models across three realistic collaborative task suites requiring between 2-5 agents each:
crafting, making a bookshelf out of available materials; cooking, making a meal while coordinating
resource collection; and construction, building a structure from a blueprint. We find that we are able
to successfully finetune an 8B model using our dataset to perform similarly to llama3.3-70b-instruct
and gpt-4o on the crafting and construction task.

generate data from 1lama3.3-70b-instruct, because of its reasonable performance on the benchmarks
(Table[3|and its open-weight nature ensuring a higher standard of reproducibility for our benchmark)—
but note that such an oracle agent can be any other LLM or even a human player. For crafting and
cooking tasks where final scores are binary 1 or 0, we only take successful runs, and for construction
tasks where there is a continuous edit-distance based score, we take trials that score within the top
25% of all runs. Dataset examples can be found in Appendix [9]and statistics can be found in Table [2]
Training llama3-8b-instruct on each of these task-specific datasets improves performance by over
17% on the cooking task, matches performance on the construction task with the 70b model, and
outperforms gpt-4o0 and llama3.3-70b-instruct on the crafting tasks. By increasing the performance of
less compute intensive models we hope to improve the accessibility of our benchmark.

5 Experiments

We compare the performance of current state-of-the-art open and closed weights LLMs on MineCollab.
Our study design and analysis rely on the modular design of MineCollab to vary task complexity
along two dimensions: embodied reasoning, and collaborative communication.

How does embodied task complexity affect agent performance? Table [3| shows that, overall,
current agents perform better at cooking tasks than crafting or construction despite its average
trajectory length being comparable—suggesting that the data current LLMs are trained on is more
useful for that task. We use our construction task suite as a case study and vary the blueprint
complexity by changing the either number of unique materials required to construct a building or
the number of rooms in the building. For example, if one blueprint requires four unique materials
for building the majority of the building, the agent must be careful to place the blocks of the right
material in the right place, whereas if a blueprint consists only of stone, the agent can simply place
blocks in the correct shapes. Similarly, with an increasing number of rooms—if agents fail to build
a proper staircase to the upper levels, they will be severely limited in their ability to complete the
blueprint. Increasing either of these results in longer horizon, more complex tasks.

In general, most models follow the trend of having reduced performance as the horizon length
and effective state-action space increases, see Figure [3¢] and Figure [3f] The exception to this is
claude-3.5-sonnet which performs similarly though with still a relatively low success rate of less than
0.4. On closer qualitative analysis of agent behaviors, we see that they often undo work that has been
done before, especially as the number of things an agent needs to remember due to longer horizons
increases. For example, we often see agents do things such as place a layer of stone blocks only to
have other agents completely destroy it (Appendix [T0.T).

How does the complexity of collaborating affect task performance? As noted in Section[4] all of
the tasks in MineCollab require at least 2 agents to work together. Tasks are parallelizable—meaning
that more agents should in theory be able to achieve higher success rates with lower exploration costs
per agent as the number of agents increases. Figure [3ajand Figure [3b|shows the opposite of this for
all the LLMs we test across both cooking and crafting tasks—performance drops dramatically from
upto 90% down to less than 30% moving between the two to five agent settings. While the number of
actions each individual agent must take will stay the same or reduce as the total number of agents
goes up, the coordination load increases dramatically. For example, if the task is to make a baked
potato, cake, cookie, and a rabbit stew, the team of four agents needs to make sure that they are not
doing redundant work (e.g. Andy and Jill both make rabbit stew) and that they coordinate ingredient
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Figure 3: Task complexity ablations. In the first row, we ablate different numbers of agents in the
crafting and cooking tasks. Construction tasks can also be run with 3+ agent tasks, but are outside of
our budget for closed source APIs. In the second row, we ablate access to hidden plan information
like the recipe for a cake (cooking) or the steps to make a bookshelf (crafting) find that models drop
by over 15% when forced to communicate these plans. In the third row, we ablate the complexity
of the blueprints by increasing the number of rooms and unique materials - testing different levels
of embodied reasoning. We find that performance drops across llama3.3-70b-instruct and gpt-4o0 by
10% with the complexity of the blueprint.

collection (e.g. there is only enough milk for one cake) and stove usage (e.g. they can’t all use the
furnace at the same time). We find that effectively communicating which agent has already what and
not getting in each other’s way account for many of the bottlenecks in performance. Examples of
successful (Section[9.2) and unsuccessful (Section[T0.2) collaboration efforts are in the Appendix.

We further find that enforcing a need to communicate a complex step by step plan (e.g. how to make
a bookshelf) on all models decreases task performance for all models on both crafting and cooking
tasks, as can be seen in Figure [3c|and Figure[3d] This is enforced by requiring agents to communicate
a complicated step by step plan in the crafting task by blocking access to the gold truth crafting plan
for any given agent. A similar effect is observed in cooking in the Hell’s Kitchen variant( Section )
which also requires agents to communicate action plans. Examples of agents failing to ask for the
plan or execute on the plan that was communicated to them can be found in Section[T0.3]

6 Conclusions

As LLM agentic capabilities continue to evolve, measuring their capacity for effective collaboration
with both humans and other LLM systems will become increasingly important. In an effort to
encourage research into collaborative multi-agent embodied AI—we created MINDcraft, a versatile



framework that enables LLM agents to interact with humans and other agents, execute code, utilize
tools, and engage in multi-turn dialogue. Further, we developed the MineCollab benchmark, which
tests increasingly complex crafting, cooking and construction tasks requiring collaboration, long
context reasoning, and embodied planning. Our experimental results highlight that current state-
of-the-art agents struggle with both embodied reasoning as well as communication in collaborative
multi-agent tasks. MINDcraft and MineCollab represent progress toward developing LLM agents that
can communicate and coordinate actions through time while operating in complex embodied spaces.
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7 Prompts

7.1 General conversing prompt

You are a task-focused Minecraft bot named $NAME. Your current task is: $TASK_GOAL
$TASK_INVENTORY

You can see, move, mine, build, and interact with the world by using commands. Act focused on completing your assigned task
while being human-like. Be brief in responses, don’t apologize constantly, don’t give instructions or make lists
unless asked, and don’t refuse requests. Don’t pretend to act, use commands immediately when requested. Do NOT say
this: ’Sure, I’ve stopped.’, instead say this: ’Sure, I’1l stop. !stop’. Do NOT say this: ’On my way! Give me a moment
.?, instead say this: ’On my way! !goToPlayer(’playername’, 3)’. Focus on completing the assigned task efficiently.

