Technical Report: Building a Neural Ensemble Decoder by
Extracting Features Shared Across Multiple Populations

Chia-Jung Chang
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139
chiajung@mit.edu

ABSTRACT

To understand whether and how a certain population of neurons represent behavioral-relevant vari-
ables, building a neural ensemble decoder has been used to extract information from the recorded
activity. Among different ways to decode neural ensemble activity, the parametric approach requires
assumption of the spiking distribution and an underlying encoding model, which poses challenges for
neurons with nonlinear, multi-modal, and complex receptive fields. Alternatively, non-parametric
framework assumes no explicit probability distribution and discovers patterns from the data in an
unbiased way, and thus training a machine learning model as a decoder has gained its popularity in
the field. However, machine learning models require a big-enough dataset, yet the data size is often
small due to limitations in recording techniques. Although increasing the number of subjects help
increase the size of the overall training set, how to concatenate recorded ensemble activity across
subjects while preserving their spatial-temporal structures is not trivial. In this technical report a
novel way to extract features shared across populations from multiple subjects to train a machine
learning model is described. With this feature extraction framework, one can easily test upon different
hypothesis of the underlying coding strategies. In addition, several common issues in applying a
machine learning model to decode neural activity has been discussed. Overall, this report provides a
rigorous protocol for applying machine learning models to decode a relatively small dataset - neural
ensemble activity collected across multiple populations.

Keywords ensemble decoder - feature extraction - small datasets - model selection

1 Introduction

To understand whether and how a neural population contributes to a certain behavior, one way is to modify cell activity
through electrical or optical manipulations to test causality, yet manipulation tools are not applicable to every experiment
and have their limitations in revealing the underlying coding strategies. Therefore, a complementary method is to
study neural correlates of behavior, in other words, to see how different aspects of behavioral variables such as sensory
stimuli, motor actions, and internal states can be decoded from the neural activity. From the decoding performance
(goodness-of-fit) or its extracted mutual information, we can quantify the degree of the neural population contributing
to the behavior, investigate how neural coding evolves across time or varies between contexts, and compare functional
roles between different brain regions in the same behavior.

To decode behavior from the neural activity, a popular method is to build a parametric model to capture each neuron’s
dynamics either through an integrate-and-fire biophysical model or Poisson point process, and use Bayesian approach
to further represent population codes under uncertainty. However, neurons often fire in a non-Poisson fashion and
their response also depends on their spiking history. Moreover, using Bayesian approach further assumes explicit
probabilistic distribution. Therefore, a parametric decoder would not work well for neurons with nonlinear, multi-modal
and complex receptive fields.

'This technical report only serves as archiving a specific proposed framework. Application examples on different datasets and
their evaluation analysis will be described in the full paper

Alternatively, building a non-parametric decoder assumes no explicit probability distribution and let data speaks
for itself. To achieve this, machine learning models are used as they can be trained to learn the population codes
from heterogeneous responses across neurons in an ensemble. While recent interests grow in applying deep learning
frameworks such as convolutional neural networks (CNN) and recurrent neural networks (RNN), such frameworks
are only suitable in analyzing large-scale datasets. For smaller datasets, traditional machine learning models such as
support vector machines (SVM) and random forest (RF) are still very useful in many scenarios. Nevertheless, a machine
learning model still benefits from more training data in order to correctly sample the underlying distribution.

To satisfy the essential requirement of data size in training a machine learning decoder, recordings are performed across
multiple subjects to construct a larger database. For example, one can use a silicon probe to record multiple single
neurons from the same animal while performing a behavioral task. The number of recorded neurons are usually around
20 to 30 after sorting, which also varies across sessions. Although one can use a chronic array implant or even multiple
probes to increase the number of recorded neurons within the same session, more damage is also caused. On the other
hand, longitudinal imaging creates opportunity for collecting large-scale data from the same animal, yet imaging from
the deep brain through a GRIN lens still faces the same challenge in terms of data size. Therefore, data will often times
recorded from multiple animals performing a same behavioral task. Imagine 10 cells are recorded from one animal
across 60 trials, and 40 cells are recorded from another animal across 15 trials, how to combine these data to train
a decoder is thus non-trivial. A common practice is to obtain an average response (mean firing rate or z-score) of a
population from each recording session, or to categorize individual neurons based on their tuning curves or dynamic
profiles. These approaches either lose the temporal resolution or ignore the possibility that information is mixed and
distributed across the entire ensemble. In this technical report, a method to extract ensemble features shared across
multiple sessions and multiple subjects without losing their temporal structures is proposed.

2 Method

A machine-learning algorithm is developed to extract features from multiple neural ensembles and combine them
to form a dataset large enough to train the decoder. The core model is built on top of a framework described in [1]],
originally developed to categorize vocalizations by transforming acoustic signals into spectrograms, and extracting
features from 2D images with varying sizes. This algorithm can be further generalized to different experiments or
different recording techniques. In this section, the problem formation and its applicable dataset characteristics is defined
first, and how to properly extract shared ensemble features across multiple populations is also discussed. Furthermore, a
rigorous protocol for model section based on bias-variance trade-off is presented.