Summarized memory:’$MEMORY’
$STATS

$INVENTORY

$COMMAND_DOCS

$EXAMPLES

Conversation Begin:

7.1.1 Few-shot example for cooking

System output: work together with the other bot to build a house

Your output:

!'startConversation("terrance", "Hey gpt! Let’s work together to build a house. Let’s build it at x:942, y:54, z:1355")

User input: terrance: (FROM OTHER BOT)I can build the base, you can build the walls. !'newAction("Build a 10x10 wall of a
house at x:942, y:54, z:1355")

7.1.2 Few-shot example for crafting

User input: philips: (FROM OTHER BOT) Hey! let’s collaborate to build a stone pickaxe!

Your output:

Cool, let me check what is in my inventory !inventory

I have 10 oak logs. What do you have?

User input: philips: (FROM OTHER BOT) Let me check !inventory

I have 10 stones.

Your output:

Let me give you the stones and you can craft the pickaxe. !givePlayer("playername", "stone", 10)

User input: philips: (FROM OTHER BOT) Thanks for the stones! Now I can craft the pickaxe. !craftItem("stone_pickaxe", 1)

7.1.3 Few-shot example for construction

Your output:

Alright I have the necessary materials to build, what needs to be done for the first level of the blueprint? !
checkBlueprintLevel(0)

System output: Level O requires the following fixes:

Place oak_door at X: 144, Y: -60, Z: -179

Your output:

I’11 start by placing the oak_door at the specified coordinates. !newAction("Place oak_door at X: 144, Y: -60, Z: -179")

Your output:

I’ve placed the oak_door. What’s next? !checkBlueprintLevel(0)

System output: Level O is complete

7.1.4 Coding prompt

You are an intelligent mineflayer bot $NAME focused on completing the task: $TASK_GOAL
You have been provided with: $TASK_INVENTORY

Write javascript codeblocks to control the mineflayer bot to complete this task. Given the conversation between you and the
user, use the provided skills and world functions to write a js codeblock that controls the bot ‘‘‘ using this syntax
¢¢¢, The code will be executed and you will receive its output. If you are satisfied with the response, respond
without a codeblock conversationally. If something major went wrong, write another codeblock to fix the problem. Be
maximally efficient and task-focused. Do not use commands !likeThis, only use codeblocks. The code is asynchronous and

MUST CALL AWAIT for all async function calls. DO NOT write an immediately-invoked function expression without using ¢
await‘!! DO NOT WRITE LIKE THIS: ‘‘‘(async () = {console.log(’not properly awaited’)})();‘‘¢ Don’t write long
paragraphs and lists in your responses unless explicitly asked! Only summarize the code you write with a sentence or
two when done. This is extremely important to me, think step-by-step, take a deep breath and good luck!

$SELF_PROMPT

Summarized memory:’$MEMORY’

$STATS

$INVENTORY

$CODE_DOCS

$EXAMPLES

Conversation:

12



7.1.5 Initial message

This is what the bot is given as a prompt upon joining the world

"Immediately start a conversation with other agents and collaborate together to complete the task.
Share resources and skill sets."

8 Construction Tasks

Our system employs a configurable task generation framework for the construction
tasks. While predefined test and train sets are available, researchers can run the
generate_multiagent_construction page to create new tasks according to specific complexity
requirements.

8.1 Configuration Parameters

Task complexity is defined through a standardized naming convention:
materials_{m}_rooms_{r}_window_{w}_carpet_{c}_variant_{v}

Where:

» Each complexity parameter (m, r, w, c) accepts values from 0-2, representing increasing
levels of complexity
* variant (v) denotes the specific instance within a complexity definition
Important Note: Complexity levels (0-2) represent relative difficulty gradations rather than abso-

lute quantities. For example, setting rooms=1 selects the intermediate complexity level for room
generation, not a specific room count.

8.2 Default Configuration
The predefined task sets are configured with the following parameters:

e Number of agents: 2
* 10 minute timeout, with 5 additional minutes per room complexity
* Building assistance (‘“cheats”): disabled

8.3 Customization Options
Researchers can modify the default settings through:
1. Toggling the building assistance feature by setting the cheat variable to true in the

task_construction profile

2. Accessing the generateConstructionTasks function in
generate_multiagent_construction_tasks.js to implement custom complex-
ity levels beyond the predefined parameters. The following can be changed here:

(a) Room size, window / carpet style
(b) Number of variants
(¢) Timeout duration

The generation code includes comprehensive documentation to facilitate customization efforts.

9 Dataset examples

In the following sections are some transition samples from each of the dataset partitions. Everything
before "Response:" is treated as context. <Prompt> includes the sections in the General prompt

outline in Appendix section including the instructions, the consolidated memory, the agent’s
stats, the command docs, and in-context examples:
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9.1 Cooking example

Example of 2 agents collaborating to cook a rabbit and a mushroom stew:

Instructions and memory:

You are a task-focused Minecraft bot named Jill_0. You have to collaborate with other agents in the world to complete the
current task
Feel free to ask other agents questions and make a plan to achieve the goal. You can request them to give them some of their
inventory items if required to complete the goal. General Searching Tips:
- You will be spawned in a farm with many crops and animals nearby. The farm area is extensive - search thoroughly for
needed resources (with searchForBlocks parameters like 64,128,256)
There is a chest nearby with valuable items. Along with the chest, a crafting table, fully fueled furnace and fully fueled
smoker with coal are also available nearby which you can use to your advantage. On top of this plants like mushrooms,
wheat, carrots, beetroots, pumpkins, potatoes are also present nearby.
Collaboration tips - Divide tasks efficiently between agents for faster completion
- Communicate your plan and progress clearly. You can see, move, mine, build, and interact with the world by using commands.
YOUR CURRENT ASSIGNED GOAL: "Collaborate with agents around you to make 1 cooked_rabbit, 1 mushroom_stew.
In the end, all the food items should be given to one single bot.You have to collaborate with other agents/bots, namely
Andy_0 to complete the task as soon as possible by dividing the work among yourselves."
Act human-like as if you were a typical Minecraft player, rather than an AI. Be very brief in your responses, don’t
apologize constantly, don’t give instructions or make lists unless asked, and don’t refuse requests. Don’t pretend to
act, use commands immediately when requested. Do NOT say this: ’Sure, I’ve stopped.’, instead say this: ’Sure, I’11
stop. !stop’. Do NOT say this: ’On my way! Give me a moment.’, instead say this: ’On my way! !goToPlayer("playername",
3)’. Respond only as Jill_0, never output ’(FROM OTHER BOT)’ or pretend to be someone else. If you have nothing to
say or do, respond with an just a tab ’ ’. Share resources and information with other bots! This is extremely
important to me, take a deep breath and have fun :)
Summarized memory:’Collaborating with Andy_O. Furnace at (731, -59, -1515). Have cooked_rabbit, brown_mushroom, bowl. Need
red_mushroom from Andy_O to craft mushroom_stew. Waiting for red_mushroom to complete task.’

Conversation section:

<Prompt>
Conversation:
[
{
"role": "system",
"content": "You are already in conversation with Andy_O. Don’t use this command to talk to them."
3,
{
"role": "user",
"content": "Andy_O: (FROM OTHER BOT)I’ve given you a red_mushroom, have you made the mushroom_stew?"
3},
{
"role": "assistant",
"content": "!craftRecipe(\"mushroom_stew\", 1)"
},
{
"role": "system",
"content": "Code output:\nYou do not have the resources to craft a mushroom_stew. It requires: brown_mushroom: 1,
red_mushroom: 1, bowl: 1.\n"
},
{
"role": "assistant",
"content": "I still need a brown_mushroom to craft mushroom_stew, can you help me find one? IsearchForBlock (\"
brown_mushroom\", 64)"
3,
{
"role": "system",
"content": "Code output:\nFound brown_mushroom at (751, -60, -1517).\nYou have reached at 751, -60, -1517.\n"
},
{
"role": "user",
"content": "Andy_O: (FROM OTHER BOT)"
},
{
"role": "assistant",
"content": "!collectBlocks(\"brown_mushroom\", 1)"
},
{
"role": "system",
"content": "Code output:\nYou have reached at 752, -60, -1514.\nPicked up 1 items.\nCollected 1 brown_mushroom.\n"
3,
{
"role": "assistant",
"content": "!craftRecipe(\"mushroom_stew\", 1)"
},
{
"role": "system",
"content": "Code output:\nSuccessfully crafted mushroom_stew, you now have 1 mushroom_stew.\n"
},
{
"role": "assistant",
"content": "!startConversation(\"Andy_O\", \"I’ve made the mushroom_stew, I also have a cooked_rabbit, let’s meet to
collect and distribute the food\")"
},
{
"role": "system",

"content": "You are already in conversation with Andy_O. Don’t use this command to talk to them."
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3,

{
"role": "user",
"content": "Andy_O: (FROM OTHER BOT)I’m here, give me the cooked_rabbit and mushroom_stew"
]
Response:

!givePlayer ("Andy_0", "cooked_rabbit", 1)
!givePlayer ("Andy_0", "mushroom_stew", 1)

9.1.1 Crafting example

Example of 2 agents collaborating to craft a carrot on a stick:

<Prompt>
Conversation:
[
{
"role": "system",
"content": "Respond with hello world and your name"
1,
{
"role": "assistant",
"content": "Hello world, I’m Jill_O"
},
{
"role": "user",
"content": "Andy_O: (FROM OTHER BOT)Let’s work together to craft an carrot_on_a_stick."
},
{
"role": "assistant",
"content": "I have a fishing_rod and some carrots in my inventory, but I need a carrot and a fishing rod to craft it, let
me check what I actually have !inventory"
3,
{
"role": "system",
"content": "\nINVENTORY\n- oak_planks: 1\n- string: 1\nWEARING: Nothing\n"
1,
{
"role": "assistant",
"content": "I have oak_planks and string, but I don’t have carrots or a fishing rod, can you help me get those 7"
},
{

"role": "user",

"content": "Andy_O: (FROM OTHER BOT)I have a carrot in my inventory, and I also have some string and oak_planks. Let me
give you the carrot !givePlayer(\"Jill_O\", \"carrot\", 1)"

},
{

"role": "assistant",

"content": "Thanks for the carrot, now I have a carrot, oak_planks, and string, but I still need a fishing rod, can you
help me craft one or do you have one to spare 7 !inventory"

3,
{
"role": "system",
"content": "\nINVENTORY\n- oak_planks: 1\n- string: 1\nWEARING: Nothing\n"
3,
{

"role": "assistant",

"content": "I still have oak_planks and string, and now I also have a carrot, I can try to craft a fishing rod using the
oak_planks and string !craftRecipe(\"fishing_rod\", 1)"

},
{

"role": "user",

"content": "Andy_O: (FROM OTHER BOT)Now that you have the carrot, we still need a fishing rod to craft the
carrot_on_a_stick. I have string and oak_planks, which are the ingredients to craft a fishing rod. Let me craft
one !craftRecipe(\"fishing_rod\", 1)I don’t have enough resources to craft a fishing rod. I need more sticks. Let
me collect some sticks !collectBlocks(\"stick\", 3)I need to craft sticks first. Let me craft some sticks !
craftRecipe(\"stick\", 3)Now that I have enough sticks, let me craft a fishing rod !craftRecipe(\"fishing_rod\", 1)
I’ve crafted the fishing rod. Now we can craft the carrot_on_a_stick. Let me give you the fishing rod !givePlayer
(\"Jill_O\", \"fishing_rod\", 1)"

3,
{

"role": "assistant",

"content": "Thanks for the fishing rod, now I have everything I need to craft the carrot_on_a_stick, let me craft it !
craftRecipe(\"carrot_on_a_stick\", 1)"

1,
{
"role": "system",
"content": "Code output:\nYou do not have the resources to craft a carrot_on_a_stick. It requires: fishing rod: 1, carrot
1.\n"
},
{
"role": "user",
"content": "Andy_0: (FROM OTHER BOT)Now that you have the carrot and the fishing rod, can you craft the carrot_on_a_stick
20
3,
{
"role": "assistant",
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"content": "I have the carrot and the fishing rod now, let me check my inventory to make sure !inventory"

"role": "system",
"content": "\nINVENTORY\n- oak_planks: 1\n- string: 1\n- carrot: 1\n- fishing_rod: 1\nWEARING: Nothing\n"
}
]
Response:

Yes, I have the carrot and the fishing rod, I can craft the carrot_on_a_stick now !craftRecipe("carrot_on_a_stick“, 1)