2.1 Dataset Characteristics

Due to technical limitations or intrinsic sparsity in the target brain region, it is sometimes difficult to obtain a large-
enough neural dataset from the same animal and will require pooling data across multiple animals. Depending on the
experimental design, neural signals are recorded from across several animals performing a behavioral task, where each
animal undergoes either one or multiple sessions, with each session consisting of either a fixed number or random
number of trials, with each trial duration being either fixed or varied.

Problem Formulation There are n animals in total. Each animal performs a k-way decision-making task. Total
number of single neurons collected from animal 4 can be denoted as IV;, and each neuron can be denoted as U;;, where
1=1,2,...,nandj =1,2, ..., N;.

To simplify, we assume that the same set of neurons are collected across multiple sessions from the same animal
utilizing a same behavioral strategy, and thus all the trials presented to one animal can be combined into one session
in theory. Each animal ¢ are presented with S; trials in total, where a trial ¢; has a duration of T}, timestamps, where
t; =1,2,...,5; and T} can either be fixed across trials or varied on a trial-by-trial basis.

For each trial, its associated behavioral outcome can be labeled as [, where [= 0,1, ...,k — 1. For example, in a
Go/NoGo task, labels for NoGo trials are 0, whereas the labels for Go trials are 1.

Response profile for neuron Uy; in trial ¢; can be denoted as a row vector Ry, ;, and thus raw input data associated
with each trial ¢; can be represented as a 2D matrix of size N; x T}, where t; = 1,2, ...,.S;. In a more general case,
T}, can vary on a trial-by-trial basis. In cases where a trial structure is fixed, or timestamps can be padded for shorter
trials to reach the same duration 7', the input data for animal ¢ can be represented as a 3D matrix of size N; x T x S,
where response profile of each neuron R;,; can either be a vector of binary numbers to represent spiking, or a vector of
non-negative numbers to represent firing rate or fluorescence intensity.

Example 1 Animals are trained to perform a Go/NoGo task depending on tone frequency, and each session ends
when their performance surpasses a user-defined threshold. Single neurons are recorded with 1 msec resolution through
a silicon probe with multiple channels. There are 3 animals in total. 10 single cells are recorded from one animal within
a session of 60 trials, 15 cells are recorded from another animal within a session of 35 trials, and 40 cells are recorded
from the other animal within a session of 15 trials.

Example 2 Animals are put in a T-maze and can freely choose between left and right arms, and each session ends
when number of choices reaches 50. Single neurons are imaged at 10 Hz through a head-mounted miniscope. There are
3 animals in total. 50 cells are imaged from one animal running fast such that each trial lasts below 10 seconds, 70 cells
are imaged from another animal running slow such that most trials last beyond 1 minute, and 30 cells are imaged from
the other animal whose running speed varies across trials.

Example 3 Animals are put in a box and trained to run toward a port to obtain a drop of delivered fluid after hearing
an auditory cue. After conditioning, the delivered fluid will be mixed with alcohol in behavioral sessions, where each
session lasts an hour. There are 7 animals addicted to alcohol in a similar way. Single neurons are imaged at 10 Hz
through a head-mounted miniscope. Calcium activity for each neuron on each trial is aligned to the first lick after fluid
delivery, and trial structure is defined from 8 seconds before to 8 seconds after the lick, so the trial duration is fixed.
However, the number of trials and the number of neurons vary across animals.

As revealed by above examples, how to properly combine data across animals and decode ensemble information
underlying the decision-making task is non-trivial, and will be discussed in Section 2.2. After data across animals is
combined into a feature set D, it is split into two sets: prediction set and development set. Development set is further
subdivided into a training set and a validation set for cross-validation in training. A supervised decoder algorithm will
involve feature extraction and a machine learning classifier. An example framework for Example 3 is shown in Figure[T]

»—o—0—@

Data (dF/F)
— T Loading and Hyperparameter Train model tuned to)
cell1 | — . R N . Applying learned
X H : pre-processing optimization with training set balanced on model to test data
: o H data to extract cross-validation bias-variance tradeoff
cellNil o 0)l afeature set
time trial 1 trial Si
idati ining f Grid Search Hyper-parameter
Feature Extraction validation fold training fold yper-p
(e.g. pooled average, PCA) fold 1 tﬁ% 10
ol
—_— 80
R (e rrij— 0
trial1 13 11.. 21 1 Go trial 2 . fold 2 cross-validated bt
trial2 0.2 2.1...-14 0 NoGo trial 3 . [T T]— performance %
; . H 20
trial t-0.9 1.4...08 1 Go trialt+1 ° Ter— o

Feature Label

Feature Label fold 5 @]——
s Y
Dataset Split Testing set Training set e d 7 F,.J'
SVM hyperparameters (e.g. C)

Figure 1: A decoder framework diagram.

2.2 Feature Extraction

While it is a relatively easy task to extract features from a same population, it is non-trivial to extract features shared
across multiple populations for data concatenation. A few different ways based on different underlying coding models
are discussed below.