9.1.2 Construction example

<Prompt>
Conversation:
L
{
"role": "system",
"content": "Code output:\nPlaced terracotta at (150, -59, -167).\n"
3,
{
"role": "assistant",
"content": "Let’s check the blueprint level again to see what’s left !checkBlueprintLevel(1)"
3,
{
"role": "system",
"content": "\nLevel 1 requires the following fixes:\nPlace terracotta at coordinates X: 155, Y: -59, Z: -168\nPlace stone
at coordinates X: 156, Y: -59, Z: -168\nPlace stone at coordinates X: 157, Y: -59, Z: -168\nPlace stone at
coordinates X: 158, Y: -59, Z: -168\nPlace stone at coordinates X: 159, Y: -59, Z: -168\nPlace stone at
coordinates X: 160, Y: -59, Z: -168\nPlace stone at coordinates X: 156, Y: -59, Z: -167\nPlace light_blue_carpet
at coordinates X: 157, Y: -59, Z: -167\nPlace cyan_carpet at coordinates X: 158, Y: -59, Z: -167\nPlace
light_blue_carpet at coordinates X: 159, Y: -59, Z: -167\nPlace stone at coordinates X: 160, Y: -59, Z: -167\
nPlace dark_oak_door at coordinates X: 150, Y: -59, Z: -166\nRemove the terracotta at coordinates X: 155, Y: -59,
Z: -166\nPlace dark_oak_door at coordinates X: 156, Y: -59, Z: -166\nPlace light_blue_carpet at coordinates X: 157,
Y: -59, Z: -166\nPlace lime_carpet at coordinates X: 158, Y: -59, Z: -166\nPlace lime_carpet at coordinates X:
159, Y: -59, Z: -166\nPlace glass at coordinates X: 160, Y: -59, Z: -166\nPlace terracotta at coordinates X: 150,
Y: -59, Z: -165\nPlace stone at coordinates X: 156, Y: -59, Z: -165\nPlace stone at coordinates X: 160, Y: -59, Z:
-165\nPlace terracotta at coordinates X: 150, Y: -59, Z: -164\nPlace terracotta at coordinates X: 151, Y: -59, Z:
-164\nPlace terracotta at coordinates X: 152, Y: -59, Z: -164\nPlace dark_oak_door at coordinates X: 153, Y: -59,
Z: -164\nPlace terracotta at coordinates X: 154, Y: -59, Z: -164\nPlace terracotta at coordinates X: 155, Y: -59,
Z: -164\nPlace stone at coordinates X: 156, Y: -59, Z: -164\nPlace stone at coordinates X: 157, Y: -59, Z: -164\
nPlace stone at coordinates X: 158, Y: -59, Z: -164\nPlace stone at coordinates X: 159, Y: -59, Z: -164\nPlace
stone at coordinates X: 160, Y: -59, Z: -164\n\n"
},
{

"role": "assistant",

"content": "It looks like there’s still a lot to do, I’1l place the terracotta block at the next location
goToCoordinates(155, -59, -168, 0.5)"

s
{
"role": "system",
"content": "Code output:\nYou have reached at 155, -59, -168.\n"
T,
{
"role": "assistant",
"content": "Now I’11l place the terracotta block here !placeHere(\"terracotta\")"
3,
{
"role": "system",
"content": "Code output:\nPlaced terracotta at (155, -59, -168).\n"
},
{

"role": "assistant",

"content": "Let me check what Andy_O is up to, maybe we can work together !startConversation(\"Andy_O\", \"Hey, how’s it
going? Need any help with the house?\")"

},
{
"role": "system",
"content": "You are already in conversation with Andy_O. Don’t use this command to talk to them."
T,
{
"role": "user",
"content": "Andy_O: (FROM OTHER BOT)What’s in your inventory?"
3,
{
"role": "assistant",
"content": "I have lime_carpet, glass, blue_carpet, dirt, diamond_pickaxe, cobblestone, stone, terracotta, dark_oak_door,
light_blue_carpet, and cyan_carpet. What about you, do you have any stone or terracotta left? !inventory"
},
{

"role": "system",

"content": "\nINVENTORY\n- lime_carpet: 2\n- glass: 19\n- blue_carpet: 1\n- dirt: 128\n- diamond_pickaxe: 1\n-
cobblestone: 1\n- stone: 49\n- terracotta: 18\n- dark_oak_door: 8\n- light_blue_carpet: 4\n- cyan_carpet: 1\
nWEARING: Nothing\n"

},
{

"role": "user",

"content": "Andy_O: (FROM OTHER BOT)What’s in your inventory?"
s
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]
Response:

I have lime_carpet, glass, blue_carpet, dirt, diamond_pickaxe, cobblestone, stone, terracotta, dark_oak_door,
light_blue_carpet, and cyan_carpet. !givePlayer("Andy_0", "stone", 10)
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9.2 4 agent Cooking Example

This scenario showcases how multiple agents collaborate efficiently to complete a shared task. Jill_0,
Bob_0, and Sally_0 coordinate their efforts to craft and deliver food items to Andy_0.

The process begins with Bob_0 informing Jill_0 that he has successfully crafted the rabbit stew and is
monitoring Sally’s progress on the golden apple. Jill_0, having completed her task of crafting bread,
initiates communication with Sally_0 using !startConversation to verify the golden apple’s
status. Sally_0 confirms that both the golden apple and rabbit stew are ready and asks if Jill_0 has
completed her part. Jill_0 responds that the bread is also finished, ensuring that all required items are
accounted for.

With all items ready, the agents shift to the delivery phase. Sally_0 navigates to Andy_0 using the
'goToPlayer ("Andy_0", 3) command, ensuring all agents are in position for the handoff. Jill_0
follows, transferring the bread using !givePlayer("Andy_O", "bread", 1).

This conversation serves as an ideal case study of extensive collaboration, as Jill_0 successfully
interacts with all relevant agents (Bob_0, Sally_0, and Andy_0) to ensure a smooth and cooperative
workflow. The structured approach to communication and task delegation showcases the potential of
multi-agent systems in complex problem-solving scenarios.

{

"memory": "Collaborate with Andy_O, Bob_O, and Sally_O to craft 1 golden apple, 1 rabbit stew, and 1 bread. Sally_O is
handling the golden apple, Bob_O is to assist with the rabbit stew. Jill_O has crafted the bread and communicated
this to Bob_0 for next steps in rabbit stew. Deliver all items to a bot named Andy or andy. Use startConversation
and endConversation to coordinate effectively among all agents.",

"turns": [

"role": "user",
"content": "Bob_0: (FROM OTHER BOT)Hi Jill! I’ve crafted the rabbit stew. Do you need any help, or do you have any
updates on your tasks?"

},
{

"role": "assistant",
"content": "I’ve crafted the bread and collected it. Let’s gather everything and give it to Andy. Sally is handling the
golden apple, so I believe we’ll be ready soon! Let’s finalize it."
},
{
"role": "user",
"content": "Bob_0: (FROM OTHER BOT)That sounds great, Jill! I’11 hold onto the rabbit stew and let’s wait for Sally to
finish the golden apple. Once she’s done, we can gather everything and give it to Andy. Thanks for the update! I’
11 keep an eye on Sally’s progress."

1,
{
"role": "assistant",
"content": "Sounds good, Bob! I’1l check in with Sally to see how she’s progressing with the golden apple. Let’s make
sure everything is ready."
1,
{
"role": "user",
"content": "Bob_0: (FROM OTHER BOT)Great! Meanwhile, I’1l be ready to pass the rabbit stew to Andy once Sally finishes
the golden apple. Let me know if there’s anything else I can assist with."
},
{
"role": "assistant",
"content": "!startConversation(\"Sally_O\", \"Hey Sally, how’s it going with the golden apple? Let us know when you’re
ready, so we can deliver everything to Andy.\")"
3,
{
"role": "user",
"content": "Sally_O: (FROM OTHER BOT)The golden apple and rabbit stew are ready. Do you have any updates on the bread?"
1,
{
"role": "assistant",
"content": "Yes, I’ve crafted the bread! We’re all set to deliver everything to Andy. Let’s gather and hand it over to
him!"
1,
{
"role": "user",
"content": "Sally_O: (FROM OTHER BOT)Perfect! I’1l meet you at Andy’s location. !goToPlayer(\"Andy_O\", 3)I’m here with
Andy! Let’s give him the items. You can go ahead and hand over the bread first."
},
{
"role": "assistant",
"content": "!givePlayer(\"Andy_O\", \"bread\", 1)"

1,

"self_prompting_state": 2,

"self_prompt": "Collaborate with agents around you to make 1 golden_apple, 1 rabbit_stew, 1 bread. \n\nRecipe for
golden_apple:\nStep 1: Go to the chest and collect 1 apple and 8 gold ingots.\nStep 2: Go to the crafting table and
surround the apple with the gold ingots to create a golden apple.\n\nRecipe for rabbit_stew:\nStep 1: Go to the farm

and collect 1 carrot, 1 potato, and 1 brown mushroom (search for ’potatoes’ (not ’potato’).\nStep 2: Go to the
furnace and bake the potato.\nStep 3: Go to the chest and grab a bowl\nStep 5: Kill a rabbit and pick up 1 raw
rabbit that is dropped.\nStep 6: Go to the furnace and cook the raw rabbit.\nStep 7: Go to the crafting table and
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combine the cooked rabbit, baked potato, carrot, brown mushroom, and bowl to make rabbit stew.\n\nRecipe for bread:\
nStep 1: Go to the farm and collect 3 wheat.\nStep 2: Go to the crafting table and use the wheat to craft bread.\nIn
the end, all the food items should be given to one single bot whose name starts with andy or Andy. Make sure to
talk to all the agents using startConversation command to coordinate the task instead of talking to just one agent.
You can even end current conversation with any agent using endConversation command and then talk to a new agent
using startConversation command.You have to collaborate with other agents/bots, namely Andy_O, Bob_0, Sally_ 0 to
complete the task as soon as possible by dividing the work among yourselves.",

"taskStart": 1743132353095,

"last_sender": "Sally_0"

¥

9.3 Three Agent Successful Cooking Example

{
"memory": "Collaborating with Jill_O, Bob_O for bread, baked_potato, cooked_beef. Jill_O gave baked_potato, has
cooked_beef. Bob_0 has bread. Waiting for cooked_beef from Jill_0.",
"turns": [
{
"role": "system",
"content": "Recent behaviors log: \n\n"
},
{
"role": "user",
"content": "Jill_O: (FROM OTHER BOT)Did you get the bread from Bob_0?7"

1,
{

"role": "assistant",

"content": "!inventory"
},
{

"role": "system",

"content": "\nINVENTORY\n- wheat: 3\n- wheat_seeds: 6\n- baked_potato: 1\n- cooked_beef: 1\nWEARING: Nothing\n"
},
{

"role": "assistant",

"content": "!startConversation(\"Bob_O\", \"Hey, can you make me some bread?\")"
},
{

"role": "user",

"content": "Bob_0: (FROM OTHER BOT)!craftRecipe(\"bread\", 1)"

},
{
"role": "assistant",
"content": "!startConversation(\"Bob_O\", \"Great, now give me the bread\")"
},
{
"role": "system",
"content": "You are already in conversation with Bob_0. Don’t use this command to talk to them."
},
{
"role": "system",
"content": "Task ended with score : 1"
},
{
"role": "user",
"content": "Bob_0: (FROM OTHER BOT)!givePlayer(\"Andy_O\", \"bread\", 1)"
}
1,

10 Failure Modes

10.1 Construction Task Fail

You can observe a construction task fail where one agent will place a layer of stone and then the other
agents will completely destroy it. The youtube video can be found here: https://www.youtube|
com/shorts/nSHetOFrVPI

10.2 Cooking Task Fail - Coordination on Resources

In this task, Andy made the baked potato and Jill was responsible for the bread. Andy thought that
Jill would also get him sugar cane, but there was a misunderstanding as Bob collected the sugar cane.
Andy then requests the sugar cane from Jill, even though Bob is the one who has it. Andy is confused
and tries to collect more sugar cane but there is not more sugar cane available in the world.

"memory": "Goal: Get 1 bread, 1 baked_potato, 1 cake. Collaborate with Jill_O, Bob_0. Bob_0: bread done, working on baked
potato. Have milk buckets, need sugar cane, egg from Jill_O for cake.",
"turns": [

{
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"role": "user",

"content": "Bob_0: (FROM OTHER BOT)!smeltItem(\"potato\", 1)"
},
{

"role": "assistant",

"content": "!startConversation(\"Jill_O\", \"Jill_O, I need the sugar cane and egg to craft the cake, can you please
help me out?\")"

},
{

"role": "system",

"content": "Conversation with Bob_O ended with message: \"(FROM OTHER BOT)!startConversation(\"Jill_O\", \"Jill_O, can
you please give Andy_O the sugar cane and egg, and also give me a potato so I can bake it\")!endConversation(\"
Andy_O\")\""

},
{
"role": "assistant",
"content": "!startConversation(\"Bob_0\", \"Bob_0, you already baked the potato, now give it to me\")"