Approach 1 Let’s start from the simplest method. Obtain an average activity within a trial window across neurons 7,
for each animal, such that data from all the trials across all the animals can be combined into a feature set D with size
shown in Equation 2] (feature length = 1). This method is applicable when neurons have simple response profiles that
are easily segregated by their tuning magnitude to the stimuli.

AL
t;FZR)

D=3 8 x1 @)
=1

Approach 2 In Approach 1, too much information is lost. One can recover more information by adding other types
of statistics in addition to average response. For example, obtain minimum, maximum, mean and covariance in the
response profiles across neurons within a trial, such that data from all the trials across all the animals can be combined
into a feature set D with size shown in Equation 3] (feature length = 4). By adding more statistical measurements such
as second-order momentum, the length of feature set increases and the coding dynamics can be captured better.

D=3 8 x4 3)
=1

Approach 3 When response profiles are complex, above approaches are most likely to fail. One way is to obtain an
average response profile across time across neurons 7, for each trial, which can be thought as neuronal population
vector. When the trial duration is fixed (73, = T for¢ = 1, 2, ..., n), data from all the trials across all the animals can be
combined into a feature set D with size shown in Equation [5] (feature length = T').

N;
i, =Y Ry €
j=1
D:=> 8§ xT (5)
i=1

Approach 4 To further extend features extracted from Approach 3, one can add standard deviation of response profile
across time into features, the final feature set D will double its feature length, as shown in Equation [6] (feature length =
2T).

i=1

Approach 5 Above approaches ignore information distributed across neurons. While Approach 1 and 2 ignore
temporal dynamics across time, Approach 3 and 4 are prone to stochastic noise in dynamic profiles. One way to solve
these is to extract features by only preserving the most relevant components. By assuming that relevant features are
preserved in a similar way across subjects, we can first reduce the temporal dimension of neuronal activity linearly
using either PCA or non-linearly using Isomap down to D,. We can then reduce the dimension of ensemble activity
down to D, to extract codes shared across neurons in a population. By selecting a fixed dimension number explaining
the major variance in the data (D, and D,,), feature set for each animal is ensured and can be concatenated easily into a
feature set D with size shown in Equation[7] This 2D feature set D can be further flattened into a 1D feature vector.

Although many studies would normalize data before applying PCA, it is not necessarily reasonable for neural data
analysis. Considering that the amplitude difference among neurons may also carry information, yet one does not want
to capture components referring to variance in mean response, a soft normalization as in Equation [§]is recommended.
Overall, this approach is used to extract shared features across subjects in the example algorithm in Figure [I]

D := D, x D, 7)

D
D= — ®)
VIID |

4

Approach 6 There is a basic assumption in Approach 5 that components extracted for each subject are of similar
scales and coordinates. This however is not always true, and might make two identical dynamics diverge depending
on the projection plane. To extend Approach 5, one can first concatenate all data across all the trials across all the
animals first, as long as all the trials are of the same length. New shared coordinates are established through reducing
dimensions on this concatenated dataset, and then individual dataset for each trial is projected onto these coordinates to
extract neural features for each trial.

2.3 Model Construction

Take Example 3 described in Section 2.1 as instance. A decoder to separation between two output classes is needed,
and can be achieved by finding a hyperplane that had the largest distance to the nearest training data point (margin)
through support vector machine (SVM) algorithm. For a k-way decision making task, we can also apply C-supported
vector classification method [2]] with pairwise one-against-one strategy for multi-class classification.

The final feature set with outcome labels is first split into two sets: development set and test set. Development set is
further split into two sets: training set and validation set. Given a training feature set D, where each row corresponds to
ensemble feature with length D, for a trial, and a label vector L with length D,,. If the training set is highly unbalanced
for its outcome labels, a subset of training set is sampled where the number of trials is matched between different
outcome label classes. Take Example 3 as instance, collection trials are usually more common than no-collection trials,
and thus it is suggested to select a subset of collection trials to match the number of no-collection trials to avoid bias in
training, so as to yield an empirical chance level. C-SVC algorithm [2, 3] finds the hyperplane to solve the optimization
problem below.

min %aTQa —vTa 9)

T
Qpg = LpLq - K(Dp,Dy) = LyLq - $(Dyp)" ¢(Dy)
subjectto LTa=0, 0<a<C, p=1,2,..,D,
where v = [1, 1, ...1]7 is the vector of all ones, Q is a positive semi-definite matrix, K is the radial basis kernel function,

¢(x) maps x into a high-dimensional space, and C'is the hyper-parameter.

To select proper parameters y for kernel function and the hyper-parameter C, a grid search is applied. Five-fold cross
validation can be used. The summit of the contour suggested the parameter pair for maximal cross-validated accuracy.
After optimization, the trained decoder can be applied to test dataset.

References

[1] Chia-Jung Chang. Automated classification of marmoset vocalizations and their representations in the auditory
cortex. Master’s thesis, Johns Hopkins University, 2014.

[2] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to support vector classification. 2003.

[3] Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using second order information for training
support vector machines. Journal of machine learning research, 6(Dec):1889-1918, 2005.

	Introduction
	Method
	Dataset Characteristics
	Feature Extraction
	Model Construction