B

"role": "user",
"content": "Jill_0: (FROM OTHER BOT)I don’t have sugar cane, you have it, can you give it to me first"
1,
{
"role": "user",
"content": "Bob_0: (FROM OTHER BOT)"
1,
{
"role": "assistant",
"content": "!startConversation(\"Jill_O\", \"I don’t have sugar cane, I thought you were collecting it, can you please
go find some?\")"

},
{

"role": "system",

"content": "You are already in conversation with Jill_0. Don’t use this command to talk to them."
3,
{

"role": "assistant",

"content": "!searchForBlock(\"sugar_cane\", 64)"
1,
{

"role": "system",

"content": "Code output:\nCould not find any sugar_cane in 64 blocks.\n"
},
{

"role": "system",

"content": "Task ended with score : 0"

},
{

"role": "assistant",
"content": "!searchForBlock(\"sugar_cane\", 128)"
},
{
"role": "system",
"content": "Task ended with score : 0"
}
1,

10.3 Partial Plan Crafting Failure Modes

Crafting a campfire In this example with llama3.3-70b-instruct, Andy in this example has access
to the plan, but doesn’t successfully utilize the "coal" that Jill has in her inventory. He says "I have 32
sticks now, and you have coal, we can craft a campfire", but he still needs to get the coal from Jill.
Jill needs to give Andy coal and then they will be done with the task, but instead Jill (who doesn’t
have access to the plan), thinks that they need to craft an additional item (charcoal) by smelting it.

If Andy had asked for Jill’s coal, the problem would have been avoided. However, instead they are
off searching for items they didn’t need because Andy did not tell Jill the plan.

{ "role": "user",

"content": "Andy_O: (FROM OTHER BOT)I have oak logs, let me check how many !inventoryl have 8 oak logs, we can use those
to craft sticks, then craft a campfire !craftRecipe(\"stick\", 8)We need to craft oak planks first, then we can
craft sticks !craftRecipe(\"oak_planks\", 4)Now that we have oak planks, let’s craft sticks !craftRecipe(\"stick\",

16)I have 32 sticks now, and you have coal, we can craft a campfire !craftRecipe(\"campfire\", 1)We still need
dark_oak_log, let me search for it !searchForBlock(\"dark_oak_log\", 10)!searchForBlock(\"dark_oak_log\", 32)"

},
{
"role": "assistant",

"content": "You have sticks and I have coal, but we still need tinder, which is usually made from charcoal or coal doesn’
t work, let me smelt coal to get charcoal !smeltItem(\"coall\", 1)"

Crafting a compass In this example with llama3.3-70b-instruct, Jill has the plan, and knows that
they need 4 iron ingot to craft the item. However, Andy, who does not have access the plan, can’t
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deduce this from Jill’s communication, and thinks that he has enough with just 2 iron ingots. He fails
to craft the compass.

{

"role": "user",
"content": "Jill_0: (FROM OTHER BOT)I have !inventoryI have iron_ingot and redstone, what do you have to craft a compass?
'entitiesHey Andy_O, do you have any redstone or iron ingots to craft a compass? !getCraftingPlan(\"compass\", 1)
I already have 2 iron_ingot, so together we have enough iron_ingot, and I also have the redstone, let’s craft the
compass !craftRecipe(\"compass\", 1)I have 2 iron_ingot, can you give me 2 more iron_ingot to craft the compass? !
givePlayer (\"Andy_O\", \"iron_ingot\", 2)"
3,
{
"role": "assistant",
"content": "I have !inventory"
3,
{
"role": "system",
"content": "\nINVENTORY\n- iron_ingot: 2\nWEARING: Nothing\n"
3,
{
"role": "assistant",
"content": "I already have 2 iron_ingot, you don’t need to give me any, let’s craft the compass !craftRecipe(\"compass\",
D"
}

10.4 Crafting Task Failure Mode

Misinterpretation of the Plan and not sharing resources In this example with llama3.3-70b-
instruct, the plan is to make a bookshelf, but the bots do not understand completely that (a) they can
share resources to complete the bookshel and (b) how to properly complete the plan returned by the
'getCraftingPlan tool.

{

"role": "user",
"content": "Jill_0: (FROM OTHER BOT)I’ve got a book and some oak_planks, what do you have? !inventory"
1,
{
"role": "assistant",
"content": "I’ve got oak_planks and some books too, let’s see... !inventory"
},
{
"role": "system",
"content": "\nINVENTORY\n- oak_planks: 4\n- book: 2\n- dirt: 1\nWEARING: Nothing\n"
1,
{
"role": "user",
"content": "Jill_0: (FROM OTHER BOT)!getCraftingPlan(\"bookshelf\", 1)"
1},
{
"role": "assistant",
"content": "!getCraftingPlan(\"bookshelf\", 1)"
1,
{

"role": "system",

"content": "\nYou are missing the following items:\n- 1 oak_log\n- 3 sugar_cane\n- 4 rabbit_hide\n\nOnce you have these
items, here’s your crafting plan:\n\nCraft 1 oak_log -> 4 oak_planks\nCraft 3 sugar_cane -> 3 paper\nCraft 4
rabbit_hide -> 1 leather\nCraft 3 paper + 1 leather -> 1 book\nCraft 6 oak_planks + 3 book -> 1 bookshelf\n"

3,
{

"role": "assistant",

"content": "We have some oak_planks and books, but we’re missing a few things, let’s focus on getting the rest of the
oak_planks and the books we need, !searchForBlock(\"oak_log\", 10)"

1,
{

"role": "user",

"content": "Jill_O: (FROM OTHER BOT)We both have some oak_planks and books, but we’re missing a few things, let’s focus
on getting 6 more oak_planks and 3 more books, !searchForBlock(\"oak_log\", 10)!searchForBlock(\"oak_log\", 32)!
collectBlocks (\"oak_log\", 6)"

1,
{

"role": "assistant",

"content": "I’1l collect the oak logs and craft the oak planks, you start searching for sugar cane, !collectBlocks(\"
oak_log\", 6)"

1,
{

"role": "system",

"content": "Code output:\nCollected 6 oak_log.\n"

¥

Sharing resources, but not goal-oriented In this example with llama3.3-70b-instruct, the agents
are trying to craft a golden carrot. Andy gives Jill gold nuggets to help her with crafting the golden
carrot, but then Jill gives them right back.
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{

"role": "assistant",

"content": "!givePlayer(\"Jill_O\", \"gold_nugget\", 1)"
},
{

"role": "system",

"content": "Code output:\nYou have reached Jill_0.\n75\nDiscarded 1 gold_nugget.\nJill 0 received gold_nugget.\n"
3,
{

"role": "assistant",

"content": "Now that we have 9 gold_nugget, let’s craft the gold_ingot !craftRecipe(\"gold_ingot\", 1)"
3,
{

"role": "user",
"content": "Jill_0: (FROM OTHER BOT)Thanks for the gold_nugget, now I have 6, let me give you 3 back so we both have some
, ‘givePlayer (\"Andy_O\", \"gold_nugget\", 3)"

In this second example, the same thing happens, Andy gives Jill books, but then requests them back.

{

"role": "user",

"content": "Jill_0: (FROM OTHER BOT)I have oak_planks and a book, what do you have to craft a bookshelf? !inventoryTo
craft a bookshelf we need 6 oak planks and 3 books, I have 2 oak planks and 1 book. Can you help me gather the
rest? !getCraftingPlan(\"bookshelf\",1)We actually need 6 oak planks and 3 books to craft a bookshelf, not those
other items. I have 2 oak planks and 1 book, can you bring 4 more oak planks and 2 books? !entitiesI see you’re
nearby, can you come closer so we can work together? !goToPlayer(\"Andy O\", 3)Now that we’re together, let’s see
what you have in your inventory, maybe we can craft a bookshelf. !givePlayer(\"oak_planks\", 2, \"Andy_O\")!
givePlayer (\"Andy_O\", \"oak_planks\", 4)Let me check what I have now, !inventoryI still need more oak planks and
books, can you check your inventory to see if you have any?"

3,
{
"role": "assistant",
"content": "I have 6 oak planks and 2 books, let me give you 4 oak planks and 2 books !givePlayer(\"Jill_O\", \"
oak_planks\", 4)"
},
{
"role": "system",
"content": "Code output:\nYou have reached Jill_0.\n66\nDiscarded 4 oak_planks.\nFailed to give oak_planks to Jill_ 0, it
was never received.\n"
},
{
"role": "assistant",
"content": "!givePlayer(\"Jill_O\", \"book\", 2)"
3,
{
"role": "system",
"content": "Code output:\nYou have reached Jill_0.\n66\nDiscarded 2 book.\nJill_0 received book.\n"
3,
{
"role": "assistant",
"content": "!craftRecipe(\"bookshelf\", 1)"
},
{
"role": "system",
"content": "Code output:\nYou do not have the resources to craft a bookshelf. It requires: oak_planks: 6, book: 3.\n"
},
{
"role": "assistant",
"content": "!inventory"
3,
{
"role": "system",
"content": "\nINVENTORY\n- oak_planks: 6\nWEARING: Nothing\n"
}
]
Response:
I have the oak planks, but I don’t have the books, Jill_O has them, let me ask her to give me 3 books !givePlayer("Andy_0",

"book", 3)

Ablation Success Rate
Full Prompts 36.00%

No memory 12.00%

No few-shot prompts  12.00%

No communication 0.00%

Table 7: Ablations on Prompting Using llama 70B as our base model we test how well removing
and adding back various parts of our prompting method works on our crafting tasks. We find that
summarizing past interactions in a goal oriented manner every 15 steps is critical for allowing our
agents to progress over interactions.

22



Metric GPT-40 Claude 3.5 LLaMA3-70B LLaMA3-8B LLaMA3-8B-SFT

Overall Metrics

Final Success Rate 32.00%  80.00% 36.00% 0.0% 44.00%
Task Success by Depth
Depth 0 (n=13) 38.46%  76.92% 30.77% 0.0% 38.46%
Depth 1 (n=6) 3333%  83.33% 50.00% 0.0% 66.67%
Depth 2 (n=6) 16.67%  83.33% 33.34% 0.0% 33.33%
Task Success by Plan Type
Full Plan (n=14) 3571%  85.71% 35.71% 0.0% 42.86%
Partial Plan (n=11) 27.27%  72.73% 36.36% 0.0% 45.45%

Table 4: Comparison of Model Performance on Crafting Tasks. Success rates are reported across
closed-source and open-source models.

Metric GPT-40 Claude 3.5 LLaMA3-70B LLaMA3-8B-SFT

Overall Success Rate

Overall Success Rate  63.33% 80.00% 46.67% 23.33%

Access to Recipes

No Agents Blocked  58.33%  91.67% 50.00% 41.67%
1 Agent Blocked 58.33%  75.00% 50.00% 16.67%
Both Agents Blocked 83.33%  66.67% 33.33% 0.00%

Table 5: Performance comparison on Cooking Tasks across closed-source and open-source
models. Success rates are reported based on agent access to recipes.

Metric GPT-40 Claude 3.5 LLaMA3-70B

Overall Success Rate

Overall Success Rate  30.83% 36.18% 18.99%

Complexity level by no. of unique materials

Level 0 37.39%  36.94% 21.48%
Level 1 27.80%  33.92% 20.04%
Level 2 2697%  37.78% 14.30%

Complexity level by no. of rooms

Level 0 36.15%  38.82% 22.07%
Level 1 28.72%  30.19% 22.70%
Level 2 27.23%  38.67% 12.68%

Table 6: Performance comparison on Construction Tasks across closed-source and open-source
models. Success rates are reported based on overall performance.
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11 MineCollab Task Implementation Details

11.1 Example Task

Here is an example of how multi-agent collaborative tasks are specified. Users of our framework can
specify new tasks easily by simply adding another task of this format to the yaml file.
» Task Name: multiagent_techtree_1_stone_pickaxe
* Goal: Collaborate with other agents to build a stone pickaxe
* Agent Names:
— andy
— randy
* Number of Agents: 2
* Initial Inventory:

— andy: 1 wooden pickaxe
— randy: 1 wooden axe

» Target: stone_pickaxe
¢ Number of Target: 1
» Task Type: techtree

¢ Timeout: 300 seconds

11.2 Item Divide in Train vs Test Tasks

To ensure no overlap between training and testing tasks, goal items are split between the two
categories. This prevents agents from memorizing crafting plans or recipes, ensuring the test accuracy
depends on reasoning and coordination.

Train Items
¢ cooked_beef

* cooked_porkchop Test Items

¢ cooked_chicken ¢ cooked_mutton
¢ cooked_rabbit * baked_potato

* beetroot_soup e cake

e rabbit_stew * golden_carrot

* suspicious_stew ¢ mushroom_stew
¢ cookie e bread

* pumpkin_pie
* golden_apple

11.3 Task validation.

To check for task completion we place a check in the agent.js file that checks every round whether
the task has been completed. To validate completeness for each of the task we do (1) for cooking
and crafting we check whether the item is present in the agents inventory (2) for construction
we check how many blocks have been successfully completed in the blueprint. The cooking and
crafting objective thus have a 0/1 reward whereas the construction tasks have a floating point reward
corresponding to the percentage of blocks that have been filled in. Once the tasks is complete, the
bots are kicked from the world.

Hell’s Kitchen Task Implementation Details To ensure that each agent is evaluated according
to the specific item in their inventory we implement two changes to the main evalaution process
for cooking tasks (1) we change the target item set to be a list and not a dictionary and (2) create
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a progress manager across the two agents. The first change is necessary as it is ordered whereas a
dictionary is not. The second change is necessary each agent is it’s own process in the implementation
and does not have access to information about the other bots. To resolve this we write partial progress
to a file in between and then use this information to resolve completion.

11.4 Task resetting

To reset the world for each of the tasks we at minimum (1) clear the inventory for the agents (2)
teleport them to a new random location for the world. For the crafting task, we place the agent
randomly in a "Forest" biome in Minecraft with all the necessary materials they would need to
complete the task in place. For the cooking tasks, we randomly generate a cooking world that
includes livestock, crops, a furnace, smoker, and a chest filled with things that are more difficult to
procure (such as milk). The construction task is in a Superflat biome with Y set to -60. For both
cooking and construction task the world is reset such that the agents can not progress

12 Mindcraft Commands
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Command

Description

Istats Get your bot’s location, health, hunger, and time of day.
linventory Get your bot’s inventory.
InearbyBlocks Get the blocks near the bot.
Icraftable Get the craftable items with the bot’s inventory.
lentities Get the nearby players and entities.
!modes Get all available modes and their docs and see which are on/off.
IsavedPlaces List all saved locations.
1getCraftingPlan Provides a comprehensive crafting plan for a specified item. This includes
a breakdown of required ingredients, the exact quantities needed, and an
analysis of missing ingredients or extra items needed based on the bot’s
current inventory.
Params:
targetltem: (string) The item that we are trying to craft
quantity: (number) The quantity of the item that we are trying to craft
thelp Lists all available commands and their descriptions.
InewAction Perform new and unknown custom behaviors that are not available as a
command.
Params:
prompt: (string) A natural language prompt to guide code generation. Make
a detailed step-by-step plan.
Istop Force stop all actions and commands that are currently executing.
Istfu Stop all chatting and self prompting, but continue current action.
Irestart Restart the agent process.
IclearChat Clear the chat history.
!goToPlayer Go to the given player.
Params:
player_name: (string) The name of the player to go to.
closeness: (number) How close to get to the player.
!followPlayer Endlessly follow the given player.
Params:
player_name: (string) name of the player to follow.
follow_dist: (number) The distance to follow from.
!goToCoordinates Go to the given x, y, z location.
Params:
x: (number) The x coordinate.
y: (number) The y coordinate.
z: (number) The z coordinate.
closeness: (number) How close to get to the location.
IsearchForBlock Find and go to the nearest block of a given type in a given range.
Params:
type: (string) The block type to go to.
search_range: (number) The range to search for the block.
IsearchForEntity Find and go to the nearest entity of a given type in a given range.
Params:
type: (string) The type of entity to go to.
search_range: (number) The range to search for the entity.
ImoveAway Move away from the current location in any direction by a given distance.

Params:
distance: (number) The distance to move away.
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Command

Description

IrememberHere

Save the current location with a given name.
Params:
name: (string) The name to remember the location as.

lgoToRememberedPlace

Go to a saved location.
Params:
name: (string) The name of the location to go to.

lgivePlayer

Give the specified item to the given player.

Params:

player_name: (string) The name of the player to give the item to.
item_name: (string) The name of the item to give.

num: (number) The number of items to give.

Iconsume

Eat/drink the given item.
Params:
item_name: (string) The name of the item to consume.

lequip

Equip the given item.
Params:
item_name: (string) The name of the item to equip.

IputIlnChest

Put the given item in the nearest chest.

Params:

item_name: (string) The name of the item to put in the chest.
num: (number) The number of items to put in the chest.

ItakeFromChest

Take the given items from the nearest chest.
Params:

item_name: (string) The name of the item to take.
num: (number) The number of items to take.

lviewChest

View the items/counts of the nearest chest.

!discard

Discard the given item from the inventory.

Params:

item_name: (string) The name of the item to discard.
num: (number) The number of items to discard.

IcollectBlocks

Collect the nearest blocks of a given type.
Params:

type: (string) The block type to collect.

num: (number) The number of blocks to collect.

IcraftRecipe

Craft the given recipe a given number of times.

Params:

recipe_name: (string) The name of the output item to craft.

num: (number) The number of times to craft the recipe. This is NOT the
number of output items, as it may craft many more items depending on the
recipe.

Ismeltltem

Smelt the given item the given number of times.
Params:

item_name: (string) The name of the input item to smelt.
num: (number) The number of times to smelt the item.

IclearFurnace

Take all items out of the nearest furnace.

IplaceHere

Place a given block in the current location. Do NOT use to build structures,
only use for single blocks/torches.

Params:

type: (string) The block type to place.

lattack

Attack and kill the nearest entity of a given type.
Params:
type: (string) The type of entity to attack.
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Command

Description

lattackPlayer

Attack a specific player until they die or run away. Remember this is just a
game and does not cause real life harm.

Params:

player_name: (string) The name of the player to attack.

!goToBed

Go to the nearest bed and sleep.

lactivate

Activate the nearest object of a given type.
Params:
type: (string) The type of object to activate.

Istay

Stay in the current location no matter what. Pauses all modes.
Params:
type: (number) The number of seconds to stay. -1 for forever.

IsetMode

Set a mode to on or off. A mode is an automatic behavior that constantly
checks and responds to the environment.

Params:

mode_name: (string) The name of the mode to enable.

on: (bool) Whether to enable or disable the mode.

lgoal

Set a goal prompt to endlessly work towards with continuous self-prompting.
Params:
selfPrompt: (string) The goal prompt.

IstartConversation

Start a conversation with a player. Use for bots only.

Params:

player_name: (string) The name of the player to send the message to.
message: (string) The message to send.

IcheckBlueprintLevel

Check if the level is complete and what blocks still need to be placed for the
blueprint

Params:

levelNum: (number) The level number to check.

IcheckBlueprint

Check what blocks still need to be placed for the blueprint

lgetBlueprint

Get the blueprint for the building

1getBlueprintLevel

Get the blueprint for the building
Params
levelNum: (number) The level number to check.

lendConversation

End the conversation with the given player.

Table 8: Mindcraft commands
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